1

A supplement to "A box model study on photochemical interactions between VOCs and reactive halogen species in the marine boundary layer" by K. Toyota et al.

K. Toyota^{1,*}, Y. Kanaya¹, M. Takahashi^{1,2}, and H. Akimoto¹

¹Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan

²Center for Climate System Research, The University of Tokyo, Tokyo 153-8904, Japan

^{*}now at: Department of Earth and Space Science and Engineering, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada

September 24, 2004

Foreword

This supplement contains additional information describing how we have created a new chemical scheme for the box model SEAMAC, followed by tables listing chemical species, reactions, and relevant parameters included/used in the present work.

S1 C₂H₄ degradation initiated by Cl atoms

The reaction between Cl atoms and C_2H_4 will proceed via Cl atom addition to the double bond of C_2H_4 followed by reaction with O_2 to give ClCH₂CH₂OO radicals:

$$Cl + C_2H_4 \xrightarrow{M,O_2} ClCH_2CH_2OO$$
 (1)

whereas a hydrogen abstraction channel is endothermic by 29.7 kJ/mol and of negligible importance at atmospheric temperatures (Kaiser and Wallington, 1996a):

$$Cl + C_2H_4 \rightarrow HCl + C_2H_3.$$
 (2)

In the present work the rate constant for Reaction (1) is taken from Atkinson et al. (1999).

FTIR product studies for UV-irradiated $Cl_2/C_2H_4/air$ mixtures have identified $ClCH_2CHO$, $ClCH_2CH_2OOH$, and $ClCH_2CH_2OH$ as main degradation products (Wallington et al., 1990; Yarwood et al., 1992). This implies that $ClCH_2CH_2OO$ formed via Reaction (1) will undergo qualitatively similar reactions to those of simple peroxy radicals such as CH_3OO . Thus reactions with either NO, HO_2 , or CH_3OO are deemed to be the most likely fate of $ClCH_2CH_2OO$ in the ambient air:

$$ClCH_2CH_2OO + NO \rightarrow ClCH_2CH_2O + NO_2$$
 (3)

$$ClCH_2CH_2OO + HO_2 \rightarrow ClCH_2CH_2OOH + O_2$$
 (4)

Correspondence to: K. Toyota (ktoyota@yorku.ca)

$$ClCH_{2}CH_{2}OO + CH_{3}OO$$

$$\rightarrow 0.44 \times (ClCH_{2}CH_{2}O + CH_{3}O + O_{2})$$

$$+ 0.28 \times (ClCH_{2}CHO + CH_{3}OH + O_{2})$$

$$+ 0.28 \times (ClCH_{2}CH_{2}OH + HCHO + O_{2}). \quad (5)$$

By fitting to a complex chemical mechanism occurring in the reaction chamber, Wallington et al. (1990) derived the rate constant for Reaction (4) to be $7.5 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. This rate is very close to that for an analogous reaction C₂H₅OO + HO₂ ($k_{298} = 7.7 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$; Atkinson et al., 1999). On the other hand, kinetic data do not exist for Reactions (3) and (5). In addition, the branching ratios of Reaction (5) are unknown as is the case for the majority of cross-reactions of halogenated peroxy radicals with CH₃OO. These unknown parameters are estimated as described in Sect. S9.

 $ClCH_2CH_2O$ radicals formed via Reactions (3) and (5) may either decompose or react with O_2 :

$$ClCH_2CH_2O \rightarrow ClCH_2 + HCHO$$
 (6)

$$ClCH_2CH_2O + O_2 \rightarrow ClCH_2CHO + HO_2.$$
 (7)

Kleindienst et al. (1989) determined the yield of $ClCH_2CHO$ from the reaction $Cl + C_2H_4$ in NO-rich air at 298 K to be 0.58 ± 0.10 and suggested that 42% of ClCH₂CH₂O radicals formed via Reaction (3) should undergo decomposition. On the other hand, two FTIR product studies performed with UV-irradiated Cl₂/C₂H₄/air mixtures in the absence of NO indicated that Reaction (7) dominates over reaction (6) in 1 atm of air at room temperature (Yarwood et al., 1992; Orlando et al., 1998). This contradiction could have arisen from the fact that alkoxy radicals formed via reactions of peroxy radicals with NO possess internal excitation due to the exothermicity of reactions, whereas those formed via self- or cross-reactions of peroxy radicals do not; excited alkoxy radicals thus produced may decompose before thermalized (Bilde et al., 1998, 1999; Orlando et al., 1998). Actually, Orlando et al.

(1998) also performed the experiments with added NO. They concluded that very little, if any, decomposition of $ClCH_2CH_2O$ was occurring even in the presence of NO, by fitting to a complex chemical mechanism including secondary reactions. Thus the issue concerning the atmospheric fate of $ClCH_2CH_2O$ appears open to debate. In the present work it is assumed that $ClCH_2CH_2O$ radicals produced via reaction (5) exclusively undergo Reaction (7) and do not decompose via Reaction (6). On the other hand, Reaction (3) is assumed to form internally excited $ClCH_2CH_2O^*$ radicals, which will then undergo either decomposition or reaction with O_2 as follows:

$$ClCH_2CH_2O^* \xrightarrow{O_2} 0.58 \times (ClCH_2CHO + HO_2) + 0.42 \times (ClCH_2OO + HCHO).$$
(8)

As with $ClCH_2CH_2OO$, $ClCH_2OO$ radicals formed via Reaction (8) are most likely lost via reactions with NO, HO₂, and CH_3OO :

$$ClCH_2OO + NO \rightarrow ClCH_2O^* + NO_2$$

$$ClCH_2OO + HO_2 \rightarrow 0.27 \times (ClCH_2OOH + O_2)$$
(9)

$$+0.73 \times (\text{HCOCl} + \text{O}_2 + \text{H}_2\text{O}) \tag{10}$$

ClCH₂OO + CH₃OO

$$\begin{array}{l} \text{CICH}_2\text{OO} + \text{CH}_3\text{OO} \\ \rightarrow 0.65 \times (\text{CICH}_2\text{O} + \text{CH}_3\text{O} + \text{O}_2) \\ + 0.35 \times (\text{CICH}_2\text{OH} + \text{HCHO} + \text{O}_2). \end{array}$$
(11)

Their kinetics and mechanisms, except the branching ratios of Reaction (11), have been characterized fairly well by experimental studies (Sehested et al., 1993; Villenave and Lesclaux, 1996; Wallington et al., 1996). The branching ratios of reaction (11) are estimated as described in Sect. S9. $ClCH_2O^*$ radicals formed via Reaction (9) are internally excited due to the exothermicity of the reaction and thus an appreciable fraction of them will decompose to either HCO + HCl or HCHO + Cl before thermalized (Bilde et al., 1999):

$$ClCH_2O^* \rightarrow 0.32 \times (HCO + HCl) + 0.12 \times (HCHO + Cl) + 0.56 \times ClCH_2O.$$
(12)

 $ClCH_2O$ radicals thus thermalized or formed via reaction (11) will predominantly react with O_2 rather than undergo decomposition via HCl-elimination:

 $ClCH_2O + O_2 \rightarrow HCOCl + HO_2$ (13)

$$ClCH_2O \rightarrow HCO + HCl$$
 (14)

where $k_{13}/k_{14} = 4.6 \times 10^{-18} \, \text{cm}^3/\text{molecule}$ at 296 K in 700 Torr air (Kaiser and Wallington, 1994).

As is evident from the preceding discussions, relatively stable chlorinated organic oxygenates are formed in the course of Cl-initiated C_2H_4 degradation. They include chlorinated carbonyls (ClCH₂CHO and HCOCl), chlorinated hydroperoxides (ClCH₂CH₂OOH and ClCH₂OOH), and chlorinated alcohols (ClCH₂CH₂OH and ClCH₂OH). Among them the further degradation of ClCH₂CHO will

form still other chlorinated organic intermediates including a PAN-type compound, $ClCH_2C(O)OONO_2$ (PCIAN), and chloroacetic acid ($ClCH_2COOH$). In the ambient air $ClCH_2CHO$ will either be photolyzed or react with OH radicals:

$$ClCH_{2}CHO + h\nu \rightarrow ClCH_{2} + HCO$$

$$\xrightarrow{O_{2}} ClCH_{2}OO + CO + HO_{2} \quad (15)$$

$$\rightarrow CH_{3}Cl + CO \quad (16)$$

$$ClCH_2CHO + OH \xrightarrow{O_2} ClCH_2C(O)OO + H_2O.$$
 (17)

The rate constant for Reaction (17) and absorption cross sections for $ClCH_2CHO$ have been determined experimentally (Libuda, 1992; Atkinson et al., 1997). The quantum yields of $ClCH_2CHO$ photolysis, i.e. Reactions (15) and (16), are unknown at the present time; they are estimated by red-shifting the wavelength-dependent quantum yields of CH_3CHO photolysis by 10 nm (see Sect. S10). The atmospheric fate of $ClCH_2C(O)OO$ formed via Reaction (17) is expected to be similar to that of $CH_3(O)OO$. Chen et al. (1996) confirmed the formation of PCIAN from Cl-initiated $ClCH_2CHO$ degradation in the NO₂-rich air by FTIR product analysis:

$$\operatorname{ClCH}_2\operatorname{C}(\operatorname{O})\operatorname{OO} + \operatorname{NO}_2 \stackrel{\mathrm{M}}{\rightleftharpoons} \operatorname{ClCH}_2(\operatorname{O})\operatorname{OONO}_2.$$
 (18)

Although the equilibrium constant for Reaction (18) is unknown, it is expected to be close to that for analogous reversible reactions for PAN. In the present work, $ClCH_2C(O)OO$ radicals are assumed to undergo Reactions (19)–(21) along with Reaction (18) at the same rates and yields as analogous reactions for $CH_3C(O)OO$ radicals:

$$ClCH_2C(O)OO + NO \xrightarrow{O_2} ClCH_2OO + CO_2 + NO_2$$
(19)
$$ClCH_2OO + LOO = CO_2 + NO_2$$
(19)

$$0.71 \times (\text{ClCH}_2\text{C}(\text{O})\text{OOH} + \text{O}_2) + 0.29 \times (\text{ClCH}_2\text{C}(\text{O})\text{OOH} + \text{O}_2)$$
(20)

$$ClCH_{2}C(O)OO + CH_{3}OO \xrightarrow{O_{2}} 0.7 \times (ClCH_{2}OO + CO_{2} + HCHO + HO_{2} + O_{2}) + 0.3 \times (ClCH_{2}COOH + HCHO + O_{2}).$$
(21)

HCOCl is quite stable in the gas phase; using measured rate constants and absorption cross sections, its atmospheric lifetime against OH-attack, Cl-attack, and photolysis has been estimated to be at least 45 days, 14 years, and 50 days, respectively (Libuda et al., 1990). In contrast, HCOCl is highly susceptible to heterogeneous reactions. Previous experimental studies reported the fairly rapid loss of HCOCl via wall reaction on the surface of reaction chambers to give CO + HCl (Libuda et al., 1990; Kaiser and Wallington, 1994; Wallington et al., 1996). Dowideit et al. (1996) found that non-hydrolytic decay of HCOCl to give CO + HCl occurs

in water at room temperature at the rate of $k_{dec} = 10^4 \text{ s}^{-1}$, whereas hydrolysis induced by OH⁻ to give HCOOH + HCl competes with the non-hydrolytic decay only under strongly basic conditions. Although no experimental data exist for Henry's law constant ($K_{\rm H}$) for HCOCl, it may well be within the range of $K_{\rm H}$ values for alkyl aldehydes, that is, on the order of $10^1 \text{ M} \text{ atm}^{-1}$ (Zhou and Mopper, 1990). Then, by neglecting mass accommodation term, the upper limit for reactive uptake coefficient ($\Gamma_{\rm rxn}$) of HCOCl on aerosol surface is estimated to be approximately 0.2 at T = 298 K based on the following formula (Finlayson-Pitts and Pitts, 2000):

$$\Gamma_{\rm rxn} = \frac{4K_{\rm H}RT(k_{\rm dec}D_l)^{1/2}}{\bar{c}}$$

where R is universal gas constant (0.082 L atm mol⁻¹ K⁻¹), D_l is liquid diffusion coefficient $(2 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1})$, and \bar{c} is gas molecular velocity. In the present work the reactive uptake coefficient of 0.1 is tentatively assigned for the heterogeneous reaction of HCOCl to give CO + HCl on the surface of sea-salt aerosols, which constrains the lifetime of HCOCl on the order of hours in our model runs. If the value of $K_{\rm H}$ for HCOCl is as small as that for COCl₂, i.e. on the order of $0.1 \,\mathrm{M}\,\mathrm{atm}^{-1}$, then the atmospheric lifetime of HCOCl will be constrained by decomposition in cloudwater or deposition to the ocean (De Bruyn et al., 1995; Wild et al., 1996). By taking the revised value of k_{dec} from Dowideit et al. (1996) which is at least two orders of magnitude greater than previously assumed, the atmospheric lifetime of HCOCl against decomposition in cloudwater is estimated to be within 10 days or less. This cloudwater effect is implicitly accounted for by implementing the washout of HCOCl ($\tau = 8$ days) in the present work.

Chlorinated hydroperoxides will be destroyed via either OH-attack or photolysis, although no experimental data exist for these reactions. As for ClCH₂CH₂OOH, the following pathways are considered:

$$OH + ClCH_2CH_2OOH \rightarrow H_2O + ClCH_2CH_2OO$$
 (22)

$$\rightarrow$$
 H₂O + ClCH₂CHO + OH (23)

$$ClCH_2CH_2OOH + h\nu \rightarrow ClCH_2CH_2O + OH.$$
 (24)

Similarly, ClCH₂OOH will be destroyed via either of the following pathways:

$$OH + ClCH_2OOH \rightarrow H_2O + ClCH_2OO$$
 (25)

$$\rightarrow$$
 H₂O + HCOCl + OH (26)

$$ClCH_2OOH + h\nu \rightarrow ClCH_2O + OH.$$
 (27)

Rate constants or J values for Reactions (22)–(27) are estimated as described in Sect. S10. The OH-attack on ClCH₂CH₂OOH may have an additional channel to give ClCHCH₂OOH + H₂O. It is, however, of minor importance compared with channels (22) and (23), and therefore neglected in the present work. Then the rate constant of Reaction (23) is scaled to maintain the overall rate of the OH-attack (see Sect. S10).

Finally, chlorinated alcohols will be destroyed via reactions with OH radicals:

$$OH + ClCH_2CH_2OH \xrightarrow{O_2} H_2O + ClCH_2CHO + HO_2 (28)$$
$$OH + ClCH_2OH \xrightarrow{O_2} H_2O + HCOCl + HO_2 (29)$$

where channels of minor importance are neglected as in the case of chlorinated hydroperoxides. The rate constant for Reaction (28) was determined by Wallington et al. (1988), whereas that for Reaction (29) needs to be estimated as described in Sect. S10. ClCH₂OH may also undergo unimolecular decomposition to give HCHO + HCl in the gas phase with a decay rate of 1.6×10^{-3} s⁻¹ or less (Tyndall et al., 1993).

S2 Note on Br attack on C₂H₄

The reaction $Br + C_2H_4$ will proceed predominantly via the addition channel to give $BrCH_2CH_2OO$ radicals in the ambient air:

$$\operatorname{Br} + \operatorname{C}_2\operatorname{H}_4 \xrightarrow{\operatorname{M},\operatorname{O}_2} \operatorname{Br}\operatorname{CH}_2\operatorname{CH}_2\operatorname{OO}$$
 (30)

whereas a hydrogen abstraction channel is too endothermic $(\Delta H_{298} = 97.1 \pm 4.2 \text{ kJ/mol})$ to possess a noticeable rate at ambient temperature (Bedjanian et al., 1999):

$$Br + C_2H_4 \to HBr + C_2H_3. \tag{31}$$

S3 Note on the fate of BrCH₂O/BrCH₂O* radicals

The fate of $BrCH_2O$ (or $BrCH_2O^*$) radicals has been addressed by experimental studies in the context of atmospheric chemistry of CH_3Br initiated by OH- or Cl-attack (Nielsen et al., 1991; Weller et al., 1992; Chen et al., 1995; Orlando et al., 1996). The formation of HCOBr is generally observed in the absence of NO in the reaction systems, which was attributed to a reaction between $BrCH_2O$ and O_2 by Nielsen et al. (1991) and Weller et al. (1992):

$$BrCH_2O + O_2 \rightarrow HCOBr + HO_2.$$
 (32)

The yields of HCOBr were suppressed to levels below instrumental detection limits by adding NO to the reaction systems (Weller et al., 1992; Chen et al., 1995; Orlando et al., 1996), which can be deemed to represent a piece of evidence for internally excited $BrCH_2O^*$ radicals formed via the reaction NO + $BrCH_2OO$ decomposing before reacting with O₂:

$$BrCH_2O^* \to HCHO + Br.$$
 (33)

However, Chen et al. (1995) and Orlando et al. (1996) observed no dependence of the HCOBr yield on O_2 partial pressure even in the absence of NO, and thus concluded that HCOBr observed in the absence of NO was likely to be formed via the reaction HO₂ + BrCH₂OO rather than via Reaction (32). Hence, in the present work, $BrCH_2O$ and $BrCH_2O^*$ radicals are assumed to undergo decomposition virtually exclusively in the ambient air (see Sect. 3.2.2).

S4 C₃H₆ degradation initiated by Cl atoms

The reaction between Cl and C_3H_6 will proceed via the addition of Cl-atoms to the double bond or via H-abstraction from the methyl group:

$$Cl + C_{3}H_{6} \xrightarrow{M,O_{2}} 0.87 \times CH_{3}CH(OO)CH_{2}Cl + 0.13 \times CH_{3}CHClCH_{2}OO$$
(34)

$$\operatorname{Cl} + \operatorname{C}_3\operatorname{H}_6 \xrightarrow{\operatorname{O}_2} \operatorname{HCl} + \operatorname{CH}_2 = \operatorname{CHCH}_2\operatorname{OO}.$$
 (35)

Their rate constants have been obtained experimentally (Kaiser and Wallington, 1996b; Atkinson et al., 1999). At room temperature and atmospheric pressure, Reaction (34) accounts for approximately 90% of the overall reaction, whereas Reaction (35) accounts for the remainder (Kaiser and Wallington, 1996b). The product branching ratios of Reaction (34), i.e. the ratio between Cl-additions to terminal and central positions, have also been determined experimentally (Lee and Rowland, 1977). Since 70-80% of Clinitiated degradation of C3H6 will proceed via the formation of CH₃CH(OO)CH₂Cl radicals, mechanism descriptions that follow in this section are restricted to topics relevant to this major pathway. Another pathway that follows the CH₃CHClCH₂OO formation is developed in a similar manner, although no experimental basis exists regarding this pathway (see Tables S3-S4). The third pathway following Reaction (35) will result in the formation of acrolein $(CH_2 = CHCHO)$ and peroxyacryloyl nitrate $(CH_2 = CHC(O)OONO_2, ACRPAN)$, whose kinetics and mechanisms have been characterized relatively well by previous experimental studies (see Reactions (G489)-(G514) in Table S3 and Reactions (P60)-(P63) in Table S4).

 $CH_3CH(OO)CH_2Cl$ radicals will be lost mainly via reactions with NO, HO_2 , or CH_3OO in the ambient air. However, their rate constants need to be estimated as described in Sect. S9:

$$CH_{3}CH(OO)CH_{2}Cl + NO$$

$$\rightarrow CH_{3}CH(O)CH_{2}Cl^{*} + NO_{2}$$

$$CH_{3}CH(OO)CH_{2}Cl + HO_{2}$$
(36)

$$\rightarrow CH_{3}CH(OOH)CH_{2}Cl + O_{2}$$
(37)
CH_{3}CH(OO)CH_{2}Cl + CH_{3}OO

$$\rightarrow 0.6 \times (CH_3CH(O)CH_2Cl + CH_3O + O_2) + 0.2 \times (CH_3COCH_2Cl + CH_3OH + O_2) + 0.2 \times (CH_3COCH_2Cl + CH_3OH + O_2). (38)$$

Since no experimental basis is available concerning the branching ratios of Reaction (38), generic values assigned in MCM are adopted here.

To date no experimental study has been performed in an attempt to resolve complete pathways of Cl-initiated C_3H_6 degradation. Kleindienst et al. (1989), however, determined the yield of chloroacetone (CH₃COCH₂Cl) from reaction Cl + C₃H₆ in NO-rich synthetic air at 298 K to be approximately 0.40. Considering the branching ratio of CH₃CH(OO)CH₂Cl-formation channel to the overall Clattack on C₃H₆, it is estimated that CH₃CH(O)CH₂Cl* radicals formed via Reaction (36) undergo decomposition and reaction with O₂ with the branching ratios of 0.47 and 0.53, respectively:

$$\begin{array}{c} \mathrm{CH}_{3}\mathrm{CH}(\mathrm{O})\mathrm{CH}_{2}\mathrm{Cl}^{*} \rightarrow \mathrm{CH}_{3}\mathrm{CHO} + \mathrm{ClCH}_{2}\\ \xrightarrow{\mathrm{O}_{2}} \mathrm{CH}_{3}\mathrm{CHO} + \mathrm{ClCH}_{2}\mathrm{OO} \quad (39)\\ \mathrm{CH}_{3}\mathrm{CH}(\mathrm{O})\mathrm{CH}_{2}\mathrm{Cl}^{*} + \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3}\mathrm{COCH}_{2}\mathrm{Cl} + \mathrm{HO}_{2}. \ (40)\end{array}$$

 $CH_3CH(O)CH_2Cl$ radicals formed via Reaction (38) are assumed to undergo the same fate as above, since no experimental data exist ruling out this assumption.

 CH_3COCH_2Cl will be destroyed via either photolysis or OH-attack in the ambient air. Based on experimentally determined data for the absorption cross sections of CH_3COCH_2Cl and quantum yields for its photolysis (Burkholder et al., 2002), the lifetime of CH_3COCH_2Cl against photolysis is estimated to be less than two days in the mid-latitude MBL:

$$CH_{3}COCH_{2}Cl + h\nu \xrightarrow{O_{2}} CH_{3}C(O)OO + ClCH_{2}OO \quad (41)$$
$$\xrightarrow{O_{2}} CH_{3}OO + ClCH_{2}C(O)OO. \quad (42)$$

ClCH₂OO and ClCH₂C(O)OO are also formed from C_2H_4 degradation initiated via Cl-attack and their fate is already described in Sect. S1. Experimental data for OH-attack and/or photolysis of CH₃CH(OOH)CH₂Cl and CH₃CH(OH)CH₂Cl are lacking at the present time and therefore need to be estimated as described in Sect. S10. It should be noted that the photochemical loss of these species gives either CH₃COCH₂Cl or its precursors:

$$CH_{3}CH(OOH)CH_{2}Cl + OH \rightarrow CH_{3}CH(OO)CH_{2}Cl + H_{2}O$$
(43)

 $CH_3CH(OOH)CH_2Cl + OH$

$$\rightarrow \rm CH_3\rm COCH_2\rm Cl + OH + H_2O \quad (44) \label{eq:CH3} \rm CH_3\rm CH(OOH)\rm CH_2\rm Cl + h\nu$$

$$\rightarrow CH_3CH(O)CH_2Cl + OH$$
 (45)

$$CH_3CH(OH)CH_2Cl + OH$$

$$\stackrel{52}{\rightarrow}$$
 CH₃COCH₂Cl + HO₂ + H₂O. (46)

S5 Additional channel of reaction $OH + C_3H_6$: Habstraction from the methyl group

Under the lower tropospheric conditions, e.g. at room temperature and in 1 atm of air, the reaction between OH and C_3H_6 occurs predominantly via OH-addition to the double bond. By extrapolating the temperature-dependent rate constant recommended over the temperature range 701-896 K, Atkinson (1989) suggested a possibility for a hydrogen abstraction from the methyl group of C_3H_6 accounting for a few percent of the overall reaction between OH and C_3H_6 even at room temperature:

$$OH + C_3 H_6 \xrightarrow{O_2} CH_2 = CHCH_2OO + H_2O.$$
(47)

This channel is commonly neglected in photochemical models of the atmosphere, since experimental studies conducted to date have no more than derived the upper-limit of its rate under the room temperature conditions. It should be noted, however, that the experimentally-derived upper-limit rate constants for Reaction (47) (less than 2–5% of the overall rate including the OH-addition channel; Hoyermann and Sievert, 1979; Biermann et al., 1982) do not contradict the suggestion made by Atkinson (1989).

In order to achieve consistency with the reaction scheme developed for reactions between halogen atoms and $C_{3}H_{6}$ (see Sects. S4 and 3.2.1), it is assumed that Reaction (47) does occur along with the OH-addition channel. The rate constant for Reaction (47) is taken from Atkinson (1989).

S6 Note on $\mathbf{C_2H_2}$ degradation initiated by \mathbf{Cl}/\mathbf{Br} atoms

In the ambient air the reactions $Cl/Br + C_2H_2$ are likely to proceed in a similar way to the reaction $OH + C_2H_2$: the formation of X-C₂H₂ adducts (X = Cl, Br) followed by O₂addition to give XCH = CHOO radicals, which further undergo isomerization and decomposition to form either HCO + HCOX, HCOCHO + X, or HX + HCO + CO (Barnes et al., 1989; Yarwood et al., 1991; Ramacher et al., 2001):

$$X + C_2 H_2 \xrightarrow{M,O_2} XCH = CHOO$$
(48)
$$XCH = CHOO \rightarrow HCOX + HCO$$

$$\stackrel{O_2}{\longrightarrow} HCOX + CO + HO_2$$

$$\stackrel{\text{O}_2}{\rightarrow} \text{HCOX} + \text{CO} + \text{HO}_2$$
(49)

$$\rightarrow \text{HCOCHO} + \text{X}$$
(50)

$$\rightarrow \text{HCOCHO} + X \qquad (5)$$

$$\rightarrow \text{HX} + \text{HCO} + \text{CO}$$

$$\stackrel{O_2}{\to} HX + 2CO + HO_2. \tag{51}$$

The branching ratios of these pathways are not sensitive to the NO concentration but slightly to temperature (Ramacher et al., 2001). Actually, two geometric isomers exist for XCH = CHOO radicals, i.e. *cis*-XCH = CHOO and *trans*-XCH = CHOO, and the reaction of the former with O_2 to give O_3 (Reaction (52)) may well compete with isomerization/decomposition (49)–(51) in the ambient air (Yarwood et al., 1991; Zhu et al., 1994):

$$cis$$
-XCH = CHOO + O₂ \rightarrow XCH = CHO + O₃ (52)

where the yield of O_3 from C_2H_2 reacted is dependent on O_2 partial pressure and is on the order of 0.1 at 296 K in 700 Torr air for both of Cl- and Br-initiated reactions. XCH = CHO radicals, formed along with O_3 , will then react with O_2 to give HCOX + CO + OH:

$$XCH = CHO + O_2 \xrightarrow{\text{isom./dec.}} HCOX + CO + OH.$$
(53)

It appears, however, that the formation of O_3 via reaction (52) is of negligible importance for O_3 budget in the MBL; taking the upper limits for reactant concentrations as $[C_2H_2] = 100 \text{ pmol/mol}$ (Gregory et al., 1996), $[Cl] = 10^5 \text{ molecule/cm}^3$ (Graedel and Keene, 1995), and $[Br] = 10^7 \text{ molecule/cm}^3$ (Dickerson et al., 1999), and assuming the yields of O_3 from both of the reactions $Cl/Br + C_2H_2$ to be 0.1, the rate of O_3 production is estimated to be not more than 5 pmol/mol/day at 298 K in 1 atm of air. Considering further the rapid exchange between OH- and HO₂-radicals occurring in the ambient air, the reaction products of O_3 -forming pathway via Reactions (52)–(53) are virtually equivalent to those of Reaction (49).

Hence, in the present work, the branching ratios of reactions $Br/Cl + C_2H_2$ are taken from the values as derived in the FTIR product study performed by Yarwood et al. (1991) while disregarding the contributions from O₃-forming pathways (see Reactions (52)–(53) in Sect. 3.3).

S7 Cl/ClO/BrO + alkyl peroxy radicals

In the present work, products and their yields for the gas-phase reactions of CH_3OO with halogen radicals (Cl/ClO/BrO) are reassigned to accord with available experimental data.

The reaction between Cl atoms and CH_3OO will proceed via two channels of comparable branching ratios (DeMore et al., 1997):

$$Cl + CH_3OO \rightarrow HCl + CH_2OO^*$$
 (54)

$$\stackrel{O_2}{\to} \text{ClO} + \text{HCHO} + \text{HO}_2. \tag{55}$$

Here the first channel is assumed to give energy-rich Criegee biradicals (CH_2OO^*) that undergo the same reaction pathways as those produced via $O_3 + C_2H_4$:

$$O_3 + C_2 H_4 \rightarrow HCHO + CH_2 OO^*$$
(56)

$$\mathrm{CH}_2\mathrm{OO}^* \to \mathrm{CO}_2 + \mathrm{H}_2 \tag{57}$$

$$\rightarrow CO + H_2O$$
 (58)

$$\rightarrow \text{OH} + \text{HCO} \xrightarrow{O_2} \text{OH} + \text{HO}_2 + \text{CO}$$
 (59)

$$CH_2OO^* \xrightarrow{M} CH_2OO \xrightarrow{H_2O} HCOOH.$$
 (60)

Branching ratios of pathways (57)–(60) are taken from Atkinson et al. (1997): $\phi_{57} = 0.13$, $\phi_{58} = 0.38$, $\phi_{59} = 0.12$, and $\phi_{60} = 0.37$. It is interesting to note that the formation of Criegee biradicals via Reaction (54) has been verified experimentally by measuring CO (Maricq et al., 1994).

The reaction between ClO and CH_3OO proceeds via the following two channels with a branching ratio of the latter being greater at lower temperatures (Atkinson et al., 1997):

$$\text{ClO} + \text{CH}_3\text{OO} \xrightarrow{\text{M},\text{O}_2} \text{Cl} + \text{O}_2 + \text{HCHO} + \text{HO}_2$$
 (61)

110

$$\rightarrow CH_3OCl + O_2. \tag{62}$$

 CH_3OCl thus produced will be lost via photolysis, or alternatively, reactions with OH radicals or Cl atoms in the ambient air. Its reactive uptake onto aerosols can also take place (see Sect. S8).

Aranda et al. (1997) performed laboratory experiments to determine the rate constant and product yields for reaction $BrO + CH_3OO$ at 298 K:

$$BrO + CH_3OO \rightarrow Br + O_2 + CH_3O$$
 (63)

$$\rightarrow$$
 HOBr + CH₂OO. (64)

Based on the LIF measurement of CH₃O and the mass spectrometry of HOBr, branching ratios for Reactions (63) and (64) were determined to be 0.3 ± 0.1 and 0.8 ± 0.2 , respectively. Here reaction stoichiometry suggests the production of Criegee biradical via Reaction (64). Aranda et al. (1997) estimated Reaction (64) to be thermodynamically neutral or slightly exothermic ($\Delta H_{298} = -6.7 \pm 22.6 \text{ kJ/mol}$), suggesting the feasibility of the reaction. It should be noted, however, that this reaction is much less exothermic than ozone-alkene reactions. For instance, the enthalpy of Reaction (56') is $\Delta H_{298} = -224.2 \text{ kJ/mol}$:

$$O_3 + C_2H_4 \rightarrow HCHO + CH_2OO$$
 (56')

where the heat of formation data for each species is taken from DeMore et al. (1997) except for stabilized Criegee biradical (CH₂OO): $\Delta H_f = 188.4 \text{ kJ/mol}$ (Aranda et al., 1997). Hence we assume that Reaction (64) directly gives stabilized Criegee biradical rather than energy-rich biradical.

In the present work, mechanism extrapolation to organic peroxy radicals other than CH_3OO is not performed except for Reactions (65) and (66) for which experimental data are available (Maricq et al., 1994):

$$Cl + C_2H_5OO \rightarrow HCl + C_2H_5OO^*$$
 (65)

$$\stackrel{O_2}{\to} \text{ClO} + \text{CH}_3\text{CHO} + \text{HO}_2. \tag{66}$$

Here energy-rich Criegee biradicals $(C_2H_5OO^*)$ are produced in the first channel as in the case of reaction $Cl + CH_3OO$. The fate of $C_2H_5OO^*$ is assumed identical to that produced via reaction $O_3 + C_3H_6$.

S8 Aqueous-phase reactions of CH₃OCl

CH₃OCl is formed via Reaction (62) in the gas phase. Unfortunately little is known about heterogeneous reactions of CH₃OCl; to our knowledge there exists no published data on this issue. However, t-butyl hypochlorite ((CH₃)₃COCl), a homologue of CH₃OCl, is known to exhibit strong halogenating activities towards organic compounds in the aqueous phase, as is also the case for Cl₂ and HOCl (March, 1992). This would imply that aqueous-phase chemistry of CH₃OCl is analogous to that of HOCl. Indeed, laboratory experiments performed by Thorsten Benter (University of Wuppertal) and his colleagues imply that the reactive uptake of CH₃OCl on HCl-doped ice surface and on H₂SO₄doped dry NaCl surface both occurs analogously to that of HOCl (Th. Benter, private communication, 2003). In their experiments for the heterogeneous reaction of $CH_3OCl +$ HCl on ice surface, the production of Cl_2 and CH_3OH was confirmed and its reaction probability was approximately 10 times smaller than that of HOCl + HCl. Hence it is assumed in the present work that mass accommodation coefficient for CH₃OCl is identical to that for HOCl and that CH₃OCl is 10 times less soluble to water than HOCl is. Then the following reactions are assumed to take place in deliquesced sea-salt aerosols at the same rates as those of HOCl reactions:

$$CH_3OCl + Cl^- + H^+ \rightarrow CH_3OH + Cl_2$$
 (67)

$$CH_3OCl + Br^- + H^+ \rightarrow CH_3OH + BrCl.$$
 (68)

Although no experimental verification currently exists, it is also assumed that CH_3OCl oxidizes S(IV) at the same rate as $HOCl + SO_3^{2-}$ (Fogelman et al., 1989):

$$CH_{3}OCl + SO_{3}^{2-} \xrightarrow{H_{2}O} CH_{3}OH + Cl^{-} + SO_{4}^{2-} + H^{+} (69)$$

$$CH_{3}OCl + HSO_{3}^{-} \xrightarrow{H_{2}O} CH_{3}OH + Cl^{-} + SO_{4}^{2-} + 2H^{+}.$$
(70)

S9 A protocol for the reactions of halogen-containing organic peroxy radicals

As mentioned in Sects. 3.2.2, S1 and S4, the most likely fate of halogen-containing organic peroxy radicals in the ambient air is reactions with either NO, HO₂, or CH₃OO radicals, although relevant kinetic and mechanistic data are lacking in the majority of cases.

In the present work, the rate constants for the reactions of chlorinated organic peroxy radicals with NO and HO₂ are estimated based on the MCM protocol (Saunders et al., 2003), where no experimental data exist. Besides, the same protocol is assumed to apply to the reactions of brominated organic peroxy radicals with NO and HO₂. There are two justifications for this assumption. Firstly, Yarwood et al. (1992) found that the yields of ClCH₂CHO, ClCH₂CH₂OOH, and ClCH₂CH₂OH formed from UV-irradiated Cl₂/C₂H₄/air mixtures were virtually identical to those of BrCH₂CHO, BrCH₂CH₂OOH, and BrCH₂CH₂OH, respectively, formed from UVirradiated Br₂/C₂H₄/air mixtures by FTIR product analysis. Secondly, rate constants for the self-reactions of BrCH₂CH₂OO ($k = 4.0 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$) and of ClCH₂CH₂OO ($k = 3.3 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$) are fairly close to each other and more than an order of magnitude greater than that for the self-reaction of C₂H₅OO (Crowley and Moortgat, 1992; Villenave et al., 2003).

A possibility of forming halogen-substituted alkyl nitrates $(RONO_2)$ via termolecular reactions involving NO and halogenated organic peroxy radicals is disregarded in the present work, since their formation has not been confirmed by experimental studies to date. By analogy with non-halogenated counterparts (Atkinson, 1990; Lightfoot et al., 1992), the branching ratios of RONO₂-forming channel in the reactions $RO_2 + NO$ are likely to be negligibly small, if any, as far as the reactions of up to C₃-hydrocarbons are concerned.

Kinetic and mechanistic data for the reactions of halogenated organic peroxy radicals with CH₃OO are lacking except for the reaction $ClCH_2OO + CH_3OO$ (Villenave and Lesclaux, 1996). Madronich and Calvert (1990) proposed an empirical approach to estimate rate constants and product branching ratios for cross-reactions between organic peroxy radicals (so-called permutation reactions) where their experimental data exist for each of self-reactions. This approach has been proved to work fairly well at least for the reaction ClCH₂OO + CH₃OO (Villenave and Lesclaux, 1996), and is therefore adopted for estimating kinetics and mechanisms for this class of reactions in the present work. Here kinetic and mechanistic data for the self-reactions of ClCH₂CH₂OO, BrCH₂CH₂OO, CH₃CHClOO, and BrCH₂OO are taken from experimentally determined values (Lightfoot et al., 1992; Yarwood et al., 1992; Villenave and Lesclaux, 1995; Atkinson et al., 1997; Villenave et al., 2003). Rate constants for the self-reactions of $CH_3CH(OO)CH_2X$ and CH_3CHXCH_2OO (X = Cl or Br) are estimated following a protocol proposed by Villenave et al. (2003). As to the other halogenated organic peroxy radicals, no experimental basis currently exists to predict kinetics and mechanisms even for their self-reactions. For such species, the rate constants and product branching ratios of cross-reactions with CH₃OO are taken from generic values assigned in the work of MCM (Saunders et al., 2003).

Actually, Kirchner and Stockwell (1996) (hereafter KS96) proposed an empirical formula to predict the rate constants for the self-reactions of alkyl peroxy radicals including those which contain electron-withdrawing halogen atoms in their alkyl groups. Although the rate constant predicted by the KS96 formula shows fair agreement (well within a factor of 3) with those derived experimentally in the cases of XCH_2CH_2OO radicals (where X = Cl or Br), agreement is very poor in the cases of XCH₂OO radicals (the KS96based rate constant is 5- to 17-fold greater than those derived experimentally) and $CH_3C(OO)CH_2X$ radicals (the KS96based rate constant is 6-fold smaller than that recommended by Villenave et al. (2003)). This suggests that the KS96 formula does not necessarily work well for halogenated organic peroxy radicals formed from up to C₃-hydrocarbons, and justifies simply using the generic value taken from MCM for the rate constants of cross-reactions where the rate constants of self-reactions are unknown.

Finally, the self-reactions of halogenated organic peroxy radicals are included in the present reaction scheme only where experimental data exist, since these reactions are of negligible importance in the ambient air compared with the cross-reactions with CH_3OO .

S10 A protocol for the degradation of organic intermediates: hydroperoxides, aldehydes, ketones, alcohols, etc.

By analogy with non-halogenated counterparts, halogenated organic hydroperoxides, percarboxylic acids, aldehydes, ketones, and alcohols are most likely destroyed via either reactions with OH radicals or photolysis in the ambient air. However, kinetic and mechanistic data for such reactions are again lacking in many cases and thus need to be estimated.

Where no experimental data exist, rate constants for the reactions of halogenated organic intermediates with OH radicals are estimated by structure-activity relationships (SAR) (Atkinson, 1987; Kwok and Atkinson, 1995) with supplemented parameters taken from the work of MCM. In particular, the neighboring group activation parameter for '-OOH' for the purpose of reaction rate estimation is assigned to be 13 for C₁-species and 8.4 for C₂- and C₃-species following the MCM protocol (Jenkin et al., 1997; Saunders et al., 2003). The rate constant of H-abstraction from '-OOH' group is also taken from Jenkin et al. (1997). Actually, there often exist more than two distinct product channels for Habstraction from the C-H bonds of C₂- and C₃-species. Although the SAR method is capable of predicting the rate constant of each channel, channels of minor importance are disregarded and the rate constant of primary channel is scaled proportionally to maintain the overall rate. This should be a reasonable compromise to avoid making the reaction scheme too complicated, considering the dearth of experimental data.

Photochemical loss of halogenated and non-halogenated organic intermediates via reactions with Cl, Br, or NO₃ is taken into account only where experimental data exist. Since these reactions are generally of minor importance for the budget of organic intermediates considered, mechanism extrapolation is not basically performed for reactions for which no experimental data exist.

Photolysis reactions are considered for halogenated carbonyls (RC(O)R' and RCHO), hydroperoxides (ROOH), and percarboxylic acids (RC(O)OOH), as with non-halogenated counterparts. Again, experimental data for their absorption cross sections in the actinic range are lacking in many cases. Thus, where no experimental data exist, J values for halogenated organic compounds need to be estimated.

As shown in Figs. S1a-b, the longer-wavelength tails of UV absorption bands for carbonyl compounds are shifted in a fairly consistent manner by the presence of substituents at α -position: blue-shifted by about 10 nm via OH-

Fig. S1. (a) Experimentally determined absorption cross sections for acetone and its substituted analogues: CH_3COCH_3 (black line; Atkinson et al., 1999), CH_3COCH_2OH (red line; Orlando et al., 1999), CH_3COCH_2Cl and CH_3COCH_2Br (green and blue lines, respectively; Burkholder et al., 2002); (b) absorption cross sections for acetaldehyde and its substituted analogues: CH_3CHO (black line; Atkinson et al., 1999), $HOCH_2CHO$ (red line; Bacher et al., 2001), and $ClCH_2CHO$ (green line; Libuda, 1992); absorption cross sections for $BrCH_2CHO$ have not been reported in the literature and are therefore assumed red-shifted by 10 nm relative to those for $ClCH_2CHO$ (blue dashed line); and (c) absorption cross sections for methyl hydroperoxide and its analogues: CH_3OOH (black line; Atkinson et al., 1999), $HOCH_2OOH$ (red line; Bauerle and Moortgat, 1999), and $ClCH_2CH_2OOH$ (green line; Chakir et al., 2003).

substitution and red-shifted by about 10–30 nm via Cl- or Br-substitution. Absorption cross sections for ClCH₂CHO were determined experimentally (Libuda, 1992), whereas those for BrCH₂CHO are unknown at the present time. The quantum yields of ClCH₂CHO/BrCH₂CHO photolysis are also unknown. In the present work, absorption cross sections for BrCH₂CHO are estimated to be red-shifted by 10

nm relative to those for ClCH₂CHO. Then, wavelengthdependent quantum yields for two channels of CH₃CHO photolysis to give CH₄ + CO and CH₃ + HCO, respectively, recommended by Atkinson et al. (1997) are used as a reference for estimating quantum yields of haloacetaldehyde photolysis; wavelength-dependent quantum yields of the photolysis of ClCH₂CHO and BrCH₂CHO are estimated to be red-shifted by 10 nm and 20 nm, respectively, relative to those of CH₃CHO photolysis. Similarly, J values for other halogen-substituted alkyl aldehydes are estimated by taking absorption cross sections of non-halogenated counterparts from the literature and then red-shifted by 10 nm for chlorinated aldehydes and by 20 nm for brominated aldehydes. Wavelength-dependent quantum yields are red-shifted accordingly. J values for halogenated ketones of interest in the present work, i.e. CH₃COCH₂Cl and CH₃COCH₂Br, are calculated based on experimentally determined absorption cross sections and quantum yields (Burkholder et al., 2002).

To our knowledge, experimental data for absorption cross sections in the actinic range do not exist for hydroperoxides other than CH₃OOH, HOCH₂OOH, and ClCH₂CH₂OOH (Atkinson et al., 1999; Bauerle and Moortgat, 1999; Chakir et al., 2003). A comparison between their absorption cross sections reveals that the longer-wavelength tails of UV absorption bands for hydroperoxides do not exhibit significant changes by the presence of substituents or by a change in the carbon number of alkyl group (see Fig. S1c). It is therefore assumed that absorption cross sections for halogenated hydroperoxides are generally identical to those for CH_3OOH . Then the quantum yields of unity are assumed as with CH₃OOH photolysis. Following the MCM protocol for estimating J values for non-halogenated compounds (Jenkin et al., 1997), halogenated percarboxylic acids (RC(O)OOH) are also assumed to have the same J value as CH₃OOH.

List of Tables

- Table S1. Gas-Phase Species
- Table S2. Aqueous-Phase Species
- Table S3. Gas-Phase Reactions
- Table S4. Gas- and Aqueous-Phase Photolysis Reactions
- Table S5. Heterogeneous Reactions

Table S6. Henry's Law Constants and Mass Accommodation Coefficients for Species Capable of Being Transferred across Gas-Aerosol Interface

Table S7. Aqueous-Phase Equilibrium Constants for Acids, Bases, Hydrates, etc.

Table S8. Aqueous-Phase Reactions

No.	Species	$v_0,{ m cm/s}$	$ au_{\mathrm{wet}}, \mathrm{day}$	$\chi_{ m ini}$	$\chi_{ m const}$
1	O ₂	_	_	_	$0.2095\mathrm{mol/mol}$
2	O_3	_	-	_	$20 \mathrm{nmol/mol}^{c}$
3	$O(^{3}P)$	_	-	_	_
4	$O(^{1}D)$	_	-	_	_
5	N_2	_	-	_	$0.7808\mathrm{mol/mol}$
6	NO	_	-	_	_
7	NO_3	_	-	_	_
8	N_2O_5	1.0	-	_	_
9	HO_2NO_2	_	_	_	_
10	HONO	_	_	-	-
11	NO_2	0.1	_	$20 \mathrm{pmol/mol}$	_
12	HNO ₃	2.0	8.0	6 pmol/mol	_
13	NH ₃	_	_	- -	$100 \mathrm{pmol/mol}$
14	H_2	_	_	_	550 nmol/mol^{d}
15	H ₂ O	_	_	_	$\sim 0.017 \text{ mol/mol}^{e}$
16	OH	1.0	_	_	
17	HO ₂	1.0	_	_	_
18	H_2O_2	1.0	8.0	1 nmol/mol	_
19	CH ₄	_	_	_	$1.7 \mu \text{mol/mol}^{f}$
20	CoHe	_	_	_	400 pmol/mol^{f}
21	C_2H_0	_	_	_	18 pmol/mol^{f}
22	CoH4	_	_	_	
22	C ₂ H ₄	_	_	_	
24	C_2H_2	_	_	-	$35 \text{ pmol/mol} (\text{baseline})^f$
25	CO	-	_	_	$6^{f} 200 \text{ pmol/mol}^{s}$ 80 nmol/mol^{f}
26	CO_2	_	—	-	$350\mu{ m mol/mol}$
27	CH_3OO	0.5	—	-	—
28	CH ₃ OH	0.1	_	_	_
29	НСНО	0.5	8.0	$300\mathrm{pmol/mol}$	_
30	CH ₃ OOH	0.5	_	$800\mathrm{pmol/mol}$	_
31	$HOCH_2OO$	0.5	_	_	_
32	$CH_2(OH)_2$	0.5	8.0	_	_
33	HOCH ₂ OOH	0.5	8.0	_	_
34	НСООН	1.0	8.0	$50\mathrm{pmol/mol}$	_
35	HCl	2.0	8.0	$60\mathrm{pmol/mol}$	_
36	Cl_2	_	_	_	_
37	Cl	_	_	_	_
38	ClO	_	_	_	_
39	OCIO	_	_	_	_
40	HOCl	0.2	_	-	_
41	CH ₃ OCl	0.2	_	-	_
42	Cl_2O_2	_	_	-	_
43	$CINO_2$	_	_	_	_
44	$ClONO_2$	_	_	_	_
45	HBr	2.0	8.0	_	_
46	Br_2		_	_	_
47	BrCl	_	_	_	_
48	Br	_	_	_	_
49	BrO	_	_	_	_
. /	-				

Table S1. Gas-Phase Species Considered in SEAMAC, and Their Dry Deposition Velocities $(v_0)^a$, Wet Deposition Lifetimes (τ_{wet}) , Initial Mixing Ratios (χ_{ini}) , and Fixed Mixing Ratios (χ_{const}) Where Fixed Constant^b

Table S1. (continued)

No.	Species	$v_0,{ m cm/s}$	$ au_{ m wet}, { m day}$	$\chi_{ m ini}$	$\chi_{ m const}$
50	HOBr	0.2	_	_	_
51	$BrNO_2$	_	_	_	_
52	BrONO ₂	_	_	_	-
53	C_2H_5OO	0.5	_	_	-
54	C_2H_5OH	0.1	_	_	-
55	C_2H_5OOH	0.5	_	_	_
56	CH ₃ CHO	_	8.0	$90\mathrm{pmol/mol}$	_
57	$CH_3C(O)OO$	0.5	-	_	_
58	$CH_3C(O)OONO_2$ (PAN)	0.1	_	$0.1\mathrm{pmol/mol}$	_
59	CH ₃ COOH	1.0	8.0	$50\mathrm{pmol/mol}$	-
60	$CH_3C(O)OOH$	0.5	_	$80\mathrm{pmol/mol}$	_
61	n-C ₃ H ₇ OO	0.5	-	_	_
62	$n-C_3H_7OH$	0.1	-	_	-
63	n-C ₃ H ₇ OOH	0.5	-	_	_
64	C_2H_5CHO	0.5	8.0	_	-
65	$C_2H_5C(O)OO$	0.5	-	_	_
66	$C_2H_5C(O)OONO_2$ (PPN)	0.1	_	_	-
67	C_2H_5COOH	1.0	8.0	_	-
68	$C_2H_5C(O)OOH$	0.5	-	_	-
69	i-C ₃ H ₇ OO	0.5	_	_	-
70	i-C ₃ H ₇ OH	0.1	_	_	-
71	i-C ₃ H ₇ OOH	0.5	_	_	-
72	CH_3COCH_3	_	_	_	$400 \mathrm{pmol/mol}^{\ h}$
73	CH_3COCH_2OO	0.5	-	_	-
74	CH_3COCH_2OH	0.1	-	-	-
75	CH_3COCH_2OOH	0.5	-	_	-
76	CH ₃ COCHO	0.5	8.0	-	-
77	$HOCH_2CH_2OO$	0.5	-	-	-
78	$HOCH_2CH_2O$	-	-	_	-
79	$HOCH_2CH_2OH$	0.1	_	_	-
80	HOCH ₂ CH ₂ OOH	0.5	-	_	-
81	HOCH ₂ CHO	0.5	8.0	_	-
82	$HOCH_2C(O)OO$	0.5	—	_	-
83	$HOCH_2C(O)OONO_2$ (PHAN)	0.1	—	-	-
84	HOCH ₂ COOH	1.0	8.0	_	-
85	$HOCH_2C(O)OOH$	0.5	-	_	-
86	НСОСНО	0.5	8.0	-	-
87	HCOC(O)OO	0.5	-	-	-
88	$HCOC(O)OONO_2$ (GLYPAN)	0.5	-	-	-
89	НСОСООН	1.0	8.0	_	-
90	HCOC(O)OOH	0.5	8.0	_	-
91	CICH ₂ CH ₂ OO	0.5	_	-	-
92	$ClCH_2CH_2O^*$	-	—	_	_
93	CICH ₂ CH ₂ OH	0.1	—	_	_
94	CICH ₂ CH ₂ OOH	0.5	_	_	-
95	CICH ₂ CHO	0.5	8.0	_	_
96	$CICH_2C(O)OO$	0.5	—	_	_
97	$CICH_2C(O)OONO_2$ (PCIAN)	0.1	-	_	-
98	CICH ₂ COOH	1.0	8.0	_	-
99 100	$CICH_2C(O)OOH$	0.5	-	_	-
100		0.5	-	_	-
101	$\cup \cup \cup \Pi_2 \cup$	-	_	_	-

No.	Species	$v_0, { m cm/s}$	$ au_{ m wet}, { m day}$	$\chi_{ m ini}$	$\chi_{ m const}$
102	CICH ₂ O	_	_	_	_
102	CICH ₂ OH	0.1	_	_	_
104	CICH ₂ OOH	0.5	_	_	_
105	HCOCI	0.5	8.0	_	_
106	BrCH ₂ CH ₂ OO	0.5	_	_	_
107	BrCH ₂ CH ₂ O [*]	_	_	_	_
108	BrCH ₂ CH ₂ OH	0.1	_	_	_
109	BrCH ₂ CH ₂ OOH	0.5	_	_	_
110	BrCH ₂ CHO	0.5	8.0	_	_
111	BrCH ₂ CO	_	_	_	_
112	$BrCH_2C(O)OO$	0.5	_	_	_
113	$BrCH_2C(O)OONO_2$ (PBrAN)	0.1	_	_	_
114	BrCH ₂ COOH	1.0	8.0	_	_
115	BrCH ₂ C(O)OOH	0.5	_	_	_
116	BrCH ₂ OO	0.5	_	_	_
117	BrCH ₂ O	_	_	_	_
118	BrCH ₂ OH	0.1	_	_	_
119	BrCH ₂ OOH	0.5	_	_	_
120	CH ₂ CH(OO)CH ₂ OH	0.5	_	_	_
121	CH ₂ CH(OH)CH ₂ OH	0.5	_	_	_
122	CH ₂ CH(OH)CHO	0.1	8.0	_	_
123	$CH_2CH(OH)C(O)OO$	0.5	_	_	_
123	$CH_2CH(OH)C(O)OONO_2$ (i-PROPOL PAN)	0.1	_	_	_
125	$CH_{2}CH(OH)C(O)OOH$	0.1	_	_	_
126	CH ₂ CH(OH)CH ₂ OO	0.5	_	_	_
127	CH ₂ CH(OOH)CH ₂ OH	0.5	_	_	_
127	CH ₂ CH(OH)CH ₂ OOH	0.5	_	_	_
129	$CH_{2}CH(OO)CH_{2}Cl$	0.5	_	_	_
130	CH ₂ CHOCH ₂ Cl	_	_	_	_
131	CH ₂ CH(OH)CH ₂ Cl	0.1	_	_	_
132	$CH_3CH(OOH)CH_2Cl$	0.5	_	_	_
133	CH ₂ COCH ₂ Cl	0.1	_	_	_
134	CH ₃ COCHClOO	0.5	_	_	_
135	CH ₃ COCHClOH	0.1	_	_	_
136	CH ₃ COCHClOOH	0.5	_	_	_
137	CH ₃ COCOCI	0.5	8.0	_	_
138	CH ₃ COCOOH	1.0	8.0	_	_
139	CH ₃ CHClCH ₂ OO	0.5	_	_	_
140	CH ₃ CHClCH ₂ OH	0.1	_	_	_
141	CH ₃ CHClCH ₂ OOH	0.5	_	_	_
142	CH ₃ CHClCHO	0.5	8.0	_	_
143	CH ₂ CHClC(O)OO	0.5	_	_	_
144	$CH_2CHClC(O)OONO_2$ (i-ClACETPAN)	0.1	_	_	_
145	CH ₃ CHClCOOH	1.0	8.0	_	_
146	CH ₂ CHClC(O)OOH	0.5	_	_	_
147	CH ₃ CHClOO	0.5	_	_	_
148	CH ₂ CHClOOH	0.5	_	_	_
149	CH ₂ COCl	0.5	8.0	_	_
150	CH ₃ Cl	_	_	_	_
151	$CH_2 = CHCH_2OO$	0.5	_	_	_
152	$CH_2 = CHCH_2OH$	0.1	_	_	_
153	$CH_2 = CHCH_2OOH$	0.5	_	_	_
100		0.0			

Table S1. (continued)

No.	Species	$v_0, { m cm/s}$	$ au_{ m wet}, { m day}$	$\chi_{ m ini}$	$\chi_{ m const}$
154	$CH_2 = CHCHO$	0.5	8.0	_	_
155	$CH_2 = CHC(O)OO$	0.5	_	_	_
156	$CH_2 = CHC(O)OONO_2$ (ACRPAN)	0.1	_	-	-
157	$CH_2 = CHCOOH$	1.0	8.0	_	_
158	$CH_2 = CHC(O)OOH$	0.5	_	-	_
159	$CH_3CH(OO)CH_2Br$	0.5	_	-	_
160	CH_3CHOCH_2Br	_	_	_	_
161	$CH_3CH(OH)CH_2Br$	0.1	_	_	_
162	$CH_3CH(OOH)CH_2Br$	0.5	_	-	_
163	CH_3COCH_2Br	0.1	_	-	_
164	CH ₃ COCHBrOO	0.5	_	_	_
165	CH ₃ COCHBrO	_	_	_	_
166	CH ₃ COCHBrOH	0.1	_	_	_
167	CH ₃ COCHBrOOH	0.5	_	_	_
168	CH ₃ COCOBr	0.5	8.0	_	_
169	CH ₃ CHBrCH ₂ OO	0.5	_	_	_
170	CH ₃ CHBrCH ₂ OH	0.1	_	_	_
171	CH ₃ CHBrCH ₂ OOH	0.5	_	_	_
172	CH ₃ CHBrCHO	0.5	8.0	_	_
173	$CH_3CHBrC(O)OO$	0.5	_	_	_
174	CH ₃ CHBrC(O)OONO ₂ (i-BrACETPAN)	0.1	_	_	_
175	CH ₃ CHBrCOOH	1.0	8.0	_	_
176	CH ₃ CHBrC(O)OOH	0.5	_	_	_
177	CH ₃ CHBrOO	0.5	_	_	_
178	CH ₃ CHBrO	_	_	_	_
179	CH ₃ CHBrOOH	0.5	_	_	_
180	CH ₃ COBr	0.5	8.0	_	_
181	CH ₃ Br	_	_	_	_
182	CHBr ₃	_	_	_	1 pmol/mol^{i}
183	CHBr ₂ OO	0.5	_	_	-
184	HCOBr	0.5	8.0	_	_
185	CBr_2O	0.1	8.0	_	_
186	$CH_2 = CO$ (ketene)	0.1	8.0	_	_
187	CH ₂ OO*	0.5	_	_	_
188	CH ₂ OO	0.5	_	_	_
189	CH ₃ CHOO*	0.5	_	_	_
190	CH ₃ CHOO	0.5	_	_	_
191	CH_3SCH_3 (DMS)	_	_	75 pmol/mol	_
192	$CH_3S(O)CH_3$ (DMSO)	1.0	8.0	- ·	_
193	CH ₃ SO ₂	_	_	_	_
194	CH ₃ SO ₃	_	_	_	_
195	CH ₃ SO ₂ H	1.0	8.0	_	_
196	CH ₃ SO ₃ H	2.0	8.0	_	_
197	SO_2	1.0	8.0	60 pmol/mol	_
198	SO_3	_	_		_
199	H_2SO_4	2.0	8.0	_	_

Notes: ^{*a*} Dry deposition velocities are either taken from the literature (Sander and Crutzen, 1996; Moldanová and Ljungström, 2001) or estimated in the present work (see Section 4); ^{*b*} The initial mixing ratios are set to zero for species whose initial (χ_{ini}) or fixed (χ_{const}) mixing ratios are not specified in the table; ^{*c*} Johnson et al. (1990), Oltmans and Levy (1994); ^{*d*} Warneck (1998); ^{*e*} At the relative humidity of 76.2% and the temperature of 293 K; ^{*f*} Gregory et al. (1996); ^{*g*} Koppmann et al. (1992); ^{*h*} Singh et al. (2001); ^{*i*} Penkett et al. (1985), Yokouchi et al. (1997).

No.	Species	$\gamma_{ m a}$	No.	Species	$\gamma_{ m a}$	No.	Species	$\gamma_{ m a}$
1	O_2	1.0	35	$\rm CH_3 COO^-$	0.44	68	ClNO ₂	1.0
2	O_3	1.0	36	C_2H_5COOH	1.0	69	HBr	1.0
3	$O(^{3}P)$	1.0	37	$C_2H_5COO^-$	0.44	70	Br^-	1.6
4	H_2O	0.762	38	HOCH ₂ COOH	1.0	71	Br	1.0
5	H^{+}	4.3	39	$HOCH_2COO^-$	0.44	72	Br_2^-	0.44
6	OH^{-}	1.6	40	HCOCOOH	1.0	73	Br_3^-	0.44
7	OH	1.0	41	HCOCOO-	0.44	74	Br_2	1.0
8	HO_2	1.0	42	CH ₃ COCOOH	1.0	75	BrCl	1.0
9	O_2^-	0.44	43	CH_2COCOO^-	0.44	76	$\mathrm{Br}_2\mathrm{Cl}^-$	0.44
10	H_2O_2	1.0	44	CH ₂ CHCOOH	1.0	77	BrCl_2^-	0.44
11	HO_2^-	0.44	45	CH_2CHCOO^-	0.44	78	$BrNO_2$	1.0
12	$\overline{NH_3}$	1.0	46	ClCH2COOH	1.0	79	HOBr	1.0
13	NH_{4}^{+}	0.74	47	ClCH2COO ⁻	0.44	80	BrO^{-}	0.44
14	NO	1.0	48	BrCH2COOH	1.0	81	$HBrO_2$	1.0
15	NO_2	1.0	49	BrCH2COO ⁻	0.44	82	BrO_2^-	0.44
16	HONO	1.0	50	CH ₃ CHClCOOH	1.0	83	BrO_3^{-}	0.44
17	NO_2^-	0.44	51	CH ₃ CHClCOO ⁻	0.44	84	BrOH ⁻	0.44
18	HNO ₃	1.0	52	CH ₃ CHBrCOOH	1.0	85	BrO	1.0
19	NO_3^-	0.46	53	CH ₃ CHBrCOO ⁻	0.44	86	BrO_2	1.0
20	HO_2NO_2	1.0	54	CO_2	1.0	87	$\mathrm{Br}_2\mathrm{O}_4$	1.0
21	NO_4^-	0.44	55	HCO_3^-	0.53	88	SO_2	1.0
22	NO ₃	1.0	56	CO_3^-	0.44	89	HSO_3^-	0.92
23	CH ₃ OH	1.0	57	Na^+	1.0	90	SO_3^{2-}	0.049
24	CH_3OO	1.0	58	HCl	1.0	91	$HOCH_2SO_3^-$ (HMS ⁻)	0.92
25	CH ₃ OOH	1.0	59	Cl^{-}	1.9	92	HSO_4^-	0.92
26	CH_3CO_3H	1.0	60	Cl	1.0	93	SO_4^{2-1}	0.049
27	$CH_3CO_3^-$	0.44	61	Cl_2^-	0.44	94	HSO_5^-	0.92
28	HCHO	1.0	62	Cl_3^{-}	0.44	95	SO_5^{2-}	0.049
29	$CH_2(OH)_2$	1.0	63	HOCI	1.0	96	SO_3^-	0.44
30	HCOOH	1.0	64	ClO ⁻	0.44	97	SO_4^-	0.44
31	HCOO ⁻	1.1	65	CH ₃ OCl	1.0	98	$SO_5^{\frac{1}{5}}$	0.44
32	CH_3CHO	1.0	66	ClOH-	0.44	99	$\widetilde{\mathrm{CH}_{3}\mathrm{SO}_{3}\mathrm{H}}$	1.0
33	$CH_3CH(OH)_2$	1.0	67	Cl_2	1.0	100	$CH_3SO_3^-$	0.44
34	CH ₃ COOH	1.0					U U	

Table S2. Aqueous-Phase Species Considered in SEAMAC and Their Activity Coefficients $(\gamma_a)^a$

Note: ^a Taken from Sander and Crutzen (1996) for species included in their model and calculated by the Debye-Hückel equation (Atkins, 1990) for the remainders.

Table S3.	Gas-Phase	Reactions	a, b, c
-----------	-----------	-----------	---------

No.	R	eaction Rate Constant	Reference
G1	$O(^{3}P) + O_{2} \xrightarrow{M} O_{2}$	$k_0 = 6.00 \times 10^{-34} (T/300)^{-2.4}$	1
G2	$O(^{1}D) + N_{2} \rightarrow O(^{3}P) + N_{2}$	$1.80 \times 10^{-11} \exp(110/T)$	2
G3	$O(^{1}D) + O_{2} \rightarrow O(^{3}P) + O_{2}$	$3.20 \times 10^{-11} \exp(70/T)$	2
G4	$O(^{3}P) + O_{3} \rightarrow 2O_{2}$	$8.00 \times 10^{-12} \exp(-2060/T)$	2
G5	$O(^{1}D) + O_{3} \rightarrow 2O(^{3}P) + O_{2}$	1.20×10^{-10}	2
G6	$O(^{1}D) + O_{3} \rightarrow 2O_{2}$	$1.20 imes 10^{-10}$	2
G7	$O(^{1}D) + H_{2}O \rightarrow 2OH$	$2.20 imes 10^{-10}$	1
G8	$O(^{1}D) + H_{2} \xrightarrow{O_{2}} OH + HO_{2}$	1.10×10^{-10}	2
G9	$O(^{3}P) + OH \xrightarrow{O_{2}} HO_{2} + O_{2}$	$2.20 \times 10^{-11} \exp(120/T)$	2
G10	$O(^{3}P) + HO_{2} \rightarrow OH + O_{2}$	$3.00 \times 10^{-11} \exp(200/T)$	1
G11	$O(^{3}P) + H_{2}O_{2} \rightarrow OH + HO_{2}$	$1.40 \times 10^{-12} \exp(-2000/T)$	2
G12	$OH + O_3 \rightarrow HO_2 + O_2$	$1.50 \times 10^{-12} \exp(-880/T)$	1
G13	$HO_2 + O_3 \rightarrow OH + 2O_2$	$2.00 \times 10^{-14} \exp(-680/T)$	1
G14	$OH + HO_2 \rightarrow H_2O + O_2$	$4.80 \times 10^{-11} \exp(250/T)$	1
G15	$OH + H_2O_2 \rightarrow H_2O + HO_2$	$2.90 \times 10^{-12} \exp(-160/T)$	2
G16	$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$	$2.3 \times 10^{-13} \exp(600/T) \times f(\mathrm{H_2O})$	2
G17	$HO_2 + HO_2 \xrightarrow{M} H_2O_2 + O_2$	$k_0 = 1.9 \times 10^{-33} \exp(980/T) \times f(H_2O)$	3
017	1102 + 1102 - 11202 + 02	$f(H_2O) = 1 + 1.4 \times 10^{-21} [H_2O] \exp(2200/T)$	0
G18	$OH + H_2 \xrightarrow{O_2} H_2O + HO_2$	$5.50 \times 10^{-12} \exp(-2000/T)$	2
G19	$OH + OH \rightarrow H_2O + O(^3P)$	$4.20 \times 10^{-12} \exp(-240/T)$	2
G20	$OH + OH \xrightarrow{M} H_2O_2$		
		$F_c = 0.5, \ k_0 = 6.90 \times 10^{-31} (T/300)^{-0.8}, \ k_\infty = 2.6 \times 10^{-11}$	3
G21	$O(^{3}P) + NO_{2} \rightarrow NO + O_{2}$	$5.60 \times 10^{-12} \exp(180/T)$	1
G22	$O(^{3}P) + NO_{3} \rightarrow NO_{2} + O_{2}$	1.00×10^{-11}	2
G23	$O(^{3}P) + NO \xrightarrow{M} NO_{2}$		
		$F_c = 0.6, k_0 = 9.0 \times 10^{-32} (T/300)^{-1.5}, k_\infty = 3.0 \times 10^{-11}$	1
G24	$O(^{3}P) + NO_{2} \xrightarrow{M} NO_{3}$		
		$F_c = \exp(-T/1300), k_0 = 9.0 \times 10^{-32} (T/300)^{-2.0}, k_\infty = 2.2 \times 10^{-11}$	3
G25	$NO + O_3 \rightarrow NO_2 + O_2$	$3.00 \times 10^{-12} \exp(-1500/T)$	1
G26	$NO_2 + O_3 \rightarrow NO_3 + O_2$	$1.20 imes 10^{-13} \exp(-2450/T)$	2
G27	$HO_2 + NO \rightarrow OH + NO_2$	$3.50 \times 10^{-12} \exp(250/T)$	2
G28	$NO + NO_3 \rightarrow 2 NO_2$	$1.50 \times 10^{-11} \exp(170/T)$	2
G29	$NO_2 + NO_3 \rightarrow NO + NO_2 + O_2$	$4.50 \times 10^{-14} \exp(-1260/T)$	2
G30	$NO_2 + NO_3 \xrightarrow{M} N_2O_5$		
		$F_c = 0.33, k_0 = 2.7 \times 10^{-30} (T/300)^{-3.4}, k_\infty = 2.0 \times 10^{-12} (T/300)^{0.2}$	3
G31	$N_2O_5 \xrightarrow{M} NO_2 + NO_3$		
	$F_c = 0.33, k_0 = 1.0 \times 10^{-3}$	$(T/300)^{-3.5} \exp(-11000/T), k_{\infty} = 9.7 \times 10^{14} (T/300)^{0.1} \exp(-11080/T)$	3
G32	$OH + NO_3 \rightarrow HO_2 + NO_2$	2.20×10^{-11}	2
G33	$HO_2 + NO_3 \rightarrow OH + NO_2 + O_2$	3.50×10^{-12}	2
G34	$OH + NO_2 \xrightarrow{M} HNO_3$		
		$F_c = 0.6, k_0 = 2.4 \times 10^{-30} (T/300)^{-3.1}, k_\infty = 1.7 \times 10^{-11} (T/300)^{-2.1}$	1
G35	$OH + HNO_3 \rightarrow H_2O + NO_3$	$k = k_0 + k_3 [M] / (1 + k_3 [M] / k_2)$	1
	$k_0 = 2.4 \times 10^{-14} \mathrm{ex}$	$kp(460/T), k_2 = 2.7 \times 10^{-17} \exp(2199/T), k_3 = 6.5 \times 10^{-34} \exp(1335/T)$	
G36	$OH + NO \xrightarrow{M} HONO$		
200		$F_c = 0.9, k_0 = 7.4 \times 10^{-31} (T/300)^{-2.4}, k_{\infty} = 4.50 \times 10^{-11}$	2
G37	$OH + HONO \rightarrow H_2O + NO_2$	$1.80 \times 10^{-11} \exp(-390/T)$	2
G38	$HO_{2} + NO_{2} \stackrel{M}{\rightarrow} HO_{2}NO_{2}$	$-\cdots$ $-r$ $(\cdots)/r$	
000	$110_2 \pm 110_2 \rightarrow 110_2 110_2$	$F_{\rm r} = 0.6$ $k_0 = 1.8 \times 10^{-31} (T/300)^{-3.2}$ $k_{\rm r} = 4.7 \times 10^{-12}$	3
		$n_c = 0.0, n_0 = 10 \times 10 = (1/000) = 0.1 \times 10$	2

No.	Reaction	Rate Constant	Reference
G39	$HO_2NO_2 \xrightarrow{M} HO_2 + NO_2$		
G 10	$F_c = 0.6, k_0 = 5.0 \times 10^{-6} \exp(-10^{-6} $	$-10000/T$, $k_{\infty} = 2.6 \times 10^{15} \exp(-10900/T)$	3
G40	$OH + HO_2NO_2 \rightarrow H_2O + NO_2 + O_2$	$1.30 \times 10^{-12} \exp(380/T)$	2
G41	$OH + CO \xrightarrow{\sim} HO_2 + CO_2$	$1.50 \times 10^{-13} (1 + P_{\rm atm})$	2
G42	$O(^{1}D) + CH_{4} \xrightarrow{O_{2}} OH + CH_{3}OO$	1.50×10^{-10}	2
G43	$OH + CH_4 \xrightarrow{O_2} H_2O + CH_3OO$	$2.45 \times 10^{-12} \exp(-1775/T)$	2
G44	$Cl + CH_4 \xrightarrow{O_2} HCl + CH_3OO$	$9.60 \times 10^{-12} \exp(-1360/T)$	1
G45	$HO_2 + CH_3OO \rightarrow CH_3OOH + O_2$	$3.80 \times 10^{-13} \exp(800/T)$	2
G46	$CH_3OO + CH_3OO \rightarrow CH_3OH + HCHO + O_2$	$1.50 \times 10^{-13} \exp(190/T)$	2
G47	$CH_3OO + CH_3OO \xrightarrow{O_2} 2 HCHO + 2 HO_2 + O_2$	$1.00 \times 10^{-13} \exp(190/T)$	2
G48	$\rm CH_3OO + NO \xrightarrow{O_2} \rm NO_2 + \rm HCHO + \rm HO_2$	$3.00 \times 10^{-12} \exp(280/T)$	2
G49	$CH_3OO + NO_3 \xrightarrow{O_2} HCHO + HO_2 + NO_2 + O_2$	1.30×10^{-12}	4
G50	$O(^{3}P) + HCHO \xrightarrow{O_{2}} OH + CO + HO_{2}$	$3.40 \times 10^{-11} \exp(-1600/T)$	2
G51	$NO_3 + HCHO \xrightarrow{O_2} HNO_3 + CO + HO_2$	5.80×10^{-16}	2
G52	$OH + HCHO \xrightarrow{O_2} H_2O + CO + HO_2$	1.00×10^{-11}	2
G52	$B_{r} + HCHO^{O_2} + B_{r} + CO + HO_2$	$1.00 \times 10^{-11} \operatorname{ovp}(-800/T)$	-
055	$CI + HCHOO \rightarrow HCI + CO + HO$	$1.70 \times 10^{-11} \exp(-800/T)$	4
G54	$CI + HCHO \rightarrow HCI + CO + HO_2$	$8.20 \times 10^{-1} \exp(-34/T)$	4
G55	$OH + CH_3OH \rightarrow H_2O + HCHO + HO_2$	$3.10 \times 10^{-12} \exp(-360/T)$	4
G56	$Cl + CH_3OH \xrightarrow{\longrightarrow} HCl + HCHO + HO_2$	5.50×10^{-11}	4
G57	$OH + CH_3OOH \rightarrow H_2O + CH_3OO$	$1.90 \times 10^{-12} \exp(190/T)$	4
G50	$On + Cn_3OOn \rightarrow n_2O + nCnO + On$ Br + CH ₂ OOH \rightarrow HBr + CH ₂ OO	$1.00 \times 10^{-12} \exp(190/T)$ $2.63 \times 10^{-12} \exp(-1610/T)$	4
G60	$Cl + CH_3OOH \rightarrow HCl + HCHO + OH$	2.03×10^{-10} exp(-1010/1) 5.90×10^{-11}	4
G61	$HO_2 + HCHO \rightarrow HOCH_2OO$	$9.70 \times 10^{-15} \exp(625/T)$	4
G62	$HOCH_2OO \xrightarrow{M} HO_2 + HCHO$	$k_{\rm uni} = 2.4 \times 10^{12} \exp(-7000/T)$	4
G63	$HOCH_2OO + NO \xrightarrow{O_2} HCOOH + HO_2 + NO_2$	5.60×10^{-12}	6
G64	$HOCH_2OO + NO_2 \stackrel{O_2}{\longrightarrow} HCOOH + HO_2 + NO_2 + O_2$	250×10^{-12}	0 7
G65	$HOCH_2OO + HO_3 \rightarrow HOCH_2OOH + O_2$	$3.36 \times 10^{-15} \exp(2300/T)$	4
G66	$HOCH_2OO + HO_2 \rightarrow HCOOH + H_2O + O_2$	$2.24 \times 10^{-15} \exp(2300/T)$	4
G67	$HOCH_2OO + CH_3OO \xrightarrow{O_2} HCOOH + HCHO + 2 HO_2 + O_2$	1.20×10^{-12}	8
G68	$HOCH_2OO + CH_3OO \rightarrow HCOOH + CH_3OH + O_2$	4.00×10^{-13}	8
G69	$HOCH_2OO + CH_3OO \rightarrow CH_2(OH)_2 + HCHO + O_2$	4.00×10^{-13}	8
G70	$\mathrm{HOCH_2OO} + \mathrm{HOCH_2OO} \rightarrow \mathrm{HCOOH} + \mathrm{CH_2(OH)_2} + \mathrm{O_2}$	$5.70 \times 10^{-14} \exp(750/T)$	4
G71	$\mathrm{HOCH}_2\mathrm{OO} + \mathrm{HOCH}_2\mathrm{OO} \xrightarrow{\mathrm{O}_2} 2 \mathrm{HCOOH} + 2 \mathrm{HO}_2 + \mathrm{O}_2$	5.50×10^{-12}	4
G72	$OH + CH_2(OH)_2 \xrightarrow{O_2} H_2O + HCOOH + HO_2$	1.17×10^{-11}	This work
G73	$OH + HOCH_2OOH \rightarrow HOCH_2OO$	$1.90 \times 10^{-12} \exp(190/T)$	This work
G74	$OH + HOCH_2OOH \rightarrow H_2O + HCOOH + OH$	4.26×10^{-11}	This work
G75	$OH + HCOOH \xrightarrow{O_2} H_2O + HO_2 + CO_2$	4.00×10^{-13}	2
G76	$Br + O_3 \rightarrow BrO + O_2$	$1.70 \times 10^{-11} \exp(-800/T)$	2
G77	$Br + HO_2 \rightarrow HBr + O_2$	$1.40 \times 10^{-11} \exp(-590/T)$	9
G78	$Br + NO_3 \rightarrow BrO + NO_2$ $BrO + O(^{3}D) \rightarrow Br + O$	1.60×10^{-11}	2
G80	$DrO + O(r) \rightarrow Dr + O_2$ BrO + HO ₂ \rightarrow HOBr + O ₂	$1.90 \times 10 \exp(230/T)$ $3.70 \times 10^{-12} \exp(-545/T)$	2 9
G81	$BrO + NO \rightarrow Br + NO_2$	$8.70 \times 10^{-12} \exp(-540/T)$	9
G82	$BrO + NO_2 \xrightarrow{M} BrONO_2$	(200/1)	,
002	$F_c = \exp(-T/327), k_0 = 4.7 \times 10^{-3}$	$k^{1}(T/300)^{-3.1}, k_{\infty} = 1.4 \times 10^{-11}(T/300)^{-1.2}$	9
G83	$BrONO_2 \xrightarrow{M} BrO + NO_2$	$k_{\rm uni} = 2.79 \times 10^{13} \exp(-12360/T)$	10

Table S3. (continued)

No.	Reaction	Rate Constant	Reference
G84	$BrO + CH_3OO \rightarrow HOBr + CH_2OO$	4.10×10^{-12}	11
G85	$BrO + CH_3OO \xrightarrow{O_2} Br + HCHO + HO_2 + O_2$	1.60×10^{-12}	11
G86	$BrO + BrO \rightarrow 2Br + O_2$	2.70×10^{-12}	9
G87	$BrO + BrO \rightarrow Br_2 + O_2$	$2.90 \times 10^{-14} \exp(840/T)$	9
G88	$BrO + ClO \rightarrow Br + OClO$	$9.50 \times 10^{-13} \exp(550/T)$	1
G89	$BrO + ClO \rightarrow Br + Cl + O_2$	$2.30 \times 10^{-12} \exp(260/T)$	1
G90	$BrO + ClO \rightarrow BrCl + O_2$	$4.10 \times 10^{-13} \exp(290/T)$	1
G91	$Br_2 + Cl \rightarrow BrCl + Br$	1.66×10^{-10}	12
G92	$BrCl + Br \rightarrow Br_2 + Cl$	3.32×10^{-15}	12
G93	$Br + Cl_2 \rightarrow BrCl + Cl$	1.10×10^{-15}	13
G94	$BrCl + Cl \rightarrow Br + Cl_2$	1.45×10^{-11}	14
G95	$O(^{\circ}P) + HBr \rightarrow OH + Br$	$5.80 \times 10^{-12} \exp(-1500/T)$	2
G96	$O(^{1}D) + HBr \rightarrow OH + Br$	1.50×10^{-10}	2
G97	$OH + HBr \rightarrow H_2O + Br$	1.10×10^{-11}	2
G98	$Cl + CH_3OO \rightarrow HCl + CH_2OO^*$	8.00×10^{-11}	2
G99	$Cl + CH_3OO \xrightarrow{\frown}{\rightarrow} ClO + HCHO + HO_2$	8.00×10^{-11}	2
G100	$Cl + CH_3OCl \xrightarrow{\sim}{\rightarrow} Cl_2 + HCHO + HO_2$	4.87×10^{-11}	15
G101	$Cl + CH_3OCl \xrightarrow{O_2} HCl + HCOCl + HO_2$	1.22×10^{-11}	15
G102	$Cl + O_3 \rightarrow ClO + O_2$	$2.30 \times 10^{-11} \exp(-200/T)$	1
G103	$ClO + ClO \rightarrow Cl_2 + O_2$	$1.00 \times 10^{-12} \exp(-1590/T)$	2
G104	$ClO + ClO \rightarrow 2 Cl + O_2$	$3.00 \times 10^{-11} \exp(-2450/T)$	2
G105	$ClO + ClO \rightarrow OClO + Cl$	$3.50 \times 10^{-13} \exp(-1370/T)$	2
G106	$\text{ClO} + \text{ClO} \xrightarrow{\text{M}} \text{Cl}_2\text{O}_2$		
G107	$F_c = 0.6, k_0 = 1$ Cl ₂ O ₂ \xrightarrow{M} ClO + ClO	$(.7 \times 10^{-32} (T/300)^{-4}, k_{\infty} = 5.4 \times 10^{-12})$	9
	$F_c = 0.6, k_0 = 1.0 \times 10^{-6} \exp(-8)$	$(000/T), k_{\infty} = 4.8 \times 10^{15} \exp(-8820/T)$	9
G108	$ClO + OH \rightarrow Cl + HO_2$	$7.40 \times 10^{-12} \exp(270/T)$	1
G109	$ClO + OH \rightarrow HCl + O_2$	$3.20 \times 10^{-13} \exp(320/T)$	1
G110	$ClO + HO_2 \rightarrow HOCl + O_2$	$4.80 \times 10^{-13} \exp(700/T)$	2
G111	$ClO + CH_3OO \xrightarrow{O_2} Cl + HCHO + HO_2$	$4.90 \times 10^{-12} \exp(-330/T)$	3
G112	$ClO + CH_3OO \rightarrow CH_3OCl + O_2$	$2.60 \times 10^{-13} \exp(260/T)$	3
G113	$ClO + NO \rightarrow Cl + NO_2$	$6.40 \times 10^{-12} \exp(290/T)$	2
G114	$ClO + NO_2 \xrightarrow{M} ClONO_2$		9
	$F_c = \exp(-T/430), k_0 = 1.6$	$\times 10^{-31} (T/300)^{-3.4}, k_{\infty} = 1.5 \times 10^{-11}$	9
G115	$ClONO_2 \xrightarrow{M} ClO + NO_2$	$k_{\rm uni} = 6.92 \times 10^{-7} [\text{M}] \exp(-10908/T)$	16
G116	$NO + OClO \rightarrow NO_2 + ClO$	$2.50 \times 10^{-12} \exp(-600/T)$	2
G117	$OH + OClO \rightarrow HOCl + O_2$	$4.50 \times 10^{-13} \exp(800/T)$	2
G118	$OH + HCl \rightarrow H_2O + Cl$	$2.60 \times 10^{-12} \exp(-350/T)$	1
G119	$OH + HOCl \rightarrow H_2O + ClO$	$3.00 \times 10^{-12} \exp(-500/T)$	2
G120	$OH + CH_3OCl \xrightarrow{O_2} HCOCl + HO_2 + H_2O$	$2.40 \times 10^{-12} \exp(-360/T)$	2
G121	$OH + C_2H_6 \xrightarrow{O_2} H_2O + C_2H_5OO$	$8.70 \times 10^{-12} \exp(-1070/T)$	2
G122	$Cl + C_2H_6 \xrightarrow{O_2} HCl + C_2H_5OO$	$7.70 \times 10^{-11} \exp(-90/T)$	2
G123	$C_2H_5OO + NO \xrightarrow{O_2} CH_3CHO + HO_2 + NO_2$	$2.50 \times 10^{-12} \exp(380/T)$	4
G124	$C_2H_5OO + HO_2 \rightarrow C_2H_5OOH + O_2$	$3.80 \times 10^{-13} \exp(900/T)$	4
G125	$C_2H_5OO + NO_3 \xrightarrow{O_2} CH_3CHO + HO_2 + NO_2 + O_2$	2.30×10^{-12}	4
G126	$C_2H_5OO + CH_3OO \xrightarrow{O_2} CH_3CHO + HCHO + 2HO_2 + O_2$	1.21×10^{-13}	17
G127	$C_2H_5OO + CH_3OO \rightarrow CH_3CHO + CH_3OH + O_2$	4.00×10^{-14}	17
G128	$C_2H_5OO + CH_3OO \rightarrow C_2H_5OH + HCHO + O_2$	4.00×10^{-14}	17

No.	Reaction	Rate Constant	Reference
G129	$C_2H_5OO + C_2H_5OO \xrightarrow{O_2}$	6.40×10^{-14}	3
C120	$1.24 \times (CH_3 CHO + HO_2) + 0.38 \times (CH_3 CHO + C_2 H_5 OH)$	10 + 02	2
G130 G131	$C_2H_5OO + CI \rightarrow CH_3CHO + HO_2 + CIO$ $C_2H_2OO + CI \rightarrow CH_2CHOO^* + HCl$	7.40×10^{-11} 7.70×10^{-11}	2
G132	$C_{2}H_{5}OO + OI \rightarrow OH_{3}OHOO + HOI$	$5.60 \times 10^{-12} \exp(310/T)$	2
G122	$CH_{CHO} + NO_{-} \xrightarrow{O_2} CH_{-} C(O)OO + H_2O$	$1.40 \times 10^{-12} \exp(-1860/T)$	4
0133	$\operatorname{CH}_{3}\operatorname{CHO} + \operatorname{NO}_{3} \rightarrow \operatorname{CH}_{3}\operatorname{C(O)OO} + \operatorname{HNO}_{3}$ $\operatorname{CH}_{3}\operatorname{CHO} + \operatorname{CHO}_{2}\operatorname{CH}_{3}\operatorname{C(O)OO} + \operatorname{HO}_{3}$	1.40×10^{-11} exp(-1000/1)	4
G134	$CH_3CHO + CI \rightarrow CH_3C(O)OO + HCI$	$(.20 \times 10)$	4
GI35	$CH_3CHO + Br \rightarrow CH_3C(O)OO + HBr$	$1.30 \times 10^{-11} \exp(-360/T)$	4
G136	$C_2H_5OH + OH \xrightarrow{\rightarrow} CH_3CHO + HO_2 + H_2O$	$4.10 \times 10^{-12} \exp(-70/T)$	4
G137	$C_2H_5OH + Cl \xrightarrow{\rightarrow}{\rightarrow} CH_3CHO + HO_2 + HCl$	9.00×10^{-11}	4
G138 G130	$C_2H_5OOH + OH \rightarrow H_2O + C_2H_5OO$ $C_2H_5OOH + OH \rightarrow H_2O + CH_2CHO + OH$	$1.90 \times 10^{-2} \exp(190/T)$ 8.01 × 10 ⁻¹²	/ 7
G140	$C_2H_5OOH + CH \rightarrow H_2O + CH_3CHO + OH$ $C_2H_5OOH + Cl \rightarrow HCl + CH_2CHO + OH$	1.07×10^{-10}	18
G141	$CH_3C(O)OO + HO_2 \rightarrow CH_3C(O)OOH + O_2$	$3.05 \times 10^{-13} \exp(1040/T)$	4,7
G142	$CH_3C(O)OO + HO_2 \rightarrow CH_3COOH + O_3$	$1.25 \times 10^{-13} \exp(1040/T)$	4, 7
G143	$CH_3C(O)OO + CH_3OO \xrightarrow{O_2} CH_3OO + CO_2 + HCHO + HO_2 + O_2$	$1.26 \times 10^{-12} \exp(500/T)$	4, 8
G144	$CH_3C(O)OO + CH_3OO \rightarrow CH_3COOH + HCHO + O_2$	$5.40 \times 10^{-13} \exp(500/T)$	4, 8
G145	$\mathrm{CH}_{3}\mathrm{C}(\mathrm{O})\mathrm{OO} + \mathrm{CH}_{3}\mathrm{C}(\mathrm{O})\mathrm{OO} \rightarrow 2\mathrm{CH}_{3}\mathrm{OO} + 2\mathrm{CO}_{2} + \mathrm{O}_{2}$	$2.90 \times 10^{-12} \exp(500/T)$	4
G146	$CH_3C(O)OO + C_2H_5OO \xrightarrow{O_2} CH_3OO + CO_2 + CH_3CHO + HO_2 + O_2$	7.00×10^{-12}	4, 8
G147	$CH_3C(O)OO + C_2H_5OO \rightarrow CH_3COOH + CH_3CHO + O_2$	3.00×10^{-12}	4, 8
G148	$CH_3C(O)OO + NO \xrightarrow{O_2} CH_3OO + CO_2 + NO_2$	$7.80 \times 10^{-12} \exp(300/T)$	4
G149	$CH_3C(O)OO + NO_3 \xrightarrow{O_2} CH_3OO + CO_2 + NO_2 + O_2$	4.00×10^{-12}	7
G150	$CH_{3}COOH + OH \xrightarrow{O_{2}} CH_{3}OO + CO_{2} + H_{2}O$	8.00×10^{-13}	4
G151	$CH_3C(O)OOH + OH \rightarrow CH_3C(O)OO + H_2O$	3.70×10^{-12}	7
G152	$CH_3C(O)OO + NO_2 \xrightarrow{M} PAN$ $F_c = 0.3, k_0 = 2.7 \times 10^{-28} (T/300)$	$(0)^{-7.1}, k_{\infty} = 1.2 \times 10^{-11} (T/300)^{0.9}$	4
G153	$PAN \xrightarrow{M} CH_3C(O)OO + NO_2$		
	$F_c = 0.3, k_0 = 4.9 \times 10^{-3} \exp(-12100/T)$	T), $k_{\infty} = 5.4 \times 10^{16} \exp(-13830/T)$	4
G154	$OH + C_3H_8 \xrightarrow{O_2} 0.264 \times \text{n-}C_3H_7OO + 0.736 \times \text{i-}C_3H_7OO + H_2O$	$8.00 \times 10^{-12} \exp(-590/T)$	4, 7
G155	$Cl + C_3H_8 \xrightarrow{O_2} 0.43 \times n - C_3H_7OO + 0.57 \times i - C_3H_7OO + HCl$	1.40×10^{-10}	4, 19
G156	$n-C_3H_7OO + NO \xrightarrow{O_2} C_2H_5CHO + HO_2 + NO_2$	$2.90 \times 10^{-12} \exp(350/T)$	4
G157	$n-C_3H_7OO + HO_2 \rightarrow n-C_3H_7OOH + O_2$	$1.51 \times 10^{-13} \exp(1300/T)$	7
G158	$n-C_3H_7OO + NO_3 \xrightarrow{O_2} C_2H_5CHO + HO_2 + NO_2 + O_2$	2.50×10^{-12}	7
G159	$n-C_3H_7OO + CH_3OO \xrightarrow{O_2} C_2H_5CHO + HCHO + 2HO_2 + O_2$	3.60×10^{-13}	8
G160	$n-C_3H_7OO + CH_3OO \rightarrow C_2H_5CHO + CH_3OH + O_2$	1.20×10^{-13}	8
G161	$n\text{-}C_3H_7OO+CH_3OO \rightarrow n\text{-}C_3H_7OH+HCHO+O_2$	1.20×10^{-13}	8
G162	$n-C_3H_7OO + CH_3C(O)OO \xrightarrow{O_2}$ $C_2H_5CHO + HO_2 + CH_2OO + CO_2 + O_2$	7.00×10^{-12}	7
G163	$n-C_3H_7OO + CH_3C(O)OO \rightarrow C_2H_5CHO + CH_3COOH + O_2$	3.00×10^{-12}	7
G164	$n-C_3H_7OO + n-C_3H_7OO \xrightarrow{O_2}$	3.00×10^{-13}	4.8
	$1.2 \times (C_2H_5CHO + HO_2) + 0.4 \times (C_2H_5CHO + n-C_3H_7O)$	$H) + O_2$, -
G165	$C_2H_5CHO + OH \xrightarrow{O_2} C_2H_5C(O)OO + H_2O$	$5.60 \times 10^{-12} \exp(310/T)$	4
G166	$C_2H_5CHO + NO_3 \xrightarrow{O_2} C_2H_5C(O)OO + HNO_3$	$1.40 \times 10^{-12} \exp(-1860/T)$	20
G167	$C_2H_5CHO + Cl \xrightarrow{O_2} C_2H_5C(O)OO + HCl$	7.20×10^{-11}	4
G168	$C_{2}H_{5}CHO + Br \xrightarrow{O_{2}} C_{2}H_{5}C(O)OO + HBr$	$5.75 \times 10^{-11} \exp(-610/T)$	21
G169	$n_{\rm C} H_{\rm T} OH + OH \xrightarrow{O_2}{O_2} C_0 H_{\rm C} CHO + HO_2 + H_0 O$	5.50×10^{-12}	4
5107	$1 \circ 211^{\circ} \circ 11 + 011 + 0.511^{\circ} \circ 110 + 110.5 + 115.0$	0.00 X 10	т

Table S3. (continued)

No.	Reaction	Rate Constant	Reference
G170	$n\text{-}C_3H_7OH + Cl \xrightarrow{O_2} C_2H_5CHO + HO_2 + HCl$	1.50×10^{-10}	4
G171	$n\text{-}C_3H_7OOH+OH \rightarrow H_2O+n\text{-}C_3H_7OO$	$1.90 \times 10^{-12} \exp(190/T)$	7
G172	$n\text{-}C_3H_7OOH+OH \rightarrow H_2O+C_2H_5CHO+OH$	1.10×10^{-11}	7
G173	$C_2H_5C(O)OO + NO \xrightarrow{O_2} C_2H_5OO + NO_2 + CO_2$	$1.20 \times 10^{-11} \exp(240/T)$	4
G174	$C_2H_5C(O)OO + NO_3 \xrightarrow{O_2} C_2H_5OO + NO_2 + O_2 + CO_2$	4.00×10^{-12}	7
G175	$C_2H_5C(O)OO+HO_2\rightarrow C_2H_5C(O)OOH+O_2$	$3.05 \times 10^{-13} \exp(1040/T)$	8
G176	$C_2H_5C(O)OO + HO_2 \rightarrow C_2H_5COOH + O_3$	$1.25 \times 10^{-13} \exp(1040/T)$	8
G177 G178	$C_{2}H_{5}C(O)OO + CH_{3}OO \xrightarrow{O_{2}} C_{2}H_{5}OO + CO_{2} + HCHO + HO_{2} + O_{2}$ $C_{2}H_{5}C(O)OO + CH_{2}OO \rightarrow C_{2}H_{5}COOH + HCHO + O_{2}$	7.00×10^{-12} 3.00×10^{-12}	7 7
G170	$C_2H_3C(O)H + OH^{O_2}H_2O + C_2H_3COH + Hence + O_2$	1.20×10^{-12}	, 1
G180	$C_2H_5COOH + OH \rightarrow H_2O + C_2H_5CO + CO_2$ $C_2H_5C(O)OOH + OH \rightarrow H_2O + C_2H_5C(O)OO$	4.20×10^{-12}	4 7
G181	$C_{2}H_{2}C(O)OO + NO_{2} \stackrel{\text{M}}{\longrightarrow} PPN$	1.12 / 10	$-k_{clro}$
G101	$\mathbf{P}\mathbf{P}\mathbf{N} \stackrel{M}{\longrightarrow} \mathbf{C} \cdot \mathbf{H} \cdot \mathbf{C}(\mathbf{O}) \mathbf{O} + \mathbf{N}\mathbf{O}_{\mathbf{C}}$		$= h_{G152}$
0162	$FR \rightarrow C_2 \Pi_5 C(0) OO + NO_2$	2.70×10^{-12} (200/77)	- KG153
G185	$1-C_3H_7OO + NO \rightarrow CH_3COCH_3 + HO_2 + NO_2$	$2.70 \times 10 \exp(300/T)$ 1.51 × 10 ⁻¹³ $\exp(1200/T)$	4
0104	$1-0.311700 + 110_2 \rightarrow 1-0.31170011 + 0.2$	$1.51 \times 10^{-12} \exp(1500/1)$	7
GI85	$1-C_3H_7OO + NO_3 \rightarrow CH_3COCH_3 + HO_2 + NO_2 + O_2$	2.50×10	/
G186	$1-C_3H_7OO + CH_3OO \rightarrow CH_3COCH_3 + HCHO + 2HO_2 + O_2$	2.40×10^{-14}	8
G188	$1-C_3H_7OO + CH_3OO \rightarrow CH_3COCH_3 + CH_3OH + O_2$ i.C.H_OO + CH_2OO $\rightarrow i.PrOH + HCHO + O_2$	8.00×10 8.00×10^{-15}	8
C180	$: C \amalg OO + C\amalg C(O)OO \stackrel{O_2}{\longrightarrow}$	7.00×10^{-12}	3
0189	$1-C_3\Pi_7OO + C\Pi_3C(O)OO \rightarrow C\Pi_3C(O)OO \rightarrow C\Pi_3C(O)OO + C\Pi_$	7.00×10	/
G190	$i-C_3H_7OO + CH_3C(O)OO \rightarrow CH_3COCH_3 + CH_3COOH + O_2$	3.00×10^{-12}	7
G191	$CH_3COCH_3 + OH \xrightarrow{O_2} CH_3COCH_2OO + H_2O$	$1.10 \times 10^{-12} \exp(-520/T)$	4
G192	$CH_3COCH_3 + Cl \xrightarrow{O_2} CH_3COCH_2OO + HCl$	3.50×10^{-12}	4
G193	$CH_2COCH_2OO + NO \xrightarrow{O_2} CH_2C(O)OO + HCHO + NO_2$	8.00×10^{-12}	22
G194	$CH_3COCH_2OO + HO_2 \rightarrow CH_3COCH_2OOH + O_2$	9.00×10^{-12}	4
G195	$CH_3COCH_2OO + NO_3 \xrightarrow{O_2} CH_3C(O)OO + HCHO + NO_2 + O_2$	2.50×10^{-12}	7
G196	$CH_3COCH_2OO + CH_3OO \rightarrow CH_3COCHO + CH_3OH + O_2$	1.90×10^{-12}	4
G197	$\rm CH_3COCH_2OO + \rm CH_3OO \rightarrow \rm CH_3COCH_2OH + \rm HCHO + O_2$	7.60×10^{-13}	4
G198	$CH_3COCH_2OO + CH_3OO \xrightarrow{O_2}$	1.14×10^{-12}	4
G199	$CH_2COCH_2OO + CH_2C(O)OO \rightarrow$	2.50×10^{-12}	4
0177	$CH_3COCHO + CH_3COOH + O_2$	2.00 X 10	-
G200	$CH_3COCH_2OO + CH_3C(O)OO \xrightarrow{O_2}$	2.50×10^{-12}	4
	$CH_3C(O)OO + HCHO + CH_3OO + CO_2 + O_2$		
G201	$CH_3COCH_2OO + CH_3COCH_2OO \xrightarrow{O_2}$	1.40×10^{-12}	4
G202	$CH_{3}COCH_{2}OO + CH_{3}COCH_{2}OO \rightarrow CH_{3}COCH_{3}COCH_{2}OO \rightarrow CH_{3}COCH_{2}OO \rightarrow CH_$	7.00×10^{-13}	4
	$CH_3COCHO + CH_3COCH_2OH + O_2$		
G203	$CH_3COCHO + OH \xrightarrow{O_2} CH_3C(O)OO + CO + H_2O$	1.50×10^{-11}	4
G204	$CH_3COCHO + Cl \xrightarrow{O_2} CH_3C(O)OO + CO + HCl$	4.80×10^{-11}	23
G205	$\mathrm{CH}_3\mathrm{COCH}_2\mathrm{OH} + \mathrm{OH} \xrightarrow{\mathrm{O}_2} \mathrm{CH}_3\mathrm{COCHO} + \mathrm{HO}_2 + \mathrm{H}_2\mathrm{O}$	3.01×10^{-12}	24
G206	$CH_3COCH_2OH + Cl \xrightarrow{O_2} CH_3COCHO + HO_2 + HCl$	5.60×10^{-11}	24
G207	$\rm CH_3COCH_2OOH + OH \rightarrow CH_3COCH_2OO + H_2O$	$1.90 \times 10^{-12} \exp(190/T)$	7
G208	$CH_3COCH_2OOH + OH \rightarrow CH_3COCHO + OH + H_2O$	8.39×10^{-12}	7
G209	$i\text{-}PrOH + OH \xrightarrow{O_2}$	$2.70 \times 10^{-12} \exp(190/T)$	4, 7
	$H_2O + 0.861 \times (CH_3COCH_3 + HO_2) + 0.139 \times CH_3CH($	$OH)CH_2OO$	

No.	Reaction	Rate Constant	Reference
G210	$i\text{-}PrOH + Cl \xrightarrow{O_2}$	8.40×10^{-11}	4^d
	$\mathrm{HCl} + 0.861 \times (\mathrm{CH}_{3}\mathrm{COCH}_{3} + \mathrm{HO}_{2}) + 0.139 \times \mathrm{CH}_{3}\mathrm{CH}(\mathrm{O}$	H)CH ₂ OO	
G211	$i\text{-}C_{3}H_{7}OOH + OH \rightarrow i\text{-}C_{3}H_{7}OO + H_{2}O$	$1.90 \times 10^{-12} \exp(190/T)$	7
G212	$i-C_3H_7OOH + OH \rightarrow CH_3COCH_3 + OH + H_2O$	1.66×10^{-11}	7
G213	$OH + C_2H_4 \rightarrow HOCH_2CH_2OO$ $E = 0.48 \text{ h} = 7.0 \times 10$	$p^{-29}(T/200)^{-3.1}$ k 0.0 × 10 ⁻¹²	4
G214	$F_c = 0.48, \ \kappa_0 = 7.0 \times 10$	$(1/300)^{-1}, \kappa_{\infty} = 9.0 \times 10^{-1}$	4
0214	$F_c = 0.6, k_0 = 1.7 \times 10$	$k_{\infty}^{-29}(T/300)^{-3.3}, k_{\infty} = 3.0 \times 10^{-10}$	4
G215	$\operatorname{Br} + \operatorname{C_2H_4} \xrightarrow{\operatorname{M,O_2}} \operatorname{BrCH_2CH_2OO}$	$k = k_1 \times k_2[\mathcal{O}_2]/k_3$	25
	$k_1 = 2.85 \times 10^{-13} \exp(224/T), \ k_2 = 7.5 \times 10^{-13} \exp(224/T), \ k_2 = 7.5 \times 10^{-13} \exp(224/T), \ k_3 = 10^{-13} \exp(224/T), \ k_4 = 10^{-13} \exp(224/T), \ k_5 = 10^{-13} \exp(24/T), \ k_5 = 10^{-13} \exp(24/T$	$^{-12}, k_3 = 8.5 \times 10^{12} \exp(-3200/T)$	
G216	$O_3 + C_2H_4 \rightarrow HCHO + CH_2OO^*$	$9.10 \times 10^{-15} \exp(-2580/T)$	4
G217	$HOCH_2CH_2OO + NO \rightarrow HOCH_2CH_2O + NO_2$	9.00×10^{-12}	4
G218	$HOCH_2CH_2OO + HO_2 \rightarrow HOCH_2CH_2OOH + O_2$	$2.00 \times 10^{-13} \exp(1250/T)$	7
G219	$HOCH_2CH_2OO + NO_3 \rightarrow HOCH_2CH_2O + NO_2 + O_2$	2.50×10^{-12}	1
G220	$HOCH_2CH_2OO + CH_3OO \xrightarrow{\sim} HOCH_2CH_2O + HCHO + HO_2 + O_2$	1.20×10^{-12}	8
G221	$HOCH_2CH_2OO + CH_3OO \rightarrow HOCH_2CHO + CH_3OH + O_2$	4.00×10^{-13}	8
G222	$HOCH_2CH_2OO + CH_3OO \rightarrow HOCH_2CH_2OH + HCHO + O_2$	4.00×10^{-13}	8
G223	$HOCH_2CH_2OO + HOCH_2CH_2OO \rightarrow$	$3.90 \times 10^{-11} \exp(1000/T)$	4
G224	$HOCH_2CH_2OH_2OH_2OH_2OH_2OH_2OH_2OH_2OH_2OH_2O$	$3.90 \times 10^{-14} \exp(1000/T)$	4
0224	$HOCH_2CH_2OO + HOCH_2CH_2OO + O_2$	$5.50 \times 10^{-10} \exp(1000/1)$	7
G225	$HOCH_2CH_2O \xrightarrow{M}{\rightarrow} 2HCHO + HO_2$	$-0.50 \times 10^{13} \exp(-5088/T)$	8
G225 G226	$HOCH_2CH_2O \rightarrow 2 HOCH_2CHO + HO_2$	$3.70 \times 10^{-14} \exp(-460/T)$	8
G227	$HOCH_2CH_2OH + OH^{O_2} HOCH_2CHO + HO_2 + H_2O$	1.40×10^{-11}	° 26
G227	$HOCH_2CH_2OH + OH \rightarrow HOCH_2CHO + HO_2 + H_2O$	1.49×10^{-12}	4
G228	$HOCH_2CHO + OH \rightarrow HOCH_2C(O)OO + H_2O$	2.00×10^{-12}	4
G229	$HOCH_2CHO + OH \rightarrow HCOCHO + HO_2 + H_2O$	2.00×10^{-11}	4 076
G230	$HOCH_2CHO + CI \rightarrow HOCH_2C(O)OO + HCI$	5.15×10^{-11}	27-
G231	$HOCH_2CHO + Cl \xrightarrow{\sim} HCOCHO + HO_2 + HCl$	2.78×10^{-11}	27 ^e
G232	$HCOCHO + OH \xrightarrow{\bigcirc} 2CO + HO_2 + H_2O$	6.60×10^{-12}	4, 7
G233	$HCOCHO + OH \xrightarrow{O_2} HCOC(O)OO + H_2O$	4.40×10^{-12}	4,7
G234	$\mathrm{HCOCHO} + \mathrm{Cl} \xrightarrow{\mathrm{O}_2} 2 \mathrm{CO} + \mathrm{HO}_2 + \mathrm{HCl}$	2.28×10^{-11}	28
G235	$\mathrm{HCOCHO} + \mathrm{Cl} \xrightarrow{\mathrm{O}_2} \mathrm{HCOC}(\mathrm{O})\mathrm{OO} + \mathrm{HCl}$	1.52×10^{-11}	28
G236	$\mathrm{HCOCHO} + \mathrm{Br} \xrightarrow{\mathrm{O}_2} 2 \mathrm{CO} + \mathrm{HO}_2 + \mathrm{HBr}$	8.40×10^{-14}	25
G237	$\text{HCOCHO} + \text{Br} \xrightarrow{\text{O}_2} \text{HCOC}(\text{O})\text{OO} + \text{HBr}$	5.60×10^{-14}	25
G238	$HOCH_2CH_2OOH + OH \rightarrow HOCH_2CH_2OO + H_2O$	$1.90 \times 10^{-12} \exp(190/T)$	7
G239	$HOCH_2CH_2OOH + OH \rightarrow HOCH_2CHO + OH + H_2O$	1.38×10^{-11}	7
G240	$HOCH_2C(O)OO + NO \xrightarrow{O_2} HCHO + HO_2 + CO_2 + NO_2$	$8.10 \times 10^{-12} \exp(270/T)$	7
G241	$HOCH_2C(O)OO + NO_3 \xrightarrow{O_2} HCHO + HO_2 + CO_2 + NO_2 + O_2$	4.00×10^{-12}	7
G242	$HOCH_2C(O)OO + HO_2 \rightarrow HOCH_2C(O)OOH + O_2$	$3.05 \times 10^{-13} \exp(1040/T)$	8
G243	$HOCH_2C(O)OO + HO_2 \rightarrow HOCH_2COOH + O_3$	$1.25 \times 10^{-13} \exp(1040/T)$	8
G244	$HOCH_2C(O)OO + CH_3OO \xrightarrow{O_2} 2 HCHO + 2 HO_2 + CO_2 + O_2$	7.00×10^{-12}	7
G245	$HOCH_2C(O)OO + CH_3OO \rightarrow HOCH_2COOH + HCHO + O_2$	3.00×10^{-12}	7
G246	$HOCH_2COOH + OH \xrightarrow{O_2} HCHO + HO_2 + CO_2 + H_2O$	2.73×10^{-12}	7
G247	$HOCH_2C(O)OOH + OH \rightarrow HOCH_2C(O)OO + H_2O$	6.19×10^{-12}	7
G248	$HOCH_2C(O)OO + NO_2 \xrightarrow{M} PHAN$		$= k_{G152}$
G249	$PHAN \stackrel{M}{\rightarrow} HOCH_2C(O)OO + NO_2$		$= k_{C1E2}$
G250	$HCOC(O)OO + NO = CO + HO_2 + NO_2 + CO_2$	$8.10 \times 10^{-12} \exp(270/T)$	7 ⁷ 7
0230	$11000(0)00 \pm 110 \rightarrow 00 \pm 1102 \pm 1002 \pm 002$	$0.10 \times 10 = \exp(210/1)$	/

Table S3. (continued)

No.	Reaction	Rate Constant	Reference
G251	$HCOC(O)OO + NO_3 \xrightarrow{O_2} CO + HO_2 + CO_2 + NO_2 + O_2$	4.00×10^{-12}	7
G252 G253	$HCOC(O)OO + HO_2 \rightarrow HCOC(O)OOH + O_2$ $HCOC(O)OO + HO_2 \rightarrow HCOCOOH + O_3$	$3.05 \times 10^{-13} \exp(1040/T)$ $1.25 \times 10^{-13} \exp(1040/T)$	8 8
G254 G255	$HCOC(O)OO + CH_3OO \xrightarrow{O_2} CO + HCHO + 2 HO_2 + CO_2 + O_2$ $HCOC(O)OO + CH_3OO \rightarrow HCOCOOH + HCHO + O_2$	$7.00 \times 10^{-12} \\ 3.00 \times 10^{-12}$	7 7
G256 G257	$HCOCOOH + OH \xrightarrow{O_2} CO + HO_2 + CO_2 + H_2O$ $HCOC(O)OOH + OH \rightarrow HCOC(O)OO + H_2O$	$\begin{array}{c} 1.23 \times 10^{-11} \\ 1.58 \times 10^{-11} \end{array}$	7 7
G258	$HCOC(O)OO + NO_2 \xrightarrow{M} GLYPAN$		$= k_{G152}$
G259	$\mathbf{GLYPAN} \xrightarrow{\mathrm{M}} \mathrm{HCOC}(\mathrm{O})\mathrm{OO} + \mathrm{NO}_2$		$= k_{G153}$
G260	$ClCH_2CH_2OO + NO \rightarrow ClCH_2CH_2O^* + NO_2$	$4.06 \times 10^{-12} \exp(360/T)$	7
G261	$CICH_2CH_2OO + HO_2 \rightarrow CICH_2CH_2OOH + O_2$	7.50×10^{-12}	29
G262	$\operatorname{ClCH}_2\operatorname{CH}_2\operatorname{OO} + \operatorname{NO}_3 \rightarrow \operatorname{ClCH}_2\operatorname{CH}_2\operatorname{O}^+ + \operatorname{NO}_2 + \operatorname{O}_2$	2.50×10^{-12}	7
G263	$\operatorname{ClCH}_{2}\operatorname{CH}_{2}\operatorname{OO} + \operatorname{CH}_{3}\operatorname{OO} \xrightarrow{\rightarrow} \operatorname{ClCH}_{2}\operatorname{CHO} + \operatorname{HCHO} + 2\operatorname{HO}_{2} + \operatorname{O}_{2}$	7.74×10^{-13}	This work
G264 G265	$ClCH_2CH_2OO + CH_3OO \rightarrow ClCH_2CHO + CH_3OH + O_2$ $ClCH_2CH_2OO + CH_3OO \rightarrow ClCH_2CHO + CH_3OH + O_2$	4.93×10^{-13}	This work
G265	$\operatorname{ClCH}_{2}\operatorname{CH}_{2}\operatorname{CH}_{2}\operatorname{CH}_{2}\operatorname{CH}_{3}\operatorname{CH}_{3}\operatorname{CH}_{2$	$6.27 \times 10^{-14} \operatorname{arm}(1020/T)$	20, 21
G200 G267	$ClCH_{2}CH_{2}CO + ClCH_{2}CH_{2}OO \rightarrow 2ClCH_{2}CHO + 2HO_{2} + O_{2}$ $ClCH_{2}CH_{2}OO + ClCH_{2}CH_{2}OO \rightarrow$ $ClCH_{2}CHO + ClCH_{2}CH_{2}OH + O_{2}$	$4.73 \times 10^{-14} \exp(1020/T)$	30, 31
G268	$ClCH_2CH_2O^* \xrightarrow{O_2} ClCH_2CHO + HO_2$	$k_{\rm uni} = 5.8 \times 10^5$	This work
G269	$ClCH_2CH_2O^* \xrightarrow{O_2} ClCH_2OO + HCHO$	$k_{\text{min}} = 4.2 \times 10^5$	This work
G20)	$ClCH_2CH_2OH_2OH_2OH_2OH_2OH_2OH_2OH_2OH_2OH_2O$	$h_{\rm uni} = 4.2 \times 10^{-12}$	32
G270	$ClCH_CH_OH_+ Cl_{2}^{O_2} ClCH_CHO_+ HO_2 + H_2O$	1.20×10^{-11}	32
6271	$ClCH_2CH_2OH + Cl \rightarrow ClCH_2CHO + HO_2 + HCl$	3.01×10^{-12}	29
G272	$\operatorname{ClCH}_2\operatorname{CHO} + \operatorname{OH} \rightarrow \operatorname{ClCH}_2\operatorname{C(O)OO} + \operatorname{H}_2\operatorname{O}$	3.10×10^{-11}	3
G273	$CICH_2CHO + CI \rightarrow CICH_2C(O)OO + HCI$	$4.30 \times 10^{-12} \operatorname{aum}(100/T)$	31 This work
G274 G275	$ClCH_2CH_2OOH + OH \rightarrow ClCH_2CH_2OO + H_2O$ $ClCH_2CH_2OOH + OH \rightarrow ClCH_2CHO + OH + H_2O$	$3.26 \times 10^{-12} \exp(190/T)$	This work
G276	$ClCH_2C(O)OO + NO \xrightarrow{O_2} ClCH_2OO + CO_2 + NO_2$	$8.10 \times 10^{-12} \exp(270/T)$	7
G277	$ClCH_2C(O)OO + NO_3 \xrightarrow{O_2} ClCH_2OO + CO_2 + NO_2 + O_2$	4.00×10^{-12}	7
G278	$\operatorname{ClCH}_2\operatorname{C}(\operatorname{O})\operatorname{OO} + \operatorname{HO}_2 \rightarrow \operatorname{ClCH}_2\operatorname{C}(\operatorname{O})\operatorname{OOH} + \operatorname{O}_2$	$3.05 \times 10^{-13} \exp(1040/T)$	8
G279	$\mathrm{ClCH_2C}(\mathrm{O})\mathrm{OO} + \mathrm{HO_2} \rightarrow \mathrm{ClCH_2COOH} + \mathrm{O_3}$	$1.25 \times 10^{-13} \exp(1040/T)$	8
G280	$ClCH_2C(O)OO + CH_3OO \xrightarrow{O_2}$	7.00×10^{-12}	7
C 201	$ClCH_2OO + CO_2 + HCHO + HO_2 + O_2$	2.00×10^{-12}	7
G201	$\operatorname{ClCH}_2(O)OOOOOOOOOO$	5.00×10	/
G282 G283	$ClCH_2COOH + OH \rightarrow ClCH_2OO + CO_2 + H_2O$ $ClCH_2C(O)OOH + OH \rightarrow ClCH_2C(O)OO + H_2O$	7.83×10^{-12}	This work
G284	$ClCH_2C(0)OO + NO_2 \stackrel{M}{\longrightarrow} PClAN$	5.00 × 10	-kam
G285	$PCIAN \xrightarrow{M} CICH_{0}C(0)OO + NO_{2}$		$= k_{G152}$ $= k_{G152}$
G205	$C_{H}C_{I} + O_{H}O_{I}O_{I}O_{I}O_{I}O_{I}O_{I}O_{I}O_{I$	$4.00 \times 10^{-12} \operatorname{orm}(-1400/T)$	$= \kappa_{G153}$
G280	$CH_3CI + OH \rightarrow CICH_2OO + H_2O$	$4.00 \times 10^{-11} \exp(-1400/T)$	2
G287	$CH_3CI + CI \rightarrow CICH_2OO + HCI$	$3.20 \times 10^{-11} \exp(-1250/T)$	2
G289	$ClCH_2OO + HO_2 \rightarrow ClCH_2O + HO_2$	$3.20 \times 10^{-13} \exp(820/T)$	3 33
0202	$0.73 \times (\text{HCOCl} + \text{H}_2\text{O} + \text{O}_2) + 0.27 \times (\text{ClCH}_2\text{OOH} + \text{O}_2)$	O_2)	0,00
G290	$ClCH_2OO + NO_3 \rightarrow ClCH_2O^* + NO_2 + O_2$	2.50×10^{-12}	7
G291	$ClCH_2OO + CH_3OO \xrightarrow{O_2} ClCH_2O + HCHO + HO_2 + O_2$	1.63×10^{-12}	17
G292	$ClCH_2OO + CH_3OO \rightarrow ClCH_2OH + HCHO + O_2$	$8.70 imes 10^{-13}$	17
G293	$ClCH_2OO + ClCH_2OO \rightarrow ClCH_2O + ClCH_2O + O_2$	$3.90 \times 10^{-13} \exp(735/T)$	30
G294	$\mathrm{ClCH}_2\mathrm{O}^* \xrightarrow{\mathrm{O}_2} \mathrm{CO} + \mathrm{HO}_2 + \mathrm{HCl}$	$k_{ m uni} = 3.2 imes 10^5$	34

No.	Reaction	Rate Constant	Reference
G295	$\rm ClCH_2O^* \rightarrow \rm Cl + \rm HCHO$	$k_{\mathrm{uni}} = 1.2 \times 10^5$	34
G296	$\text{ClCH}_2\text{O}^* \rightarrow \text{ClCH}_2\text{O}$	$k_{\mathrm{uni}} = 5.6 \times 10^5$	34
G297	$\text{ClCH}_2\text{O} \xrightarrow{\text{O}_2} \text{CO} + \text{HO}_2 + \text{HCl}$	$k_{ m uni} = 1.0 imes 10^6$	3
G298	$ClCH_2O + O_2 \rightarrow HCOCl + HO_2$	4.60×10^{-12}	3
G299	$ClCH_2OOH + OH \rightarrow ClCH_2OO + H_2O$	$1.90 \times 10^{-12} \exp(190/T)$	This work
G300	$ClCH_2OOH + OH \rightarrow HCOCl + OH + H_2O$	4.61×10^{-12}	This work
G301 G302	$ClCH_2OOH + Cl \rightarrow HCOCl + OH + HCl$	5.91×10^{-12}	33 This work
G302	$Cloth_2OH + OH \rightarrow HCOCl + HO_2 + H_2O$	1.36×10^{-12}	This work
G303	$CICH_2OH + CI \rightarrow HCOCI + HO_2 + HCI$	4.00×10^{-3}	35 25
G304 G305	$CICH_2OH \rightarrow HCHO + HCI$ $BrCH_2CH_2OH \rightarrow HCHO + HCI$	$\kappa_{\rm uni} = 1.0 \times 10^{-12}$ or $(360/T)$	$\frac{35}{-k}$
G305	$BrCH_2CH_2OO + HO_2 \rightarrow BrCH_2CH_2O + HO_2$ $BrCH_2CH_2OO + HO_2 \rightarrow BrCH_2CH_2OOH + O_2$	4.00×10^{-12} exp(500/1) 7.50 × 10 ⁻¹²	$= k_{G260}$ $= k_{G261}$
G307	$BrCH_2CH_2OO + NO_2 \rightarrow BrCH_2CH_2OH + O_2$ $BrCH_2CH_2OO + NO_3 \rightarrow BrCH_2CH_2O^* + NO_2 + O_2$	2.50×10^{-12}	$= k_{G261}$ = k_{G262}
G308	$BrCH_2 CH_2 OO + CH_2 OO = 3 BrCH_2 CHO + HCHO + 2 HO_2 + O_2$	1.08×10^{-12}	This work
G309	$BrCH_2CH_2OO + CH_3OO \rightarrow BrCH_2CHO + HCHO + 2HO_2 + O_2$ BrCH_2CH_2OO + CH_3OO $\rightarrow BrCH_2CHO + CH_2OH + O_2$	6.86×10^{-13}	This work
G310	$BrCH_2CH_2OO + CH_3OO \rightarrow BrCH_2CH_2OH + OH_3OH + O_2$ $BrCH_2CH_2OO + CH_3OO \rightarrow BrCH_2CH_2OH + HCHO + O_2$	6.86×10^{-13}	This work
G311	$BrCH_{2}CH_{2}CH_{2}OO + BrCH_{2}CH_{2}OO \xrightarrow{O_{2}}{\rightarrow} 2BrCH_{2}CH_{2}CH_{0} + 2HO_{2} + O_{2}$	$3.51 \times 10^{-14} \exp(1247/T)$	36.31
G312	$BrCH_2CH_2OO + BrCH_2CH_2OO \rightarrow 2BrCH_2CHO + 2HO_2 + O_2$	$2.64 \times 10^{-14} \exp(1247/T)$	36, 31
0012	$BrCH_2CHO + BrCH_2CH_2OH + O_2$		00,01
G313	$BrCH_2CH_2O^* \xrightarrow{O_2} BrCH_2CHO + HO_2$	$k_{\rm uni} = 5.8 \times 10^5$	$= k_{C268}$
G314	$BrCH_2CH_2O^* \xrightarrow{O}_2 BrCH_2OO + HCHO$	$k = 4.2 \times 10^5$	$-k_{G208}$
0314	$D_{1}CH_{2}CH_{2}O \rightarrow D_{1}CH_{2}OO + HCHO$	$h_{\rm uni} = 4.2 \times 10^{-12}$	$= \kappa_{G269}$
G315	BrCH ₂ CH ₂ OH + OH \rightarrow BrCH ₂ CHO + HO ₂ + H ₂ O	1.97×10^{-12}	This work
G310 G317	$BrCH_2CHO + OH \rightarrow BrCH_2CO + HBr$	3.69×10 1.83 × 10 ⁻¹³	31
C219	$B_{r}CH CO = D_{r}CH C(O)OO$	$h = 5.0 \times 10^5$	27
0518	$\text{BrCH}_2\text{CO} \rightarrow \text{BrCH}_2\text{CO}\text{OO}$	$k_{\rm uni} = 5.0 \times 10$	57
G319	$BrCH_2CO \rightarrow BrCH_2OO + CO$	$k_{\rm uni} = 2.5 \times 10^5$	37
G320	$BrCH_2CO \rightarrow Br + CH_2 = CO$	$\kappa_{\rm uni} = 2.5 \times 10^{4}$	37
G321	$OH + CH_2 = CO \xrightarrow{\sim} HCHO + HO_2 + CO$	1.69×10^{-11}	38
G322	$Cl + CH_2 = CO \xrightarrow{\bigcirc} ClCH_2OO + CO$	2.51×10^{-10}	39
G323	$BrCH_2CH_2OOH + OH \rightarrow BrCH_2CH_2OO + H_2O$	$1.90 \times 10^{-12} \exp(190/T)$	This work
G324	$BrCH_2CH_2OOH + OH \rightarrow BrCH_2CHO + OH + H_2O$	3.93×10^{-12}	This work
G325	$BrCH_2C(O)OO + NO \xrightarrow{O2} BrCH_2OO + CO_2 + NO_2$	$8.10 \times 10^{-12} \exp(270/T)$	$= k_{ m G276}$
G326	$BrCH_2C(O)OO + NO_3 \xrightarrow{O_2} BrCH_2OO + CO_2 + NO_2 + O_2$	4.00×10^{-12}	$= k_{G277}$
G327	$BrCH_2C(O)OO + HO_2 \rightarrow BrCH_2C(O)OOH + O_2$	$3.05 \times 10^{-13} \exp(1040/T)$	$= k_{G278}$
G328	$BrCH_2C(O)OO + HO_2 \rightarrow BrCH_2COOH + O_3$	$1.25 \times 10^{-13} \exp(1040/T)$	$= k_{G279}$
G329	$BrCH_2C(O)OO + CH_3OO \xrightarrow{O_2}$	7.00×10^{-12}	$= k_{G280}$
	$BrCH_2OO + CO_2 + HCHO + HO_2 + O_2$	19	_
G330	$BrCH_2C(O)OO + CH_3OO \rightarrow BrCH_2COOH + HCHO + O_2$	3.00×10^{-12}	$= k_{G281}$
G331	$BrCH_2COOH + OH \xrightarrow{O_2} BrCH_2OO + CO_2 + H_2O$	7.14×10^{-13}	This work
G332	$BrCH_2C(O)OOH + OH \rightarrow BrCH_2C(O)OO + H_2O$	3.79×10^{-12}	This work
G333	$BrCH_2C(O)OO + NO_2 \xrightarrow{M} PBrAN$		$= k_{G152}$
G334	$PBrAN \xrightarrow{M} BrCH_2C(O)OO + NO_2$		$= k_{G153}$
G335	$CH_3Br + OH \xrightarrow{O_2} BrCH_2OO + H_2O$	$4.00 \times 10^{-12} \exp(-1470/T)$	2
G336	$CH_3Br + Cl \xrightarrow{O_2} BrCH_2OO + HCl$	$1.50 \times 10^{-11} \exp(-1060/T)$	2
G337	$BrCH_2OO + NO \rightarrow Br + HCHO + NO_2$	$4.00 \times 10^{-12} \exp(300/T)$	2
G338	$BrCH_2OO + NO_3 \rightarrow Br + HCHO + NO_2 + O_2$	2.50×10^{-12}	$= k_{G290}$
G339	$BrCH_2OO + HO_2 \rightarrow$	6.71×10^{-12}	40, 41
	$0.9\times(\mathrm{BrCH_2OOH}+\mathrm{O_2})+0.1\times(\mathrm{HCOBr}+\mathrm{H_2O}+\mathrm{O_2})$		

Table S3. (continued)

No.	Reaction	Rate Constant	Reference
G340	$BrCH_2OO + CH_3OO \xrightarrow{O_2} BrCH_2O + HCHO + HO_2 + O_2$	8.13×10^{-13}	This work
G341	$BrCH_2OO + CH_3OO \rightarrow BrCH_2OH + HCHO + O_2$	4.37×10^{-13}	This work
G342	$BrCH_2OO + BrCH_2OO \rightarrow BrCH_2O + BrCH_2O + O_2$	1.05×10^{-12}	40
G343	$BrCH_2O \rightarrow Br + HCHO$	$k_{\rm uni} = 3.0 \times 10^7$	42
G344	$BrCH_2O + O_2 \rightarrow HCOBr + HO_2$	5.99×10^{-14}	43
G345	$BrCH_2OOH + OH \rightarrow BrCH_2OO + H_2O$	$1.90 \times 10^{-12} \exp(190/T)$	This work
G346	$BrCH_2OOH + OH \rightarrow HCOBr + OH + H_2O$	3.40×10^{-12}	This work
G347	$BrCH_2OH + OH \rightarrow HCOBr + HO_2 + H_2O$	1.06×10^{-12}	This work
G348	$BrCH_2OH \rightarrow HCHO + HBr$	$\kappa_{\rm uni} = 1.0 \times 10$	$= \kappa_{G304}$
G349	$CH_2OO^* \to CH_2OO$	$k_{\rm uni} = 3.7 \times 10^5$	4
G351	$CH_2OO^* \rightarrow CO_2 + H_2$ $CH_2OO^* \rightarrow CO_2 + H_2O$	$\kappa_{\rm uni} = 1.3 \times 10$ $k_{\rm uni} = 3.8 \times 10^5$	4
C252	$CH_2OO \rightarrow CO + H_2O$	$h_{\rm uni} = 3.6 \times 10^{5}$	4
G352 G353	$CH_2OO \rightarrow OH + CO + HO_2$ $CH_2OO + H_2O \rightarrow HCOOH + H_2O$	$\kappa_{\rm uni} = 1.2 \times 10^{-18}$	4
0355	$CH_2OO + H_2O \rightarrow HCOOH + H_2O$	4.00×10	44
G354	$OH + C_3H_6 \rightarrow CH_2 = CHCH_2OO + H_2O$	$7.20 \times 10^{-10} T^2 \exp(31/T)$	45
G355	$OH + C_3H_6 \xrightarrow{\text{mod}} 0.87 \times CH_3CH(OO)CH_2OH + 0.13 \times CH_3CH(OH)$ $F_c = 0.5, \ k_0 = 8.0 \times 10^{-10}$	CH ₂ OO $0^{-27} (T/300)^{-3.5}, k_{\infty} = 3.0 \times 10^{-11}$	4, 7
G356	$Cl + C_3H_6 \xrightarrow{O_2} CH_2 = CHCH_2OO + HCl$	2.31×10^{-11}	46
G357	$Cl + C_{2}H_{6} \stackrel{M,O_{2}}{\rightarrow} 0.87 \times CH_{3}CH(OO)CH_{2}Cl + 0.13 \times CH_{3}CHClCH_{2}Cl$	00	
	$F_c = 0.6, I$	$k_0 = 4.0 \times 10^{-28}, k_\infty = 2.8 \times 10^{-10}$	4,47
G358	$Br + C_3H_6 \xrightarrow{O_2} CH_2 = CHCH_2OO + HBr$	$8.15 \times 10^{-13} \exp(-1250/T)$	48
G359	$Br + C_0 H_0 \xrightarrow{M,O_2} 0.87 \times CH_0 CH(OO) CH_0 Br + 0.13 \times CH_0 CHBr CH_0$	00	
0337		3.28×10^{-12}	49, 50
G360	$O_3 + C_3H_6 \rightarrow CH_3CHO + CH_2OO^*$	$2.75 \times 10^{-15} \exp(-1880/T)$	4
G361	$O_3 + C_3H_6 \rightarrow HCHO + CH_3CHOO^*$	$2.75 \times 10^{-15} \exp(-1880/T)$	4
G362	$CH_3CH(OO)CH_2OH + NO \xrightarrow{O_2} CH_3CHO + HCHO + HO_2 + NO_2$	$2.54 \times 10^{-12} \exp(360/T)$	7
G363	$CH_2CH(OO)CH_2OH + NO_2 \xrightarrow{O_2}$	2.50×10^{-12}	7
0000	$CH_3CHO + HCHO + HO_2 + NO_2 + O_2$	2100 / 10	
G364	$CH_3CH(OO)CH_2OH + HO_2 \rightarrow CH_3CH(OOH)CH_2OH + O_2$	$1.51 \times 10^{-13} \exp(1300/T)$	7
G365	$CH_3CH(OO)CH_2OH + CH_3OO \xrightarrow{O_2}$	5.28×10^{-13}	8
	$CH_3CHO + 2 HCHO + 2 HO_2 + O_2$		
G366	$\mathrm{CH_3CH}(\mathrm{OO})\mathrm{CH_2OH} + \mathrm{CH_3OO} \rightarrow \mathrm{CH_3COCH_2OH} + \mathrm{CH_3OH} + \mathrm{O_2}$	1.76×10^{-13}	8
G367	$\rm CH_3CH(OO)CH_2OH + CH_3OO \rightarrow$	1.76×10^{-13}	8
	$CH_3CH(OH)CH_2OH + HCHO + O_2$	11	
G368	$CH_3CH(OH)CH_2OH + OH \rightarrow$	1.20×10^{-11}	7
	$0.613 \times CH_3COCH_2OH + 0.387 \times CH_3CH(OH)CHO + F$	$HO_2 + H_2O$	
G369	$CH_3CH(OH)CHO + OH \xrightarrow{O2} CH_3CH(OH)C(O)OO + H_2O$	2.65×10^{-11}	7
G370	$CH_3CH(OH)C(O)OO + NO \xrightarrow{O_2} CH_3CHO + HO_2 + CO_2 + NO_2$	$8.10 \times 10^{-12} \exp(270/T)$	7
G371	$CH_{3}CH(OH)C(O)OO + NO_{3} \xrightarrow{O_{2}} CH_{2}CHO + HO_{2} + CO_{3} + NO_{2} + O_{3}$	4.00×10^{-12}	7
G372	$CH_3CH(OH)C(O)OO + HO_2 \rightarrow CH_3CH(OH)C(O)OOH + O_2$	$4.30 \times 10^{-13} \exp(1040/T)$	8
G373	$CH_2CH(OH)C(O)OO + CH_2OO \xrightarrow{O_2}$	1.00×10^{-11}	7
0375	$CH_3CHO + HCHO + 2HO_2 + CO_2 + O_2$	1.00 × 10	,
G374	$CH_3CH(OH)C(O)OOH + OH \rightarrow CH_3CH(OH)C(O)OO + H_2O$	9.34×10^{-12}	8
G375	$CH_3CH(OH)C(O)OO + NO_2 \xrightarrow{M} i$ -PROPOLPAN		$= k_{G152}$
G376	i-PROPOLPAN $\stackrel{\text{M}}{\rightarrow}$ CH ₂ CH(OH)C(O)OO + NO ₂		$= k_{C1E2}$
G377	$CH_3CH(OOH)CH_2OH + OH \rightarrow CH_3CH(OO)CH_2OH + H_2O$	$1.90 \times 10^{-12} \exp(190/T)$	7
G378	$CH_3CH(OOH)CH_2OH + OH \rightarrow CH_3COCH_2OH + OH + H_2O$	2.44×10^{-11}	7

No.	Reaction	Rate Constant	Reference
G379	$\rm CH_3CH(OH)\rm CH_2OO + \rm NO \xrightarrow{O_2} \rm CH_3\rm CHO + \rm HCHO + \rm HO_2 + \rm NO_2$	$2.54 \times 10^{-12} \exp(360/T)$	7
G380	$CH_{3}CH(OH)CH_{2}OO + NO_{3} \xrightarrow{O_{2}} CH_{3}CHO + HCHO + HO_{2} + NO_{2} + O_{2}$	2.50×10^{-12}	7
G381	$CH_3CH(OH)CH_2OO + HO_2 \rightarrow CH_3CH(OH)CH_2OOH + O_2$	$1.51 \times 10^{-13} \exp(1300/T)$	7
G382	$CH_{3}CH(OH)CH_{2}OO + CH_{3}OO \xrightarrow{O_{2}} CH_{3}CHO + 2 HCHO + 2 HO_{2} + O_{2}$	1.20×10^{-12}	8
G383	$\begin{array}{c} \mathrm{CH_3CH(OH)CH_2OO+CH_3OO} \rightarrow \\ \mathrm{CH_3CH(OH)CHO+CH_3OH+O_2} \end{array}$	4.00×10^{-13}	8
G384	$\begin{array}{c} \mathrm{CH_{3}CH(OH)CH_{2}OO+CH_{3}OO \rightarrow} \\ \mathrm{CH_{3}CH(OH)CH_{2}OH+HCHO+O_{2}} \end{array}$	4.00×10^{-13}	8
G385	$\rm CH_3CH(OH)CH_2OOH + OH \rightarrow CH_3CH(OH)CH_2OO + H_2O$	$1.90 \times 10^{-12} \exp(190/T)$	7
G386	$CH_3CH(OH)CH_2OOH + OH \rightarrow CH_3CH(OH)CHO + OH + H_2O$	1.83×10^{-11}	7
G387	$CH_3CH(OO)CH_2Cl + NO \rightarrow CH_3CHOCH_2Cl + NO_2$	$4.06 \times 10^{-12} \exp(360/T)$	7
G388	$CH_3CH(OO)CH_2Cl + NO_3 \rightarrow CH_3CHOCH_2Cl + NO_2 + O_2$	2.50×10^{-12} 1.51 \times 10 ⁻¹³ (1200 /77)	7
G389	$CH_3CH(OO)CH_2CI + HO_2 \rightarrow CH_3CH(OOH)CH_2CI + O_2$	$1.51 \times 10^{-10} \exp(1300/T)$	/
G390	$CH_3CH(OO)CH_2Cl + CH_3OO \xrightarrow{\sim} CH_3CHOCH_2Cl + HCHO + HO_2 + O_2$	5.16×10^{-13}	This work
G391	$CH_3CH(OO)CH_2Cl + CH_3OO \rightarrow CH_3COCH_2Cl + CH_3OH + O_2$	1.72×10^{-13}	This work
G392	$CH_{3}CH(OO)CH_{2}Cl + CH_{3}OO \rightarrow CH_{3}CH(OH)CH_{2}Cl + HCHO + O_{2}$	1.72×10^{-13}	This work
G393	$CH_3CHOCH_2Cl \xrightarrow{O_2} CH_3COCH_2Cl + HO_2$	$k_{ m uni} = 5.3 \times 10^5$	This work
G394	$CH_2CHOCH_2Cl \xrightarrow{O_2} CH_2CHO + ClCH_2OO$	$k_{\rm uni} = 4.7 \times 10^5$	This work
G305	$CH_2CH(OH)CH_2CI + OH \frac{O_2}{2}CH_2COCH_2CI + HO_2 + H_2O$	3.20×10^{-12}	This work
G396	$CH_2CH(OOH)CH_2CI + OH \rightarrow CH_2CH(OO)CH_2CI + H_2O$	$1.90 \times 10^{-12} \exp(190/T)$	This work
G397	$CH_3CH(OOH)CH_2Cl + OH \rightarrow CH_3COCH_2Cl + OH + H_2O$	6.49×10^{-12}	This work
G398	$CH_3COCH_2Cl + OH \xrightarrow{O_2} CH_3COCHClOO + H_2O$	3.68×10^{-13}	This work
G399	$CH_3COCH_2C] + C] \xrightarrow{O_2} CH_3COCHC]OO + HC]$	4.00×10^{-12}	51 ^g
G400	$CH_2COCHClOO + NO \xrightarrow{O_2}{\rightarrow} CH_2C(O)OO + CO + HCl + NO_2$	$5.59 \times 10^{-12} \exp(360/T)$	7 52
G400	$CH_3COCHClOO + NO_3 \rightarrow CH_3C(O)OO + CO + HCl + NO_2 + O_2$	2.50×10^{-12}	7
G402	$CH_3COCHClOO + HO_2 \rightarrow CH_3COCHClOOH + O_2$	$3.20 \times 10^{-13} \exp(820/T)$	7
G403	$CH_3COCHClOO + CH_3OO \xrightarrow{O_2}$	1.20×10^{-12}	8
	$CH_3C(O)OO + CO + HCl + HCHO + HO_2 + O_2$		
G404 G405	$CH_3COCHClOO + CH_3OO \rightarrow CH_3COCOCl + CH_3OH + O_2$ $CH_3COCHClOO + CH_3OO \rightarrow CH_3COCHClOH + HCHO + O_2$	4.00×10^{-13} 4.00×10^{-13}	8 8
G406	$CH_2COCOOH + OH \xrightarrow{O_2} CH_2C(O)OO + CO_2 + H_2O$	6.22×10^{-13}	This work
G407	$CH_{2}COCHCIOH + OH = OH_{2}CH_{2}COCOCI + HO_{2} + H_{2}O$	2.18×10^{-12}	This work
G407	$CH_2COCHClOOH + OH \rightarrow CH_2COCHClOO + H_2O$	$1.90 \times 10^{-12} \exp(190/T)$	This work
G409	$CH_3COCHClOOH + OH \rightarrow CH_3COCOCl + OH + H_2O$	4.76×10^{-12}	This work
G410	$CH_3CHClCH_2OO + NO \xrightarrow{O_2} CH_3CHClCHO + HO_2 + NO_2$	$4.06 \times 10^{-12} \exp(360/T)$	7
G411	$CH_3CHClCH_2OO + NO_3 \xrightarrow{O_2} CH_3CHClCHO + HO_2 + NO_2 + O_2$	2.50×10^{-12}	7
G412	$\rm CH_3CHClCH_2OO + HO_2 \rightarrow CH_3CHClCH_2OOH + O_2$	$1.51 \times 10^{-13} \exp(1300/T)$	7
G413	$\rm CH_3CHClCH_2OO + CH_3OO \xrightarrow{O_2}$	1.45×10^{-12}	This work
	$\rm CH_3 CHClCHO + HCHO + 2 HO_2 + O_2$		
G414	$\mathrm{CH}_3\mathrm{CHClCH}_2\mathrm{OO} + \mathrm{CH}_3\mathrm{OO} \rightarrow \mathrm{CH}_3\mathrm{CHClCHO} + \mathrm{CH}_3\mathrm{OH} + \mathrm{O}_2$	4.90×10^{-13}	This work
G415	$CH_3CHClCH_2OO + CH_3OO \rightarrow CH_3CHClCH_2OH + HCHO + O_2$	4.90×10^{-13}	This work
G416	$\mathrm{CH}_{3}\mathrm{CH}\mathrm{Cl}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{OH} \xrightarrow{\bigcirc 2} \mathrm{CH}_{3}\mathrm{CH}\mathrm{Cl}\mathrm{CHO} + \mathrm{HO}_{2} + \mathrm{H}_{2}\mathrm{O}$	2.28×10^{-12}	This work
G417 G418	$\label{eq:CH3} \begin{array}{l} \mathrm{CH_3CHClCH_2OOH} + \mathrm{OH} \rightarrow \mathrm{CH_3CHClCH_2OO} + \mathrm{H_2O} \\ \mathrm{CH_3CHClCH_2OOH} + \mathrm{OH} \rightarrow \mathrm{CH_3CHClCHO} + \mathrm{OH} + \mathrm{H_2O} \end{array}$	$\frac{1.90 \times 10^{-12}}{3.78 \times 10^{-12}} \exp(190/T)$	This work This work

No.	Reaction	Rate Constant	Reference
G419	$\rm CH_3 CHClCHO + OH \xrightarrow{O_2} CH_3 CHClC(O)OO + H_2O$	6.70×10^{-12}	This work
G420	$CH_3CHClC(O)OO + NO \xrightarrow{O_2} CH_3CHClOO + CO_2 + NO_2$	$8.10 \times 10^{-12} \exp(270/T)$	7
G421	$CH_3CHClC(O)OO + NO_3 \xrightarrow{O_2} CH_3CHClOO + CO_2 + NO_2 + O_2$	4.00×10^{-12}	7
G422	$CH_3CHClC(O)OO + HO_2 \rightarrow CH_3CHClC(O)OOH + O_2$	$3.05 \times 10^{-13} \exp(1040/T)$	8
G423	$CH_3CHClC(O)OO + HO_2 \rightarrow CH_3CHClCOOH + O_3$	$1.25 \times 10^{-13} \exp(1040/T)$	8
G424	$CH_{3}CHClC(O)OO + CH_{3}OO \xrightarrow{O_{2}}$ $CH_{2}CHClOO + CO_{2} + HCHO + HO_{2} + O_{2}$	7.00×10^{-12}	7
G425	$CH_3CHClC(O)OO + CH_3OO \rightarrow CH_3CHClCOOH + HCHO + O_2$	3.00×10^{-12}	7
G426	$CH_3CHClCOOH + OH \rightarrow CH_3CHClOO + CO_2 + H_2O$	1.12×10^{-12}	This work
G427	$CH_3CHClC(O)OOH + OH \rightarrow CH_3CHClC(O)OO + H_2O$	4.20×10^{-12}	This work
G428	$CH_3CHClC(O)OO + NO_2 \xrightarrow{M} i-CLACETPAN$		$= k_{C152}$
G429	i-CIACETPAN $\stackrel{\text{M}}{\rightarrow}$ CH ₃ CHClC(O)OO + NO ₂		$= k_{G153}$
G430	$CH_3CHClOO + NO \xrightarrow{O_2} CH_3C(O)OO + HCl + NO_2$	$5.59 \times 10^{-12} \exp(360/T)$	7. 52
G431	$CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}C(0)OO + HCl + NO_{2} + O_{2}$	2.50×10^{-12}	7
G431	$CH_3CHClOO + HO_3 \rightarrow CH_3C(O)OO + HO_1 + HO_2 + O_2$ $CH_2CHClOO + HO_2 \rightarrow CH_2CHClOOH + O_2$	$2.50 \times 10^{-13} \exp(820/T)$	7
C422	$CH CHCloo + CH OO^{O_2}$	3.20×10^{-12}	7 TTI: :
0455	$CH_3CHClOO + CH_3OO \rightarrow CH_3CHOO + CH_3OO + HCl + HCHO + HO_2 + O_2$	2.72×10	This work
C124	$CHCHCloo + CHCHCloo {}^{0_2} 2 CHC(O)OO + 2 HCl + O$	5.00×10^{-12}	2
G434	$CH_{3}CHClOOH + CH_{3}CHClOO \rightarrow 2CH_{3}C(0)OO + 2HCl + O_{2}$ $CH_{2}CHClOOH + OH \rightarrow CH_{2}CHClOO + H_{2}O$	$1.00 \times 10^{-12} \exp(100/T)$	J This work
G436	$CH_{3}CHClOOH + OH \rightarrow CH_{3}CHClOO + H_{2}O$ $CH_{2}CHClOOH + OH \rightarrow CH_{2}COCl + OH + H_{2}O$	6.26×10^{-12}	This work
G437	$CH_2CH(OO)CH_2Br + NO \rightarrow CH_2CHOCH_2Br + NO_2$	$4.06 \times 10^{-12} \exp(360/T)$	$= k_{C287}$
G438	$CH_3CH(OO)CH_2Br + NO_3 \rightarrow CH_3CHOCH_2Br + NO_2 + O_2$	2.50×10^{-12}	$= k_{G388}$
G439	$CH_3CH(OO)CH_2Br + HO_2 \rightarrow CH_3CH(OOH)CH_2Br + O_2$	$1.51 \times 10^{-13} \exp(1300/T)$	$= k_{G389}$
G440	$CH_3CH(OO)CH_2Br + CH_3OO \xrightarrow{O_2}$	5.16×10^{-13}	This work
	$CH_3CHOCH_2Br + HCHO + HO_2$		
G441	$\mathrm{CH_3CH}(\mathrm{OO})\mathrm{CH_2Br} + \mathrm{CH_3OO} \rightarrow \mathrm{CH_3COCH_2Br} + \mathrm{CH_3OH} + \mathrm{O_2}$	1.72×10^{-13}	This work
G442	$\rm CH_3CH(OO)CH_2Br + CH_3OO \rightarrow$	1.72×10^{-13}	This work
	$CH_3CH(OH)CH_2Br + HCHO + O_2$		
G443	$CH_3CHOCH_2Br \xrightarrow{O_2} CH_3COCH_2Br + HO_2$	$k_{ m uni} = 8.6 imes 10^5$	This work
G444	$CH_3CHOCH_2Br \xrightarrow{O_2} CH_3CHO + BrCH_2OO$	$k_{\rm uni} = 1.4 \times 10^5$	This work
G445	$\mathrm{CH}_{3}\mathrm{CH}(\mathrm{OH})\mathrm{CH}_{2}\mathrm{Br} + \mathrm{OH} \xrightarrow{\mathrm{O}_{2}} \mathrm{CH}_{3}\mathrm{COCH}_{2}\mathrm{Br} + \mathrm{HO}_{2} + \mathrm{H}_{2}\mathrm{O}$	3.76×10^{-12}	This work
G446	$\rm CH_3CH(OOH)\rm CH_2Br+OH \rightarrow \rm CH_3CH(OO)\rm CH_2Br+H_2O$	$1.90 \times 10^{-12} \exp(190/T)$	This work
G447	$\rm CH_3CH(OOH)\rm CH_2Br+OH \rightarrow \rm CH_3COCH_2Br+OH+H_2O$	8.01×10^{-12}	This work
G448	$CH_{3}COCH_{2}Br + OH \xrightarrow{O_{2}} CH_{3}COCHBrOO + H_{2}O$	2.98×10^{-13}	This work
G449	$CH_3COCH_2Br + Cl \xrightarrow{O_2} CH_3COCHBrOO + HCl$	4.00×10^{-12}	$= k_{G399}$
G450	$CH_{3}COCHBrOO + NO \rightarrow CH_{3}COCHO + Br + NO_{2}$	$5.59 \times 10^{-12} \exp(360/T)$	$= k_{\rm G400}{}^{h}$
G451	$CH_{3}COCHBrOO + NO_{3} \rightarrow CH_{3}COCHO + Br + NO_{2} + O_{2}$	2.50×10^{-12}	$= k_{\rm G401}{}^{h}$
G452	$CH_3COCHBrOO + HO_2 \rightarrow CH_3COCHBrOOH + O_2$	6.71×10^{-12}	$= k_{G339}$
G453	$CH_3COCHBrOO + CH_3OO \xrightarrow{O_2}$	1.20×10^{-12}	$= k_{G403}$
	$CH_3COCHBrO + HCHO + HO_2 + O_2$	10	
G454	$CH_{3}COCHBrOO + CH_{3}OO \rightarrow CH_{3}COCOBr + CH_{3}OH + O_{2}$	4.00×10^{-13}	$= k_{G404}$
G455	$CH_3COCHBrOO + CH_3OO \rightarrow CH_3COCHBrOH + HCHO + O_2$	4.00×10^{-13}	$= k_{G405}$
G456	$CH_3COCHBrO \rightarrow CH_3COCHO + Br$	$k_{\rm uni} = 7.3 \times 10^{\circ}$	$= k_{G485}$
G457	$CH_3COCHBrO \xrightarrow{\sim_2} CH_3COCOBr + HO_2$	$k_{ m uni} = 2.7 imes 10^5$	$= k_{G486}$
G458	$CH_3COCHBrOH + OH \xrightarrow{O_2} CH_3COCOBr + HO_2 + H_2O$	1.67×10^{-12}	This work
G459	$\rm CH_3COCHBrOOH + OH \rightarrow CH_3COCHBrOO + H_2O$	$1.90 \times 10^{-12} \exp(190/T)$	This work
G460	$CH_3COCHBrOOH + OH \rightarrow CH_3COCOBr + OH + H_2O$	3.53×10^{-12}	This work

No.	Reaction	Rate Constant	Reference
G461	$\rm CH_3 CHBr CH_2 OO + NO \xrightarrow{O_2} CH_3 CHBr CHO + HO_2 + NO_2$	$4.06 \times 10^{-12} \exp(360/T)$	$=k_{ m G410}$
G462	$\mathrm{CH_3CHBrCH_2OO} + \mathrm{NO_3} \xrightarrow{\mathrm{O_2}} \mathrm{CH_3CHBrCHO} + \mathrm{HO_2} + \mathrm{NO_2} + \mathrm{O_2}$	2.50×10^{-12}	$= k_{G411}$
G463	$CH_{3}CHBrCH_{2}OO + HO_{2} \rightarrow CH_{3}CHBrCH_{2}OOH + O_{2}$	$1.51 \times 10^{-13} \exp(1300/T)$	$= k_{G412}$
G464	$CH_{3}CHBrCH_{2}OO + CH_{3}OO \xrightarrow{O_{2}} CH_{2}CHBrCHO + HCHO + 2HO_{2} + O_{2}$	1.45×10^{-12}	This work
G465	$CH_3CHBrCH_2OO + CH_3OO \rightarrow CH_3CHBrCHO + CH_3OH + O_2$	4.90×10^{-13}	This work
G466	$\mathrm{CH}_{3}\mathrm{CHBrCH}_{2}\mathrm{OO} + \mathrm{CH}_{3}\mathrm{OO} \rightarrow \mathrm{CH}_{3}\mathrm{CHBrCH}_{2}\mathrm{OH} + \mathrm{HCHO} + \mathrm{O}_{2}$	4.90×10^{-13}	This work
G467	$\mathrm{CH}_3\mathrm{CHBr}\mathrm{CH}_2\mathrm{OH} + \mathrm{OH} \xrightarrow{\mathrm{O}_2} \mathrm{CH}_3\mathrm{CHBr}\mathrm{CHO} + \mathrm{HO}_2 + \mathrm{H}_2\mathrm{O}$	2.38×10^{-12}	This work
G468	$\rm CH_3 CHBr CH_2 OOH + OH \rightarrow CH_3 CHBr CH_2 OO + H_2 O$	$1.90 \times 10^{-12} \exp(190/T)$	This work
G469	$CH_3CHBrCH_2OOH + OH \rightarrow CH_3CHBrCHO + OH + H_2O$	4.34×10^{-12}	This work
G470	$CH_3CHBrCHO + OH \xrightarrow{O_2} CH_3CHBrC(O)OO + H_2O$	8.26×10^{-12}	This work
G471	$\mathrm{CH}_{3}\mathrm{CHBrC}(\mathrm{O})\mathrm{OO} + \mathrm{NO} \xrightarrow{\mathrm{O}_{2}} \mathrm{CH}_{3}\mathrm{CHBrOO} + \mathrm{CO}_{2} + \mathrm{NO}_{2}$	$8.10 \times 10^{-12} \exp(270/T)$	$= k_{G420}$
G472	$\mathrm{CH}_{3}\mathrm{CHBrC}(\mathrm{O})\mathrm{OO} + \mathrm{NO}_{3} \xrightarrow{\mathrm{O}_{2}} \mathrm{CH}_{3}\mathrm{CHBrOO} + \mathrm{CO}_{2} + \mathrm{NO}_{2} + \mathrm{O}_{2}$	4.00×10^{-12}	$= k_{G421}$
G473	$\mathrm{CH}_3\mathrm{CHBrC}(\mathrm{O})\mathrm{OO} + \mathrm{HO}_2 \rightarrow \mathrm{CH}_3\mathrm{CHBrC}(\mathrm{O})\mathrm{OOH} + \mathrm{O}_2$	$3.05 \times 10^{-13} \exp(1040/T)$	$= k_{G422}$
G474	$CH_3CHBrC(O)OO + HO_2 \rightarrow CH_3CHBrCOOH + O_3$	$1.25 \times 10^{-13} \exp(1040/T)$	$= k_{G423}$
G475	$CH_3CHBrC(O)OO + CH_3OO \xrightarrow{O_2}$	7.00×10^{-12}	$= k_{G424}$
C17($CH_{3}CHBrOO + CO_{2} + HCHO + HO_{2} + O_{2}$	2.00×10^{-12}	7.
G476	$CH_3CHBrC(0)00 + CH_300 \rightarrow CH_3CHBrC00H + HCH0 + O_2$	3.00×10^{-13}	$= \kappa_{G425}$
G477 G478	$CH_{3}CHBrCOOH + OH \rightarrow CH_{3}CHBrOO + CO_{2} + H_{2}O$ $CH_{2}CHBrC(O)OOH + OH \rightarrow CH_{2}CHBrC(O)OO + H_{2}O$	9.86×10^{-12}	This work
G470	$CH_{2}CHDrC(O)OO + NO_{2} \stackrel{M}{\longrightarrow} E_{13}CHDrC(O)OO + H_{2}O$	4.07 × 10	
C490	$= \frac{1}{2} $		$-\kappa_{G152}$
G480 G481	$CH_2CHBrOO + NO \rightarrow CH_2CHO + Br + NO_2$	$5.59 \times 10^{-12} \exp(360/T)$	$= \kappa_{G153}$ $= k_{G420}^{h}$
G482	$CH_3CHBrOO + NO_3 \rightarrow CH_3CHO + Br + NO_2 + O_2$	2.50×10^{-12}	$= k_{G431}^{h}$
G483	$\rm CH_3 CHBrOO + HO_2 \rightarrow CH_3 CHBrOOH + O_2$	6.71×10^{-12}	$= k_{G339}$
G484	$\rm CH_3 CHBrOO + CH_3 OO \xrightarrow{O_2} CH_3 CHBrO + HCHO + HO_2 + O_2$	2.72×10^{-12}	$= k_{G433}$
G485	$\rm CH_3 CHBrO \rightarrow CH_3 CHO + Br$	$k_{ m uni} = 7.3 \times 10^5$	53
G486	$CH_3CHBrO \xrightarrow{O_2} CH_3COBr + HO_2$	$k_{ m uni} = 2.7 imes 10^5$	53
G487	$CH_{3}CHBrOOH + OH \rightarrow CH_{3}CHBrOO + H_{2}O$	$1.90 \times 10^{-12} \exp(190/T)$	This work
G488	$CH_3CHBrOOH + OH \rightarrow CH_3COBr + OH + H_2O$	4.64×10^{-12}	This work
G489	$CH_2 = CHCH_2OO + NO \xrightarrow{O_2} CH_2 = CHCHO + HO_2 + NO_2$	1.05×10^{-11}	54
G490	$CH_2 = CHCH_2OO + NO_3 \xrightarrow{O_2} CH_2 = CHCHO + HO_2 + NO_2 + O_2$	2.50×10^{-12}	7
G491	$CH_2 = CHCH_2OO + HO_2 \rightarrow CH_2 = CHCH_2OOH + O_2$	5.60×10^{-12}	55
G492	$CH_2 = CHCH_2OO + CH_3OO \xrightarrow{\bigcirc} CH_2 = CHCHO + HCHO + 2HO_2 + O_2$	$1.32 \times 10^{-13} \exp(515/T)$	17
G493	$CH_2 = CHCH_2OO + CH_3OO \rightarrow CH_2 = CHCHO + CH_3OH + O_2$	$7.40 \times 10^{-14} \exp(515/T)$	17
G494	$\mathrm{CH}_2\!=\!\mathrm{CHCH}_2\mathrm{OO}+\mathrm{CH}_3\mathrm{OO}\rightarrow\mathrm{CH}_2\!=\!\mathrm{CHCH}_2\mathrm{OH}+\mathrm{HCHO}+\mathrm{O}_2$	$7.40 \times 10^{-14} \exp(515/T)$	17
G495	$CH_2 = CHCH_2OO + C_2H_5OO \xrightarrow{O_2}$	6.20×10^{-13}	17
G496	$CH_2 = CHCHO + CH_3CHO + 2HO_2 + O_2$ $CH_2 = CHCH_2OO + C_2H_2OO \rightarrow CH_2 = CHCHO + C_2H_2OH + O_2$	1.90×10^{-13}	17
G490 G497	$CH_2 = CHCH_2OO + C_2H_5OO \rightarrow CH_2 = CHCHO + C_2H_5OH + O_2$ $CH_2 = CHCH_2OO + C_2H_5OO \rightarrow CH_2 = CHCHO + C_2H_5OH + O_2$	1.90×10^{-13}	17
0.77	$CH_2 = CHCH_2OH + CH_3CHO + O_2$	100 / 10	
G498	$\rm CH_2 \!=\! \rm CHCH_2OO + \rm CH_2 \!=\! \rm CHCH_2OO \rightarrow$	6.81×10^{-13}	56
	$1.22 \times (CH_2 = CHCHO + HO_2)$		
	$+0.39 \times (CH_2 = CHCHO + CH_2 = CHCH_2OH) + O_2$		
G499	$CH_2 = CHCH_2OH + OH \xrightarrow{O_2} CH_2 = CHCHO + HO_2 + H_2O$	3.41×10^{-12}	This work
G500	$CH_2 = CHCH_2OOH + OH \rightarrow CH_2 = CHCH_2OO + H_2O$	$1.90 \times 10^{-12} \exp(190/T)$	This work
0201	$\cup \Pi_2 = \cup \Pi \cup \Pi_2 \cup \cup \Pi + \cup \Pi \rightarrow \cup \Pi_2 = \cup \Pi \cup \Pi \cup + \cup \Pi$	01×68.1	1 nis work

No.	Reaction	Rate Constant	Reference
G502	$\begin{array}{l} \mathrm{CH}_2 \!=\! \mathrm{CHCHO} + \mathrm{OH} \xrightarrow{\mathrm{O}_2} \cdots \rightarrow \\ 0.32 \times (\mathrm{HOCH}_2 \mathrm{CHO} + \mathrm{products}) \\ + 0.68 \times (\mathrm{CH}_2 \!=\! \mathrm{CHC}(\mathrm{O})\mathrm{OO} + \mathrm{H}_2 \mathrm{O}) \end{array}$	2.00×10^{-11}	57
G503	$CH_2 = CHCHO + Cl \xrightarrow{O_2} \cdots \rightarrow \\ 0.78 \times (ClCH_2CHO + products) \\ + 0.22 \times (CH_2 = CHC(O)OO + HCl)$	2.20×10^{-10}	58
G504	$CH_2 = CHCHO + Br \xrightarrow{O_2} \cdots \rightarrow \\ 0.8 \times (BrCH_2CHO + products) \\ + 0.2 \times (CH_2 = CHC(O)OO + HBr)$	3.21×10^{-12}	59
G505	$CH_2 = CHC(O)OO + NO \xrightarrow{O_2} HCHO + CO + HO_2 + CO_2 + NO_2$	$8.10 \times 10^{-12} \exp(270/T)$	7
G506	$CH_2 = CHC(O)OO + NO_3 \xrightarrow{O_2} HCHO_2 + CO_2 + NO_2 + O_2$	4.00×10^{-12}	7
G507 G508	$CH_2 = CHC(O)OO + HO_2 \rightarrow CH_2 = CHC(O)OOH + O_2$ $CH_2 = CHC(O)OO + HO_2 \rightarrow CH_2 = CHCOOH + O_3$	$3.05 \times 10^{-13} \exp(1040/T)$ $1.25 \times 10^{-13} \exp(1040/T)$	8 8
G509	$CH_2 = CHC(O)OO + CH_3OO \xrightarrow{O_2} HCHO + CO_2 + HCHO + 2HO_2 + O_2$	7.00×10^{-12}	7
G510	$CH_2 = CHC(O)OO + CH_3OO \rightarrow CH_2 = CHCOOH + HCHO + O_2$	3.00×10^{-12}	7
G511	$CH_2 = CHC(O)OOH + OH \rightarrow CH_2 = CHC(O)OO + H_2O$	1.22×10^{-11}	7
G512	$CH_2 = CHCOOH + OH \xrightarrow{O_2} HCHO + CO + HO_2 + CO_2 + H_2O$	8.66×10^{-12}	7
G513	$CH_2 = CHC(O)OO + NO_2 \xrightarrow{M} ACRPAN$		$= k_{G152}$
G514	$ACRPAN \xrightarrow{M} CH_2 = CHC(O)OO + NO_2$		$= k_{G153}$
G515	$CH_3CHOO^* \xrightarrow{M} CH_3CHOO$	$k_{\mathrm{uni}} = 1.5 \times 10^5$	4
G516	$CH_3CHOO^* \xrightarrow{O_2} CH_3OO + CO + OH$	$k_{ m uni} = 5.4 imes 10^5$	4
G517	$CH_3CHOO^* \xrightarrow{O_2} CO + HO_2 + HCHO + HO_2$	$k_{\rm uni} = 1.7 \times 10^5$	4
G518	$\mathrm{CH}_3\mathrm{CHOO}^* \to \mathrm{CH}_4 + \mathrm{CO}_2$	$k_{\mathrm{uni}} = 1.4 \times 10^5$	4
G519	$CH_{3}CHOO + H_{2}O \rightarrow CH_{3}COOH + H_{2}O$	4.00×10^{-18}	44
G520	$ \begin{array}{ccc} & \text{OH} + \text{C}_2\text{H}_2 \stackrel{\text{M},\text{O}_2}{\longrightarrow} 0.364 \times (\text{HCOOH} + \text{CO} + \text{HO}_2) + 0.636 \times (\text{HCOCHO} + \text{OH}) \\ & F_c = 0.62, \ k_0 = 5.0 \times 10^{-30} (T/300)^{-1.5}, \ k_\infty = 9.0 \times 10^{-13} (T/300)^{2.0} \end{array} $		3
G521	$Cl + C_2H_2 \xrightarrow{M,O_2} 0.26 \times (HCOCl + CO + HO_2) + 0.21 \times (HCOCHO + F_c = 0.6, k_0 = 6.1 \times 10^{-10})$	$(Cl) + 0.53 \times (HCl + 2CO + HO_2)$ $(T/300)^{-3.0}, k_{\infty} = 2.0 \times 10^{-10}$	4, 59
G522	$Br + C_2H_2 \xrightarrow{M,O_2} 0.17 \times (HCOBr + CO + HO_2) \\+ 0.09 \times (HCOCHO + Br) + 0.74 \times (HBr + 2CO + HO_2)$	$9.39 \times 10^{-15} \exp(341/T)$	25, 60
G523	$HCOCl + OH \rightarrow CO + Cl + H_2O$	$3.67 \times 10^{-11} \exp(-1419/T)$	61
G524	$\mathrm{HCOCl} + \mathrm{Cl} \rightarrow \mathrm{CO} + \mathrm{Cl} + \mathrm{HCl}$	$1.20 \times 10^{-11} \exp(-815/T)$	3
G525	$HCOCl + Br \rightarrow CO + Cl + HBr$	4.00×10^{-14}	$= k_{G528}$
G526	$HCOBr + OH \rightarrow CO + Br + H_2O$	$3.67 \times 10^{-11} \exp(-1419/T)$	$= k_{G523}$
G527	$HCOBr + CI \rightarrow CO + Br + HCI$ $HCOBr + Dr \rightarrow CO + Br + HDr$	$1.20 \times 10^{-11} \exp(-815/T)$	$= k_{G524}$
0520	$(UD_{r} \rightarrow OU^{O_2}) \rightarrow D_{r} \rightarrow (D_{r} \cap O + U \cap O)$	4.00×10^{-12} mm (710/T)	2.62
G529	$CHBr_3 + OH \rightarrow \cdots \rightarrow Br + CBr_2O + H_2O$	$1.60 \times 10^{-12} \exp(-710/T)$	2, 62
G530	$CHBr_3 + Cl \rightarrow \cdots \rightarrow Br + CBr_2O + HCl$	$4.00 \times 10^{-12} \exp(-809/T)$	63, 62
G531	$OH + DMS (abs.) \xrightarrow{O_2} \cdots \rightarrow CH_3SO_2 + HCHO + H_2O$	$1.13 \times 10^{-11} \exp(-254/T)$	3
G532	OH + DMS (add.) $\xrightarrow{O_2} \cdots \rightarrow 0.5 \times (DMSO + HO_2) + 0.5 \times (CH_3SO_2 + 1.7 \times 10^{-43} [O_2] \exp(7810/T)/$	CH ₃ OO) $(1 + 5.5 \times 10^{-31} [O_2] \exp(7460/T))$	3
G533	$NO_3 + DMS \xrightarrow{O_2} \cdots \rightarrow CH_3SO_2 + HCHO + HNO_3$	$1.90 \times 10^{-13} \exp(500/T)$	2
G534	$\rm BrO + DMS \rightarrow DMSO + Br$	$1.30 \times 10^{-14} \exp(1033/T)$	64
G535	$\mathrm{Cl} + \mathrm{DMS} \xrightarrow{\mathrm{O}_2} \cdots \longrightarrow \mathrm{CH}_3 \mathrm{SO}_2 + \mathrm{HCHO} + \mathrm{HCl}$	3.30×10^{-10}	3
G536	$OH + DMSO \xrightarrow{O_2} CH_3SO_2H + CH_3OO$	8.70×10^{-11}	65

Table S3. (continued)

No.	Reaction	Rate Constant	Reference
G537	$OH + CH_3SO_2H \rightarrow CH_3SO_2 + H_2O$	1.00×10^{-10}	66
G538	$CH_3SO_2 \xrightarrow{M,O_2} SO_2 + CH_3OO$	$k_{\rm uni} = 2.6 \times 10^{11} \exp(-9056/T)$	67
G539	$CH_3SO_2 + O_3 \rightarrow CH_3SO_3 + O_2$	1.00×10^{-14}	68
G540	$CH_3SO_2 + HO_2 \rightarrow CH_3SO_3 + OH$	2.50×10^{-13}	69
G541	$CH_3SO_2 + CH_3OO \xrightarrow{O_2} CH_3SO_3 + HCHO + H$	HO_2 2.50×10^{-13}	69
G542	$CH_3SO_3 \xrightarrow{M,O_2} SO_3 + CH_3OO$	$k_{\rm uni} = 1.1 \times 10^{17} \exp(-12057/T)$	67
G543	$CH_3SO_3 + HO_2 \rightarrow CH_3SO_3H + O_2$	4.00×10^{-11}	68
G544	$CH_3SO_3 + HCHO \xrightarrow{O_2} CH_3SO_3H + CO + HO_2$	1.60×10^{-15}	69
G545	$CH_3SO_3 + H_2O_2 \rightarrow CH_3SO_3H + HO_2$	3.00×10^{-16}	69
G546	$OH + SO_2 \xrightarrow{M,O_2} SO_3 + HO_2$		
		$F_c = 0.45, \ k_0 = 4.0 \times 10^{-31} (T/300)^{-3.33}, \ k_\infty = 2.0 \times 10^{-12}$	3
G547	$SO_3 + H_2O \xrightarrow{M} H_2SO_4$	2.40×10^{-15}	43
G548	$CH_3SO_3H \rightarrow MSA$ (fine-mode aerosols)	$k_{\rm uni} = 1.55 \times 10^{-4}$	see note ^{i}
G549	$H_2SO_4 \rightarrow$ sulfate (fine-mode aerosols)	$k_{\rm uni} = 8.50 \times 10^{-4}$	see note ⁱ

References: 1, Sander et al. (2000); 2, DeMore et al. (1997); 3, Atkinson et al. (1997); 4, Atkinson et al. (1999); 5, Kondo and Benson (1984); 6, Veyret et al. (1982); 7, Saunders et al. (2003); 8, Jenkin et al. (1997); 9, Atkinson et al. (2000); 10, Orlando and Tyndall (1996); 11, Aranda et al. (1997); 12, Baulch et al. (1981); 13, Dolson and Leone (1987); 14, Clyne and Cruse (1972), 15, Carl et al. (1996); 16, Anderson and Fahey (1990); 17, Villenave and Lesclaux (1996); 18, Wallington et al. (1989a); 19, Tyndall et al. (1997); 20, D'Anna and Nielsen (1997); 21, Ramacher et al. (2000); 22, Sehested et al. (1998); 23, Green et al. (1990); 24, Orlando et al. (1999); 25, Ramacher et al. (2001); 26, Aschmann and Atkinson (1998); 27, Niki et al. (1987); 28, Niki et al. (1985); 29, Wallington et al. (1990); 30, Lightfoot et al. (1992) 31, Yarwood et al. (1992); 32, Wallington et al. (1988); 33, Wallington et al. (1996); 34, Bilde et al. (1999); 35, Tyndall et al. (1993); 36, Villenave et al. (2003); 37, Chen et al. (1996); 38, Baulch et al. (1992); 39, Maricq et al. (1997); 40, Villenave and Lesclaux (1995); 41, Chen et al. (1995); 42, Orlando et al. (1996); 43, DeMore et al. (1994); 44, Atkinson (1990); 45, Atkinson (1989); 46, Kaiser and Wallington (1996b); 47, Lee and Rowland (1977); 48, Bedjanian et al. (1998); 49, Barnes et al. (1989); 50, Wallington et al. (1989b); 51, Notario et al. (2000); 52, Maricq et al. (1993); 53, Bierbach et al. (1997); 54, Eberhard and Howard (1997); 55, Boyd et al. (1996); 56, Jenkin et al. (1993); 57, Orlando and Tyndall (2002); 58, Canosa-Mas et al. (2001); 59, Sauer et al. (1999); 60, Yarwood et al. (1991); 61, Francisco (1992); 62, McGivern et al. (2002), 63, Kambanis et al. (1997); 64, Nakano et al. (2001); 65, Urbanski et al. (1998); 66, Kukui et al. (2002); 67, Ayers et al. (1996); 68, Koga and Tanaka (1999); 69, Yin et al. (1990).

^{*a*} Units of bimolecular reaction rate constants are cm^3 molecule⁻¹ s⁻¹.

^b Units of termolecular reaction rate constants (k_0) are cm⁶ molecule⁻² s⁻¹. Where a pressure fall-off correction is necessary, an additional entry (k_{∞}) gives the limiting high-pressure rate constant. In this case, the following formula is used to obtain an effective second-order rate constant (k):

$$k = \frac{k_0[M]}{1 + (k_0[M]/k_\infty)} F_c^{\{1 + \lfloor \log_{10}(k_0[M]/k_\infty)]^2\}^{-1}}$$

In some cases, effective second-order rate constants at ~ 1 atm of air are directly taken from the literature.

^c Decomposition and thermalization reaction rates are given as first-order decomposition constants (k_{uni}) in s⁻¹.

^d Product yields are assumed to be identical to those of Reaction (G209).

 $k_{G230} + k_{G231})/k_{G134} = 1.1$ (Niki et al., 1987)

^{*f*} Since the SAR method (Kwok and Atkinson, 1995) is found to overestimate the rate constant (k_{G272}) for analogous reaction ClCH₂CHO + OH by a factor of two compared with a recommended value based on the critical evaluation of measured data (Atkinson et al., 1997), a slightly modified approach is taken to estimate the rate constant (k_{G316}) for reaction BrCH₂CHO + OH; At first the ratio of k_{G316} to k_{G272} is estimated to be 1.255 by the SAR method and then k_{G316} is obtained by multiplying this ratio and k_{G272} value recommended by Atkinson et al. (1997).

 $^{g} k_{G399}/k_{G192} = 1.144$ (Notario et al., 2000)

^{*h*} Br-atom elimination is assumed to occur spontaneously.

^{*i*} First-order rate constants for uptake onto fine-mode aerosols with a number concentration of 280 cm^{-3} , volume geometric median diameter of $0.214 \,\mu\text{m}$, and geometric standard deviation of 1.29 (Kim et al., 1995) are estimated using γ for H₂SO₄ in Table S5 or α for CH₃SO₃H in Table S6.

No.	Phase	Reaction	J, s^{-1}	Reference
P1	gas	$O_3 \rightarrow O(^1D) + O_2$	6.18×10^{-6}	1, 2, 3
P2	gas	$O_3 \rightarrow O(^3P) + O_2$	1.63×10^{-4}	1, 2, 3
P3	aq	$O_3 \xrightarrow{H_2O} H_2O_2 + O_2$	1.12×10^{-5}	4
P4	gas	$H_2O_2 \rightarrow 2 OH$	1.59×10^{-6}	5
P5	aq	${\rm H}_2{\rm O}_2 \to 2{\rm OH}$	6.18×10^{-7}	4
P6	gas	$NO_2 \rightarrow NO + O(^3P)$	2.40×10^{-3}	5
P7	gas	$NO_3 \rightarrow NO + O_2$	9.39×10^{-3}	6
P8	gas	$NO_3 \rightarrow NO_2 + O(^3P)$	7.17×10^{-2}	5
P9	gas	$N_2O_5 \rightarrow NO_3 + NO_2$	9.87×10^{-6}	5
P10	gas	$HONO \rightarrow OH + NO$	4.98×10^{-4}	5
P11	aq	$HONO \rightarrow NO + OH$	5.76×10^{-5}	4
P12	aq	$NO_2^- \xrightarrow{H_2O} NO + OH + OH^-$	9.77×10^{-6}	4
P13	gas	$HNO_3 \rightarrow OH + NO_2$	1.09×10^{-7}	5
P14	aq	$NO_2^- \xrightarrow{H_2O} NO_2 + OH + OH^-$	8.08×10^{-8}	4.7
P15	aq	$NO_3^- \rightarrow NO_2^- + O(^3P)$	5.80×10^{-9}	4, 8
P16	gas	$HO_2NO_2 \rightarrow 0.33 \times (OH + NO_3) + 0.67 \times (HO_2 + NO_2)$	7.47×10^{-7}	5
P17	gas	$OClO \rightarrow ClO + O(^{3}P)$	2.30×10^{-2}	9
P18	gas	$Cl_2O_2 \rightarrow 2Cl + O_2$	3.28×10^{-4}	5
P19	gas	$\mathrm{HOCl} \rightarrow \mathrm{Cl} + \mathrm{OH}$	6.78×10^{-5}	10
P20	aq	$\mathrm{HOCl} \rightarrow \mathrm{Cl} + \mathrm{OH}$	1.36×10^{-4}	$= J_{\rm P19} \times 2$
P21	gas	$\rm CH_3OCl \xrightarrow{O_2} \rm HCHO + \rm HO_2 + \rm Cl$	2.21×10^{-5}	5
P22	aq	$CH_3OCl \xrightarrow{O_2} HCHO + HO_2 + Cl$	4.43×10^{-5}	$= J_{\rm P21} \times 2$
P23	gas	$\text{ClNO}_2 \rightarrow \text{Cl} + \text{NO}_2$	8.24×10^{-5}	5
P24	gas	$ClONO_2 \rightarrow Cl + NO_3$	7.14×10^{-6}	5
P25	gas	$ClONO_2 \rightarrow ClO + NO_2$	4.76×10^{-6}	5
P26	gas	$\mathrm{Cl}_2 \rightarrow 2\mathrm{Cl}$	6.03×10^{-4}	5
P27	aq	$\mathrm{Cl}_2 \to 2\mathrm{Cl}$	1.21×10^{-3}	$= J_{\rm P26} \times 2$
P28	gas	$BrO \rightarrow Br + O(^{3}P)$	9.09×10^{-3}	5
P29	gas	$\mathrm{HOBr} \rightarrow \mathrm{Br} + \mathrm{OH}$	6.32×10^{-4}	10
P30	aq	$\mathrm{HOBr} \rightarrow \mathrm{Br} + \mathrm{OH}$	1.26×10^{-3}	$= J_{\rm P29} \times 2$
P31	gas	$BrNO_2 \rightarrow Br + NO_2$	5.67×10^{-4}	see note c
P32	gas	$BrONO_2 \rightarrow 0.71 \times (BrO + NO_2) + 0.29 \times (Br + NO_3)$	3.53×10^{-4}	5
P33	gas	$\operatorname{Br}_2 \to 2 \operatorname{Br}$	1.08×10^{-2}	11
P34	aq	$Br_2 \rightarrow 2 Br$	2.15×10^{-2}	$= J_{P33} \times 2$
P35	gas	$BrCl \rightarrow Br + Cl$	3.30×10^{-3}	5
P36	aq	$BrCl \rightarrow Br + Cl$	6.60×10^{-3}	$= J_{P35} \times 2$
P3/	gas	$CHBr_3 \rightarrow 2Br + HBr + products$	2.24×10^{-1}	5, 12, 13
P38	gas	$HCHO \xrightarrow{\odot} CO + 2 HO_2$	6.02×10^{-6}	5
P39	gas	$\text{HCHO} \rightarrow \text{H}_2 + \text{CO}$	1.08×10^{-5}	5
P40	gas	$CH_3OOH \xrightarrow{O_2} HCHO + HO_2 + OH$	1.14×10^{-6}	5
P41	gas	$CH_3CHO \xrightarrow{O_2} CH_3OO + HO_2 + CO$	7.98×10^{-7}	14
P42	gas	$\mathrm{HOCH}_2\mathrm{CHO} \xrightarrow{\mathrm{O}_2} \mathrm{HCHO} + \mathrm{CO} + 2 \mathrm{HO}_2$	1.69×10^{-6}	15, 16
P43	gas	$ClCH_2CHO \rightarrow CH_3Cl + CO$	4.26×10^{-10}	17^d
P44	gas	$ClCH_2CHO \xrightarrow{O_2} ClCH_2OO + CO + HO_2$	3.63×10^{-6}	17^d
P45	gas	$BrCH_2CHO \rightarrow CH_3Br + CO$	3.04×10^{-8}	see note e
P46	gas	$BrCH_2CHO \xrightarrow{O_2} BrCH_2OO + CO + HO_2$	9.98×10^{-6}	see note e
P47	gas	$C_2H_5CHO \xrightarrow{O_2} C_2H_5OO + HO_2 + CO$	3.07×10^{-6}	14
P48	gas	$CH_3CH(OH)CHO \xrightarrow{O_2} CH_3CHO + CO + 2HO_2$	2.57×10^{-7}	see note ^f

Table S4. Photolysis Reactions in the Gas- and Aqueous-Phases and their Calculated J Values a,b

Table S4. (continued)

No.	Phase	Reaction	J, s^{-1}	Reference
D40		$\alpha_{\rm H}$	0.85×10^{-6}	q
P49	gas	$CH_3CHCICHO \rightarrow CH_3CHCIOO + CO + HO_2$	9.85×10^{-5}	see note ⁹
P50	gas	$CH_3CHBFCHO \rightarrow CH_3CHBFOO + CO + HO_2$ $CH_4COCH_{O_2} CH_4C(O)OO + CH_4OO$	2.09×10^{-8}	see note ³
P51	gas	$CH_3COCH_3 \rightarrow CH_3C(0)OO + CH_3OO$	8.37×10^{-7}	14
P52	gas	$CH_3COCH_2OH \rightarrow 0.5 \times (CH_3C(O)OO + HCHO + HO_2) + 0.5 \times (HOCH_2C(O)OO + CH_3OO)$	1.70×10^{-1}	18
P53	gas	$CH_3COCH_2Cl \xrightarrow{O_2} 0.5 \times (CH_3C(O)OO + ClCH_2OO) + 0.5 \times (ClCH_2C(O)OO + CH_3OO)$	8.82×10^{-6}	19
P54	gas	$CH_3COCH_2Br \xrightarrow{O_2} 0.5 \times (CH_3C(O)OO + BrCH_2OO) + 0.5 \times (BrCH_2CO + CH_3OO)$	4.09×10^{-5}	19
P55	gas	$CH_3COCHO \xrightarrow{O_2} CH_3C(O)OO + CO + HO_2$	2.61×10^{-5}	20
P56	gas	$\mathrm{HCOCHO} \xrightarrow{\mathrm{O}_2} 2 \mathrm{CO} + 2 \mathrm{HO}_2$	1.54×10^{-5}	20
P57	gas	$\mathrm{HCOCOOH} \xrightarrow{\mathrm{O}_2} \mathrm{CO} + 2 \mathrm{HO}_2 + \mathrm{CO}_2$	2.61×10^{-5}	$= J_{P55}$
P58	gas	$\mathrm{HCOCO_3H} \xrightarrow{\mathrm{O_2}} \mathrm{CO} + \mathrm{HO_2} + \mathrm{OH} + \mathrm{CO_2}$	1.14×10^{-6}	$= J_{P40}$
P59	gas	$HCOCO_3H \xrightarrow{O_2} CO + HO_2 + OH + CO_2$	2.61×10^{-5}	$= J_{P55}$
P60	gas	$CH_2\!=\!CHCHO\rightarrow C_2H_4+CO$	2.05×10^{-7}	16
P61	gas	$\mathrm{CH}_{2} {=} \mathrm{CHCHO} \stackrel{\mathrm{O}_{2}}{\rightarrow} \mathrm{HCHO} + 2\mathrm{CO} + 2\mathrm{HO}_{2}$	1.27×10^{-7}	16
P62	gas	$CH_2 = CHCHO \xrightarrow{O_2} CH_3CHOO^* + CO$	3.83×10^{-7}	16
P63	gas	$\mathrm{CH}_2 = \mathrm{CHCHO} \xrightarrow{\mathrm{O}_2} \mathrm{CH}_2 = \mathrm{CHC}(\mathrm{O})\mathrm{OO} + \mathrm{HO}_2$	1.40×10^{-7}	16
P64	gas	$\mathrm{HCOCl} \xrightarrow{\mathrm{O}_2} \mathrm{HO}_2 + \mathrm{CO} + \mathrm{Cl}$	2.55×10^{-8}	20
P65	gas	$\mathrm{CH}_3\mathrm{COCl} \xrightarrow{\mathrm{O}_2} \mathrm{CH}_3\mathrm{C}(\mathrm{O})\mathrm{OO} + \mathrm{Cl}$	1.79×10^{-10}	17
P66	gas	$CH_3COCOCl \xrightarrow{O_2} CH_3C(O)OO + CO + Cl$	1.79×10^{-10}	$= J_{P65}$
P67	gas	$\mathrm{HCOBr} \xrightarrow{\mathrm{O}_2} \mathrm{HO}_2 + \mathrm{CO} + \mathrm{Br}$	1.79×10^{-6}	17
P68	gas	$CBr_2O \rightarrow CO + 2Br$	2.83×10^{-7}	17
P69	gas	$CH_3COBr \xrightarrow{O_2} CH_3C(O)OO + Br$	1.79×10^{-6}	$= J_{P67}$
P70	gas	$CH_3COCOBr \xrightarrow{O_2} CH_3C(O)OO + CO + Br$	1.79×10^{-6}	$= J_{P67}$
P71	gas	$\mathrm{HOCH}_{2}\mathrm{OOH} \xrightarrow{\mathrm{O}_{2}} \mathrm{HCOOH} + \mathrm{HO}_{2} + \mathrm{OH}$	1.12×10^{-6}	21
P72	gas	$C_2H_5OOH \xrightarrow{O_2} CH_3CHO + HO_2 + OH$	1.14×10^{-6}	$= J_{P40}$
P73	gas	$\operatorname{n-PrOOH} \xrightarrow{O_2} C_2 H_5 CHO + HO_2 + OH$	1.14×10^{-6}	$= J_{P40}$
P74	gas	$i\text{-}PrOOH \xrightarrow{O_2} CH_3COCH_3 + HO_2 + OH$	1.14×10^{-6}	$= J_{P40}$
P75	gas	$\mathrm{CH}_{3}\mathrm{COCH}_{2}\mathrm{OOH} \xrightarrow{\mathrm{O}_{2}} \mathrm{CH}_{3}\mathrm{C}(\mathrm{O})\mathrm{OO} + \mathrm{HCHO} + \mathrm{OH}$	1.14×10^{-6}	$= J_{P40}$
P76	gas	$\rm CH_3CO_3H \xrightarrow{O_2} \rm CH_3OO + OH + \rm CO_2$	1.14×10^{-6}	$= J_{P40}$
P77	gas	$C_2H_5CO_3H \xrightarrow{O_2} C_2H_5OO + OH + CO_2$	1.14×10^{-6}	$= J_{P40}$
P78	gas	$\mathrm{HOCH}_2\mathrm{CO}_3\mathrm{H} \xrightarrow{\mathrm{O}_2} \mathrm{HCHO} + \mathrm{HO}_2 + \mathrm{OH} + \mathrm{CO}_2$	1.14×10^{-6}	$= J_{P40}$
P79	gas	$HOCH_2CH_2OOH \rightarrow HOCH_2CH_2O + OH$	1.14×10^{-6}	$= J_{P40}$
P80	gas	$ClCH_2CH_2OOH \xrightarrow{O_2} ClCH_2CHO + HO_2 + OH$	1.14×10^{-6}	$= J_{P40}$
P81	gas	$BrCH_2CH_2OOH \xrightarrow{O_2} BrCH_2CHO + HO_2 + OH$	1.14×10^{-6}	$= J_{\rm P40}$
P82	gas	$ClCH_2CO_3H \xrightarrow{O_2} ClCH_2OO + OH + CO_2$	1.14×10^{-6}	$= J_{P40}$
P83	gas	$BrCH_2CO_3H \xrightarrow{O_2} BrCH_2OO + OH + CO_2$	1.14×10^{-6}	$= J_{P40}$
P84	gas	$ClCH_2OOH \rightarrow ClCH_2O + OH$	1.14×10^{-6}	$= J_{P40}$
P85	gas	$BrCH_2OOH \rightarrow BrCH_2O + OH$	1.14×10^{-6}	$= J_{P40}$
P86	gas	$CH_3CH(OOH)CH_2OH \rightarrow CH_3CHO + HCHO + HO_2 + OH$	1.14×10^{-6}	$= J_{P40}$
P87	gas	$CH_3CH(OH)CO_3H \rightarrow CH_3CHO + HO_2 + OH + CO_2$	1.14×10^{-6}	$= J_{P40}$
P88	gas	$CH_3CH(OH)CH_2OOH \xrightarrow{\sim} CH_3CHO + HCHO + HO_2 + OH$	1.14×10^{-6}	$= J_{P40}$
P89	gas	$CH_3CH(OOH)CH_2Cl \xrightarrow{\sim} CH_3CHOCH_2Cl + OH$	1.14×10^{-6}	$= J_{P40}$

Table S4. (continued)				
	No.	Phase	Read	

No.	Phase	Reaction	J, s^{-1}	Reference
D 00			1 1 4 10=6	T
P90	gas	$CH_3COCHCIOOH \rightarrow CH_3C(O)OO + CO + HCI + OH$	1.14×10^{-6}	$\equiv J_{\rm P40}$
P91	gas	$CH_3CHClCH_2OOH \xrightarrow{\sim} CH_3CHClOO + HCHO + OH$	1.14×10^{-6}	$= J_{P40}$
P92	gas	$\mathrm{CH}_3\mathrm{CHClCO}_3\mathrm{H} \xrightarrow{\mathrm{O}_2} \mathrm{CH}_3\mathrm{CHClOO} + \mathrm{OH} + \mathrm{CO}_2$	1.14×10^{-6}	$= J_{P40}$
P93	gas	$CH_3CHClOOH \xrightarrow{O_2} CH_3C(O)OO + HCl + OH$	1.14×10^{-6}	$= J_{P40}$
P94	gas	$\rm CH_3CH(OOH)\rm CH_2Br \rightarrow \rm CH_3CHOCH_2Br + OH$	1.14×10^{-6}	$= J_{P40}$
P95	gas	$\rm CH_3COCHBrOOH \rightarrow \rm CH_3COCHBrO + OH$	1.14×10^{-6}	$= J_{P40}$
P96	gas	$\mathrm{CH}_{3}\mathrm{CHBrCH}_{2}\mathrm{OOH} \xrightarrow{\mathrm{O}_{2}} \mathrm{CH}_{3}\mathrm{CHBrOO} + \mathrm{HCHO} + \mathrm{OH}$	1.14×10^{-6}	$= J_{P40}$
P97	gas	$CH_3CHBrCO_3H \xrightarrow{O_2} CH_3CHBrOO + OH + CO_2$	1.14×10^{-6}	$= J_{P40}$
P98	gas	$CH_3CHBrOOH \rightarrow CH_3CHBrO + OH$	1.14×10^{-6}	$= J_{P40}$
P99	gas	$\mathrm{CH}_2 \!=\! \mathrm{CHCH}_2 \mathrm{OOH} \xrightarrow{\mathrm{O}_2} \mathrm{CH}_2 \!=\! \mathrm{CHCHO} + \mathrm{HO}_2 + \mathrm{OH}$	1.14×10^{-6}	$= J_{P40}$
P100	gas	$CH_2 = CHCO_3H \xrightarrow{O_2} HCHO + CO + HO_2 + OH + CO_2$	1.14×10^{-6}	$= J_{P40}$
P101	gas	$PAN \rightarrow CH_3C(O)OO + NO_2$	1.43×10^{-7}	20
P102	gas	$PHAN \rightarrow HOCH_2C(O)OO + NO_2$	3.43×10^{-8}	see note ^h
P103	gas	$\text{GLYPAN} \xrightarrow{\text{O}_2} 2 \text{ CO} + \text{HO}_2 + \text{O}_2 + \text{NO}_2$	1.43×10^{-7}	$= J_{P101}$
P104	gas	$PClAN \rightarrow ClCH_2C(O)OO + NO_2$	4.12×10^{-7}	see note ⁱ
P105	gas	$PBrAN \rightarrow BrCH_2C(O)OO + NO_2$	1.15×10^{-6}	see note ^j
P106	gas	$PPN \rightarrow C_2H_5C(O)OO + NO_2$	1.43×10^{-7}	$= J_{\rm P101}$
P107	gas	$i\text{-}PROPOLPAN \rightarrow CH_3CH(OH)C(O)OO + NO_2$	3.43×10^{-8}	see note ^h
P108	gas	$i\text{-}ClACETPAN \rightarrow CH_3CHClC(O)OO + NO_2$	4.12×10^{-7}	see note ⁱ
P109	gas	$i\text{-}BrACETPAN \rightarrow CH_3CHBrC(O)OO + NO_2$	1.15×10^{-6}	see note ^j
P110	gas	$ACRPAN \rightarrow CH_2 = CHC(O)OO + NO_2$	1.43×10^{-7}	$= J_{\rm P101}$

References for absorption cross sections and quantum yields: 1, WMO (1986); 2, Molina and Molina (1986); 3, Matsumi et al. (2002); 4, Graedel and Weschler (1981), 5, DeMore et al. (1997); 6, Wayne et al. (1991); 7, Zellner et al. (1990); 8, Warneck and Wurzinger (1988); 9, Wahner et al. (1987); 10, Sander et al. (2000); 11, Hubinger and Nee (1995); 12, Weller et al. (1992); 13, McGivern et al. (2000); 14, Atkinson et al. (1997); 15, Bacher et al. (2001); 16, Calvert et al. (2002); 17, Libuda (1992); 18, Orlando et al. (1999); 19, Burkholder et al. (2002); 20, Atkinson et al. (1999); 21, Bauerle and Moortgat (1999).

^a 24-hour average on an equinox day at 40° latitude with 340 DU column ozone and at T = 293 K.

^b Actinic flux inside aerosol particles is assumed to be a factor of two greater than that in the gas phase (Ruggaber et al., 1997).

^c Absorption cross sections are assumed to be red-shifted by 50 nm relative to ClNO₂.

 d Wavelength-dependent quantum yields of $CH_{3}Cl + CO$ and $ClCH_{2} + HCO$ are assumed to be red-shifted by 10 nm relative to those of $CH_4 + CO$ and $CH_3 + HCO$, respectively, for CH_3CHO photolysis.

^e Absorption cross sections are assumed to be red-shifted by 10 nm relative to ClCH₂CHO; Wavelengthdependent quantum yields of CH₃Cl + CO and ClCH₂ + HCO are assumed to be red-shifted by 20 nm relative to those of $CH_4 + CO$ and $CH_3 + HCO$, respectively, for CH_3CHO photolysis.

^f Absorption cross sections and wavelength-dependent quantum yields of CH₃CH(OH)CHO photolysis are assumed to be blue-shifted by 15 nm relative to those of C₂H₅CHO photolysis.

^g Absorption cross sections and wavelength-dependent quantum yields of CH₃CHClCHO and CH₃CHBrCHO photolysis are assumed to be red-shifted by 10 nm and 20 nm, respectively, relative to those of C₂H₅CHO photolysis.

^h Absorption cross sections are assumed to be blue-shifted by 15 nm relative to PAN.

ⁱ Absorption cross sections are assumed to be red-shifted by 10 nm relative to PAN.

^{*j*} Absorption cross sections are assumed to be red-shifted by 20 nm relative to PAN.

No.	Reaction	γ	Reference
$H1^{b}$	$N_2O_5 + H_2O \rightarrow 2 HNO_3$	0.032	Behnke et al. (1997)
$H2^{b}$	$N_2O_5 + Cl^- \rightarrow ClNO_2 + NO_3^-$	0.032	Behnke et al. (1997)
$H3^b$	$N_2O_5 + Br^- \rightarrow BrNO_2 + NO_3^-$	0.032	Behnke et al. (1997)
$H4^{b}$	$CIONO_2 + H_2O \rightarrow HOCl + HNO_3$	0.1	Koch and Rossi (1998)
$H5^b$	$\text{ClONO}_2 + \text{Cl}^- \rightarrow \text{Cl}_2 + \text{NO}_3^-$	0.1	Koch and Rossi (1998)
$H6^{b}$	$ClONO_2 + Br^- \rightarrow BrCl + NO_3^-$	0.1	Koch and Rossi (1998)
$\mathrm{H7}^{b}$	$BrONO_2 + H_2O \rightarrow HOBr + HNO_3$	0.8	Hanson et al. (1996)
$H8^b$	$BrONO_2 + Cl^- \rightarrow BrCl + NO_3^-$	0.8	Hanson et al. (1996)
$H9^{b}$	$BrONO_2 + Br^- \rightarrow Br_2 + NO_3^-$	0.8	Hanson et al. (1996)
H10	$H_2SO_4 + H_2O \rightarrow SO_4^{2-} + 2H^+$	0.65	Pöschl et al. (1998)
H11	$CH_3C(O)OO + H_2O \rightarrow CH_3COOH + HO_2$	0.001	DeMore et al. (1997)
H12	$HCOCl + H_2O \rightarrow CO + HCl + H_2O$	0.1	Sander et al. $(1997)^c$
H13	$HCOBr + H_2O \rightarrow CO + HBr + H_2O$	0.1	Sander et al. (1997) ^c
H14	$CH_3COCl + H_2O \rightarrow CH_3COOH + HCl$	8×10^{-4}	see note ^{d}
H15	$CH_3COCOCl + H_2O \rightarrow CH_3COCOOH + HCl$	8×10^{-4}	see note ^{d}
H16	$CH_{3}COBr + H_{2}O \rightarrow CH_{3}COOH + HBr$	8×10^{-4}	see note ^{d}
H17	$CH_{3}COCOBr + H_{2}O \rightarrow CH_{3}COCOOH + HBr$	8×10^{-4}	see note ^{d}

Table S5. Heterogeneous Reactions and their Reactive Uptake Coefficients $(\gamma)^a$

^{*a*} It is assumed that reaction products are diffused into the bulk of aerosol volume and then subject to either aqueous-phase reactions or release to the gas phase.

 b N₂O₅, ClONO₂, and BrONO₂ can react with either H₂O or halide ions on aerosol surface. Their relative reactivities towards H₂O, Cl⁻, and Br⁻ are assumed to be 3.3×10^{-6} , 1.7×10^{-3} , and 1, respectively (Sander et al., 1999).

 c In their modeling study Sander et al. (1997) tentatively assigned this value for reactive uptake of formyl halides, which appears quite reasonable considering the rapid non-hydrolytic decay of HCOCl to give CO + HCl that occurs in aqueous solution (Dowideit et al., 1996). The latter authors also found that hydrolysis of HCOCl to give HCOOH + HCl occurs negligibly slowly as compared with the non-hydrolytic decay (see also discussion in Sects. S1 and 3.2.3).

 \overline{d} The value of γ assigned is taken from that for CCl₃COCl uptake onto water determined by George et al. (1994).

Table S6. Henry's Law Constants ($K_{\rm H}$) and Mass Accommodation Coefficients (α) for Species Capable of Being Transferred across Gas-Aerosol Interface^{*a,b*}

Species	$K_{\mathrm{H}}^{\ominus},\mathrm{M}\mathrm{atm}^{-1}$	$-\Delta H_{ m soln}/R,~{ m K}$	Reference	α^\ominus	$-\Delta H_{\rm obs}^{\#}/R,~{\rm K}$	Reference
O ₂	1.70×10^{-3}	1500	1	0.01		2
O_3	1.20×10^{-2}	2560	3	0.002		4
OH	2.50×10^1		5	0.2		6
HO_2	9.00×10^3		7	0.2		6
H_2O_2	9.90×10^4	6300	8	0.115	2769	9
NO	1.90×10^{-3}	1400	1	0.0015		$= \alpha(NO_2)$
NO ₂	7.00×10^{-3}		10	0.0015		11
NO ₃	1.80×10^0		12	0.002		12
HONO	4.90×10^{1}	4780	13	0.05		14
HNO ₃	2.10×10^5	8700	5	0.06	3323	9
HO ₂ NO ₂	1.26×10^{4}	6868	15	0.115	2769	$= \alpha(\mathrm{H}_2\mathrm{O}_2)$
NH ₃	5.80×10^{1}	4085	3	0.097		6
CH ₃ OH	2.20×10^2	5200	16	0.017	4028	9
CH ₃ OO	6.00×10^{0}	5586	17	0.01		2
CH ₃ OOH	3.00×10^2	5300	8	0.0046	3273	18
HCHO	3.00×10^{3}	7193	19 ^c	0.04		6
CH ₃ CHO	6.70×10^{0}	6267	19^d	0.03		20
HCOOH	3.70×10^3	5700	3	0.014	3977	9
CH ₃ COOH	4.10×10^{3}	6300	21	0.02	4078	9
CH ₃ CO ₃ H	6.70×10^{2}	5900	8	0.0046	3273	$= \alpha (CH_3COOH)$
C ₂ H ₅ COOH	5.70×10^{3}		22	0.02	4078	$= \alpha (CH_3COOH)$
HOCH ₂ COOH	9.00×10^{3}		$= K_{\rm H}({\rm HCOCOOH})$	0.02	4078	$= \alpha (CH_3COOH)$
НСОСООН	9.00×10^{3}		23	0.02	4078	$= \alpha (CH_3COOH)$
CH ₃ COCOOH	3.10×10^{5}	5100	22	0.02	4078	$= \alpha (CH_3COOH)$
$CH_2 = CHCOOH$	2.40×10^{3}		24	0.02	4078	$= \alpha (CH_3COOH)$
ClCH ₂ COOH	1.08×10^{5}	9742	25	0.139		26
BrCH ₂ COOH	1.53×10^{5}	9261	25	0.139		$= \alpha (\text{ClCH}_2\text{COOH})$
CH ₃ CHClCOOH	1.08×10^{5}	9742	$= K_{\rm H}({\rm ClCH}_2{\rm COOH})$	0.139		$= \alpha (\text{ClCH}_2\text{COOH})$
CH ₃ CHBrCOOH	1.53×10^{5}	9261	$= K_{\rm H}({\rm BrCH}_2{\rm COOH})$	0.139		$= \alpha (\text{ClCH}_2\text{COOH})$
CO_2	3.10×10^{-2}	2423	3	0.01		2
HCI	1.10×10^{0}	2023	27	0.066	3625	28
HOCI	6.60×10^{2}	5900	29	0.066	3625	$= \alpha(\text{HCl})$
CH ₃ OCl	6.60×10^{1}	5900	$= K_{\rm H}({\rm HOCl}) \times 0.1$	0.066	3625	$= \alpha$ (HCl)
Cl ₂	9.40×10^{-2}	2109	1	0.038	6545	30
CINO ₂	4.60×10^{-2}		31	0.009		32
HBr	1.30×10^{0}	10239	33, 34	0.018	5035	28
HOBr	6.10×10^3		31	0.6		35
BrO	6.10×10^{3}		$= K_{\rm H}({\rm HOBr})$	0.1		36 ^e
Br_2	7.70×10^{-1}	229	37	0.038	6545	30
BrCl	9.40×10^{-1}	5629	37	0.33		38
$BrNO_2$	3.00×10^{-1}	-	31	0.009		$= \alpha(\text{ClNO}_2)$
						()

(continued on the next page)

K. Toyota et al.: Photochemistry of VOCs and halogens in the MBL (Supplement)

Table S6.	(continued)
-----------	-------------

Species	$K_{\rm H}^{\ominus},{\rm M}{\rm atm}^{-1}$	$-\Delta H_{ m soln}/R,~{ m K}$	Reference	$lpha^{\ominus}$	$-\Delta H_{\rm obs}^{\#}/R,\;{\rm K}$	Reference
SO ₂ CH ₃ SO ₃ H	1.20×10^{0} 8.90×10^{11}	3120	3 39	0.11 0.076	1762	6 40

References: 1, Lide (1999); 2, Sander and Crutzen (1996); 3, Chameides (1984); 4, Utter et al. (1992); 5, Lelieveld and Crutzen (1991); 6, DeMore et al. (1997); 7, Weinstein-Lloyd and Schwartz (1991); 8, Lind and Kok (1994); 9, Jayne et al. (1991); 10, Lee and Schwartz (1981); 11, Ponche et al. (1993); 12, Thomas et al. (1998); 13, Schwartz and White (1981); 14, Bongartz et al. (1994); 15, Régimbal and Mozurkewich (1997); 16, Snider and Dawson (1985); 17, Seinfeld and Pandis (1998); 18, Magi et al. (1997); 19, Betterton and Hoffmann (1988b); 20, Jayne et al. (1992); 21, Johnson et al. (1996); 22, Khan et al. (1995); 23, Saxena and Hildemann (1996); 24, Yaws and Yang (1992); 25, Bowden et al. (1998); 26, Hu et al. (1993); 27, Marsh and McElroy (1985); 28, Schweitzer et al. (2000); 29, Huthwelker et al. (1995); 30, Hu et al. (1995); 31, Frenzel et al. (1998); 32, Fickert et al. (1998); 33, Brimblecombe and Clegg (1988); 34, Brimblecombe and Clegg (1989); 35, Wachsmuth et al. (2002); 36, Abbatt (1996); 37, Bartlett and Margerum (1999); 38, Katrib et al. (2001); 39, Clegg and Brimblecombe (1985); 40, De Bruyn et al. (1994).

^{*a*} Temperature dependence of Henry's law constants is given by $K_{\rm H} = K_{\rm H}^{\ominus} \times \exp[-\Delta H_{\rm soln}/R \times (1/T - 1/T^{\ominus})]$, where $K_{\rm H}^{\ominus}$ is $K_{\rm H}$ at T^{\ominus} , $T^{\ominus} = 298.15$ K, $\Delta H_{\rm soln}$ is the enthalpy of solution and R is gas constant.

^b Temperature dependence of mass accommodation coefficients is given by $d \ln[\alpha/(1-\alpha)]/d(1/T) = -\Delta H_{obs}^{\#}/RT$, where $\Delta H_{obs}^{\#}$ is the enthalpy of transition state between the gas and solvated states and R is gas constant.

^c Effective Henry's law constant that takes into account the hydrolysis of HCHO in the aqueous phase, as reported by Betterton and Hoffmann (1988b): $K_{\rm H} = ([{\rm HCHO}]_{\rm aq} + [{\rm CH}_2({\rm OH})_2])/p({\rm HCHO})$. Considering a fact that formaldehyde in the aqueous phase predominantly exists as its hydrated form ($[{\rm HCHO}]_{\rm aq} \ll [{\rm CH}_2({\rm OH})_2]$; see Table S7), $K_{\rm H} = [{\rm CH}_2({\rm OH})_2]/p({\rm HCHO})$ is assumed to hold at equilibrium of ${\rm HCHO}({\rm gas}) \rightleftharpoons {\rm CH}_2({\rm OH})_2$.

^{*d*} Effective Henry's law constant that takes into account the hydrolysis of CH₃CHO in the aqueous phase as reported by Betterton and Hoffmann (1988b) is corrected using a hydrolysis constant given in Table S7; $K_{\rm H} = [\rm CH_3CH(OH)_2]/p(\rm CH_3CHO)$ at equilibrium of CH₃CHO(gas) \rightleftharpoons CH₃CH(OH)₂.

^e Estimated based on the experimental study by Abbatt (1996), who determined reactive uptake coefficients for BrO on the surface of NaCl solutions doped with Na_2SO_3 .

Table S7. Aqueous-Phase Equilibrium Constants (K_{eq}) for Acids, Bases, Hydrates, and Other Species that Undergo Ion Dissociation in Water^a

No.	Reaction	$K_{eq}^{298}, {\rm M}$	$-\Delta H/R$, K	Reference
E1	$H_2O \rightleftharpoons H^+ + OH^-$	1.0×10^{-14}	-6716	National Bureau of Standards (1965)
E2	$HO_2 \rightleftharpoons H^+ + O_2^-$	1.60×10^{-5}		Weinstein-Lloyd and Schwartz (1991)
E3	$H_2O_2 \rightleftharpoons H^+ + HO_2^-$	2.2×10^{-12}	-3730	Smith and Martell (1976)
E4	$NH_3 + H_2O \rightleftharpoons OH^- + NH_4^+$	1.70×10^{-5}	-4325	Chameides (1984)
E5	$HONO \rightleftharpoons H^+ + NO_2^-$	5.10×10^{-4}	-1260	Schwartz and White (1981)
E6	$HNO_3 \rightleftharpoons H^+ + NO_3^-$	1.50×10^{1}		Lelieveld and Crutzen (1991)
E7	$HO_2NO_2 \rightleftharpoons H^+ + NO_4^-$	1.41×10^{-6}		Løgager and Sehested (1993)
E8	$HCHO + H_2O \rightleftharpoons CH_2(OH)_2$	2.45×10^3	4000	Warneck (1998) and references therein
E9	$CH_3CHO + H_2O \rightleftharpoons CH_3CH(OH)_2$	1.43×10^{0}	2518	Bell (1966); Bell and Evans (1966)
E10	$HCOOH \rightleftharpoons H^+ + HCOO^-$	1.80×10^{-4}		Lide (1999)
E11	$CH_3COOH \rightleftharpoons H^+ + CH_3COO^-$	1.76×10^{-5}		Lide (1999)
E12	$C_2H_5COOH \rightleftharpoons H^+ + C_2H_5COO^-$	1.34×10^{-5}		Lide (1999)
E13	$HOCH_2COOH \rightleftharpoons H^+ + HOCH_2COO^-$	1.48×10^{-4}		Lide (1999)
E14	$HCOCOOH \rightleftharpoons H^+ + HCOCOO^-$	1.48×10^{-4}		$= K_{eq}(\text{HOCH}_2\text{COOH})$
E15	$CH_3COCOOH \rightleftharpoons H^+ + CH_3COCOO^-$	3.39×10^{-3}		Fisher and Warneck (1991)
E16	$CH_2 = CHCOOH \rightleftharpoons H^+ + CH_2 = CHCOO^-$	5.60×10^{-5}		Lide (1999)
E17	$ClCH_2COOH \rightleftharpoons H^+ + ClCH_2COO^-$	1.40×10^{-3}		Lide (1999)
E18	$BrCH_2COOH \rightleftharpoons H^+ + BrCH_2COO^-$	2.05×10^{-3}		Lide (1999)
E19	$CH_3CHClCOOH \rightleftharpoons H^+ + CH_3CHClCOO^-$	1.47×10^{-3}		Lide (1999)
E20	$CH_3CHBrCOOH \rightleftharpoons H^+ + CH_3CHBrCOO^-$	2.05×10^{-3}		$= K_{eq}(BrCH_2COOH)$
E21	$CH_3CO_3H \rightleftharpoons H^+ + CH_3CO_3^-$	6.31×10^{-9}		Fortnum et al. (1960)
E22	$CO_2 + H_2O \rightleftharpoons H^+ + HCO_3^-$	4.30×10^{-7}	-913	Chameides (1984)
E23	$\mathrm{HCl} \rightleftharpoons \mathrm{H}^+ + \mathrm{Cl}^-$	1.70×10^6	6896	Marsh and McElroy (1985)
E24	$\mathrm{Cl}_2^- \rightleftharpoons \mathrm{Cl} + \mathrm{Cl}^-$	5.20×10^{-6}		Jayson et al. (1973)
E25	$\operatorname{Cl}_{3}^{-} \rightleftharpoons \operatorname{Cl}_{2} + \operatorname{Cl}^{-}$	5.56×10^{0}		Wang et al. (1994)
E26	$HOCl \rightleftharpoons H^+ + ClO^-$	3.20×10^{-8}		Lax (1969)
E27	$HBr \rightleftharpoons H^+ + Br^-$	1.00×10^{9}		Lax (1969)
E28	$Br_2^- \rightleftharpoons Br + Br^-$	1.53×10^{-6}		Merényi and Lind (1994)
E29	$\tilde{\mathrm{HOBr}} \rightleftharpoons \mathrm{H}^+ + \mathrm{BrO}^-$	2.30×10^{-9}	-3091	Kelly and Tartar (1956)
E30	$HBrO_2 \rightleftharpoons H^+ + BrO_2^-$	3.70×10^{-4}		Faria et al. (1994)
E31	$\mathrm{Br}_3^- \rightleftharpoons \mathrm{Br}^- + \mathrm{Br}_2$	6.21×10^{-2}		Wang et al. (1994)
E32	$\operatorname{BrCl}_2^- \rightleftharpoons \operatorname{Br}^- + \operatorname{Cl}_2$	2.38×10^{-7}		Liu and Margerum (2001)
E33	$\operatorname{BrCl}_2^- \rightleftharpoons \operatorname{BrCl} + \operatorname{Cl}^-$	2.63×10^{-1}		Liu and Margerum (2001)
E34	$Br_2Cl^- \rightleftharpoons Br^- + BrCl$	5.56×10^{-5}		Wang et al. (1994)
E35	$Br_2Cl^- \rightleftharpoons Cl^- + Br_2$	7.69×10^{-1}		Wang et al. (1994)
E36	$SO_2 + H_2O \rightleftharpoons H^+ + HSO_3^-$	1.70×10^{-2}	2090	Chameides (1984)
E37	$HSO_3^- \rightleftharpoons H^+ + SO_3^{2-}$	6.00×10^{-8}	1120	Chameides (1984)
E38	$HSO_4^{\sim} \rightleftharpoons H^+ + SO_4^{\sim}$	1.02×10^{-2}	2720	Smith and Martell (1976)
E39	$HSO_5^- \rightleftharpoons H^+ + SO_5^{2-}$	3.98×10^{-10}		Fortnum et al. (1960)
E40	$\mathrm{CH}_3 \overset{\circ}{\mathrm{SO}}_3 \mathrm{H} \rightleftharpoons \mathrm{CH}_3 \overset{\circ}{\mathrm{SO}}_3^- + \mathrm{H}^+$	$7.30 imes 10^1$		Clarke and Woodward (1966)

^{*a*} Temperature dependence of equilibrium constants is given by $K_{eq} = K_{eq}^{298} \times \exp[-\Delta H/R \times (1/T - 1/298)]$, where ΔH is reaction enthalpy and R is gas constant.

No.	Reaction (of Order n)	n	$k^{298}, \mathrm{M}^{1-\mathrm{n}}\mathrm{s}^{-1}$	$-E_a/R, K$	Reference
Δ1	$O_2 + O^{-} \xrightarrow{H_2O} OH + OH^{-} + 2O_2$	2	1.50×10^9		1
A2	$O_3 + O_2 \longrightarrow O_1 + O_1 + 2O_2$ $O_3 + O_2 \longrightarrow HO_2 + O_2$	2	1.30×10^{10} 1.10×10^{8}		2
A3	$OH + OH \rightarrow H_2O_2$	2	5.50×10^{9}		3
A4	$OH + HO_2 \rightarrow H_2O + O_2$	2	7.10×10^9		4
A5	$OH + O_2^- \rightarrow OH^- + O_2$	2	1.00×10^{10}		4
A6	$H_2O_2 + OH \rightarrow HO_2 + H_2O$	2	2.70×10^7		5
A7	$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$	2	9.70×10^{5}	-2500	6
A8	$HO_2 + O_2^- \rightarrow HO_2^- + O_2$	2	$1.00 \times 10^{\circ}$	-900	6
A9	$O_2 + O(^{\circ}P) \rightarrow O_3$ $U_1 O_2 + O(^{\circ}P) \rightarrow O_1 + UO_2$	2	4.00×10^{9}		7
A10	$H_2O_2 + O(^3P) \rightarrow OH + HO_2$ $HO^- + O(^3P) \rightarrow OH + O^-$	2	1.00×10^{9} 5.20 × 10 ⁹		8
A11 A12	$HO_2 + O(P) \rightarrow OH + O_2$ $OH^- + O(^{3}P) \rightarrow HO^-$	2	3.30×10 4 20 × 10 ⁸		o 8
A 12	$NO + NO = \frac{H_2O}{2} 2 NO^- + 2 H^+$	2	1.20×10^{8}		0
A15 A14	$NO + NO_2 \rightarrow 2NO_2 + 2H^+$ $NO + OH \rightarrow NO^- + H^+$	2	2.00×10 2.00 × 10 ¹⁰		9
A 15	$NO + NO = \frac{H_2O}{2} NO^- + NO^- + 2U^+$	2	2.00×10^{7}		10
A15	$NO_2 + NO_2 \rightarrow NO_2 + NO_3 + 2H^2$ $NO_2 + OH \rightarrow NO^- + H^+$	2	0.30×10 1 30 × 10 ⁹		11
A10 A17	$NO_2 + O_1 \rightarrow NO_3 + H$ $NO_2 + O_2 \rightarrow NO_2 + O_2$	2	4.50×10^{9}		12
A18	$NO_2 + HO_2 \rightarrow HO_2NO_2$	2	1.80×10^{9}	-2778	13
A19	$HO_2NO_2 + HONO \rightarrow 2NO_3^- + 2H^+$	2	1.20×10^{1}		13
A20	$HO_2NO_2 \rightarrow HONO + O_2$	1	7.00×10^{-4}		13
A21	$HO_2NO_2 \rightarrow HO_2 + NO_2$	1	2.60×10^{-2}	-13242	14
A22	$\mathrm{NO}_4^- \rightarrow \mathrm{NO}_2^- + \mathrm{O}_2$	1	1.00×10^{0}		13
A23	$HONO + OH \rightarrow NO_2 + H_2O$	2	1.00×10^{9}	-1500	15
A24	$HONO + NO_3 \rightarrow NO_2 + NO_3^- + H^+$	2	8.00×10^{6}	(700	16
A25	$HONO + H_2O_2 + H' \rightarrow NO_3 + 2H' + H_2O$	3	$6.30 \times 10^{\circ}$	-6/00	1/
A20 A27	$NO_2^- + OI^- \rightarrow NO_2^- + OI^-$	2	8.00×10 2.50 × 10 ⁸		18
A28	$NO_2^- + Br_2^- \rightarrow NO_2^- + 2Br_1^-$	2	2.90×10^{7}		20
A29	$NO_2^- + BrO_2 \rightarrow NO_2 + BrO_2^-$	2	2.00×10^{6}		20
A30	$NO_2^- + NO_3 \rightarrow NO_2 + NO_3^-$	2	1.20×10^9		21
A31	$NO_2^- + O_3 \rightarrow NO_3^- + O_2$	2	3.30×10^5		22
A32	$\mathrm{NO}_3^- + \mathrm{O}({}^3\mathrm{P}) \rightarrow \mathrm{NO}_2^- + \mathrm{O}_2$	2	2.24×10^{8}		23
A33	$NO_2^- + O(^{3}P) \rightarrow NO_3^-$	2	1.48×10^{9}		23
A34	$NO_3 + HO_2 \rightarrow NO_3^- + H^+ + O_2$	2	4.50×10^9	-1500	24
A35	$NO_3 + O_2 \rightarrow NO_3 + O_2$ $NO_3 + U_2 \rightarrow NO_3 + U_2$	2	$1.00 \times 10^{\circ}$ 7.10 × 10 ⁶	-1500	24
A30 A37	$NO_3 + H_2O_2 \rightarrow NO_3 + HO_2 + H^2$ $NO_2 + OH^- \rightarrow NO^- + OH$	2	7.10×10 8.20 × 10 ⁷	-241	25
A38	$CH_3OO + HO_2 \rightarrow CH_3OOH + O_2$	2	4.30×10^{5}	-2700	20
Δ39	$CH_2OO + O^{-} \xrightarrow{H_2O} CH_2OOH + OH^{-} + O_2$	2	5.00×10^{7}		24
A3) A40	$CH_3OOH + OH_2 \rightarrow CH_3OOH + OH + O_2$ $CH_2OOH + OH \rightarrow CH_2OO + H_2O$	2	3.00×10^{-2} 2.70 × 10 ⁷	-1700	24
A41	$CH_3OOH + OH \rightarrow HCHO + OH + H_2O$	2	1.90×10^{7}	-1800	24
A42	$CH_3OH + OH \xrightarrow{O_2} HCHO + HO_2 + H_2O$	2	9.70×10^{8}		3
A43	$CH_3OH + SO_4^- \xrightarrow{O_2} HCHO + HO_2 + SO_4^{2-} + H^+$	2	9.00×10^6	-2190	27
A44	$CH_3OH + NO_3 \xrightarrow{O_2} HCHO + HO_2 + NO_3^- + H^+$	2	5.40×10^5	-4300	28
A45	$\mathrm{CH}_{3}\mathrm{OH} + \mathrm{Cl}_{2}^{-} \xrightarrow{\mathrm{O}_{2}} \mathrm{HCHO} + \mathrm{HO}_{2} + 2\mathrm{Cl}^{-} + \mathrm{H}^{+}$	2	1.00×10^3	-5500	29
A46	$\mathrm{CH}_3\mathrm{OH} + \mathrm{Br}_2^- \xrightarrow{\mathrm{O}_2} \mathrm{HCHO} + \mathrm{HO}_2 + 2\mathrm{Br}^- + \mathrm{H}^+$	2	4.40×10^3		30
A47	$\mathrm{CH}_3\mathrm{OH} + \mathrm{CO}_3^- \xrightarrow{\mathrm{O}_2} \mathrm{HCHO} + \mathrm{HO}_2 + \mathrm{HCO}_3^-$	2	2.60×10^3		29
A48	$\mathrm{CH}_2(\mathrm{OH})_2 + \mathrm{OH} \xrightarrow{\mathrm{O}_2} \mathrm{HCOOH} + \mathrm{HO}_2 + \mathrm{H}_2\mathrm{O}$	2	2.00×10^9	-1500	31
A49	$\mathrm{CH}_2(\mathrm{OH})_2 + \mathrm{SO}_4^- \xrightarrow{\mathrm{O}_2} \mathrm{HCOOH} + \mathrm{HO}_2 + \mathrm{SO}_4^{2-} + \mathrm{H}^+$	2	1.40×10^7	-1300	32
A50	$\mathrm{CH}_2(\mathrm{OH})_2 + \mathrm{NO}_3 \xrightarrow{\mathrm{O}_2} \mathrm{HCOOH} + \mathrm{HO}_2 + \mathrm{NO}_3^- + \mathrm{H}^+$	2	1.00×10^6	-4500	33

Table S8. Aqueous-Phase Reactions and their Rate Constants^a

Table S8. (continued)

No.	Reaction (of Order n)	n	$k^{298}, \mathrm{M}^{1-\mathrm{n}}\mathrm{s}^{-1}$	$-E_a/R, K$	Reference
A51	$CH_2(OH)_2 + Cl_2^- \xrightarrow{O_2} HCOOH + HO_2 + 2Cl + H^+$	2	3.10×10^4	-4400	29
A52	$CH_2(OH)_2 + CH_2 \rightarrow HCOOH + HO_2 + 2 CH + H^+$ $CH_2(OH)_2 + Br \xrightarrow{O_2} HCOOH + HO_2 + 2 Br + H^+$	2	3.00×10^3	1100	34
Δ53	$CH_2(OH)_2 + DI_2^{-0} + HCOOH + HO_2 + 2DI^{-0} + HCO^{-0}$	2	1.30×10^4		29
A 54	$CH_2(CH)_2 + CO_3 \rightarrow HOOOH + HO_2 + HOO_3$ $CH_2CH(OH)_2 + OH \xrightarrow{O_2} CH_2COOH + HO_2 + H_2O$	2	1.00×10^{9} 1.20×10^{9}		35
Δ 5 5	$CH_{2}CHO + OH \xrightarrow{H_{2}O_{2}}CH_{2}COOH + HO_{2} + H_{2}O$	2	1.20×10^{9}		35
A56	$CH_{2}CH(OH)_{0} + SO^{-0}_{2}CH_{2}COOH + HO_{0} + SO^{2-}_{2} + H^{+}$	2	1.00×10^{7}		35
A57	$CH_3CH(OH)_2 + SO_4 \rightarrow CH_3COOH + HO_2 + SO_4 + H$ $CH_3CH(OH)_2 + NO_2 \stackrel{O_2}{\longrightarrow} CH_3COOH + HO_2 + NO^- + H^+$	2	1.00×10^{6}		29 29
A58	$CH_3CH(OH)_2 + RO_3 \rightarrow OH_3COOH + RO_2 + RO_3 + H$ $CH_3CH(OH)_2 + Cl^{-} \frac{O_2}{2} CH_3COOH + HO_2 + 2 Cl^{-} + H^+$	2	1.90×10^{4}		36
A50	$CH_3CH(OH)_2 + CH_2 \rightarrow CH_3COOH + HO_2 + 2CH + H^+$ $CH_2CH(OH)_2 + Br^- O_2 CH_2COOH + HO_2 + 2Br^- + H^+$	2	4.00×10^{4}		34
A59	$CH_{3}CH(OH)_{2} + Gh_{2}^{-} \rightarrow CH_{3}COOH + HO_{2} + 2Gh^{-} + H$ $CH_{3}CH(OH)_{2} + CO^{-} O_{2}^{-} CH_{3}COOH + HO_{2} + 4CO^{-}$	2	4.00×10^{4}		34
A00	$HCOOH + OH \stackrel{O_2}{\longrightarrow} HO + CO + HO$	2	1.00×10^{8}	001	34 27
A01	$HCOOT + OH \rightarrow HO_2 + CO_2 + H_2O$	2	1.10×10^{9}	-991	37
A02	$HCOOH + OH \rightarrow OH + HO_2 + CO_2$	2	3.10×10^{6}	-1240	37
A63	$HCOOH + SO_4 \rightarrow HO_2 + CO_2 + SO_4^- + H^-$	2	2.50×10^{3}		38
A64	$HCOO + SO_4 \rightarrow HO_2 + CO_2 + SO_4$	2	2.10×10^{5}	2400	38
A65	$HCOOH + NO_3 \rightarrow HO_2 + CO_2 + NO_3 + H^{-1}$	2	3.80×10^{3}	-3400	39
A66	$HCOO^- + NO_3 \rightarrow HO_2 + CO_2 + NO_3$	2	$5.10 \times 10^{\prime}$	-2200	39
A67	$HCOOH + Cl_2^{-} \xrightarrow{\rightarrow} HO_2 + CO_2 + 2Cl^{-} + H^{+}$	2	5.50×10^{3}	-4500	40
A68	$HCOO^- + Cl_2^- \xrightarrow{\longrightarrow} HO_2 + CO_2 + 2Cl^-$	2	$1.90 \times 10^{\circ}$		19
A69	$\text{HCOOH} + \text{Br}_2^- \xrightarrow{\circ} \text{HO}_2 + \text{CO}_2 + 2 \text{Br}^- + \text{H}^+$	2	4.00×10^{3}		41
A70	$\text{HCOO}^- + \text{Br}_2^- \xrightarrow{\text{O}2} \text{HO}_2 + \text{CO}_2 + 2 \text{Br}^-$	2	4.90×10^{3}		36
A71	$HCOO^- + CO_3^- \xrightarrow{\hookrightarrow} HO_2 + CO_2 + HCO_3^- + OH^-$	2	1.40×10^{5}	-3300	29
A72	$HCO_3^- + OH \rightarrow H_2O + CO_3^-$ $HCO^- + O^- \rightarrow HO^- + CO^-$	2	$8.50 \times 10^{\circ}$		3
A74	$CO_{3}^{-} + O_{2}^{-} \rightarrow HO_{2}^{-} + O_{3}^{-}$	2	0.00×10^{8}		42
A74 A75	$CO_3 + O_2 \rightarrow HCO_3 + OH + O_2$ $CO_2 + H_2O_2 \rightarrow HCO_2 + HO_2$	2	4.30×10^{5}		43 44
A76	$CO_{3}^{-} + HCOO^{-} H_{2}^{-}O_{3}^{-} 2 HCO_{2}^{-} + HO_{2}^{-}$	2	1.50×10^5		44
A77	$Cl^- + OH \rightarrow ClOH^-$	2	4.30×10^{9}		45
A78	$\mathrm{Cl}^- + \mathrm{NO}_3 \rightarrow \mathrm{Cl} + \mathrm{NO}_3^-$	2	1.00×10^7	-4300	26
A79	$Cl + H_2O \rightarrow ClOH^- + H^+$	1	1.30×10^{3}		46
A80	$\text{ClOH}^- \rightarrow \text{Cl}^- + \text{OH}$	1	6.10×10^9		45
A81	$ClOH^{-} + H^{+} \rightarrow Cl + H_2O$	2	2.10×10^{10}		45
A82	$Cl_2 + Cl_2 \rightarrow Cl_3 + Cl$ $Cl_2 + OH \rightarrow HOCl + Cl_2$	2	1.00×10^{9}		40 47
A83 A84	$Cl_2^- + Oli \rightarrow HOOI + Ol$ $Cl_2^- + HO_2 \rightarrow 2Cl_2^- + H^+ + O_2$	2	1.00×10 4 50 × 10 ⁹		47 48
A85	$Cl_2 + HO_2 \rightarrow 2Cl_1 + H_1 + O_2$ $Cl_2 + O_2 \rightarrow 2Cl_2 + O_2$	2	1.00×10^9		49
A86	$Cl_{2}^{-} + H_{2}O_{2}^{-} \rightarrow 2Cl_{-}^{-} + HO_{2}^{-} + H^{+}$	2	1.40×10^{5}		19
A87	$\mathrm{Cl}^{-} + \mathrm{HOCl} + \mathrm{H}^{+} \rightarrow \mathrm{Cl}_{2} + \mathrm{H}_{2}\mathrm{O}$	3	2.20×10^{4}	-3508	50
A88	$\mathrm{Cl}^- + \mathrm{CH}_3\mathrm{OCl} + \mathrm{H}^+ \rightarrow \mathrm{Cl}_2 + \mathrm{CH}_3\mathrm{OH}$	3	2.20×10^4	-3508	$= k_{A87}$
A89	$Cl_2 + H_2O \rightarrow Cl^- + HOCl + H^+$	1	2.20×10^1	-8012	50
A90	$\mathrm{Cl}^- + \mathrm{HOCl} + \mathrm{HSO}_4^- \rightarrow \mathrm{Cl}_2 + \mathrm{SO}_4^{2-} + \mathrm{H}_2\mathrm{O}$	3	2.80×10^{3}		50
A91	$\mathrm{Cl}^- + \mathrm{CH}_3\mathrm{OCl} + \mathrm{HSO}_4^- \rightarrow \mathrm{Cl}_2 + \mathrm{SO}_4^{2-} + \mathrm{CH}_3\mathrm{OH}$	3	2.80×10^{3}		$= k_{A90}$
A92	$\operatorname{Cl}_2 + \operatorname{SO}_4^{2-} \xrightarrow{\operatorname{n}_2 \cup} \operatorname{Cl}^- + \operatorname{HOCl} + \operatorname{HSO}_4^-$	2	3.20×10^{1}		50
A93	$Cl^- + HOCl + HCOOH \rightarrow Cl_2 + HCOO^- + H_2O$	3	1.20×10^{-1}		50
A94	C1 + CH ₃ OCI + HCOOH \rightarrow Cl ₂ + HCOO ⁻ + CH ₃ OH	3	1.20×10^{-1}		$= k_{A93}$
A95	$Cl_2 + HCOO^{-1} \rightarrow Cl^{-} + HOCl + HCOOH$	2	1.20×10^2		50
А96 д 97	$Br^{-} + OH \rightarrow BrOH$ $Br^{-} + NO_{2} \rightarrow Br + NO^{-}$	2	1.10×10^{10} 4.00×10^{9}		51 52
11)1	DI + 11O3 / DI + 11O3	4	1.00 \ 10		52

No.	Reaction (of Order n)	n	$k^{298}, \mathrm{M}^{1-\mathrm{n}}\mathrm{s}^{-1}$	$-E_a/R, K$	Reference
A98	$Br + OH^- \rightarrow BrOH^-$	2	1.30×10^{10}		51
A99	$BrOH^- \rightarrow Br^- + OH$	1	3.30×10^7		51
A100	$BrOH^- \rightarrow Br + OH^-$	1	4.20×10^6		51
A101	$BrOH^- + H^+ \rightarrow Br + H_2O$	2	4.40×10^{10}		51
A102	$BrOH^- + Br^- \rightarrow Br_2^- + OH^-$	2	2.00×10^8		53
A103	$Br_2^- + Br_2^- \rightarrow Br^- + Br_3^-$	2	1.90×10^{9}		54
A104	$\operatorname{Br}_2^- + \operatorname{HO}_2 \to \operatorname{Br}_2 + \operatorname{HO}_2^-$	2	9.10×10^7		55
A105	$Br_2^- + HO_2 \rightarrow 2Br^- + H^+ + O_2$	2	1.00×10^{8}		55
A106	$Br_2^- + O_2^- \rightarrow 2Br^- + O_2$	2	1.70×10^8		55
A107	$Br_2^- + H_2O_2 \rightarrow 2Br^- + H^+ + HO_2$	2	5.00×10^2		56
A108	$HOBr + O_2^- \rightarrow Br + OH^- + O_2$	2	3.50×10^{9}		57
A109	$HOBr + H_2O_2 \rightarrow Br^- + H^+ + O_2 + H_2O$	2	3.40×10^{6}		58
A110	$Br_2 + O_2^- \rightarrow Br_2^- + O_2$	2	5.00×10^9		57
A111	$Br_2 + HO_2 \rightarrow Br_2^- + O_2 + H^+$	2	1.30×10^{8}		57
A112	$Br_3^- + O_2^- \rightarrow Br^- + Br_2^- + O_2$	2	1.50×10^{9}		57
A113	$Cl^{-} + HOBr \rightarrow Br^{-} + HOCl$	2	1.01×10^{-2}		59, 60
A114	$\mathrm{Br}^- + \mathrm{HOCl} \rightarrow \mathrm{Cl}^- + \mathrm{HOBr}$	2	1.55×10^3		60
A115	$\mathrm{Br}^- + \mathrm{CH}_3\mathrm{OCl} \xrightarrow{\mathrm{H}_2\mathrm{O}} \mathrm{Cl}^- + \mathrm{HOBr} + \mathrm{CH}_3\mathrm{OH}$	2	1.55×10^{3}		$= k_{A114}$
A116	$Br^- + HOCl + H^+ \rightarrow BrCl + H_2O$	3	1.32×10^6		59
A117	$Br^{-} + CH_3OCl + H^+ \rightarrow BrCl + CH_3OH$	3	1.32×10^{6}		$= k_{A116}$
A118	$BrCl + H_2O \rightarrow Br^- + HOCl + H^+$	1	1.15×10^{-3}		61
A119	$\mathrm{Cl}^- + \mathrm{HOBr} + \mathrm{H}^+ \rightarrow \mathrm{BrCl} + \mathrm{H}_2\mathrm{O}$	3	2.31×10^{10}		61
A120	$BrCl + H_2O \rightarrow Cl^- + HOBr + H^+$	1	3.00×10^6		61
A121	$Br^{-} + HOBr + H^{+} \rightarrow Br_{2} + H_{2}O$	3	1.60×10^{10}		62
A122	$Br_2 + H_2O \rightarrow Br^- + HOBr + H^+$	1	$9.70 imes 10^1$		62
A123	$Br^- + HOBr + HSO_4^- \rightarrow Br_2 + SO_4^{2-} + H_2O$	3	3.70×10^9		62
A124	$Br_2 + SO_4^{2-} \xrightarrow{H_2O} Br^- + HOBr + HSO_4^-$	2	4.10×10^2		62
A125	$BrNO_2 + Br^- \rightarrow Br_2 + NO_2^-$	2	$7.11 imes 10^5$		63
A126	$Br_2 + NO_2^- \rightarrow BrNO_2 + Br^-$	2	1.85×10^6		63
A127	$BrNO_2 + NO_2^- \xrightarrow{H_2O} Br^- + NO_2^- + NO_2^- + 2H^+$	2	1.27×10^4		63
A128	$CINO_2 + Br^- \rightarrow BrNO_2 + CI^-$	2	1.27×10^{6} 1.18 × 10 ⁶		63
A129	$BrNO_2 + Cl^- \rightarrow ClNO_2 + Br^-$	2	3.00×10^2		63
A130	$CINO_2 + CI^- \rightarrow CI_2 + NO^-$	2	$0.00 \times 10^{\circ}$		63
A131	$Cl_2 + NO_2^- + ClNO_2 + Cl_2^-$	2	2.50×10^{6}		63
A 122	$C_1 = NO_2^{-1} + NO_2^{-1} + NO_2^{-1} + NO_2^{-1} + 2U_2^{+1}$	2	7.08×10^{3}		62
A132	$\operatorname{CINO}_2 + \operatorname{NO}_2 \rightarrow \operatorname{CI} + \operatorname{NO}_3 + \operatorname{NO}_2 + 2\operatorname{H}^2$	2	7.98×10^{5}	5500	03
A155	$BO_3^2 + O_3 \rightarrow SO_4^2 + B^2 + O_2^2$	2	5.70×10^{9}	-3300	
A134	$SO_3 + O_3 \rightarrow SO_4 + O_2$ USO- + U O - + SO ²⁻ + U ⁺ + U O	2	1.30×10	-3500	04 65
A155	$HSO_3 + H_2O_2 \rightarrow SO_4 + H^2 + H_2O$	2	see note 1.00×10^7	-3030	63
A130	$nSO_3 + Cn_3OOH + H^+ \rightarrow SO_4 + Cn_3OH + 2H^+$	2	1.00×10 1.60 × 10 ⁷	-3800	00 66
A13/	$SO_3^- + CH_3OOH + H^+ \rightarrow SO_4^- + CH_3OH + H^+$	2	1.00×10 4.82×10^{7}	-3800	00 66
A130	$HSO_3^- + CH_3CO_3H + H^2 \rightarrow SO_4^- + CH_3COOH + 2H^2$	2	4.65×10^{2}	-3993	00 66
A139	$HSO_3 + CH_3CO_3H \rightarrow SO_4 + CH_3COOH + H^2$	с С	8.42×10 2.70×10^9	-3993	00 67
A140	$115O_3 + OII \rightarrow 5O_3 + 11_2O$	2	2.70×10^{9}		67
A141	$SO_3 + OI \rightarrow SO_3 + OI$	2	4.00×10 2.00 × 10 ⁴		68
A142	$HSO_3 + HO_2 \rightarrow SO_3 + H_2O_2$ $HSO_3 + O_2 \rightarrow SO_3 + HO_2$	2	3.00×10^{4}		68
A145	$HSO_3 + O_2 \rightarrow SO_3 + HO_2$ $HSO_2 + NO \rightarrow SO_2 + NO_2 + H^+$	2	3.00×10^{9}	2000	08
A 144	$10O_3 + 10O_3 \rightarrow 5O_3 + 10O_3 + 11$ $SO^{2-} + NO_2 \rightarrow SO^{-} + NO^{-}$	2	1.40×10^{9}	-2000	20 52
A143	$HSO^{-} + O^{-} + SO^{-} + 2O^{-} + U^{+}$	∠ 2	2.00×10^{8}	1070	52 60
A140	$1100_3 + 01_2 \rightarrow 50_3 + 201 + 11^{-1}$ $80^{2-} + 01^{-} \rightarrow 80^{-} + 201^{-}$	2	$4.00 \times 10^{-6.00} \times 10^{-7}$	-10/9	70
A14/	$ \begin{array}{c} SO_3 + \ OI_2 \rightarrow SO_3 + 2 \ OI \\ HSO_{-}^- + Br_{-}^- SO_3 + 2 \ Dr_{-}^- + U_{+}^+ \end{array} $	∠ 2	0.20×10^{-6}	770	70 60
A140	$H_{3} \cup_{3} + DI_{2} \rightarrow S \cup_{3} + 2 DI + \Pi$	∠ ว	0.40×10 2.20 $\times 10^8$	-119 617	60
A149	$\mathrm{SO}_3 + \mathrm{DI}_2 \rightarrow \mathrm{SO}_3 + 2 \mathrm{DI}$	2	2.20 × 10	-04/	07

Table S8. (continued)

No.	Reaction (of Order n)	n	$k^{298}, \mathrm{M}^{1-\mathrm{n}}\mathrm{s}^{-1}$	$-E_a/R, K$	Reference
A150	$\mathrm{HSO}_3^- + \mathrm{HCHO} \to \mathrm{HMS}^-$	2	4.50×10^2	-2660	71
A151	$SO_2^{2-} + HCHO \xrightarrow{H_2O} HMS^- + OH^-$	2	5.40×10^{6}	-2530	71
A152	$HMS^- + OH^- \rightarrow SO_2^{2-} + CH_2(OH)_2$	2	4.60×10^{3}	-4880	71
A153	$HMS^- + OH \xrightarrow{H_2O,O_2} HSO^- + HCOOH + HO_2 + H_2O$	2	3.00×10^{8}		72
A154	$HMS^{-} + SO^{-} \rightarrow SO^{2-} + H^{+} + HCHO + SO^{-}$	2	2.80×10^{6}		72
A155	$HMS^- + NO_2 \rightarrow NO_2^- + H^+ + HCHO + SO_3^-$	2	4.20×10^{6}		28
A156	$HMS^{-} + Cl_{-}^{-} \rightarrow 2Cl^{-} + H^{+} + HCHO + SO_{-}^{-}$	2	5.00×10^{5}		36
A157	$HMS^- + Br_2^- \rightarrow 2Br^- + H^+ + HCHO + SO_2^-$	2	5.00×10^{4}		34
A158	$HSO_2^- + HSO_5^- + H^+ \rightarrow 2SO_4^{2-} + 3H^+$	3	7.10×10^{6}		73
A159	$HSO_3^- + SO_4^- \rightarrow SO_3^- + SO_4^{-4} + H^+$	2	6.80×10^{8}		67
A160	$\mathrm{SO}_3^{2-} + \mathrm{SO}_4^{} \rightarrow \mathrm{SO}_3^{} + \mathrm{SO}_4^{2}$	2	3.10×10^8		67
A161	$HSO_3^- + SO_5^- \rightarrow SO_4^- + SO_4^{2-} + H^+$	2	3.60×10^2		67
A162	$\mathrm{SO}_3^{2-} + \mathrm{SO}_5^{-} \rightarrow \mathrm{SO}_4^{-} + \mathrm{SO}_4^{2-}$	2	5.50×10^5		67
A163	$\mathrm{HSO}_3^- + \mathrm{SO}_5^- \to \mathrm{SO}_3^- + \mathrm{HSO}_5^-$	2	8.60×10^{3}		67
A164	$SO_2^{2-} + SO_r^{-} \xrightarrow{H^+} SO_2^{-} + HSO_r^{-}$	2	2.10×10^{5}		67
A165	$SO_2^- + O_2 \rightarrow SO_5^-$	2	2.50×10^{9}		67
A166	$SO_4^- + O_2^- \rightarrow SO_4^{2-} + O_2$	2	4.00×10^{9}		67
A167	$SO_4^+ + NO_3^- \rightarrow SO_4^+ + NO_3$	2	2.30×10^5		74
A168	$\mathrm{SO}_4^- + \mathrm{Cl}^- \rightarrow \mathrm{SO}_4^{2^-} + \mathrm{Cl}$	2	2.70×10^{8}		46
A169	$\mathrm{SO}_4^- + \mathrm{Br}^- \to \mathrm{SO}_4^{2-} + \mathrm{Br}$	2	3.50×10^9		75
A170	$\mathrm{SO}_4^- + \mathrm{SO}_4^- \rightarrow (\mathrm{S}_2\mathrm{O}_8^{2-})$	2	4.50×10^8		67
A171	$SO_{\varepsilon}^{-} + O_{2}^{-} \xrightarrow{H^{+}} HSO_{\varepsilon}^{-} + O_{2}$	2	2.34×10^{8}		67
A172	$SO_5^- + HO_2^- \rightarrow HSO_5^- + O_2^-$	2	5.00×10^7		76
A173	$\mathrm{SO}_5^- + \mathrm{SO}_5^- \rightarrow \mathrm{SO}_4^- + \mathrm{SO}_4^- + \mathrm{O}_2$	2	2.20×10^8		67
A174	$\mathrm{SO}_5^- + \mathrm{SO}_5^- \rightarrow \mathrm{O}_2 \ (+ \mathrm{S}_2 \mathrm{O}_8^{2-})$	2	4.80×10^7		67
A175	$BrO^- + SO_3^{2-} \rightarrow Br^- + SO_4^{2-}$	2	1.00×10^{8}		77
A176	$\mathrm{HOBr} + \mathrm{SO}_3^{2-} \rightarrow \mathrm{Br}^- + \mathrm{SO}_4^{2-} + \mathrm{H}^+$	2	5.00×10^{9}		77
A177	$HOBr + HSO_3^- \rightarrow Br^- + SO_4^{2-} + 2H^+$	2	5.00×10^{9}		$= k_{A176}$
A178	$HOCl + SO_3^{2-} \rightarrow Cl^- + SO_4^{2-} + H^+$	2	$7.60 \times 10^{\circ}$		78
A179	$CH_3OCl + SO_3^{2-} \xrightarrow{H_2O} Cl^- + SO_4^{2-} + CH_3OH + H^+$	2	7.60×10^{8}		$= k_{A178}$
A180	$\mathrm{HOCl} + \mathrm{HSO}_3^- \to \mathrm{Cl}^- + \mathrm{SO}_4^{2-} + 2\mathrm{H}^+$	2	7.60×10^{8}		$= k_{A178}$
A181	$CH_3OCl + HSO_3^{-} \xrightarrow{H_2O} Cl^{-} + SO_4^{2-} + CH_3OH + 2 H^+$	2	7.60×10^8		$= k_{A178}$
A182	$\mathrm{HO}_2\mathrm{NO}_2 + \mathrm{HSO}_3^- \rightarrow \mathrm{SO}_4^{2-} + \mathrm{NO}_3^- + 2\mathrm{H}^+$	2	3.30×10^{5}		79
A183	$\mathrm{Br}^- + \mathrm{HSO}_5^- \to \mathrm{HOBr} + \mathrm{SO}_4^{2-}$	2	1.04×10^{0}	-5338	80
A184	$\mathrm{Cl}^- + \mathrm{HSO}_5^- \to \mathrm{HOCl} + \mathrm{SO}_4^{2-}$	2	1.80×10^{-3}	-7352	80
A185	$Br^- + CH_3CO_3H \rightarrow HOBr + CH_3COO^-$	2	2.58×10^{-1}	-6897	80
A186	$Cl^- + CH_3CO_3H \rightarrow HOCl + CH_3COO^-$	2	4.47×10^{-4}	-8911	$= k_{A185} \times k_{A184} / k_{A183}$
A18/	Br + HO ₂ NO ₂ \rightarrow HOBr + NO ₃	2	5.44×10^{-3}	7016	81
A188	$CI + HO_2NO_2 \rightarrow HOCI + NO_3$ $Pr_{-}^{-} + O_{} + PrO_{-}^{-} + O_{}$	2	1.40×10^{-5}	-/216	81
A169	$Dr + O_3 \rightarrow DrO + O_2$ $BrO^- + O_2 \rightarrow Br^- + 2O_2$	2	2.10×10 3.30×10^2	-4430	82
Δ191	$BrO^- + O_3 \rightarrow BrO^- + O_2$	2	1.00×10^2		82
A192	$Br + BrO^- \rightarrow BrO + Br^-$	2	4.00×10^{9}		51
A193	$OH + BrO^- \rightarrow BrO + OH^-$	2	4.50×10^9		3
A194	$OH + HOBr \rightarrow BrO + H_2O$	2	2.00×10^{9}		3
A195	$Br_2^- + BrO^- \rightarrow BrO + 2Br^-$	2	$8.00 imes 10^7$		3
A196	$Br + O_3 \rightarrow BrO + O_2$	2	1.50×10^8		83
A197	$BrO + BrO \xrightarrow{H_2O} BrO^- + BrO_2^- + H^+ + H^+$	2	5.00×10^9		3
A198	$BrO + BrO_2^- \rightarrow BrO^- + BrO_2^-$	2	3.40×10^8		3
A199	$Br_2^- + BrO_2^- \rightarrow BrO^- + BrO + Br^-$	2	8.00×10^7		3
A200	$OH + BrO_2^- \rightarrow BrO_2 + OH^-$	2	1.90×10^9		3

K. Toyota et al.: Photochemistry of VOCs and halogens in the MBL (Supplement)

Table S8. (continued)

No.	Reaction (of Order n)	n	k^{298} , M ¹⁻ⁿ s ⁻¹	$-E_a/R, K$	Reference
A201	$OH + BrO_2 \rightarrow BrO_3^- + H^+$	2	2.00×10^9		84
A202	$BrO_2 + BrO_2 \rightarrow Br_2O_4$	2	1.40×10^{9}		85
A203	$Br_2O_4 \rightarrow BrO_2 + BrO_2$	1	7.40×10^4		85
A204	$Br_2O_4 + OH^- \rightarrow BrO_3^- + BrO_2^- + H^+$	2	7.00×10^8		3
A205	$Br_2O_4 + H_2O \rightarrow HBrO_2 + BrO_3^- + H^+$	1	2.20×10^{3}		85
A206	$BrO_2^- + O_3 \xrightarrow{H_2O} BrO_2 + OH + O_2 + OH^-$	2	8.90×10^4	-6901	86
A207	$\operatorname{BrO}_2^- + \operatorname{HOCl} \to \operatorname{BrO}_3^- + \operatorname{Cl}^- + \operatorname{H}^+$	2	1.70×10^1		87
A208	$BrO_2^- + CH_3OCl \xrightarrow{H_2O} BrO_3^- + Cl^- + CH_3OH + H^+$	2	1.70×10^1		$= k_{A207}$
A209	$\operatorname{HBr}^{\sim}O_2 + \operatorname{HOCl} \to \operatorname{Br}O_3^- + \operatorname{Cl}^- + 2 \operatorname{H}^+$	2	5.00×10^7		88
A210	$HBrO_2 + CH_3OCl \xrightarrow{H_2O} BrO_3^- + Cl^- + CH_3OH + 2 H^+$	2	5.00×10^7		$= k_{A209}$
A211	$HBrO_2 + Br^- + H^+ \rightarrow HOBr + HOBr$	3	3.00×10^6		85
A212	$HOBr + HOBr \rightarrow HBrO_2 + Br^- + H^+$	2	2.00×10^{-5}		85
A213	$BrO_3^- + Br^- + H^+ + H^+ \rightarrow HBrO_2 + HOBr$	4	2.00×10^0		85
A214	$BrO_2^- + HOBr \rightarrow BrO_3^- + Br^- + H^+$	2	1.80×10^{-2}		89
A215	$\mathrm{HBrO}_2 + \mathrm{HOBr} \rightarrow \mathrm{BrO}_3^- + \mathrm{Br}^- + 2 \mathrm{H}^+$	2	3.20×10^0		85
A216	$BrO_2^- + HBrO_2 \rightarrow HOBr + BrO_3^-$	2	3.91×10^1		90
A217	$\mathrm{HBrO}_2 + \mathrm{HBrO}_2 \rightarrow \mathrm{HOBr} + \mathrm{BrO}_3^- + \mathrm{H}^+$	2	8.00×10^2		90
A218	$HOBr + BrO_3^- + H^+ \rightarrow HBrO_2 + HBrO_2$	3	1.00×10^{-8}		85
A219	$HBrO_2 + BrO_3^- + H^+ \rightarrow Br_2O_4 + H_2O$	3	4.20×10^{1}		85
A220	$BrO + SO_3^{2-} \rightarrow BrO^- + SO_3^-$	2	1.00×10^5		see note ^c
A221	$BrO + HSO_3^- \rightarrow BrO^- + SO_3^- + H^+$	2	1.00×10^5		see note ^c
A222	$\operatorname{BrO}_2 + \operatorname{SO}_3^{2-} \to \operatorname{BrO}_2^- + \operatorname{SO}_3^-$	2	9.50×10^8		20
A223	$\operatorname{BrO}_2 + \operatorname{HSO}_3^- \to \operatorname{BrO}_2^- + \operatorname{SO}_3^- + \operatorname{H}^+$	2	9.50×10^8		$= k_{A222}$
A224	$\operatorname{BrO}_2^- + \operatorname{SO}_3^{2-} \to \operatorname{BrO}^- + \operatorname{SO}_4^{2-}$	2	3.00×10^7		91
A225	$\operatorname{BrO}_3^- + \operatorname{SO}_2 \xrightarrow{\operatorname{H}_2\operatorname{O}} \operatorname{BrO}_2^- + \operatorname{SO}_4^{2-} + 2\operatorname{H}^+$	2	8.50×10^1		92
A226	$\operatorname{BrO}_3^- + \operatorname{HSO}_3^- \to \operatorname{BrO}_2^- + \operatorname{SO}_4^{2-} + \operatorname{H}^+$	2	2.70×10^{-2}		92
A227	$BrO_3^- + O(^3P) \rightarrow BrO_2^- + O_2$	2	1.50×10^7		7

References: 1, Sehested et al. (1983); 2, Sehested et al. (1984); 3, Buxton et al. (1988); 4, Sehested et al. (1968); 5, Christensen et al. (1982); 6, Christensen and Schested (1988); 7, Kläning et al. (1984); 8, Sauer et al. (1984); 9, Park and Lee (1988); 10, Strehlow and Wagner (1982); 11, Grätzel et al. (1969); 12, Grätzel et al. (1970); 13, Løgager and Sehested (1993); 14, Régimbal and Mozurkewich (1997); 15, Rettich (1978); 16, Katsumura et al. (1991); 17, Lee and Rind (1986); 18, Buxton (1969); 19, Hasegawa and Neta (1978); 20, Huie and Neta (1986); 21, Daniels (1969); 22, Garland et al. (1980); 23, Warneck and Wurzinger (1988); 24, Jacob (1986); 25, Herrmann et al. (1994); 26, Exner et al. (1992); 27, Clifton and Huie (1989); 28, Herrmann and Zellner (1998); 29, Zellner et al. (1996); 30, Fel'dman et al. (1986); 31, Bothe and Schulte-Frohlinde (1980); 32, Buxton et al. (1990); 33, Exner et al. (1993); 34, Herrmann et al. (2000); 35, Schuchmann and von Sonntag (1988); 36, Jacobi (1996); 37, Chin and Wine (1994); 38, Resse (1997); 39, Exner et al. (1994); 40, Jacobi et al. (1999); 41, Resse et al. (1999); 42, Schwartz (1984); 43, Eriksen et al. (1985); 44, Draganic et al. (1991); 45, Jayson et al. (1973); 46, McElroy (1990); 47, Wagner et al. (1986); 48, Gilbert et al. (1977); 49, Lelieveld and Crutzen (1991); 50, Wang and Margerum (1994); 51, Kläning and Wolff (1985); 52, Neta and Huie (1986); 53, Mamou et al. (1977); 54, D'Angelantonio et al. (1988); 55, Wagner and Strehlow (1987); 56, Chameides and Stelson (1992); 57, Schwarz and Bielski (1986); 58, Edwards (1952); 59, Bard et al. (1985); 60, Kumar and Margerum (1987); 61, Liu and Margerum (2001); 62, Beckwith et al. (1996); 63, Frenzel et al. (1998); 64, Hoffmann (1986); 65, Martin and Damschen (1981); 66, Lind et al. (1987); 67, Buxton et al. (1996); 68, Weinstein-Lloyd and Schwartz (1991); 69, Shoute et al. (1991); 70, Herrmann et al. (1996); 71, Warneck (1998) and references therein; 72, Buxton (1994); 73, Betterton and Hoffmann (1988a); 74, Buxton et al. (1993); 75, Redpath and Willson (1975); 76, Yermakov et al. (1995); 77, Troy and Margerum (1991); 78, Fogelman et al. (1989); 79, Amels et al. (1996); 80, Fortnum et al. (1960); 81, Régimbal and Mozurkewich (2000); 82, Haag and Hoigné (1983); 83, von Gunten and Oliveras (1998); 84, Field et al. (1982); 85, Field and Fösterling (1986); 86, Nicoson et al. (2002); 87, Perrone (1999); 88, Citri and Epstein (1988); 89, Engel

et al. (1954); 90, Faria et al. (1994); 91, Huff Hartz et al. (2003); 92, Szirovicza and Boga (1998). ^a Temperature dependence of rate constants is given by $k = k^{298} \times \exp[-E_a/R \times (1/T - 1/298)]$, where E_a is activation energy and R is gas constant.

^b The rate constant depends on pH: $k^{298} = 5.2 \times 10^6 \times [\text{H}^+]/([\text{H}^+] + 0.1\text{M}).$

^c Estimated based on experimentally determined reactive uptake coefficients of BrO on the surface of S(IV)-doped NaCl solutions as reported by Abbatt (1996).

References

- Abbatt, J. P. D.: Heterogeneous interactions of BrO and ClO: Evidence for BrO surface recombination and reaction with HSO_3^-/SO_3^{2-} , Geophys. Res. Lett., 23, 1681–1684, 1996.
- Amels, P., Elias, H., Götz, U., Steinges, U., and Wannowius, K. J.: Kinetic investigation of the stability of peroxonitric acid and of its reaction with sulfur(IV) in aqueous solution, in Heterogeneous and Liquid Phase Processes, (Ed.) Warneck, P., Vol. 2 of Transport and Chemical Transformation in Pollutants in the Troposphere, Springer, Berlin, pp. 77–88, 1996.
- Anderson, L. C. and Fahey, D. W.: Studies with ClONO₂: Thermal dissociation rate and catalytic conversion to NO using an NO/O₃ chemiluminescence detector, J. Phys. Chem., 94, 644– 652, 1990.
- Aranda, A., Le Bras, G., La Verdet, G., and Poulet, G.: The BrO + CH₃O₂ reaction: Kinetics and role in the atmospheric ozone budget, Geophys. Res. Lett., 24, 2745–2748, 1997.
- Aschmann, S. M. and Atkinson, R.: Kinetics of the gas-phase reactions of the OH radical with selected glycol ethers, glycols, and alcohols, Int. J. Chem. Kinet., 30, 533–540, 1998.
- Atkins, P. W.: Physical Chemistry, 4th Ed., Oxford University Press, New York, 1990.
- Atkinson, R.: A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds, Int. J. Chem. Kinet., 19, 799–828, 1987.
- Atkinson, R.: Kinetics and Mechanisms of the Gas-Phase Reactions of the Hydroxyl Radical with Organic Compounds, J. Phys. Chem. Ref. Data, Monograph 1, 1989.
- Atkinson, R.: Gas-phase tropospheric chemistry of organic compounds: a review, Atmos. Environ., 24A, 1–41, 1990.
- Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Jr., Kerr, J. A., Rossi, M. J., and Troe, J.: Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry: Supplement V, IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry, J. Phys. Chem. Ref. Data, 26, 521–1011, 1997.
- Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Jr., Kerr, J. A., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry, organic species: Supplement VII, IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry, J. Phys. Chem. Ref. Data, 28, 191–393, 1999.
- Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Jr., Kerr, J. A., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement VIII, halogen species, IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry, J. Phys. Chem. Ref. Data, 29, 167–266, 2000.
- Ayers, G. P., Cainey, J. M., Granek, H., and Leck, C.: Dimethylsulfide oxidation and the ratio of methanesulfonate to non-seasalt sulfate in the marine aerosol, J. Atmos. Chem., 25, 307–325, 1996.
- Bacher, C., Tyndall, G.S., and Orlando, J.J.: The atmospheric chemistry of glycolaldehyde, J. Atmos. Chem., 39, 171–189, 2001.
- Bard, A. J., Parsons, R., and Jordan, J.: Standard Potentials in Aqueous Solution, Marcel Dekker, New York, 1985.
- Barnes, I., Bastian, V., Becker, K. H., Overath, R., and Zhu, T.: Rate constants for the reactions of Br atoms with a series of alkanes,

alkenes, and alkynes in the presence of O_2 , Int. J. Chem. Kinet., 21, 499–517, 1989.

- Bartlett, W. P. and Margerum, D. W.: Temperature dependencies of the Henry's law constant and the aqueous phase dissociation constant of bromine chloride, Environ. Sci. Technol., 33, 3410– 3414, 1999.
- Bauerle, S. and Moortgat, G.K.: Absorption cross-sections of HOCH₂OOH vapor between 205 and 360 nm at 298 K, Chem. Phys. Lett., 309, 43–48, 1999.
- Baulch, D.L., Duxbury, J., Grant, S.J., and Montague, D.C.: Evaluated kinetic data for high temperature reactions. Volume 4 Homogeneous gas phase reactions of halogen- and cyanidecontaining species, J. Phys. Chem. Ref. Data, 10, suppl., 1981.
- Baulch, D. L., Cobos, C. J., Cox, R. A., Esser, C., Frank, P., Just, Th., Kerr, J. A., Pilling, M. J., Troe, J., Walker, R. W., and Warnatz, J.: Evaluated kinetic data for combustion modelling, J. Phys. Chem. Ref. Data, 21, 411–429, 1992.
- Beckwith, R. C., Wang, T. X., and Margerum, D. W.: Equilibrium and kinetics of bromine hydrolysis, Inorg. Chem., 35, 995–1000, 1996.
- Bedjanian, Y., Poulet, G., and Le Bras, G.: Low-pressure study of the reactions of Br atoms with alkenes. 1. Reactions with propene, J. Phys. Chem. A, 102, 5867–5875, 1998.
- Bedjanian, Y., Poulet, G., and Le Bras, G.: Low-pressure study of the reactions of Br atoms with alkenes. 2. Reactions with ethene and *trans*-2-butene, J. Phys. Chem. A, 103, 4026–4033, 1999.
- Behnke, W., George, Ch., Scheer, V., and Zetzsch, C.: Production and decay of ClNO₂ from the reaction of gaseous N₂O₅ win NaCl solution: Bulk and aerosol experiments, J. Geophys. Res., 102, 3795–3804, 1997.
- Bell, R. P.: The reversible hydration of carbonyl compounds, Adv. Phys. Org. Chem., 4, 1–29, 1966.
- Bell, R. P. and Evans, P. G.: Kinetics of the dehydration of methylene glycol in aqueous solution, Proc. Royal Soc. London A, 291, 297–323, 1966.
- Betterton, E. A. and Hoffmann, M. R.: Oxidation of aqueous SO₂ by peroxymonosulfate, J. Phys. Chem., 92, 5962–5965, 1988a.
- Betterton, E. A. and Hoffmann, M. R.: Henry's law constants of some environmentally important aldehydes, Environ. Sci. Technol., 22, 1415–1418, 1988b.
- Bierbach, A., Barnes, I., and Becker, K. H.: FT-IR product study of the gas-phase Br-initiated oxidation of *trans*-2-butene under atmospheric conditions between 246 and 298 K, Tellus, 49B, 566– 582, 1997.
- Biermann, H. W., Harris, G. W., and Pitts, J. N., Jr.: Photoionization mass spectrometer studies of the collisionally stabilized product distribution in the reaction of OH radicals with selected alkenes at 298 K, J. Phys. Chem., 86, 2958–2964, 1982.
- Bilde, M., Wallington, T.J., Ferronato, C., Orlando, J.J., Tyndall, G.S., Estupiñan, E., and Haberkorn, S.: Atmospheric chemistry of CH₂BrCl, CHBrCl₂, CHBr₂Cl, CF₃CHBrCl, and CBr₂Cl₂, J. Phys. Chem. A, 102, 1976–1986, 1998.
- Bilde, M., Orlando, J.J., Tyndall, G.S., Wallington, T.J., Hurley, M.D., and Kaiser, E.W.: FT-IR product studies of the Clinitiated oxidation of CH₃Cl in the presence of NO, J. Phys. Chem. A, 103, 3963–3968, 1999.
- Bongartz, A., George, Ch., Kames, J., Mirabel, Ph., Ponche, J. L., and Schurath, U.: Experimental determination of HONO mass accommodation coefficients using two different techniques, J. Atmos. Chem., 18, 149–160, 1994.

- Bothe, E. and Schulte-Frohlinde, D.: Reaction of dihydroxymethyl radical with molecular oxygen in aqueous solution, Anorg. Chem. Org. Chem., 35, 1035–1039, 1980.
- Bowden, D. J., Clegg, S. L., and Brimblecombe, P.: The Henry's law constants of the haloacetic acids, J. Atmos. Chem., 29, 85– 107, 1998.
- Boyd, A. A., Noziere, B., and Lesclaux, R.: Kinetic studies of the allylperoxyl radical self-reaction and reaction with HO₂, J. Chem. Soc. Faraday Trans., 92, 201–206, 1996.
- Brimblecombe, P. and Clegg, S. L.: The solubility and behaviour of acid gases in the marine aerosol, J. Atmos. Chem., 7, 1–18, 1988.
- Brimblecombe, P. and Clegg, S.L.: Erratum, J. Atmos. Chem., 8, 95, 1989.
- Burkholder, J. B., Gilles, M. K., Gierczak, T, and Ravishankara, A. R.: The atmospheric degradation of 1-bromopropane (CH₃CH₂CH₂Br): The photochemistry of bromoacetone, Geophys. Res. Lett., 29(17), 1822, doi:10.1029/2002GL014712, 2002.
- Buxton, G. V.: Pulse radiolysis of aqueous solutions. Some rates of reaction of OH and O^- and pH dependence of the yield of O_3^- , Trans. Faraday Soc., 65, 2150–2158, 1969.
- Buxton, G. V.: Mechanisms for chemical reactions in cloud droplets, in Transport and Transformation of Pollutants in the Troposphere, Proceedings of EUROTRAC Symposium '94, (Eds.) Borrell, P. M. et al., pp. 978–983, SPB Academic Publishing, The Hague, 1994.
- Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B.: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O⁻) in aqueous solution, J. Phys. Chem. Ref. Data, 17, 513–886, 1988.
- Buxton, G. V., Salmon, G. A., and Wood, N. D.: A pulse radiolysis study of the chemistry of oxysulfur radicals in aqueous solution, in Proceedings of the Fifth European Symposium: Physico-Chemical Behaviour of Atmospheric Pollutants, (Eds.) Restelli, G. and Angeletti, G., pp. 245–250, Kluwer, Dordrecht, 1990.
- Buxton, G. V., Eccles, J. L., and Salmon, G. A.: The NO₃ radical in aqueous solution, in Photo-oxidants: Precursors and Products, Proceedings of EUROTRAC Symposium '92, (Eds.) Borrell, P. M. et al., pp. 610–614, SPB Academic Publishing, The Hague, 1993.
- Buxton, G. V., McGowan, S., Salmon, G. A., Williams, J. E., and Wood, N. D.: A study of the spectra and reactivity of oxysulfurradical anions involved in the chain oxidation of S(IV): A pulse and gamma-radiolysis study, Atmos. Environ., 30, 2483–2493, 1996.
- Calvert, J. G., Atkinson, R., Becker, K. H., Kamens, R. M., Seinfeld, J. H., Wallington, T. J., and Yarwood, G.: The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons, Oxford University Press, New York, 2002.
- Canosa-Mas, C. E., Cotter, E. S. N., Duffy, J., Thompson, K. C., and Wayne, R. P.: The reactions of atomic chlorine with acrolein, methacrolein, and methyl vinyl ketone, Phys. Chem. Chem. Phys., 3, 3075–3084, 2001.
- Carl, S. A., Roehl, C. M., Müller, R., Moortgat, G. K., and Crowley, J. N.: Rate constant and mechanism of the reaction between Cl and CH₃OCl at 295 K, J. Phys. Chem., 100, 17,191–17,201, 1996.
- Chakir, A., Brion, J., Ganne, J. P., and Daumont, D.: Study of ClCH₂CH₂O₂ using modulated photolysis: Ultra-violet spectrum and self-reaction kinetics, Phys. Chem. Chem. Phys., 5,

2573-2580, 2003.

- Chameides, W. L.: The photochemistry of a remote marine stratiform cloud, J. Geophys. Res., 89, 4739–4755, 1984.
- Chameides, W. L. and Stelson, A. W.: Aqueous-phase chemical processes in deliquescent sea-salt aerosols: A mechanism that couples the atmospheric cycles of S and sea salt, J. Geophys. Res., 97, 20,565–20,580, 1992.
- Chen, J., Catoire, V., and Niki, H.: Mechanistic study of the BrCH₂O radical degradation in 700 Torr air, Chem. Phys. Lett., 245, 519–528, 1995.
- Chen, J., Young, V., Catoire, V., and Niki, H.: FTIR spectroscopic studies of the mechanisms of the halogen atom initiated oxidation of haloacetaldehydes, J. Phys. Chem., 100, 6580–6586, 1996.
- Chin, M. and Wine, P. H.: A temperature-dependent competitive kinetics study of the aqueous-phase reactions of OH radicals with formate, formic acid, acetate, acetic acid, and hydrated formaldehyde, in Aquatic and Surface Photochemistry, (Eds.) Helz, G. R. et al., pp. 85–96, A. F. Lewis, New York, 1994.
- Christensen, H. and Sehested, K.: HO₂ and O₂⁻ radicals at elevated temperatures, J. Phys. Chem., 92, 3007–3011, 1988.
- Christensen, H., Sehested, K., and Corfitzen, H.: Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures, J. Phys. Chem., 86, 1588–1590, 1982.
- Citri, O. and Epstein, I. R.: Mechanistic study of a coupled chemical oscillator: The bromate-chlorite-iodide reaction, J. Phys. Chem., 92, 1865–1871, 1988.
- Clarke, J. H. R. and Woodward, L. A.: Raman spectroscopic determination of the degrees of dissociation of methanesulphonic acid in aqueous solution at 25°C, Trans. Faraday Soc., 62, 2226– 2233, 1966.
- Clegg, S. L. and Brimblecombe, P.: The solubility of methanesulphonic acid and its implications for atmospheric chemistry, Environ. Technol. Lett., 6, 269–278, 1985.
- Clifton,C. L. and Huie, R. E.: Rate constants for hydrogen abstraction reactions of the sulfate radical SO₄⁻. Alcohols, Int. J. Chem. Kinet., 21, 677–687, 1989.
- Clyne, M. A. A. and Cruse, H. W.: Atomic resonance fluorescence spectrometry for the rate constants of rapid bimolecular reactions. Part 2. - Reactions Cl + BrCl, Cl + Br2, Cl + ICl, Br + IBr, Br + ICl, J. Chem. Soc., Faraday Trans. 2, 68, 1377–1387, 1972.
- Crowley, J. N. and Moortgat, G. K.: 2-Bromoethylperoxy and 2bromo-1-methylpropylperoxy radicals: Ultraviolet absorption spectra and self-reaction rate constants at 298 K, J. Chem. Soc. Faraday Trans., 88, 2437–2444, 1992.
- D'Angelantonio, M., Venturi, M., and Mulazzani, Q.G.: A reexamination of the decay kinetics of pulse radiolytically generated Br_2^- radicals in aqueous solution, Radiat. Phys. Chem., 32, 319–324, 1988.
- D'Anna, B. and Nielsen, C.J.: Kinetic study of the vapour-phase reaction between aliphatic aldehydes and the nitrate radical, J. Chem. Soc. Faraday Trans., 93, 3479–3483, 1997.
- Daniels, M.: Radiation chemistry of the aqueous nitrate system. III. Pulse electron radiolysis of concentrated sodium nitrate solutions, J. Phys. Chem., 73, 3710–3717, 1969.
- De Bruyn, W. J., Shorter, J. A., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Uptake of gas-phase sulfur species methanesulfonic acid, dimethylsulfoxide, and dimethyl sulfone by aqueous surfaces, J. Geophys. Res., 99, 16,927–16,932, 1994.

- De Bruyn, W. J., Shorter, J. A., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Uptake of haloacetyl and carbonyl halides by water surfaces, Environ. Sci. Technol., 29, 1179– 1185, 1995.
- DeMore, W.B., Howard, C.J., Sander, S.P., Ravishankara, A.R., Golden, D.M., Kolb, C. E., Hampson, R. F., Molina, M. J., and Kurylo, M.J.: Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation 11, JPL Publication 94-26, Jet Propulsion Laboratory, Pasadena, California, 1994.
- DeMore, W.B., Sander, S.P., Golden, D.M., Hampson, R.F., Kurylo, M.J., Howard, C.J., Ravishankara, A.R., Kolb, C.E., and Molina, M.J.: Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation 12, JPL Publication 97-4, Jet Propulsion Laboratory, Pasadena, California, 1997.
- Dickerson, R. R., Rhoads, K. P., Carsey, T. P., Oltmans, S. J., Burrows, J. P., and Crutzen, P. J.: Ozone in the remote marine boundary layer: A possible role for halogens, J. Geophys. Res., 104, 21,385–21,395, 1999.
- Dolson, D. A. and Leone, S. R.: A reinvestigation of the laserinitiated Cl_2/HBr chain reaction: Absolute rate constants and the v = 2/v = 1 ratio from $Cl + HBr \rightarrow HCl(v) + Br$, J. Phys. Chem., 91, 3543–3550, 1987.
- Dowideit, P., Mertens, R., and von Sonntag, C.: Non-hydrolytic decay of formyl chloride into CO and HCl in aqueous solution, J. Am. Chem. Soc., 118, 11,288–11,292, 1996.
- Draganic, Z. D., Negron-Mendoza, A., Sehested, K., Vujosevic, S. I., Navarro-Gonzales, R., Albarran-Sanchez, M. G., and Draganic, I. G.: Radiolysis of aqueous solutions of ammonium bicarbonate over a large dose range, Radiat. Phys. Chem., 38, 317– 321, 1991.
- Eberhard, J. and Howard, C. J.: Rate coefficients for the reactions of some C₃ to C₅ hydrocarbon peroxy radicals with NO, J. Phys. Chem. A, 101, 3360–3366, 1997.
- Edwards, J. O.: On the reaction of hydrogen peroxide with donor particles, J. Phys. Chem., 56, 279–281, 1952.
- Engel, P., Oplatka, A., and Perlmutter-Hayman, B.: The decomposition of hypobromite and bromite solutions, J. Am. Chem. Soc., 76, 2010–2015, 1954.
- Eriksen, T. E., Lind, J., and Merenyi, G.: On the acid-base equilibrium of the carbonate radical, Radiat. Phys. Chem., 26, 197–199, 1985.
- Exner, M., Herrmann, H., and Zellner, R.: Laser-based studies of reactions of the nitrate radical in aqueous solution, Ber. Bunsenges. Phys. Chem., 96, 470–477, 1992.
- Exner, M., Herrmann, H., Michel, J. W., and Zellner, R.: Laser pulse initiated measurements of NO₃ reactions with S(IV) and organic compounds in aqueous solutions, in Photo-oxidants: Precursors and Products, Proceedings of EUROTRAC Symposium '92, (Eds.) Borrell, P. M. et al., pp. 615–618, SPB Academic Publishing, The Hague, 1993.
- Exner, M., Herrmann, H., and Zellner, R.: Rate constants for the reactions of the NO₃ radical with HCOOH/HCOO⁻ and CH₃COOH/CH₃COO⁻ in aqueous solution between 278 and 328 K, J. Atmos. Chem., 18, 359–378, 1994.
- Faria, R. B., Epstein, I. R., and Kustin, K.: Kinetics of disproportionation and pK_a of bromous acid, J. Phys. Chem., 98, 1363– 1367, 1994.
- Fel'dman, V. I., Popov, V. I., Belevskii, V. N., Bugaenko, L. T., and Moralev, V. M.: Early ionic processes in the radiolysis of liquid methanol, High Energy Chem., 20, 102–107, 1986.

- Fickert, S., Hellis, F., Adams, J. W., Moortgat G. K., and Crowley, J. N.: Reactive uptake of ClNO₂ on aqueous bromide solutions, J. Phys. Chem. A, 102, 10,689–10,696, 1998.
- Field, R. J. and Fösterling, H.-D.: On the oxybromine chemistry rate constants with cerium ions in the Field-Körös-Noyes mechanism of the Belousov-Zhabontinskii reaction: The equilibrium $HBrO_2 + BrO_3^- + H^+ \rightleftharpoons 2 BrO_2 + H_2O$, J. Phys. Chem., 90, 5400–5407, 1986.
- Field, R. J., Raghavan, N. V., and Brummer, J. G.: A pulse radiolysis investigation of the reactions of BrO_2 with $Fe(CN)_6^{4-}$, Mn(II), phenoxide ion, and phenol, J. Phys. Chem., 86, 2443–2449, 1982.
- Finlayson-Pitts, B. J. and Pitts, J. N., Jr.: Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications, Academic Press, San Diego, 2000.
- Fisher, M. and Warneck, P.: The dissociation constant of pyruvic acid: determination by spectrophotometric measurements, Ber. Bunsenges. Phys. Chem., 95, 929–937, 1991.
- Fogelman, K. D., Walker, D. M., and Margerum, D. W.: Non-metal redox kinetics: Hypochlorite and hypochlorous acid reactions with sulfite, Inorg. Chem., 28, 986–993, 1989.
- Fortnum, D. H., Battaglia, C. J., Cohen, S. R., and Edwards, J. O.: The kinetics of the oxidation of halide ions by monosubstituted peroxides, J. Am. Chem. Soc., 82, 778–782, 1960.
- Francisco, J. S.: An examination of substituent effects on the reaction of OH radicals with HXCO (where X = H, F, and Cl), J. Chem. Phys., 96, 7597–7602, 1992.
- Frenzel, A., Scheer, V., Sikorski, R., George, Ch., Behnke, W., and Zetzsch, C.: Heterogeneous interconversion reactions of BrNO₂, ClNO₂, Br₂, and Cl₂, J. Phys. Chem. A, 102, 1329– 1337, 1998.
- Garland, J. A., Elzerman, A. W., and Penkett, S. A.: The mechanism for dry deposition of ozone to seawater surfaces, J. Geophys. Res., 85, 7488–7492, 1980.
- George, C., Lagrange, J., Lagrange, P., Mirabel, P., Pallares, C., and Ponche, J. L.: Heterogeneous chemistry of trichloroacetyl chloride in the atmosphere, J. Geophys. Res., 99, 1255–1262, 1994.
- Gilbert, C. W., Ingalls, R. B., and Swallow, A. J.: Pulse irradiation of aqueous solutions containing ferrous and chloride ions: reaction between Cl₂⁻ and HO₂, Radiat. Phys. Chem., 10, 221–225, 1977.
- Graedel, T.E. and Keene, W.C.: Tropospheric budget of reactive chlorine, Global Biogeochem. Cycles, 9, 47–77, 1995.
- Graedel, T. E. and Weschler, C. J.: Chemistry within aqueous atmospheric aerosols and raindrops, Rev. Geophys. Space Phys., 19, 505–539, 1981.
- Grätzel, M., Henglein, A., Lilie, J., and Beck, G.: Pulsradiolytische untersuchung einiger elementarprozesse der oxydation und reduktion des nitritions, Ber. Bunsenges. Phys. Chem., 73, 646– 653, 1969.
- Grätzel, M., Henglein, A., and Taniguchi, S.: Pulsradiolytische Beobachtungen über die reduktion des nitrat ions und über bildung und zerfall der persalpetrigen saeure in wässriger lösung, Ber. Bunsenges. Phys. Chem., 74, 292–298, 1970.
- Green, M., Yarwood, G., and Niki, H.: FTIR study of the Cl-atoms initiated oxidation of methylglyoxal, Int. J. Chem. Kinet., 22, 689–699, 1990
- Gregory, G.L., Bachmeier, A.S., Blake, D.R., Heikes, B.G., Thornton, D.C., Bandy, A.R., Bradshaw, J.D., and Kondo, Y.:

Chemical signatures of aged Pacific marine air: Mixed layer and free troposphere as measured during PEM-West A, J. Geophys. Res., 101, 1727–1742, 1996.

- Haag, W. R. and Hoigné, J.: Ozonation of bromide-containing waters: kinetics of formation of hypobromous acid and bromate, Environ. Sci. Technol., 17, 261–267, 1983.
- Hanson, D. R., Ravishankara, A. R., and Lovejoy, E. R.: Reaction of BrONO₂ with H₂O on submicron sulfuric acid aerosol and the implications for the lower stratosphere, J. Geophys. Res., 101, 9063–9069, 1996.
- Hasegawa, K. and Neta, P.: Rate constants and mechanisms of reaction of Cl₂⁻ radicals, J. Phys. Chem., 82, 854–857, 1978.
- Herrmann, H. and Zellner, R.: Reactions of NO₃ radicals in aqueous solution, in N-Centered Radicals, (Ed.) Alfassi, Z. B., pp. 291–343, John-Wiley and Sons Ltd., New York, 1998.
- Herrmann, H., Exner, M., and Zellner, R.: Reactivity trends in reactions of the nitrate radical (NO₃) with inorganic and organic cloudwater constituents, Geochim. Cosmochim. Acta, 58, 3239– 3244, 1994.
- Herrmann, H., Jacobi, H.-W., Raabe, G., Reese, A., and Zellner, R.: Laser-spectroscopic laboratory studies of atmospheric aqueous phase free radical chemistry, Fresenius J. Anal. Chem., 355, 343– 344, 1996.
- Herrmann, H., Ervens, B., Jacobi, H.-W., Wolke, R., Nowacki, P., and Zellner, R.: CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry, J. Atmos. Chem., 36, 231–284, 2000.
- Hoffmann, M. R.: On the kinetics and mechanism of oxidation of aquated sulfur dioxide by ozone, Atmos. Environ., 20, 1145– 1154, 1986.
- Hoyermann, K., and Sievert, R.: Die Reaktion von OH-Radikalen mit Propen: I. Bestimmung der Primärprodukte bei niedrigen Drücken, Ber. Bunsenges. Phys. Chem., 83, 933–939, 1979.
- Hu, J. H., Shorter, J. A., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Uptake of gas-phase halogenated acetic acid molecules by water surfaces, J. Phys. Chem., 97, 11,037– 11,042, 1993.
- Hu, J. H., Shi, Q., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Reactive uptake of $Cl_2(g)$ and $Br_2(g)$ by aqueous surfaces as a function of Br^- and I^- ion concentration: The effect of chemical reaction at the interface, J. Phys. Chem., 99, 8768–8776, 1995.
- Hubinger, S. and Nee, J.B.: Absorption spectra of Cl₂, Br₂ and BrCl between 190 and 600 nm, J. Photochem. Photobiol. A: Chem., 86, 1–7, 1995.
- Huff Hartz, K. E., Nicoson, J. S., Wang, L., and Margerum, D. W.: Kinetics and mechanisms of S(IV) reductions of bromite and chlorite ions, Inorg. Chem., 42, 78–87, 2003.
- Huie, R. E. and Neta, P.: Kinetics of one-electron transfer reactions involving ClO₂ and NO₂, J. Phys. Chem., 90, 1193–1198, 1986.
- Huthwelker, T., Clegg, S. L., Peter, T., Carslaw, K., Luo, B. P., and Brimblecombe, P.: Solubility of HOCl in water and aqueous H₂SO₄ to stratospheric temperatures, J. Atmos. Chem., 21, 81– 95, 1995.
- Jacob, D. J., Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res., 91, 9807–9826, 1986.
- Jacobi, H.-W.: Kinetische Untersuchungen und Modellrechnungen zur troposphärischen Chemie von Radikalanionen und Ozon in wäßriger Phase, PhD Thesis, University-GH-Essen, Germany,

1996.

- Jacobi, H.-W., Wicktor, F., Herrmann, H., and Zellner, R.: A laser flash photolysis kinetic study of the Cl₂⁻-radical anion with oxygenated hydrocarbons in aqueous solution, Int. J. Chem. Kinet., 31, 169–181, 1999.
- Jayne, J. T., Duan, S. X., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Uptake of gas-phase alcohol and organic acid molecules by water surfaces, J. Phys. Chem., 95, 6329– 6336, 1991.
- Jayne, J. T., Duan, S. X., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Uptake of gas-phase aldehydes by water surfaces, J. Phys. Chem., 96, 5452–5465, 1992.
- Jayson, G. G., Persons, B. J., and Swallow, A. J.: Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution, J. Chem. Soc. Faraday Trans., 69, 1597–1607, 1973.
- Jenkin, M. E., Murrels, T. P., Shalliker, S. J., and Hayman, G. D.: Kinetics and product study of the self-reactions of allyl and allyl peroxy radicals at 296 K, J. Chem. Soc. Faraday Trans., 89, 433– 446, 1993.
- Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric degradation of volatile organic compounds: a protocol for mechanism development, Atmos. Environ., 31, 81–104, 1997.
- Johnson, B. J., Betterton, E. A., and Craig, D.: Henry's law coefficients of formic and acetic acids, J. Atmos. Chem., 24, 113–119, 1996.
- Johnson, J. E., Gammon, R. H., Larsen, J., Bates, T. S., Oltmans, S. J., and Farmer, J. C.: Ozone in the marine boundary layer over the Pacific and Indian Oceans: Latitudinal gradients and diurnal cycles, J. Geophys. Res., 95, 11,847–11,856, 1990.
- Kaiser, E. W. and Wallington, T. J.: FTIR product study of the Clinitiated oxidation of CH₃Cl: Evidence for HCl elimination from the chloromethoxy radical, J. Phys. Chem., 98, 5679–5685, 1994.
- Kaiser, E. W. and Wallington, T. J.: Kinetics of the reactions of chlorine atoms with C_2H_4 (k_1) and C_2H_2 (k_2): A determination of $\Delta H_{f,298}^\circ$ for C_2H_3 , J. Phys. Chem., 100, 4111–4119, 1996a.
- Kaiser, E. W. and Wallington, T. J.: Pressure dependence of the reaction $Cl + C_3H_6$, J. Phys. Chem., 100, 9788–9793, 1996b.
- Kambanis, K. G., Lazarou, Y. G., and Papagiannakopoulos, P.: Absolute rate constants for the reactions of Cl atoms with CH₃Br, CH₂Br₂, and CHBr₃, J. Phys. Chem. A, 101, 8496–8502, 1997.
- Katrib, Y., Deiber, G., Schweitzer, F., Mirabel, P., and George, Ch.: Chemical transformation of bromine chloride at the air/water interface, J. Aerosol Sci., 32, 893–911, 2001.
- Katsumura, Y., Jiang, P. Y., Nagaishi, R., Oishi, T., Ishigure, K., and Yoshida, Y.: Pulse radiolysis study of aqueous nitric acid solutions. Formation mechanism, yield, and reactivity of NO₃ radical, J. Phys. Chem., 95, 4435–4439, 1991.
- Kelley, C. M. and Tartar, H. V.: On the system: bromine-water, J. Am. Chem. Soc., 78, 5752–5756, 1956.
- Khan, I., Brimblecombe, P., and Clegg, S. L.: Solubilities of pyruvic acid and the lower $(C_1 C_6)$ carboxylic acids. Experimental determination of equilibrium vapour pressures above pure aqueous and salt solutions, J. Atmos. Chem., 22, 285–302, 1995.
- Kim, Y., Sievering, H., Boatman, J., Wellman, D., and Pszenny, A.: Aerosol size distribution and aerosol water content measurements during Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange, J. Geophys. Res., 100, 23,027–23,038, 1995.
- Kirchner, F. and Stockwell, W.R.: Effect of peroxy radical re-

actions on the predicted concentrations of ozone, nitrogenous compounds, and radicals, J. Geophys. Res., 101, 21,007–21,022, 1996.

- Kläning, U.K. and Wolff, T.: Laser flash photolysis of HClO, ClO⁻, HBrO, and BrO⁻ in aqueous solution. Reactions of Cland Br-atoms, Ber. Bunsenges. Phys. Chem., 89, 243–245, 1985.
- Kläning, U.K., Sehested, K., and Wolff, T.: Ozone formation in laser flash photolysis of oxoacids and oxoanions of chlorine and bromine, J. Chem. Soc., Faraday Trans. 1, 80, 2969–2979, 1984.
- Kleindienst, T. E., Shepson, P. B., Nero, C. M., and Bufalini, J. J.: The production of chlorine atoms from the reaction of OH with chlorinated hydrocarbons, Int. J. Chem. Kinet., 21, 863–884, 1989.
- Koch, T. G. and Rossi, M. J.: Direct measurement of surface residence times: Nitryl chloride and chlorine nitrate on alkali halides at room temperature, J. Phys. Chem. A, 102, 9193–9201, 1998.
- Koga, S. and Tanaka, H.: Modeling the methanesulfonate to nonsea-salt sulfate molar ratio and dimethylsulfide oxidation in the atmosphere, J. Geophys. Res., 104, 13,735-13,747, 1999.
- Kondo, O. and Benson, S. W.: Kinetics and equilibria in the system $Br + CH_3OOH = HBr + CH_3OO$. An upper limit for the heat of formation of the methylperoxy radical, J. Phys. Chem., 88, 6675–6680, 1984.
- Koppmann, R., Bauer, R., Johnen, F.J., Plass, C., and Rudolph, J.: The distribution of light nonmethane hydrocarbons over the mid-Atlantic: Results of the Polarstern cruise ANT VII/1, J. Atmos. Chem., 15, 215–234, 1992.
- Kukui, A., Borissenko, D., Laverdet, G., and Le Bras, G.: Experimental study of the reactions of the OH radical with DMSO and MSIA involved in the atmospheric oxidation mechanism of dimethyl sulfide, in Proceedings of Joint 10th CACGP/7th IGAC Scientific Conference, 18–25 September 2002, Crete, Greece, pp. 159, 2002.
- Kumar, K. and Margerum, D. W.: Kinetics and mechanism of general-acid-assisted oxidation of bromide by hypochlorite and hypochlorous acid, Inorg. Chem., 26, 2706–2711, 1987.
- Kwok, E.S.C. and Atkinson, R.: Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: An update, Atmos. Environ., 29, 1685–1695, 1995.
- Lax, E., Taschenbuch für Chemiker under Physiker, Springer Verlag, Berlin, 1969.
- Lee, F. S. C. and Rowland, F. S.: Thermal chlorine-38 reactions with propene, J. Phys. Chem., 81, 1222–1229, 1977.
- Lee, Y.-N. and Lind, J. A.: Kinetics of aqueous-phase oxidation of nitrogen(III) by hydrogen peroxide, J. Geophys. Res., 91, 2793– 2800, 1986.
- Lee, Y.-N. and Schwartz, S. E.: Reaction kinetics of nitrogen dioxide with liquid water at low partial pressure, J. Phys. Chem., 85, 840–848, 1981.
- Lelieveld, J. and Crutzen, P.J.: The role of clouds in tropospheric photochemistry, J. Atmos. Chem., 12, 229–267, 1991.
- Libuda, H. G.: Spektroskopische und kinetische Untersuchungen an halogenierten Carbonylverbindungen von atmosphärischem Interesse, Ph-D Thesis, University of Wuppertal, Germany, 1992.
- Libuda, H.G., Zabel, F., Fink, E.H., and Becker, K.H.: Formyl chloride: UV absorption cross sections and rate constants for the reactions with Cl and OH, J. Phys. Chem., 94, 5860–5865, 1990.
- Lide, D. R. (Ed.): CRC Handbook of Chemistry and Physics, 80th Edition, CRC Press, Inc., Boca Raton, Florida, 1999.

- Lightfoot, P. D., Cox, R. A., Crowley, J. N., Destriau, M., Hayman, G. D., Jenkin, M. E., Moortgat, G. K., and Zabel, F.: Organic peroxy radicals: kinetics, spectroscopy and tropospheric chemistry, Atmos. Environ., 26A, 1805–1961, 1992.
- Lind, J.A. and Kok, G.L.: Correction to "Henry's law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid" by John A. Lind and Gregory L. Kok, J. Geophys. Res., 99, 21,119, 1994.
- Lind, J A., Lazrus, A. L., and Kok, G. L.: Aqueous phase oxidation of sulfur(IV) by hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid, J. Geophys. Res., 92, 4171–4177, 1987.
- Liu, Q. and Margerum, D. W.: Equilibrium and kinetics of bromine chloride hydrolysis, Environ. Sci. Technol., 35, 1127–1133, 2001.
- Løgager, T. and Sehested, K.: Formation and decay of peroxynitric acid: A pulse radiolysis study, J. Phys. Chem., 97, 10,047– 10,052, 1993.
- Madronich, S. and Calvert, J. G.: Permutation reactions of organic peroxy radicals in the troposphere, J. Geophys. Res., 95, 5697– 5715, 1990.
- Magi, L., Schweitzer, F., Pallares, C., Cherif, S., Mirabel, P., and George, Ch.: Investigation of the uptake rate of ozone and methyl hydroperoxide by water surface, J. Phys. Chem. A, 101, 4943– 4949, 1997.
- Mamou, A., Rabani, J., and Behar, D.: On the oxidation of aqueous Br⁻ by OH radicals, studied by pulse radiolysis, J. Phys. Chem., 81, 1447–1448, 1977.
- March, J.: Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 4th Ed., John Wiley & Sons, New York, 1992.
- Maricq, M. M., Shi, J., Szente, J. J., Rimai, L., and Kaiser, E. W.: Evidence for the three-center elimination of HCl from CH₃CHClO, J. Phys. Chem., 97, 9686–9694, 1993.
- Maricq, M. M., Szente, J. J., Kaiser, E. W., and Shi, J.: Reaction of chlorine atoms with methylperoxy and ethylperoxy radicals, J. Phys. Chem., 98, 2083–2089, 1994.
- Maricq, M. M., Ball, J. C., Straccia, A. M., and Szente, J. J.: A diode laser study of the Cl + CH₃CO reaction, Int. J. Chem. Kinet., 29, 421–429, 1997.
- Marsh, A. R. W. and McElroy, W. J.: The dissociation constant and Henry's law constant of HCl in aqueous solution, Atmos. Environ., 19, 1075–1080, 1985.
- Martin, L. R. and Damschen, D. E.: Aqueous oxidation of sulfur dioxide by hydrogen peroxide at low pH, Atmos. Environ., 15, 1615–1621, 1981.
- Matsumi, Y., Comes, F. J., Hancock, G., Hofzumahaus, A., Hynes, A. J., Kawasaki, M., and Ravishankara, A. R.: Quantum yields for production of O(¹D) in the ultraviolet photolysis of ozone: Recommendation based on evaluation of laboratory data, J. Geophys. Res., 107(D3), 4024, doi: 10.1029/2001JD000510, 2002.
- McElroy, W. J.: A laser study of the reaction of SO_4^- with Cl^- and the subsequent decay of Cl_2^- in aqueous solution, J. Phys. Chem., 94, 2435–2441, 1990.
- McGivern, W. S., Sorkhabi, O., Suits, A. G., Derecskei-Kovacs, A., and North, S. W.: Primary and secondary processes in the photodissociation of CHBr₃, J. Phys. Chem. A, 104, 10,085–10,091, 2000.
- McGivern, W. S., Francisco, J. S., and North, S. W.: Investigation of the atmospheric oxidation pathways of bromoform: Initiation via OH/Cl reactions, J. Phys. Chem. A, 106, 6395–6400, 2002.
- Merényi, G. and Lind, J.: Reaction mechanism of hydrogen ab-

straction by the bromine atom in water, J. Am. Chem. Soc., 116, 7872–7876, 1994.

- Moldanová, J. and Ljungström, E.: Sea-salt aerosol chemistry in coastal areas: A model study, J. Geophys. Res., 106, 12710– 1296, 2001.
- Molina, L. T. and Molina, M. J.: Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range, J. Geophys. Res., 91, 14,501–14,508, 1986.
- Nakano, Y., Goto, M., Hashimoto, S., Kawasaki, M., and Wallington, T.: Cavity ring-down spectroscopic study of the reactions of Br atoms and BrO radicals with dimethyl sulfide, J. Phys. Chem. A, 105, 11,045–11,050, 2001.
- National Bureau of Standards, Selected values of chemical thermodynamic properties, 1, N. B. S. Technical Note, 270-1, 1965.
- Neta, P. and Huie, R. E.: Rate constants for reactions of NO₃ radicals in aqueous solutions, J. Phys. Chem., 90, 4644–4648, 1986.
- Nicoson, J. S., Wang, L., Becker, R. H., Huff Hartz, K. E., Muller, C. E., and Margerum, D. W.: Kinetics and mechanism of the ozone/bromite and ozone/chlorite reactions, Inorg. Chem., 41, 2975–2980, 2002.
- Nielsen, O. J., Munk, J., Locke, G., and Wallington, T. J.: Ultraviolet absorption spectra and kinetics of the self-reaction of CH₂Br and CH₂BrO₂ radicals in the gas phase at 298 K, J. Phys. Chem., 95, 8714–8719, 1991.
- Niki, H., Maker, P.D., Savage, C.M., and Breitenbach, L.P.: An FTIR study of the Cl-atom-initiated reaction of glyoxal, Int. J. Chem. Kinet., 17, 547–558, 1985.
- Niki, H., Maker, P.D., Savage, C.M., and Hurley, M.D.: Fourier transform infrared study of the kinetics and mechanisms for the Cl-atom- and HO-radical-initiated oxidation of glycolaldehyde, J. Phys. Chem., 91, 2174–2178, 1987.
- Notario, A., Mellouki, A., and Le Bras, G.: Rate constants for the gas-phase reactions of chlorine atoms with a series of ketones, Int. J. Chem. Kinet., 32, 62–66, 2000.
- Oltmans, S. J. and Levy, H., II: Surface ozone measurements from a global network, Atmos. Environ., 28, 9–24, 1994.
- Orlando, J.J. and Tyndall, G.S.: Rate coefficients for the thermal decomposition of BrONO₂ and the heat of formation of BrONO₂, J. Phys. Chem., 100, 19,398-19,405, 1996.
- Orlando, J. J., Tyndall, G. S., and Wallington, T. J.: Atmospheric oxidation of CH₃Br: Chemistry of the CH₂BrO radical, J. Phys. Chem., 100, 7026–7033, 1996.
- Orlando, J. J., Tyndall, G. S., Bilde, M., Ferronato, C., Wallington, T. J., Vereecken, L., and Peeters, J.: Laboratory and theoretical study of the oxy radicals in the OH- and Cl-initiated oxidation of ethene, J. Phys. Chem. A, 102, 8116–8123, 1998.
- Orlando, J. J., Tyndall, G. S., Fracheboud, J.-M., Estupiñan, E. G., Haberkorn, S., and Zimmer, A.: The rate and mechanism of the gas-phase oxidation of hydroxyacetone, Atmos. Environ., 33, 1621–1629, 1999.
- Orlando, J. J. and Tyndall, G. S.: Mechanisms for the reactions of OH with two unsaturated aldehydes: crotonaldehyde and acrolein, J. Phys. Chem. A, 106, 12,252–12,259, 2002.
- Park, J.-Y. and Lee, Y.-N.: Solubility and decomposition kinetics of nitrous acid in aqueous solution, J. Phys. Chem., 92, 6294–6303, 1988.
- Penkett, S. A., Jones, B. M. R., Rycroft, M. J., and Simmons, D. A.: An interhemispheric comparison of the concentrations of bromine compounds in the atmosphere, Nature, 318, 550–553, 1985.

- Perrone, T.F.: Kinetics and Mechanisms for the Reactions of Hypochlorite with Hypobromite and Reactions of the Bromite Ion in Aqueous Solution, Ph.D Thesis, Purdue University, Indiana, USA, 1999.
- Ponche, J. L., George, C., and Mirabel, P.: Mass transfer at the air/water interface: Mass accommodation coefficients of SO₂, HNO₃, NO₂ and NH₃, J. Atmos. Chem., 16, 1–21, 1993.
- Pöschl, U., Canagaratna, M., Jayne, J. T., Molina, L. T., Worsnop, D. R., Kolb, C. E., and Molina, M. J.: Mass accommodation coefficient of H₂SO₄ vapor on aqueous sulfuric acid surfaces and gaseous diffusion coefficient of H₂SO₄ in N₂/H₂O, J. Phys. Chem. A, 102, 10,082–10,089, 1998.
- Ramacher, B., Orlando, J. J., and Tyndall G.S.: Temperaturedependent rate coefficient measurements for the reaction of bromine atoms with a series of aldehydes, Int. J. Chem. Kinet., 32, 460–465, 2000.
- Ramacher, B., Orlando, J. J., and Tyndall G.S.: Temperaturedependent rate coefficient measurements for the reaction of bromine atoms with trichloroethene, ethene, acetylene, and tetrachloroethene in air, Int. J. Chem. Kinet., 33, 198–211, 2001.
- Redpath, J. L. and Willson, R. L.: Chain reactions and radiosensitization: Model enzyme studies, Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med., 27, 389–398, 1975.
- Régimbal, J.-M. and Mozurkewich, M.: Peroxynitric acid decay mechanisms and kinetics at low pH, J. Phys. Chem. A, 101, 8822–8829, 1997.
- Régimbal, J.-M. and Mozurkewich, M.: Kinetics of peroxynitric acid reactions with halides at low pH, J. Phys. Chem. A, 104, 6580–6589, 2000.
- Resse, A.: UV/VIS-spektrometrische und kinetische Untersuchungen von Radikalen und Radikalanionen in wäßriger Lösung, Ph.D Thesis, University Essen, Germany, 1997.
- Resse, A., Herrmann, H., and Zellner, R.: Kinetic and spectroscopic investigations of the Br₂⁻ radical in aqueous solution, in Proceedings of the EUROTRAC-2 '98 Symposium, (Eds.) Borrell, P. M. and Borrell, P., pp. 714–718, WIT Press, Southampton, 1999.
- Rettich, T. R.: Some photochemical reactions of aqueous nitric acid, Diss. Abstr. Int. B, 38, 5968, 1978.
- Ruggaber, A., Dlugi, R., Bott, A., Forkel, R., Herrmann, H., and Jacobi, H.-W.: Modelling of radiation quantities and photolysis frequencies in the aqueous phase in the troposphere, Atmos. Environ., 31, 3137-3150, 1997.
- Sander, S. P., Friedl, R. R., DeMore, W. B., Golden, D. M., Kurylo, M. J., Hampson, R. F., Huie, R. E., Moortgat, G. K., Ravishankara, A. R., Kolb, C. E., and Molina, M. J.: Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Supplement to Evaluation 12: Update of Key Reactions, JPL Publication 00-3, Jet Propulsion Laboratory, Pasadena, California, 2000.
- Sander, R. and Crutzen, P. J.: Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea, J. Geophys. Res., 101, 9121–9138, 1996.
- Sander, R., Vogt, R., Harris, G. W., and Crutzen, P.J.: Modeling the chemistry of ozone, halogen compounds, and hydrocarbons in the arctic troposphere during spring, Tellus, 49B, 552–532, 1997.
- Sander, R., Rudich, Y., von Glasow, R., and Crutzen, P.J.: The role of BrNO₃ in marine tropospheric chemistry: A model study, Geophys. Res. Lett., 26, 2857–2860, 1999.
- Sauer, C. G., Barnes, I., and Becker, K. H.: FT-IR kinetic and prod-

uct study of the Br-radical initiated oxidation of α , β -unsaturated organic carbonyl compounds, Atmos. Environ., 33, 2969–2979, 1999.

- Sauer, M. C., Jr., Brown, W. G., and Hart, E. J.: O(³P) atom formation by the photolysis of hydrogen peroxide in alkaline aqueous solutions, J. Phys. Chem, 88, 1398–1400, 1984.
- Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of nonaromatic volatile organic compounds, Atmos. Chem. Phys., 3, 161–180, 2003.
- Saxena, P. and Hildemann, L. M.: Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57–109, 1996.
- Schuchmann, M. N. and von Sonntag, C.: The rapid hydration of the acetyl radical. A pulse radiolysis study of acetaldehyde in aqueous solution, J. Am. Chem. Soc., 110, 5698–5701, 1988.
- Schwartz, S. E.: Gas- and aqueous-phase chemistry of HO₂ in liquid water clouds, J. Geophys. Res., 89, 11,589–11,598, 1984.
- Schwartz, S. E. and White, W. H.: Solubility equilibrium of the nitrogen oxides and oxyacids in dilute aqueous solution, Adv. Environ. Sci. Eng., 4, 1–45, 1981.
- Schwarz, H. A. and Bielski, B. H. J.: Reactions of HO_2 and O_2^- with iodine and bromine and the I_2^- and I atom reduction potentials, J. Phys. Chem., 90, 1445–1448, 1986.
- Schweitzer, F., Mirabel, P., and George, Ch.: Uptake of hydrogen halides by water droplets, J. Phys. Chem. A, 104, 72–76, 2000.
- Sehested, J., Nielsen, O. J., and Wallington, T. J.: Absolute rate constants for the reaction of NO with a series of peroxy radicals in the gas phase at 295 K, Chem. Phys. Lett., 213, 457–464, 1993.
- Sehested, J., Christensen, L.K., Nielsen, O.J., Bilde, M., Wallington, T.J., Schneider, W.F., Orlando, J.J., and Tyndall, G.S.: Atmospheric chemistry of acetone: kinetic study of the $CH_3C(O)CH_2O_2 + NO/NO_2$ reactions and decomposition of $CH_3C(O)CH_2O_2NO_2$, Int. J. Chem. Kinet., 30, 475–489, 1998.
- Sehested, K., Rasmussen, O. L., and Fricke, H.: Rate constants of OH with HO₂, O₂⁻, and H₂O₂⁺ from hydrogen peroxide formation in pulse-irradiated oxygenated water, J. Phys. Chem., 72, 626–631, 1968.
- Sehested, K., Holcman, J., and Hart, E. J.: Rate constants and products of the reactions of e_{aq}^- , O_2^- and H with ozone in aqueous solutions, J. Phys. Chem., 87, 1951–1954, 1983.
- Sehested, K., Holcman, J., Bjergbakke, E., and Hart, E. J.: A pulse radiolytic study of the reaction $OH + O_3$ in aqueous medium, J. Phys. Chem., 88, 4144–4147, 1984.
- Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley, New York, 1998.
- Shoute, L. C. T., Alfassi, Z. B., Neta, P., and Huie, R. E.: Temperature dependence of the rate constants for reaction of dihalide and azide radicals with inorganic reductants, J. Phys. Chem., 95, 3238–3242, 1991.
- Singh, H., Chen, Y., Staudt, A., Jacob, D., Blake, D., Heikes, B., and Snow, J.: Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds, Nature, 410, 1078–1081, 2001.
- Smith, R. M. and Martell, A. E.: Critical Stability Constants, Volume 4: Inorganic Complexes, Plenum Press, New York, 1976.

- Snider, J. R. and Dawson, G. A.: Tropospheric light alcohols, carbonyls, and acetonitrile: Concentrations in the southwestern United States and Henry's law data, J. Geophys. Res., 90, 3797– 3805, 1985.
- Strehlow, H. and Wagner, I.: Flash photolysis in aqueous nitrate solutions, Z. Phys. Chem. (Wiesbdaden), 132, 151–160, 1982.
- Szirovicza, L. and Boga, E.: The kinetics of the bromate-sulfite reaction system, Int. J. Chem. Kinet., 30, 869–874, 1998.
- Thomas, K., Volz-Thomas, A., Mihelcic, D., Smit, H.G.J., and Kley, D.: On the exchange of NO₃ radicals with aqueous solutions: Solubility and sticking coefficient, J. Atmos. Chem., 29, 17–43, 1998.
- Troy, R. C. and Margerum, D. W.: Non-metal redox kinetics: Hypobromite and hypobromous acid reactions with iodide and with sulfite and the hydrolysis of bromosulfate, Inorg. Chem., 30, 3538–3543, 1991.
- Tyndall, G.S., Wallington, T.J., Hurley, M.D., and Schneider, W.F.: Rate coefficient for the reaction of CH_2OH radicals with Cl_2 and infrared spectra of chloromethanol and dichloromethanol, J. Phys. Chem., 97, 1576–1582, 1993.
- Tyndall, G. S., Orlando, J. J., Wallington, T. J., Dill, M., and Kaiser, E. W: Kinetics and mechanisms of the reactions of chlorine atoms with ethane, propane, and n-butane, Int. J. Chem. Kinet., 29, 43–55, 1997.
- Urbanski, S. P., Stickel, R. E., and Wine, P. H.: Mechanistic and kinetic study of the gas-phase reaction of hydroxyl radical with dimethyl sulfoxide, J. Phys. Chem. A, 102, 10,522-10,529, 1998.
- Utter, R. G., Burkholder, J. B., Howard, C. J., and Ravishankara, A. R.: Measurement of the mass accommodation coefficient of ozone on aqueous surfaces, J. Phys. Chem., 96, 4973–4979, 1992.
- Veyret, B., Rayez, J.-C., and Lesclaux, R.: Mechanism of the photooxidation of formaldehyde studied by flash photolysis of CH₂O-O₂-NO mixtures, J. Phys. Chem., 86, 3424–3430, 1982.
- Villenave, E. and Lesclaux, R.: The UV absorption spectra of CH_2Br and CH_2BrO_2 and the reaction kinetics of CH_2BrO_2 with itself and with HO_2 at 298 K, Chem. Phys. Lett., 236, 376–384, 1995.
- Villenave, E. and Lesclaux, R.: Kinetics of the cross reactions of CH₃O₂ and C₂H₅O₂ radicals with selected peroxy radicals, J. Phys. Chem., 100, 14,372–14,382, 1996.
- Villenave, E., Moisan, S., and Lesclaux, R.: Kinetic study of the self-reactions of the $BrCH_2CH_2O_2$ and $BrCH(CH_3)CH(CH_3)O_2$ radicals between 275 and 373 K, J. Phys. Chem. A, 107, 2470–2477, 2003.
- von Gunten, U. and Oliveras, Y.: Advanced oxidation of bromidecontaining waters: Bromate formation mechanisms, Environ. Sci. Technol., 32, 63–70, 1998.
- Wachsmuth, M., Gäggeler, H. W., von Glasow, R., and Ammann, M.: Accommodation coefficient of HOBr on deliquescent sodium bromide aerosol particles, Atmos. Chem. Phys., 2, 121–131, 2002.
- Wagner, I. and Strehlow, H.: On the flash photolysis of bromide ions in aqueous solution, Ber. Bunsenges. Phys. Chem., 91, 1317– 1321, 1987.
- Wagner, I., Karthäuser, J., and Strehlow, H.: On the decay of the dichloride anion Cl_2^- in aqueous solution, Ber. Bunsenges. Phys. Chem., 90, 861–867, 1986.
- Wahner, A., Tyndall, G.S., and Ravishankara, A.R.: Absorption Cross sections of OCIO as a Function of Temperature in the

Wavelength range of 240-480 nm, J. Phys. Chem., 91, 2734–2738, 1987.

- Wallington, T.J., Dagaut, P., and Kurylo, M.J.: Correlation between gas-phase and solution-phase reactivities of hydroxyl radicals toward saturated organic compounds, J. Phys. Chem., 92, 5024-5028, 1988.
- Wallington, T.J., Gierczak, C.A., Ball, J.C., and Japar, S.M.: Fourier transform infrared study of the self reaction of $C_2H_5O_2$ radicals in air at 295 K, Int. J. Chem. Kinet., 21, 1077, 1989a.
- Wallington, T. J., Skewes, L. M., Siegl, W. O., and Japar, S. M.: A relative rate study of the reaction of bromine atoms with a variety of organic compounds at 295 K, Int. J. Chem. Kinet., 21, 1069– 1076, 1989b.
- Wallington, T.J., Andino, J.M., and Japar, S.M.: FTIR product study of the self-reaction of CH₂ClCH₂O₂ radicals in air at 295 K, Chem. Phys. Lett., 165, 189–194, 1990.
- Wallington, T. J., Hurley, M. D., and Schneider, W. F.: Atmospheric chemistry of CH₃Cl: mechanistic study of the reaction of CH₂ClO₂ radicals with HO₂, Chem. Phys. Lett., 251, 164– 173, 1996.
- Wang, T.X., Kelly, M.D., Cooper, J.N., Beckwith, R.C., and Margerum, D.W.: Equilibrium, kinetic, and UV-spectral characteristics of aqueous bromine chloride, bromine, and chlorine species, Inorg. Chem., 33, 5872–5878, 1994.
- Wang, T.X. and Margerum, D.W.: Kinetics of reversible chlorine hydrolysis: Temperature dependence and general-acid/baseassisted mechanisms, Inorg. Chem., 33, 1050–1055, 1994.
- Warneck, P.: Chemistry of the Natural Atmosphere, 2nd Ed., Academic Press, San Diego, California, 1998.
- Warneck, P. and Wurzinger, C.: Product quantum yields for the 305nm photodecomposition of NO_3^- in aqueous solution, J. Phys. Chem., 92, 6278–6283, 1998.
- Wayne, R. P., Barnes, I., Biggs, P., Burrows, J. P., Canosa-Mas, C. E., Hjorth, J., Le Bras, G., Moortgat, G. K., Perner, D., Poulet, G., Restelli, G., and Sidebottom, H.: The nitrate radical: Physics, chemistry and the atmosphere, Atmos. Environ., 25A, 1–203, 1991.
- Weinstein-Lloyd, J. and Schwartz, S. E.: Low-intensity radiolysis study of free-radical reactions in cloudwater: H₂O₂ production and destruction, Environ. Sci. Technol., 25, 791–800, 1991.
- Weller, R., Lorenzen-Schmidt, H., and Schrems, O.: FTIR studies on the photooxidation mechanisms of CH₃Cl, CH₃Br, CHBr₃ and CF₃Br, Ber. Bunsenges. Phys. Chem., 96, 409–413, 1992.
- Wild, O., Rattigan, O. V., Jones, R. L., Pyle, J. A., and Cox, R. A.:

Two-dimensional modelling of some CFC replacement compounds, J. Atmos. Chem., 25, 167–199, 1996.

- WMO: Atmospheric Ozone: 1985, World Meteorological Organization Global Ozone Research and Monitoring Project, Report No. 16, Geneva: National Aeroneutics and Space Administration, 1986.
- Yarwood, G., Peng, N., and Niki, H.: FTIR study of the mechanism of the Cl and Br atom initiated oxidation of acetylene, J. Phys. Chem., 95, 7330–7337, 1991.
- Yarwood, G., Peng, N., and Niki, H.: FTIR spectroscopic study of the Cl- and Br-atom initiated oxidation of ethene, Int. J. Chem. Kinet., 24, 369–383, 1992.
- Yaws, C. L. and Yang. H.-C.: Henry's law constant for compound in water, in Thermodynamics and Physical Property Data, (Ed.) Yaws, C. L., pp. 181–206, Gulf Publishing Company, Houston, Texas, 1992.
- Yermakov, A. N., Zhitomirsky, B. M., Poskrebyshev, G. A., and Stoliarov, S. I.: Kinetic study of SO₅⁻ and HO₂ radicals reactivity in aqueous phase bisulfite oxidation, J. Phys. Chem., 99, 3120– 3127, 1995.
- Yin, F., Grosjean, D., and Seinfeld, J.H.: Photooxidation of dimethyl sulfide and dimethyl disulfide. I: Mechanism development, J. Atmos. Chem., 11, 309-364, 1990.
- Yokouchi, Y., Mukai, H., Yamamoto, H., Otsuki, A., Saitoh, C., and Nojiri, Y.: Distribution of methyl iodide, ethyl iodide, bromoform, and dibromomethane over the ocean (east and southeast Asian seas and the western Pacific), J. Geophys. Res., 102, 8805-8809, 1997.
- Zellner, R., Exner, M., and Herrmann, H.: Absolute OH quantum yields in the laser photolysis of nitrate, nitrite, and dissolved H₂O₂ at 308 and 351 nm in the temperature range 278-353 K, J. Atmos. Chem., 10, 411–425, 1990.
- Zellner, R., Herrmann, H., Exner, M., Jacobi, H.-W., Raabe, G., and Reese, A.: Formation and reactions of oxidants in the aqueous phase, in Heterogeneous and Liquid Phase Processes, (Ed.) Warneck, P., pp. 146–152, Springer, Berlin, 1996.
- Zhou, X. and Mopper, K.: Apparent partition coefficients of 15 carbonyl compounds between air and seawater and between air and freshwater; Implications for air-sea exchange, Environ. Sci. Technol., 24, 1864–1869, 1990.
- Zhu, T., Yarwood, G., Chen, J., and Niki, H.: FTIR study of the Cl + C₂H₂ reaction: Formation of cis- and trans-CHCl=CH radicals, J. Phys. Chem., 98, 5065–5067, 1994.