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Abstract. We explore the use of a fixed-lag Kalman
smoother for sequential estimation of atmospheric carbon
dioxide fluxes. This technique takes advantage of the fact
that most of the information about the spatial distribution
of sources and sinks is observable within a few months to
half of a year of emission. After this period, the spatial
structure of sources is diluted by transport and cannot sig-
nificantly constrain flux estimates. We therefore describe an
estimation technique that steps through the observations se-
quentially, using only the subset of observations and mod-
eled transport fields that most strongly constrain the fluxes at
a particular time step. Estimates of each set of fluxes are se-
quentially updated multiple times, using measurements taken
at different times, and the estimates and their uncertainties
are shown to quickly converge. Final flux estimates are in-
corporated into the background state of CO2 and transported
forward in time, and the final flux uncertainties and covari-
ances are taken into account when estimating the covariances
of the fluxes still being estimated. The computational de-
mands of this technique are greatly reduced in comparison to
the standard Bayesian synthesis technique where all observa-
tions are used at once with transport fields spanning the en-
tire period of the observations. It therefore becomes possible
to solve larger inverse problems with more observations and
for fluxes discretized at finer spatial scales. We also discuss
the differences between running the inversion simultaneously
with the transport model and running it entirely off-line with
pre-calculated transport fields. We find that the latter can be
done with minimal error if time series of transport fields of
adequate length are pre-calculated.

Correspondence to:L. M. P. Bruhwiler
(lori.bruhwiler@noaa.gov)

1 Introduction

Understanding the interannual variability of the sources and
sinks of atmospheric carbon dioxide is critical to the suc-
cess of managing carbon reservoirs and emissions. One
approach that has been used over recent years to quantify
the atmospheric carbon budget involves estimating net fluxes
from oceans and terrestrial regions using inverse techniques.
These techniques involve comparing predictions from atmo-
spheric transport models and measurements of atmospheric
carbon abundances at observation sites distributed over the
regions of interest. The spatial pattern of the observed and
predicted differences is used to infer the spatial distribution
of sources and sinks of carbon dioxide by seeking a distri-
bution of fluxes that in a least squares sense minimizes the
difference between the model predictions and observations,
as well as any prior information used to constrain the prob-
lem.

The technique that has been most commonly employed
to estimate carbon fluxes thus far is the Bayesian synthe-
sis inversion (e.g.Enting et al., 1995). For this method, a
cost function is formulated that has two terms; one involv-
ing the observations and one involving a prior estimate of the
fluxes. The resulting flux estimates are therefore constrained
both by the observations and a prior guess of the solution.
Prior information is needed for the case of atmospheric in-
versions because the observational network is generally too
sparse to permit estimation of fluxes on the scales of interest.
More specifically, the problem tends to be underdetermined
in regions where observations are sparse, and possibly over-
determined in regions where there are many observations, de-
pending on the spatial scale of the fluxes to be estimated.

Most studies employing the Bayesian synthesis inversion
technique have been executed in what has been referred to
as “batch” mode (Gelb, 1974) wherein fluxes for all source
regions are estimated at all times simultaneously using all of
the observations. In the case of an annual mean inversion,
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the vector containing the sources and sinks is the size of the
number of fluxes being estimated, and annual averages of ob-
servations are used. Examples of annual mean studies of this
type are described byFan et al.(1998), Gurney et al.(2002)
andBousquet et al.(1999). The latter authors solved for an-
nual mean fluxes using monthly observations and thus scaled
prior seasonal fluxes by an estimated annual coefficient. An-
nual mean inversions are comparatively simple and do not
require much computational expense, however, they do not
result in information about seasonal cycles.

An approach that yields average seasonal cycles of sources
and sinks is the cyclo-stationary approach. Multi-year
monthly average observations and a state vector that includes
monthly values for each source region are used to estimate
monthly fluxes (e.g.Kaminski et al., 1999andGurney et al.,
2004). This approach does not give information about the
variability of carbon sources and sinks from year to year. In
addition, since monthly average transport information rather
than annual average transport information must be used, the
size of the problem is significantly larger than for the an-
nual case. The state and observation vectors are a factor of
12 larger, while the matrix of response functions (giving the
response at each observation site from pulses emitted and
transported from each source region) is a factor of 12 squared
larger. Thus more computational resources are required for
the cyclo-stationary problem.

The variability of carbon sources and sinks from month to
month and year to year is of considerable interest. In partic-
ular, the behavior of carbon fluxes over the recent decades at
contintental and ocean basin spatial scales may be estimated
using existing observational network data and analyzed for
changes over time. The first such study was described by
Rayner and Law(1999) and a more recent studies are that
of Bousquet et al.(2000) andRodenbeck et al.(2003). The
latter authors estimated fluxes at the spatial scale of the trans-
port model grid used.

Estimation of fluxes at very high spatial resolution is a
way to hopefully minimize biases and errors arising from us-
ing a few sites to constrain large regions with heterogeneous
sources and sinks. In addition, when estimating fluxes for
continental-scale regions, it is common practice to use prior
flux estimates of the oceans and biosphere to obtain spatial
distributions of emissions that are used as subregional emis-
sion patterns for calculation of the basis functions. If the
spatial distribution of the prior fluxes has errors or biases,
then the estimated fluxes will be biased also. The strategy
of resolving fluxes at grid scales therefore involves estimat-
ing large numbers of parameters, and using prior flux and
covariance information to constrain the solution where the
data have minimal influence (e.g.Kaminski et al., 2001and
Engelen et al., 2002). Estimates for grid-scale fluxes may
then be combined in order to obtain estimates for continental
and ocean basin-scale fluxes and uncertainties that hopefully
do not suffer from aggregation error (although they may in-
deed be biased by the prior flux estimates themselves). For

these types of problems, the batch Bayesian synthesis grows
very computationally demanding since the size of the ma-
trices in the estimation equation gets very large, and since
the amount of computation involved in generating basis func-
tions becomes prohibitive, even if an adjoint transport model
is used.

In this study we propose a technique wherein the meaure-
ments are used to sequentially estimate fluxes. This tech-
nique relies on the observation that, at a particular time,
current measurements no longer constrain fluxes from suffi-
ciently far into the past very well due to the tendency of atmo-
spheric mixing to smooth out spatial gradients over time. We
find that observations and transport information only from
the most recent 6 to 9 months needs to be retained in order
to achieve very good agreement with flux estimates from the
batch method. Stepping through the observations and keep-
ing only a subset of transport information results in consider-
able computational savings, and it becomes possible to effi-
ciently estimate fluxes over multiple decades without signif-
icant loss of information contained in the observations. This
numerical efficiency comes at the cost of a slightly increased
estimated flux uncertainty as we will show.

We refer to our technique as a Kalman smoother because
it produces estimates of fluxes at a particular time using ob-
servations from that time step as well as observations from
subsequent times. A filter, on the other hand, would use only
past observations to estimate fluxes at a particular time step.
Our technique is built upon the optimal filtering technique
originally developed byKalman (1960) for estimating the
state of a system given imperfect prior information and ob-
servations. Among the first applications for Kalman filtering
was to navigation systems.

The application of the Kalman filter to atmospheric prob-
lems was pioneered byHartley(1992) andHartley and Prinn
(1993) for the estimation of regional emissions of the chlo-
roflourocarbon CFC11. The problem of inverting for time-
varying fluxes was explored byHaasLaursen et al.(1996) us-
ing an idealized transport model. They proposed an adaptive-
iterative Kalman filter wherein fluxes at a particular time step
are repeatedly estimated until convergence, and the covari-
ance is reinitialized if the posterior model-observation differ-
ence grows too large. The technique we describe here is dif-
ferent from this work in several important ways. We estimate
fluxes at each time step multiple times using a different set of
observations each time. By using observations from multiple
time steps into the future to constrain fluxes at a particular
time, we are able to allow information from source regions
to propagate for as long as necessary. The time period over
which transport information is retained is the “fixed-lag”.

As has been pointed out byEnting(2002), a shortcoming
of a sequential estimation technique such as that proposed
here, is that the covariance is not necessarily propagated from
states (fluxes) that are no longer being updated by observa-
tions to the parts of the state vector that are still being up-
dated. This effect is small if observations and transport fields
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from many time steps are used. If shorter periods are used in
the sequential inversion, then the estimated flux uncertainty
may be significantly underestimated. In this study, we intro-
duce an algorithm that corrects this deficiency by correctly
propagating covariance from non-active to active parts of the
state vector.

The next section briefly describes the transport model used
in this study. This is followed by Sect. 3, which describes the
formulation of the fixed-lag Kalman smoother. We then show
how the flux estimates produced using our fixed-lag Kalman
smoother compare with those calculated using the standard
batch Bayesian synthesis inversion technique. We introduce
a method for propagating the covariance between time steps
no longer being estimated to time steps still in the state. In
the last section, we discuss the issue of running the fixed-lag
Kalman smoother concurrently with the transport model as
opposed to using it with pre-calculated transport fields “off-
line” from the transport model.

2 The transport model

The transport model used for this study is the coarse grid
Tracer Model version 3 (TM3). The horizontal resolution is
roughly 7.5◦

×10◦, with 9 vertical levels spanning the surface
to 10 hPa. The TM3 global transport model may be driven by
either analyzed meteorological fields or those calculated by
a general circulation model. For a detailed description of the
model and its physical parameterizations, seeHeimann and
Koerner(2003). TM3 integrates the tracer continuity equa-
tion for an arbitrary number of tracers using the slopes advec-
tion scheme ofRussell and Lerner(1981). Also included are
stability-dependent vertical diffusion using the parameteriza-
tion ofLouis(1979), and a detailed convective mass transport
scheme byTiedke(1989). The integration time step for TM3
is 3 h. As noted byDenning et al.(1999) in a model inter-
comparison study of an inert atmospheric tracer (SF6), TM3
lies in the group of models that tends to have weak vertical
mixing.

Mass fluxes used by the TM3 model to transport at-
mospheric trace species must be pre-calculated by post-
processing assimilated meteorological data. This is a large
computational task, and for this study we used coarse reso-
lution fields because we did not have access to higher reso-
lution fields that covered the entire period spanning 1980 to
2001. Furthermore, in the work presented here, we are inter-
ested in estimating monthly average fluxes using monthly av-
erage observations and response functions. Use of higher res-
olution transport fields are therefore not likely to impact the
results discussed here significantly, except that some obser-
vation sites may be excluded from our inversions because the
transport at these sites cannot be adequately simulated with a
coarse resolution model. Furthermore, conclusions concern-
ing the performance of the fixed-lag Kalman smoother tech-
nique itself are unlikely to be dependent on the resolution

of the transport used. The windfields used to calculate mass
fluxes used in this study are European Centre for Medium
Range Weather Forecasting (ECMWF) reanalysis products
from 1979 through 1992 or the National Center for Envi-
ronmental Prediction reanalysis products from 1983 through
2001.

3 The Kalman Smoother

In this section we discuss the development of the Fixed-
Lag Kalman Smoother starting with basic consideration of
Bayesian estimation. We also discuss a covariance propaga-
tion scheme and show how results obtained using the new
technique compare to those obtained with the more conven-
tional Bayesian Synthesis inversion.

3.1 Background

Neglecting for the moment the use of prior information, the
linear estimation problem may be characterized by solution
of

z = Hs+ v (1)

wherez is a vector of observations, andN is the total num-
ber of observations. Alternatively,z may also be a vector of
differences between model predictions and observations. In
this case, the estimated fluxes are interpreted as adjustments
to the fluxes used in the model predictions (the “priors”). The
matrix of basis functions,H, is dimensionedN by M, where
M is the number of fluxes to be estimated. The elements
of H are calculated using an atmospheric transport model,
and give the response at each measurement site for each time
due to emissions originating from each source region at each
time. s and v are random vectors wheres is the vector of
source strengths to be estimated andv is the “data uncer-
tainty”, which actually represents the inability of the coarse-
resolution grid model to simulate near-field influences on the
observations as well as long-range transport errors. In this
study, we refer to this as the model-data mismatch error.

For the problem under consideration,v arises chiefly from
misrepresentation of transport and near-field sources at mea-
surement sites. The uncertainty of the CO2 measurements is
about %0.05 while the transport and misrepresentation errors
are typically an order of magnitude larger. In general, model-
data mismatch errors occur because the transport model cal-
culates transport for grid boxes several hundred kilometers
in extent for comparison to what is essentially a point mea-
surement. Small-scale processes that dominate the observed
signal are not likely to be represented well by the trans-
port model. Examples of these are circulations associated
with coastlines and mountains, sporadic transport of plumes
from urban areas, and small-scale mixing processes associ-
ated with the planetary boundary layer. In addition, there
may also be errors in the wind fields used.
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Typically, Gaussian statistics are assumed and the prob-
ability density function (pdf),p, of observation vector,z,
given source strength vector,s, is

p(z|s) =
1

√
2π |R|

e−
1
2 (z−Hs)T R−1(z−Hs) (2)

where R is the model-data mismatch error covariance
matrix obtained by noting that the expectation values
<z−Hs>=<v>=0 so that

R =< (z− Hs− < z− Hs >)(z− Hs− < z− Hs >)T >=< vvT >

(3)

Likewise, s is also assumed to be normally distributed
about prior valuessp so that its prior probability density func-
tion is given by

p(s) =
1

√
2π |Q|

e−
1
2 (s−sp)T Q−1(s−sp) (4)

where Q is the covariance matrix specified for deviations
from the prior flux estimates,sp. R and Q are typically
prescribed as diagonal matrices, the values of which spec-
ify the relative confidence in observations and information
about prior fluxes.

It is important to note that assuming that<z−Hs>=0 and
<s−sp>=0 implies no bias in either the transport or prior
flux estimates. In either case, this assumption is unlikely to
be correct. Biases may, of course, be modeled with arbitrary
magnitude. In the case of transport, it is difficult to accurately
characterize potential biases. Possible biases in the prior flux
estimates are also of concern, especially since the relative
sparseness of current observational networks used for atmo-
spheric inversions ensures that the prior flux estimates will
dominate the estimated fluxes in some regions.

Invoking Bayes’ Theorem,

p′(s|z) =
p(z|s)p(s)∫
p(z|s)p(s)ds

(5)

which states that the probability of a particular source vector
given the observational data is equal to the probability of the
data given that source vector times the prior probability of
that source vector normalized by the total probability of the
data for all source vectors. Considering the above pdfs, it fol-
lows that to maximize the probability of the sources given the
observations, the objective function that must be minimized
is:

Ls = (z− Hs)T R−1(z− Hs) + (s− sp)T Q−1(s− sp) (6)

At the minimum, the derivative ofLs with respect tos must
be zero:

∂Ls
∂s

∣∣∣∣∣
s’

= −(z− Hs’)T R−1H + (s’ − sp)T Q−1
= 0 (7)

where thes’ indicates the “posteriori” source strength vector.

The posterior covariance estimate is found from the in-
verse of the Hessian of the objective function:

Q′
=

(
∂2Ls
∂s2

)−1

=

(
HT R−1H + Q−1

)−1
. (8)

Equations (7) and (8) may be re-arranged to produce

s’ = sp + QHT
(
R + HQHT

)−1(
z− Hsp

)
(9)

Q′
= Q − QHT

(
R + HQHT

)−1
HQ (10)

Equations (9) and (10) are the discrete Kalman filter update
equations (Kalman, 1960; Gelb, 1974) where the Kalman
gain matrix,K , may be identified as

K = QHT
(
R + HQHT

)−1
(11)

In the above equations, the Kalman gain matrix functions
as a weighting factor between the prior values of the source
vector and flux error covariance matrix (sp andQ) and new
information from additional observations. The prior val-
ues may be those specified externally, or a previous esti-
mate. As the misrepresentation error,R, approaches zero,
the Kalman gain matrix approachesH# (the pseudo-inverse
of H, sinceH is a non-square matrix) and it may be shown
that s’→(HTH)−1HTz. In this limiting case, only the ob-
servations and available transport information are used to es-
timates’. If the model-data mismatch error is much larger
than the prior flux error (R�Q; i.e. Q≈0), the Kalman gain
matrix goes to zero ands’≈sp so that the observations are
de-emphasized in the inversion.

Equations (9) and (10) may be manipulated to give an al-
ternate form of the Kalman update equations:

s’ = sp +

[
HT R−1H + Q−1

]−1
HT R−1

(
z− Hsp

)
(12)

Q′
=

[
HT R−1H + Q−1

]−1
. (13)

Note that this form forQ is the same as Eq. (8).
The dimension of the matrix to be inverted in the above

equations isM×M, whereas the corresponding term is of
dimensionN×N in Eqs. (9) and (10). If the number of fluxes
to be estimated is significantly smaller than the number of
observations, it is more computationally efficient to use the
latter form even thoughR−1 andQ−1 must be calculated.R
is generally assumed to be diagonal, andQ is relatively small
in dimension if the number of source regions is not large.

3.2 Time-stepping

Assume thatJ months of observations are available atn ob-
servation sites with monthly observations and that we wish
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to estimate fluxes at with monthly resolution. Equation (1)
may then be expressed (omittingv for the moment) as

zJ

zJ−1
·

·

·

z1


=


HJ,J HJ,J−1 · · · HJ,1

0 HJ−1,J−1 HJ−1,J−2 · · HJ−1,1
0 0 HJ−2,J−2 HJ−2,J−3 · HJ−2,1
· · · · · ·

· · · · · ·

0 0 0 · · H1,1




sJ

sJ−1
·

·

·

s1


(14)

where each element of the vectors and matrix is itself a vec-
tor or matrix. Each vectorzJ is a vector of length equal to the
number of observation sites,N , each vectorsJ is of length
equal to the number of source regions,M, and each matrix
HJ,J in Eq. (14) is a matrix dimensionedN , by M. Specifi-
cally,

z1
z2
·

·

·

zn

 ,


h1,1 h2,1 · · · h1,M

h2,1 h2,2 · · · h2,M

· · · · · ·

· · · · · ·

· · · · · ·

hn,1 · · · · hn,M

 ,


s1s2

·

·

·

sM

 . (15)

Note that in Eq. (14) the subscript,J , denotes the set of most
recent observations and flux estimates, and the subscript 1
represents the earliest observations.

The size of the large matrix of basis functions in Eq. (14)
(which we will refer to asH∗) grows rapidly as the number
of observations and source regions increases. For example,
for 20 source regions and a modest observational network of
50 sites with 20 years of monthly average dataH∗ is 12 000
by 4800. Consider a model with relatively coarse horizontal
resolution of 8◦ latitude by 10◦ longitude, or 864 surface grid
cells. An inversion for which every grid cell is a source re-
gion would haveH∗ dimensioned 12 000 by 207 360. As the
size of the matrices in the problem grows, the computational
cost becomes an important issue.

The atmospheric inversion problem becomes more effi-
cient by observing that the basis functions, which are cal-
culated by transporting pulses forward from each source re-
gion or backwards in time from each observation site using
an adjoint model, are mixed throughout the troposphere until
constant values are reached. Figure 1 illustrates this for two
sampling locations, and shows that most of the signal from
each source region occurs during the first 4–6 months. In
the tropics, pulses from source regions decay more rapidly
than at high latitudes due to rapid vertical mixing through-
out a relatively deep tropospheric column. Note also that
signals from adjacent regions dominate the responses at ob-
servation sites. This implies that a pulse traveling from Aus-
tralia to Mace Head, Ireland would contribute relatively lit-
tle signal compared to recent pulses from nearby source re-
gions. In other words, Mace Head does not constrain Aus-
tralian sources well. We therefore keep only a subset of the

Fig. 1. Monthly average basis functions calculated as one-month
pulses transported forward from each source region and sampled
at a particular observation site (Mace Head and Samoa are shown
here). The rate at which carbon was emitted from each region
was 1 GtC/yr and emissions over each region were distributed us-
ing scaling derived from the CASA model net primary productivity
(Randerson et al., 1997; Takahashi et al., 1999) and ocean flux esti-
mates based on observed partial pressure of CO2 in seawater.

transport information so that Eq. (14) effectively becomes:

[
zj

]
=
[
Hj,j Hj,j−1 · · Hj,j−P

]


sj

sj−1
·

·

sj−P

 (16)

wherej denotes the current time step andP is the number of
months of transport information kept at each time step. As
Eq. (16) implies, the source vector at each time step will be
estimatedP times, each time being compared to a different
data vector. TheH∗ matrix gives the response to pulses emit-
ted a time step at each of the observation sites, whereHj,j
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Fig. 2. Flux estimates (top) and uncertainties (bottom) for Tem-
perate North America for one year out of a 5 year test inversion
with 22 source regions. The legend refers to cases where 1 to 6
months of transport were retained in the state. The test inversion
used a subset of the GLOBALVIEW data product, prior flux esti-
mates from CASA model (Randerson et al., 1997; Takahashi et al.,
1999), and cyclic meteorology from ECMWF (the European Cen-
tre for Medium-Range Weather Forecasting). 88 observation sites
were used and the standard deviation of the model-data mismatch
error was assumed to be 0.3 ppm for marine boundary layer sites
and 1.5 ppm for continental sites. The uncertainties of the prior flux
estimates were assumed to be 10 GtC/yr for the terrestrial biosphere,
and 1 GtC/yr for the oceans.

are pulses emitted from the most recent month, andHj,j−P

are responses due to pulses emittedP months in the past.
At each subsequent time step, a particular source vector is
shifted downward, while the basis functions for each month
are shifted to the right. A source vector and basis function
matrix for a new month are added to the right hand side of
Eq. (16). Once a source vector has been estimatedP times
it is dropped from the part of the state still being estimated.
As shown in Fig. 2, both the estimate and its uncertainty con-
verge with repeated iterations, and the last estimate is taken
as the best estimate. Note that the largest changes between
iterations occur after the first iteration. The difference be-
tween the second and third iteration is much smaller, and it is
difficult to tell the difference between subsequent iterations.

Fig. 3. Flux estimates (top) and uncertainties (bottom) for Temper-
ate North America and the Eastern Equatorial Pacific for one year
out of a 5 year test inversion. The prior flux estimates are shown as
a black dashed line, estimates produced using the batch technique
are represented by the solid black line, and the colored lines show
estimates where varying numbers of months of transport were re-
tained in the state. Details of the calculation are described in the
text and in the Fig. 2 caption. The behavior of these two source re-
gions is representative of all 22 source regions. Note that agreement
between the Batch and the Kalman Smoother is very good for both
regions if at least 6 months of transport is retained in the state.

As expressed in Eq. (16), observations from only one time
level are used to estimate fluxes atP time steps, whereas in
the Batch calculation all observations are used at once to es-
timates fluxes at all times. For the Kalman Smoother, the
effect of stepping through the observations in this manner
implies that for a particular time step, the use of observations
from previous times is discontinued at a point where the ob-
servations no longer significantly constrain the current time
step. For this reason, no significant amount of information
is lost by stepping through the observations, although higher
posterior uncertainties are expected since less information is
used to constrain each set of fluxes. Even these differences
will be shown to be small in the next section.

4 Comparison to the Batch Bayesian Synthesis Inver-
sion

Solving Eqs. (9) and (10) (or Eqs. 12 and 13) using observa-
tions at all available times for flux estimates and uncertain-
ties is referred to as the “Batch” technique. For this case,
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each estimate is constrained by observations at all subse-
quent times so that all of the available data is used at once
to determine the entire time series of fluxes and uncertainty
estimates. When a subset of the observations is used, it is
reasonable to expect that the decreased computing cost will
come at the expense of larger estimated uncertainty, since
each estimate is now constrained by less data. Since recent
emissions produce the largest signals at measurement sites
and the largest spatial gradients, the increases in estimated
uncertainty are generally acceptably small provided that at
least several months of transport are used.

Figure 3 shows results from a 5 year test inversion for
fluxes from 22 source regions corresponding to those used in
the TransCom 3 model intercomparison (Gurney et al., 2002,
2003; Law et al., 2003). For these calculations, the trans-
port model was run with repeating meteorology (ECMWF
assimilated winds from 1980). The prior fluxes were speci-
fied from the same sources used for TransCom 3 (Takahashi
et al., 1999, CASA model), and were aggregated onto the
Tracer Model 3 (TM3;Heimann and Koerner, 2003) 8×10
horizontal grid using the procedure described byGurney
et al. (2000). Representative values for the prior uncertain-
ties and model-data mismatch errors were used for all calcu-
lations in this section (10 and 1 GtC/yr for the land biosphere
and ocean prior fluxes, respectively, and 0.3 and 1.5 ppm for
marine boundary layer and continental sites, respectively).
Monthly average CO2 abundances from the GLOBALVIEW
data product for 1980–1985 were used at a subset of 88 mea-
surement sites. The measurement sites were selected based
on whether they represented marine boundary layer samples,
were located far from large sources of emissions, or were
generally fairly well-simulated by the transport model. Ver-
tical profiles from tall towers and aircraft platforms were not
used in these test inversions.

As shown in Fig. 3, the central value of the flux esti-
mate probability distribution calculated with the fixed-lag
Kalman smoother agrees well with the batch calculation, es-
pecially if the basis functions are transported for six months
or more (i.e. each month of fluxes is estimated using at least
six months of subsequent observations). The differences be-
tween the batch and Kalman smoother are largest for the case
where only one month of transport is retained, and this is
not recommended since considerable information remains in
pulses well after the first month after emission. The length
of time that basis functions need to be transported is deter-
mined by two opposing factors; the time taken to transport
pulses from source regions to observation sites that constrain
the fluxes, and the diffusion of pulses by atmospheric mixing
which flattens spatial gradients.

Differences between the Kalman smoother and batch flux
estimates are shown in Figs. 4 and 5 for a subset of flux re-
gions. Although results are shown for only 4 of 22 source re-
gions, they are representative of all source regions. As shown
in the top panels of Figs. 4 and 5, the central value of the pos-
terior probability distribution function agrees well for both

techniques for North America with the exception of the case
for which the basis functions are transported for only one
month. The Kalman smoother estimates approach the batch
estimates as the number of months of transport increases, as
expected. For the Eastern Equatorial Pacific, the agreement
is best if the basis functions are transported for at least nine
months. For Amazonia, the differences between the Kalman
smoother and the batch technique are approximately as large
as the prior flux estimate for some months. It is interesting to
note that the solutions closest to the batch are those for which
the basis functions are transported for only three months. A
possible explanation is that the vertical mixing in the trans-
port model is too weak, allowing tropical continental sites to
“see” pulses which have been transported for longer periods
of time.

Figures 4 and 5 also show that the differences between the
smoother and batch uncertainty estimates tend to be fairly
small except for the case where the basis functions are trans-
ported for only one month. It is noteworthy that the estimated
uncertainty for the Kalman smoother is sometimes smaller
than that for the batch case. As noted above, since the batch
technique uses all of the available data rather than a sub-
set, it should give the lowest uncertainties. In addition, the
Kalman smoother uncertainty estimates are often lowest for
cases where the basis functions have been transported for the
least amount of time. For example, see the uncertainty differ-
ences for Amazonia in Fig. 5. Here the estimate uncertainties
for 3 month transport of basis functions are often smaller than
those obtained using 6 or more months of transport. Uncer-
tainties estimated using only one month of transport are the
most questionable, since these estimates falsely appear to be
much less uncertain than the batch estimates.

The explanation for this behavior lies in the fact that the
Kalman smoother does not take into account the covariance
between monthly fluxes that are no longer being estimated
and those still being estimated. In addition, once a final esti-
mate is made of a set of monthly fluxes, these fluxes are in-
corporated into the background state that is propaged forward
in time by using the calculated transport fields (e.g. the basis
functions). In effect, they are treated as known quantities,
whereas they actually have associated uncertainties and cor-
relations with fluxes still being estimated. The flux is there-
fore essentially assumed to be perfectly well-known and er-
ror correlations with time steps currently being estimated are
neglected. Since time-dependent flux estimates tend to over-
and undershoot the solution at successive time steps, the total
uncertainty aggregated over time is likely to be smaller due to
these temporal correlations. On the other hand, the incorpo-
ration of estimated fluxes into the background state without
accounting for estimated uncertainty implies a certain level
of uncertainty underestimation for subsequent time steps. In
the next subsection, we propose a technique to correct these
shortcomings.
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Fig. 4. Flux estimate differences (top, Kalman smoother – Batch)
and uncertainty differences (bottom) for Temperate North America
and the Eastern Equatorial Pacific for one year out of a 5 year test
inversion. The legend refers to estimates produced with the batch
technique, or estimates where varying numbers of months of trans-
port were retained in the state. Details of the test inversion are de-
scribed in the text and the Fig. 2 caption. Note that the differences
are largest when only one month of transport is retained in the the
state. Note also that the Kalman Smoother can produce smaller un-
certainties than the Batch technique.

5 Propagation of covariance

Equation (6) may be rewritten in the form

Lsu,sv =

(
z−

[
HuHv

] [su

sv

])T

R−1

(
z−

[
HuHv

] [su

sv

])

+

([
su

sv

]
−

[
sp,u

sp,v

])T [
QuuQuv

QvuQvv

]−1
([

su

sv

]
−

[
sp,u

sp,v

])
(17)

where the subscript,u, pertains to the part of the state still
being estimated andv pertains to the part of the state that
is no longer being estimated. For example, if six months
of transport information is used in the estimation, thenHu

is dimensioned the number of measurement sites,n, by the
number of fluxes to be estimated (six times the number of
source regions for six months of transport).Hv is transport
information from some number of time steps farther back
than six months ago, for which estimates are no longer be-
ing made. It is dimensionedn by the number of months for
which we intend to consider correlations times the number of

Fig. 5. Difference (Kalman smoother – Batch) in flux estimates
(top) and uncertainties (bottom) for Boreal North America and
Amazonia for one year out of a 5 year test inversion. The legend
refers to estimates produced with the batch technique, or estimates
where varying numbers of months of transport were retained in the
state. Details of the test inversion are described in the text and the
Fig. 2 caption. Note that the differences are quite large for the case
where only one month of transport is retained in the state. The dif-
ferences are also significant for Amazonia, a region that is not well-
constrained by observations. The Kalman Smoother also produces
uncertainties that may be larger than those using the Batch method.

source regions. Likewise, the termsQuv andQvu represent
the covariance between states still being estimated and those
no longer being estimated.

Taking the derivative of Eq. (17) with respect tosu gives

∂Lsu,sv

∂su

= −(z− Husu − Hvsv)
T R−1Hu + (su − sp,u)

T Q−1
aa

+(sv − sp,v)
T Q−1

ba (18)

where

Q−1
=

[
Quu Quv

Qvu Qvv

]−1

=

[
Q−1

aa Q−1
ab

Q−1
ba Q−1

bb

]
(19)

We then set Eq. (18) to zero. Given that we are no longer
updating our estimate ofsv, thens′

v=sp,v, and the last term
on the right-hand side of Eq. (18) drops outs. Solving forsu

gives

s′
u = sp,u + QaaHT

u

[
R + HuQaaHT

u

]−1(
z− Husp,u − Hvs’v

)
.

(20)
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Finally,

Q−1
aa = (Quu − QuvQ−1

vv Qvu)
−1 (21)

Q−1
ab = (Q−1

ba )T = −(Quu − QuvQ−1
vv Qvu)

−1QuvQ−1
vv (22)

Q−1
bb = (Qvv − QvuQ−1

uu Quv)
−1 (23)

by using a matrix partitioning identity. Note that Eq. (20)
looks exactly like Eq. (9), the original Kalman filter update
equation, except thatHvsv is subtracted fromz andQ is re-
placed byQaa . Hvs′

v accounts for the final estimate ofsv in
the model-observation difference vector,z, while Qaa takes
into account any correlations ofsv with states still be esti-
mated (su). As suggested by Eq. (20),Qaa is the result of a
correction to the covariance matrix of states still being esti-
mated,Quu. This correction takes the form of correlations
between states still being estimated and the set of final esti-
mates, normalized by the covariance matrix of the final esti-
mates. This implies that the correction will be largest when
the correlations are large and the uncertainty ofsv is small.
The correction will be small when the correlations are small
or the uncertainty of the final estimate is large. The correla-
tion between successive time steps is expected to be the most
significant; however, it is possible to apply the correction for
up to one less than the number months of states which are
still being estimated.

An expression for the covariance is found by calculating
the inverse of the Hessian of the revised objective function
(Eq. 17). This leads to

H−1
=

HT
u R−1Hu + Q−1

aa HT
u R−1Hv + Q−1

ab

HT
v R−1Hu + Q−1

ba HT
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bb

−1

=

Q′
uu Q′

uv

Q′
vu Q′

vv


(24)

The top left term is the covariance of the part of the state that
is still being estimated; the cross terms relate to the covari-
ance of the part of the state that is no longer being estimated
with the part of the state that is still being estimated. These
are incorporated into the new expression for the covariance:

Q′
=

[
(HT

u R−1Hu + Q−1
aa )

−(HT
u R−1Hv + Q−1

ab )(HT
v R−1Hv + Q−1

bb )−1

(HT
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(25)

whereQ−1
aa , Q−1

ab , Q−1
ba and Q−1

bb are defined by Eqs. (21–
23s). Note that(HT

u R−1Hu + Q−1
aa )−1

=Q′
uu

Equation (23) is similar in form to Eq. (13) withQaa re-
placingQ and subtraction of a term describing correlations
in covariance between states still being estimated and states
for which final estimates have been calculated. Note that the
maximum months of that may be retained in the correlation
propagation scheme is the number of months of transport re-
tained less one. As shown in Fig. 6, the differences between

Fig. 6. Difference (Kalman smoother – Batch) in flux estimates
(top) and uncertainties (bottom) for Temperate North America and
the Eastern Equatorial Pacific for one year out of a 5 year test inver-
sion. Details of the test inversion are described in the text and the
Fig. 2 caption. The numbers given in the legend refer to the num-
ber of months of correlations retained outside of the state currently
being estimated. Note that the agreement between flux estimates
calculated with Batch and Kalman Smoother improves if the co-
variance propagation scheme is used with the Kalman Smoother.
Note also that the Kalman Smoother uncertainties are always larger
than the Batch uncertainties if the covariance propagation scheme
is included.

including 1 month of correlations and not propagating the
covariance are large (the red curve, 0 months and the light
blue curve, 1 month), but including additional months has a
generally small effect. It is important to note that including
the propagation of covariance improves agreement between
the Kalman smoother and the Batch calculations significantly
for the estimated fluxes. It is therefore recommended that
the Fixed-Lag Kalman Smoother should also include the co-
variance propagation scheme described here. Although the
differences are fairly small for the uncertainty estimates, the
Kalman smoother uncertainty estimates are always greater
than the Batch uncertainty estimates, as expected. Figure 7
shows the same comparison for Amazonia, where the agree-
ment between the Kalman smoother and the Batch technique
is also improved.

The relative effects of propagating the covariance on cal-
culations with varying amounts of basis function transport
are shown in Fig. 8. In contrast to Fig. 5, the calculation
using only 3 months of transport generally has the highest
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Fig. 7. Difference (Kalman smoother – Batch) in flux estimates
(top) and uncertainties (bottom) for Amazonia for one year out of
a 5 year test inversion. Details of the test inversion are described
in the text and the Fig. 2 caption. The numbers given in the legend
refer to the number of preceeding months of correlations retained
outside of the state currently being estimated. 6 months of trans-
port were retained in the state for this calculation. Note that the
agreement of the Kalman Smoother flux estimates with the Batch
estimates improves if the covariance propagation scheme is used.
Note also that the Kalman Smoother uncertainty estimates are al-
ways larger than the Batch uncertainties for the case where the co-
variance propagation scheme is used.

estimated uncertainties, although the differences are fairly
small. It is interesting to note that the estimates using 9
months of transport to have slightly higher uncertainty dif-
ferences for December through March. This time period is
the rainy season for the Amazon Basin, and it is likely that
due to increased convection, the cases with fewer months of
transport are not able to constrain this region as well as for
the case with 9 months of transport. This is consistent with
the expectation that estimates using the least amount of data
should, in general, have the highest estimated uncertainties.

Fig. 8. Difference (Kalman smoother – Batch) in uncertainty es-
timates for Amazonia for one year out of a 5 year test inversion.
Details of the test inversion are described in the text and the Fig. 2
caption. The numbers given in the legend refer to the number of
months the basis functions are transported. One month of covari-
ance was propagated from the part of the state no longer being es-
timated. Note that the uncertainties for the Kalman Smoother are
always larger than those for the Batch technique, as expected.

6 Discussion

The method we have described up to this point assumes that
the inversion is done “on-line”. In other words, the transport
model is run forward with prior flux estimates to produce a
prediction of CO2 abundances that are then compared with
observed CO2 at each site. The final flux estimates produced
by the inversion are then incorporated into the background
state of CO2 using transport information in the form of the
basis functions, and the transport model is run to the next
inversion time step. The fixed-lag Kalman smoother may
also be used “off-line” without actually running the trans-
port model to make predictions of CO2 . The pre-calculated
basis functions are used to reproduce the transport fields over
the entire time period of interest, and are used to propagate
the optimized fluxes forward in time, thus updating the back-
ground state. In principle, this gives exactly the same re-
sults as the “on-line” case, since the basis functions are a for-
mal decomposition of the model’s transport. Using the basis
functions is more computationally efficient since only a few
simple matrix multiplications are required to yield concentra-
tions at each observations site used, compared to a full trans-
port model run for the “on-line” fixed-lag Kalman smoother.
If the basis functions are stored as three-dimensional arrays,
then changes in the network configuration may be easily
taken into account by appropriately sampling the fields. On
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the other hand, if the basis functions are computed using the
adjoint approach, then new adjoint runs must be initiated for
each added observation site.

A disadvantage of the offline method is that a perfect de-
composition of forward transport requires the basis functions
to extend infinitely long in time, eliminating the advantage of
needing only a few months of basefunctions at a time in solv-
ing the inverse problem with the Kalman smoother. For batch
inversions, basis functions are often propagated for a period
of a few years and are thereafter approximated by an asymp-
totic approach to the constant well-mixed value eventually
achieved by atmospheric mixing. We have chosen to trun-
cate the basefunctions after several months, since informa-
tion about a given initial pulse is diminishing due to mixing
in the atmosphere. The truncated part is replaced by a simple
exponential decay to the asymptotic value achieved after a
sufficiently long period of mixing by atmospheric transport.
In this way we hope to preserve the numerical efficiency of
the Kalman smoother for off-line calculations. Clearly, one
must ensure that this truncation is not too short, and one must
assess the impact on flux estimates.

We find that when at least six months of basis functions are
used to recreate the background state, the difference in model
predicted concentrations and estimated fluxes are acceptably
small. The differences are random and not in the form of
a bias (i.e. they have a zero mean), and always well within
the regional and monthly flux uncertainty. Using the Kalman
smoother in “off-line” mode therefore comes at a small price
in increased uncertainty, with great savings in computational
costs. Solving the inverse problem can be done off-line with
a subset of the basis functions, and does not require fur-
ther use of a transport model. Using the off-line Kalman
smoother, the solution was obtained in approximately five
minutes on a simple Macintosh PC and implemented using
IDL. With this computational efficiency, many more exper-
iments can be done quickly to explore the sensitivity of the
flux estimates along several axes of uncertainty.

Another aspect of our fixed-lag Kalman smoother that we
wish to highlight is its inherent flexibility in regard to the use
of prior flux and uncertainty estimates. In this study we have
used prior flux information from the (Takahashi et al., 1999,
CASA model) as first guesses when the fluxes at a particular
time step are estimated for the first time. Thereafter, the pre-
vious smoother estimate and estimated uncertainties are used
as the first guess for each subsequent iteration. An alterna-
tive approach is to use results generated by the smoother as
the first guess for each new time step (a persistence model).
These could be in the form of estimates from the previous
time step, or averages of previous estimates. Estimates pro-
duced this way would be determined only by observations
(with the exception of the very first time step, for which a first
guess must be used). The fact that estimation of time-varying
fluxes occurs sequentially in our method makes a calculation
such as this straightforward, and we are currently exploring
the use of our smoother in this way.

7 Conclusions

The fixed-lag Kalman smoother technique introduced in this
study offers a numerically efficient method for estimating
fluxes and flux uncertainties of atmospheric trace species.
This method relies on the fact that information about the spa-
tial distribution of sources is preserved only for a limited
amount of time before mixing by atmospheric transport di-
lutes signals from source regions. We have shown that excel-
lent agreement with the standard Bayesian synthesis “batch”
technique can be achieved by retaining transport information
in the basis functions for as little as 6 months. Transporting
basis functions for this shorter period of time, rather than the
usual multiple years greatly reduces the computational ex-
pense of the flux estimation. In addition, the sizes of the ma-
trices in the problem are also much smaller. With this tech-
nique, it therefore becomes possible to do inversions span-
ning multiple decades with relatively little computational ex-
pense. Calculations testing sensitivity to specified parame-
ters are therefore feasible. If three dimensional basis func-
tions are pre-calculated and stored, then it also becomes pos-
sible to evaluate issues related to the distribution of observ-
ing sites. Networks with large numbers of sites may be eas-
ily used to produce flux estimates with the fixed-lag Kalman
smoother.

We have shown that the cost of the numerical efficiency
gains is a relatively small increase in the estimated flux un-
certainty. A problem that we encountered with the fixed-
lag Kalman smoother in its original form was that the es-
timated uncertainty for the fixed-lag Kalman smoother was
often smaller than for the Batch technique. The reason for
this was that the covariance with fluxes no longer being esti-
mated was not being propagated forward in time. Essentially,
once a final estimate of the flux at a particular time step was
computed, its effect was included into the background state
with no uncertainty and no correlation with states still being
estimated. We therefore developed a method to correct for
this, resulting in flux uncertainty estimates that are consis-
tent with the expectation that the uncertainties for the Batch
technique are the smallest since the most data are used to
constrain fluxes at a particular time, whereas for the Kalman
smoother only a subset of observations are used for any one
time-step.

The fixed-lag Kalman smoother introduced in this study
is a promising technique for future atmospheric inversion
problems because it can rather easily handle inversions over
long periods of time, such as multiple decades. Furthermore,
it can potentially be used to handle large observational
networks. In the future, atmospheric inversions may well
be used to estimate fluxes at ever smaller scales using large
amounts of data collected at high time frequency. The
fixed-lag Kalman smoother described in this study could
potentially be used as the basis of an ensemble technique
capable of handling the demanding flux estimation problems
of the future (Peters, 2005).
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