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Abstract. A retrospective analysis is carried out to investi-
gate the importance of the vertical fluxes of nitrogen to the
marine sea surface layer in which high chlorophyll a levels
may cause blooms of harmful algae and subsequent turn over
and oxygen depletion at the bottom of the sea. Typically ni-
trogen is the limiting factor for phytoplankton in the Katte-
gat Strait during summer periods (May to August) and the
major nitrogen inputs come from the atmosphere and deep-
water entrainment. The extreme reoccurrence values of nitro-
gen from atmospheric wet and dry deposition and deep-water
flux entrainments are calculated by the periodic maximum
method and the results are successfully compared to a map
of chlorophyll return periods based on in-situ observations.
The one-year return of extreme atmospheric wet deposition
is around 60 mg N m−2 day−1 and 30 mg N m−2 day−1 for
deep-water entrainment. Atmospheric nitrogen dry deposi-
tion is insignificant in the context of algal blooms. At longer
time-scales e.g. at 10-year return, the nitrogen deep-water
entrainment is larger than the extreme of atmospheric wet
deposition. This indicates that the pool of nitrogen released
from the sea bottom by deep-water entrainment forced by
high winds greatly exceeds the atmospheric pool of nitrogen
washed out by precipitation. At the frontal zone of the Kat-
tegat Strait and Skagerrak, the nitrogen deep-water entrain-
ment is very high and this explains the high 10-year return
chlorophyll level at 8 mg m−3 in the Kattegat Strait. In the
southern part, the extreme chlorophyll level is only 4 mg m−3

according to the statistics of a multi-year time-series of wa-
ter samples. The chlorophyll level varies greatly in time and
space as documented by a series of SeaWiFS satellite maps
(OC4v4 algorithm) of chlorophyll ScanFish and buoy obser-
vations from an experimental period in the Kattegat Strait.
It is recommended to sample in-situ chlorophyll observation
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collocated in time to the satellite overpasses of e.g. SeaWiFS
and ENVISAT MERIS to ensure improved mapping of the
chlorophyll levels in the Danish waters.

1 Introduction

The colour of the ocean is mainly influenced by phytoplank-
ton that is very small single-celled plants. The plants con-
tain green pigment called chlorophyll used to capture en-
ergy from the sunlight. In the Kattegat Strait one bloom of
toxic algae (Chrysochomulina polylepis) has been reported
from satellite Earth Observation (EO) data (Johannessen et
al 1989, Dundas et al, 1989, Hansen et al, 1993). Coupling
links between the atmospheric and marine environments are
of importance when describing the physical and chemical
processes giving rise to variations in chlorophyll-a (Ca) con-
centration levels and algal blooms. Nitrogen is a basic nu-
trient for phytoplankton and often the limiting growth factor
in spring and summer in coastal waters such as the Katte-
gat Strait (Grańeli, 1987; Kronvang et al. 1993). Therefore
the transport processes on nitrogen to and within the marine
ecosystem are of interest for estimating the likelihood (risk)
of encountering extremely highCa levels and (harmful) algal
blooms. It is well known that nitrogen may be transported to
the marine surface layer from three major sources: 1) river-
ine output, 2) up-welling from the bottom sea layer and 3)
atmospheric deposition.

The focus of the study is on describing the links between
the atmosphere and the marine environments during the al-
gae growth season when the sea surface layer is depleted of
nutrients. During spring and summer the riverine input is
relatively small, hence the atmospheric deposition may be of
significance. The vertical transport of nutrients to the surface
mixed layer is strongly coupled to atmospheric processes in
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two ways, one is atmospheric wet and dry deposition, the
other is wind-induced up-welling from the deep sea layer.

In a retrospective analysis, the occurrence of highCa lev-
els and algal blooms in the Kattegat Strait have been inves-
tigated based onCa in-situ observations and compared to
atmospheric and hydro dynamical measurements and model
results on the vertical transport of nitrogen to the sea surface
layer. Observations and model results covering more than
a decade are included in the analysis and the result of the
analysis is a quantification of the extreme values of the ver-
tical fluxes of nitrogen to the sea surface layer. The goal of
the analysis is to provide a better understanding of possible
cause- effect relations in the marine environment.

A second part of the study investigates the spatial varia-
tions inCa in the Kattegat Strait from a short experimental
period during which in-situCa observations based on fluo-
rescence are available from either a buoy or a moving ship.
The results are compared to satellite-based maps ofCa from
SeaWiFS. The case study description is included to underline
the great variability in space and time ofCa in the Kattegat
Strait. Mapping techniques forCa is described in some de-
tail and discussed with the aim to recommend future moni-
toring initiatives such that more detailed analysis of the links
in space and time between nitrogen inputs from the atmo-
sphere and deep-water entrainment and highCa levels are
facilitated.

The paper gives a brief presentation of the Kattegat Strait,
then followed by a description of the methodology onCa

mapping from satellite EO data (especially from the SeaW-
iFS sensor). The periodical maximum theory used for anal-
ysis of extreme events is described and the results on atmo-
spheric and deep-water nitrogen fluxes extreme events are
presented and discussed in context with the spatial map on
extremeCa occurrences derived from in-situCa observa-
tions. Comparison results between SeaWiFS and in-situ flu-
orescence observations onCa are presented and discussed.

2 The Kattegat Strait

The Kattegat Strait in the Scandinavian region is the marine
water between Denmark and Sweden. It covers an area of
22.000 km2 centred at latitude 57◦ 00’ and longitude 11◦ 30’
(Fig. 1). The water depths vary down to 100 m and the east-
ern part is much deeper than the western part (Fig. 1 and 7).
Water feeds into Kattegat from Skagerrak in the North and
from the Baltic Sea though the Belts and the Sound from the
South. Kattegat is normally considered well-mixed down to
10–15 m below the surface, where a salinity gradient sep-
arates the less saline water originating from the Baltic Sea
from the more saline water originating from the Skagerrak.
During winter and spring a significant amount of nitrogen
is contributed from land-based run-off through small rivers.
Typically this results in spring blooms. In the summer pe-
riod nutrients are depleted from the upper well-mixed zone

(Richardson 1996). The Kattegat Strait is eutrophic i.e. so-
called case 2 water. In the current study, the focus is on the
likelihood that atmospheric nitrogen deposition may cause
highCa and algal blooms. Hence in order to avoid analysing
the cases of highCa level mainly fuelled by out washed ni-
trogen from streams, only the late spring and summer pe-
riod is investigated. In summer run-off from land is minimal.
The inter-annual levels in total atmospheric N deposition to
the Kattegat Strait in the years 1996–1999 are found to vary
65% (Ambelas Skjøth et al. 2002). In a previous study it
has been shown that the flux of nitrogen during atmospheric
deposition events is in the range of 20–25 mg N m−2 day−1

(Asman et al., 1995). Using the Redfield ratio for phyto-
plankton composition this corresponds to an additional pri-
mary production of 114–284 mg C m−2 day−1. Comparing
this range to the average primary production in Kattegat, it is
found that an atmospheric deposition event could contribute
approximately 50% of the average primary production.

An input of 70 mg N m2 day−1 to mesocosm experiments
show an increase ofCa of 20% in waters from the Kattegat
Sea. The experiment was part of the MEAD (see acknowl-
edgements) project. This amount of nitrogen will have to be
added to the surface water during a period of say one to three
days.

3 Chlorophyll-a mapping

The chlorophyll level may either be measured through elec-
tromagnetic reflectivity by remote sensors, through fluores-
cence by fluorometers or water samples analysed by HPLC
in the laboratory. The two latter methods are in-situ observa-
tions taken within the water column, whereas the remote sen-
sors typically are mounted on spacecrafts, airplanes or plat-
forms. HighCa levels and algal blooms may occur at a time
scale from a few days up to weeks and the spatial distribution
is highly variable. Typical growth rates of phytoplankton are
a doubling in about a day. The different mapping techniques
on Ca are described to provide an overview of techniques
currently available.

3.1 Satellite Earth Observation data

Frequent, instantaneous spatial mapping ofCa is only feasi-
ble from satellite EO. The technology on mappingCa from
satellite EO data dates back to the late 1970’ties (e.g. Stew-
art, 1985) when the Coastal Zone Color Scanner (CZCS) sen-
sor was flown on-board the satellite NIMBUS-7 from 1978
to 1986 for NASA, USA (Kramer, 1996). A detailed study
of CZCS observations of the Danish coastal waters showed
that the yellow substance significantly influence the water
leaving radiances. It was concluded that more optical chan-
nels, than available at CZCS, would be needed to obtain
algorithms suitable for case 2 water masses as compared
to case 1 (oligotrophic) waters (Joergensen, 1999). Eight
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Fig. 1. Map of the Kattegat Strait showing the three sub-basin: Northern, Central and Southern Kattegat. Water depth is shown as isocurves
in meters.

months of EO ocean colour data are available in 1996 to 1997
from OCTS (Ocean Colour and Temperature Sensor) from
NASDA, Japan and POLDER (Polarization and Direction-
ality of the Earth’s Reflectance’s) from CNES, France both
on-board the ADEOS-1 satellite.

However, only since SeaWiFS (Sea-viewing Wide Field-
of-view Sensor) on-board the satellite SeaStar started opera-
tion for NASA, USA in September 1997, does a multi-year
global coverage EO data archive exist for ocean colour map-
ping. In the intervening period between CZCS and SeaWiFS
several investigators have analysed NOAA AVHRR (daily
data archive from 1979) and Landsat TM (bi-monthly data
archive from 1982) in regard toCa levels. The results ob-
tained are crude estimates, e.g. Svejkovsky and Shandley

(2001) note that AVHRR’s apparent lower detection limit on
plankton concentrations is 2–3 mg m−3 on Ca . This corre-
sponds approximately to human visual separation of “clear”
and “dirty” water. The technique is based on reflectivity. An-
other method based on sea surface temperature (SST) anoma-
lies e.g. Johannessen et al. (1989), is only able to delineate
the algal plume spreading through time rather than estimate
theCa concentration.

Society’s wish for EO ocean colour observations has been
high and currently ten EO satellite sensors are in orbit
mapping ocean colour. See IOCCG (International Ocean
Colour Coordinating Group, http://www.ioccg.org/sensors/
500m.html#2) for a list of platforms, instruments and sen-
sor characteristics. Near-real time operational mapping of
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Ca based on SeaWiFS is undertaken for the North Sea,
Skagerrak and Norwegian coast, see http://www.nrsc.no/
HAB/browser/2001.htm. The domain also covers the Katte-
gat Strait.

Five SeaWiFS scenes are analysed in the current study.
The requirement from NASA onCa level is an accuracy of
35% but this has been difficult to fully meet with the OC2
algorithm especially in case 2 water (O’Reilley et al., 1998).
The newest operational algorithm, OC4v4 (O’Reilley et al.,
2002) seems to be able to meet the accuracy of 35% for case
1 and case 2 waters. The algorithm is based on 4 channels
whereas the OC2 algorithm is based on only two channels.
The OC4v4 algorithm is

Ca = 10.00.366−3.067R4+1.930R2
4+1.532R4

4 (1)

where

R4 = log10(R
443
555 > R490

555 > R510
555). (2)

Ca is the chlorophyll a concentration (mg m−3). R4 is the
reflectance determined from four optical bands. The bands
are 20 nm wide and are centered at the four wavelength,λ,
at 443 nm (blue), 490 nm (blue-green), 510 nm (green) and
555 nm (green) and is the reflectance band ratio between the
wavelength,λ1 andλ2. The band ratioR490

555 is the best over-
all single band ratio index onCa concentration, but because
R443

555 is superior in oligotrophic waters andR510
555 is superior in

eutrophic water, the so-called maximum band ratio is used in
the polynomial function (Eq. 1). In other words, the OC4v4
algorithm takes advantage of the band-related shift in preci-
sion that is a function of the well-known shift of the maxi-
mumR(λ) spectra towards higher wavelengths with increas-
ing Ca (O’Reilley et al., 2002). Recently, Joergensen (2003)
has successfully compared SeaWiFS OC4v4 Ca data toCa

in-situ observations for a limited data set consisting of 30
match-up’s in the Danish waters.

3.2 In-situ techniques

Three types of in-situCa observations are available in the
current study. One is classical water samples (HPLC), the
others are fluorescence measurements from a buoy and a
moving ship. The SeaWiFS scenes are selected from days
where either the buoy or the ship data onCa are available.

The water sampling technique is based on point observa-
tions at various water depths. TheCa concentration is anal-
ysed in the laboratory with HPLC technique known to have
an error of 7% in duplex tests but up to 50% in case of inho-
mogeneous water (pers. com. B. Pedersen). In-situCa water
samples were collected by the Danish and Swedish monitor-
ing authorities. In Denmark, the National Environmental In-
stitute (NERI) and the counties perform the monitoring and
in Sweden, the Swedish Meteorological and Hydrological In-
stitute (SMHI). The combined dataset covers more than ten
years of observations collected at 50 stations. See Fig. 5 for

the position of the sampling stations. The observations from
the upper 10 m are averaged to represent the sea surface layer.

Buoy observations ofCa are retrieved from a flourome-
ter. The buoy was moored in the Kattegat Strait at latitude
57.1818◦ N, longitude 11.5313◦ E (Fig. 7). Hourly obser-
vations ofCa at −2 m depth were collected during an ex-
perimental period. The accuracy onCa is known to be best
during night time when daylight is not acting as excitation
light source in combination with the instrument light source.

ScanFish observations ofCa were obtained during several
experimental cruises. The ScanFish is an undulating wing
dragged after a ship. The ScanFish data are retrieved by a
flourometer (WETLABS, WETStar Miniature Fluorometer)
and the fluorescence detected is calculated intoCa from the
following relationship

F l = 2.439Ca − 2.143 (3)

with F l fluorescence (mg m−3) andCa (mg m−3).
TheCa levels are recorded in transects up to 32 km long

and down to 70 m water depth (Johnsson, 2002). In the cur-
rent study however, only the surface layer is investigated and
Ca is averaged over the top 5 m of the surface layer. Figure 7
shows the ship tracks for the period in early June 2001 from
which a SeaWiFS scene was analysed.

4 Theory on extreme events

The theory used to assess the extreme events of atmospheric
deposition and nutrient fluxes from the bottom of sea is the
periodical maximum method.

The method is based on dividing the record of observations
into n periods of equal length, here one year. The record of
extreme observations (Xmax

i ) per year is sorted in ascending
order, and it has been shown that if the tail of the distribution
of observations is exponential, then the extreme observations
have (asymptotically) an accumulated probability which is
double exponential (Gumbel, 1958; Mann et al. 1998)

F(X) = exp(− exp(−α(X − β))). (4)

The parametersα andβ are extracted following Abild (1994)

b =
1

n

n∑
i=n

i − 1

n − 1
Xmax

i (5)

and

α =
ln 2

2b − Xmax
, β = Xmax −

γ

α
(6)

whereγ is Euler’s constant≈0.577216 andXmax is the mean
of the maximum values.

The reoccurrence interval isT and the corresponding max-
imum valueXT is calculated from

XT =
ln T

α
+ β. (7)
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To check that the time-series is described well be the Gumbel
probability distribution, plots ofF(X) are compared with a
simple theoretical expressionP ∼ (i − 0.5)/n (S. Ott, pers.
comm.).

5 Extreme events of nitrogen fluxes to the Kattegat
Strait

Extreme events of nitrogen fluxes to the Kattegat Strait from
the atmosphere and from deep-water entrainment are de-
scribed in Sect. 5.1 and 5.2, respectively. The occurrence
of extreme chlorophyll-a levels in the Kattegat Strait is de-
scribed in Sect. 5.3 and a case study showing the variability
in time and space of chlorophyll-a is presented in Sect. 5.4.
The case study is included to demonstrate the high variabil-
ity in Ca in the Kattegat Strait. The case study also indicates
that spatial sampling ofCa could be improved in future mon-
itoring. The combination of results from these four sections
is discussed in Sect. 6.

In summary, the investigation is based on observations of

• atmospheric wet deposition from Anholt (bi-monthly
for 13 years)

• atmospheric wet deposition from Tange (daily for 8
years)

• atmospheric dry deposition for the sea near Anholt
(daily for 12 years)

• atmospheric wet and dry deposition from three grid cells
in the Kattegat (daily for 1 year)

• deep-water nitrogen fluxes from three sub-basins in the
Kattegat (daily for 25 years)

• Ca in-situ observations from 50 stations in the Kattegat
(per three weeks or less for 10 years)

• Ca satellite observations (instantaneous at 6 days, case
study)

• Ca in-situ buoy observations (30 minute values for 2
months, case study)

• Ca in-situ Scan-Fish (ship tracks during one day, case
study)

The measurement techniques used to monitor nitrogen
wet deposition is either “open” or “closed” systems. The
“closed” system is a wet-only sampling system. Daily wet
deposition sampling with a “closed” system means that the
sampler is only open during precipitation events and other-
wise closed, whereas the bi-monthly sampling system is al-
ways open (Ellermann et al., 1996). It is beyond the current
study to go into detail with general differences in the two
sampling systems, however just note that the “closed” system
collects less total nitrogen as very small precipitation events

Extreme statistics: reoccurence values for the period May to August 
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Fig. 2. Return periods of nitrogen input in the summer periods May
to August to the surface layer water in the Kattegat Strait from
the atmosphere as wet and dry deposition and estimated from a
hydro dynamical model dividing the basin into three sub-basins.
The wet deposition of nitrogen in Tange is based on daily obser-
vations. The dry deposition of nitrogen is based on daily concentra-
tion measurements at Anholt and meteorological observations from
Beldringe.*NOTE: The wet deposition of nitrogen at Anholt are
based on bi-monthly observations.

will not be logged with the “closed” system but only with the
“open” system. The open system also collects an (unknown)
amount of dry deposition.

5.1 Atmospheric deposition

Transport of atmospheric nitrogen to the surface takes place
through both dry and wet deposition. Two groups of ni-
trogen compounds contribute to the deposition – ammonia
and particulate ammonium, and gas phase as well as par-
ticulate phase nitrogen oxides. Ammonia is mainly emitted
from agricultural activities and reacts in the atmosphere with
acid gas phase or aerosol phase compounds to form partic-
ulate ammonium. Nitrogen oxides are emitted as nitrogen
monoxide and nitrogen dioxide from combustion processes
e.g. traffic, industry and power production. Nitrogen oxides
take place in a number of photo chemically initiated reactions
in the atmosphere and from particulate nitrate.

Ammonia is relatively quickly dry deposited, but this re-
moval competes with the transformation into aerosol phase
ammonium since also the chemical conversion is fast. The
concentration of ammonia therefore decreases relatively fast
when moving from an emission area. Nitrogen dioxide dry
deposit to plant surfaces but the solubility is very low for
both nitrogen dioxide and nitrogen monoxide. For the later,
the dry deposition is insignificant. Dry deposition of nitro-
gen oxides is therefore mainly from nitric acid which forms
from nitrogen dioxide by approximately 5% per hour. Nitric
acid is, however, also quickly converted into aerosol phase
nitrate.
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Fig. 3. Check on the extreme tail of observations (F(x)) to follow the Gumbel probability function (theory line) for the period 1 May to 31
August:(a) atmospheric nitrogen wet deposition at Anholt (1989–2001);(b) atmospheric nitrogen wet deposition at Tange (1989–1997); c)
nitrogen dry deposition at Anholt (1990–2001);(d) deep-water nitrogen fluxes calculated by a hydrodynamic model (1976–1999) for three
sub-basins in the Kattegat Strait. (Results for the full year are similar but not shown.)

The main part of the atmospheric nitrogen deposition to
marine waters arises from wet deposition of aerosol phase ni-
trate and ammonium. These compounds are associated with
aerosol. As these hardly dry deposit (lifetime with respect to
dry deposition is in the order of a week), the main removal
path is wet deposition.

Wet depositions of ammonium and nitrate are monitored
on the island Anholt in the middle of the Kattegat Strait on bi-
monthly intervals within the Danish Background Monitoring
Program (Ellermann et al., 2002) and observations from 1989
to 2001 are analyzed in the current study. A complimentary
analysis based on daily wet deposition observations from a
rural site in Jutland is given in order to estimate the extreme
deposition on a daily time scale.

Measurements of dry deposition fluxes is highly resource
demanding. Dry depositions are therefore estimated from
measured atmospheric concentrations and computed dry de-
position velocities (Ellermann et al., 1996). The daily dry
deposition rate to the sea near Anholt is calculated based
on meteorological observations in Beldringe and the results
from 1990 to 2001 are analysed in the current study. The
island Anholt is located in the centre of the sea, hence the

observations are assumed to be representative for the whole
Kattegat Strait.

Results from the ACDEP model (http://www.dmu.dk/
AtmosphericEnvironment/ACDEP/, Hertel, 1995) on wet
and dry deposition are available at a daily interval with a
grid resolution of 30 km by 30 km from one year (year 2001)
(Ellermann, 2002). The time-serie is used to assess the spa-
tial variability on atmospheric deposition and to estimate the
variation in wet deposition at a daily time scale compared to
the bi-monthly observations.

Marine nitrogen flux data at a daily time-scale (1976–
1999) are retrieved from a hydrodynamic model (see
Sect. 5.2 for details) and the in-situCa observations during
10 years are described in Sect. 5.3. Section 5.4 deals with
the case study onCa from satellite, in-situ buoy and Scan-
Fish data.

5.1.1 Wet deposition

In order to estimate extreme events on nitrogen wet-
deposition to the Kattegat Strait, ammonium and nitrate
have been summed. The average summed wet deposi-
tion is 32 mg N m−2 bi-monthly−1 and the maximum is

Atmos. Chem. Phys., 3, 797–812, 2003 www.atmos-chem-phys.org/acp/3/797/
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Table 1. Extreme events at one, ten and hundred year reoccurrence for atmospheric nitrogen wet deposition at bi-monthly values (Anholt)
and daily values (Tange, in bold italic), nitrogen dry deposition daily values at Anholt and daily deep-water nitrogen flux calculated from a
hydrodynamic model for three sub-basins. Values for summer periods (May to August) and the full year

Atmospheric nitrogen Deep-water nitrogen entrainment
deposition (Anholt) in three Kattegat Strait sub-basins

Return period wet dry North Central South
(years) mg N m−2 day−1 mg N m−2 day−1 mg N m−2 day−1 mg N m−2 day−1 mg N m−2 day−1

Summer 1 62∗ (32) 0.7 173 27 27
10 92∗ (76) 1.1 620 109 130
100 121∗ (120) 1.5 1068 192 232

Year 1 69∗ (35) 0.9 771 114 164
10 106∗ (77) 1.5 1917 256 381
100 143∗ (118) 2.1 3063 398 597

∗ the values are in mg N m−2 bi-monthly−1

111 mg N m−2 bi-monthly−1 for Anholt. The return period
on nitrogen wet deposition has been calculated using the
method described in Eqs. (5–8). The result for summer con-
ditions, here defined as May to August, is given in Fig. 2
and Table 1. The one-year maximum reoccurrence value is
62 mg N m−2 bi-monthly−1, whereas the 10-year maximum
value is 92 mg N m−2 bi-monthly−1. If the tail of the dis-
tribution of bi-monthly wet deposition is exponential, then
the extreme wet depositions have an accumulated probabil-
ity that is double exponential. This is successfully checked
and shown in Fig. 3a. The extreme events for the full year are
also listed in Table 1 and it is seen that only slightly higher
extreme wet nitrogen deposition events are predicted than for
the summer periods.

Extreme events at a daily time scale are of much greater
interest than bi-monthly values because phytoplankton com-
munities typically doubles within one day. Furthermore, the
nitrogen contributed to the surface layer is well-mixed in less
than 30 minutes, hence is readily available forCa growth.

Daily observations of wet deposition are not available
from Anholt. Therefore two approaches are taken to estimate
the order of magnitude. One is based on analysis of daily
nitrogen wet deposition observations at a rural site 140 km
southwest of Anholt (Tange in Jutland at location UTM 32
N6246 E537). The other approach is based on daily nitrogen
wet deposition model results for the Kattegat Sea.

Tange daily observations

A data series from Tange has been analyzed in regard
to extreme reoccurrence values of nitrogen wet-deposition
calculated as the sum of nitrogen (NO3 and NH4) for
Tange. The daily observations at Tange show an average
nitrogen wet deposition of 709 mg N m2 year−1 in the period
1989 to 1997. Bi-monthly observations at Tange show
851 mg N m2 year−1 in the period 1989 to 1998. The average

value at Anholt sampled bi-monthly is 756 mg N m2 year−1

in the period 1989 to 2001. Hence the marine site at Anholt
receives around 17% less nitrogen wet-deposition than the
rural site at Tange. The distance between the sites is 140 km.

The daily nitrogen wet deposition samples from Tange are
used for an order of magnitude study on reoccurrence val-
ues. It is anticipated that extreme high deposition events are
relatively better logged by the “closed” system than smaller
deposition events. The open system on the other hand, may
be polluted by biological material e.g. from birds. The data
set is carefully screened prior to the extreme events analysis
(and also tested for the Gumbel distribution).

Daily nitrogen wet deposition reoccurrence values for
one-, 10- and 100-years from Tange are listed in Table 1 and
the values between one- and 10-years are shown in Fig. 2.
The data set is reasonably described by a double-exponential
function (Fig. 3b). Table 1 shows that at Tange the difference
in extremes for summers only (May to August) and the full
year is insignificant. In other words, the extreme nitrogen
wet deposition typically occurs during summer at Tange.

The one-year reoccurrence for nitrogen wet deposition
at Tange is 32 mg N m−2 day−1. That is a half of the bi-
monthly value at Anholt (62 mg N m2 day−1). The 10-year
reoccurrence value at Tange is 76 mg N m2 day−1 (83% of
the Anholt value at 92 mg N m2 day−1). The two curves on
wet deposition in Fig. 2 have the same shape. In conclusion,
the study on daily wet deposition events at Tange indicates
that daily and bi-monthly extreme values are of the same
order of magnitude.

ACDEP daily model results

Daily wet deposition model results from a one-year
period in year 2001 are analysed. The model results are
from the ACDEP model using the Eta-model meteorology
as boundary condition. Three grid cells (30 km by 30 km)
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Table 2. Daily nitrogen wet and dry deposition values for three
30 km by 30 km grid cells in the Kattegat basin from the ACDEP
model listed as maximum values and averages (in brackets) in
mg N m−2 day−1 for the full year of 2001

North basin Central basin South basin

Dry deposition 5.7 (2.3) 4.5 (1.1) 3.7 (1.0)
Wet deposition 162.4 (3.9) 129.3 (3.4) 64.2 (3.4)
Total deposition 165.7 (6.2) 130.9 (4.3) 66.3 (4.4)

are selected such that these include only water surfaces
and are representative for the three sub-basins shown
in Fig. 1. The yearly maximum and average values are
extracted and listed in Table 2. Anholt is located between
the Central and Southern basins, i.e. the mean extreme value
is 97 mg N m−2 day−1 for year 2001 (averaging the extreme
for the two basins). The value is somewhat higher than the
10-year bi-monthly reoccurrence value (Table 1) for the full
year. Furthermore it may be noted that the extreme event
in year 2001 in the grid cell representative for the Northern
sub-basin is even larger (162 mg N m−2 day−1).

Two recent studies on total atmospheric nitrogen deposi-
tion based on the ACDEP model with Eta boundary condi-
tions for the North Sea and the Kattegat Strait show signif-
icant spatial and temporal variations. Hertel et al. (2002)
present results of a significant spatial gradient (around an or-
der of magnitude) in atmospheric nitrogen deposition over
the North Sea in year 1999 and Ambelas Skjøth et al. (2002)
show a temporal variation of 100% in atmospheric nitrogen
wet deposition to the Kattegat Strait within the years 1996–
1999. The spatial variation mainly is explained by the dis-
tance to the sources of nitrogen emission whereas the tem-
poral variation mainly is explained by relatively dry and wet
years.

It is beyond the scope of the present study to go into fur-
ther detail with the ACDEP model results. These are used
only as guidance for drawing a tentative conclusion that the
extreme wet deposition events measured at Anholt may be
contributed to daily events within the two-week period of
observations. In other words, the curve on wet deposition
extreme events (Fig. 2) and the values in Table 1 could be
interpreted as mg N m−2 day−1 instead of as mg N m−2 bi-
monthly−1 without much exaggeration.

On average the total wet deposition is around
2.6 mg N m−2 day−1 in the summer period during the
last decade according observations at Anholt (Table 3). The
average deposition is rather constant whereas the extreme
values are highly variable and an order of 20 to 40 times
larger than the average values. The ACDEP model results
(Table 2) indicate some variation in the average and max-
imum wet deposition values over the Kattegat Strait (also
found by Asman et al., 1995) but the spatial distribution on
extreme events cannot be inferred from the present dataset
covering only one year.

The analysis results lead to three conclusions on the ex-
treme nitrogen wet deposition events to the Kattegat Strait

• the yearly reoccurrence extreme wet deposition event is
around 60 mg N m−2 day−1

• the extreme bi-monthly wet deposition at Anholt seems
to relate to rain events at a time scale equal to or shorter
than one day

• the extreme wet deposition may not be homogeneously
distributed over the Kattegat Strait

5.1.2 Dry deposition

The values of total nitrogen dry deposition at a daily time
scale during 12 years representative for the sea near Anholt
are analysed. The extreme events at 1, 10 and 100-year re-
occurrence intervals are calculated using Eqs. (4–7) and are
shown in Table 1 and Fig. 2 (and successfully checked for a
Gumbel probability distribution, Fig. 3c). It is clear that the
dry deposition extreme values are much lower than for wet
deposition. The yearly average values are listed in Table 3
and it shows that the yearly average dry deposition is lower
than the yearly average wet deposition values by a factor of
ten. The spatial variation in dry deposition is represented
from three ACDEP model grid cells (30 km by 30 km) and
the results are listed in Table 2. Some variation is seen be-
tween the grid cells and the variation between average and
maximum dry deposition for year 2001 is found to be a factor
of two to three. This is much smaller than for wet deposition
where the factor between average values and extreme events
ranges from 20 to 40.

5.2 Nitrogen flux from deep-water entrainment

A basin-scale hydrodynamic model has been used to esti-
mate the flux of nutrients to the mixed layer by wind forced
entrainment. The hydrodynamic model resolves the Kattegat
horizontally with three sub-basins (see Fig. 1) and in the ver-
tical with 50 layers. The model also covers the remaining of
the Baltic Entrance Area and the Baltic Sea. The mixed layer
dynamics is parameterised with a bulk approach. The details
of the model are given in Gustafsson (2000).

The main focus of this calculation is to estimate the magni-
tude and frequency of mixing events that can feed the mixed
layer with nutrients from below. The methodology is to use
observed salinity-nutrient relations with a monthly resolution
together with the modelled entrainment rate to estimate the
daily nutrient flux. However, decreasing wind speeds and/or
increasing buoyancy flux due to heating or freshwater sup-
ply can lower the turbulent kinetic energy in the mixed layer.
That causes the mixed layer thickness to decrease. During
variable weather conditions, the mixed layer thickness can
increase and decrease frequently without substantial upward
transport of deep-water.
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Table 3. Mean summer month (May to August) values of chlorophyll a concentration (Ca) and number of samples (N) in the Kattegat Strait
1989–1999 from NERI and SMHI monitoring network; atmospheric nitrogen wet and dry deposition and their sum from Anholt from NERI;
deep-water flux entrainment of nitrogen in three basins (see Fig. 1) in the Kattegat Strait based on hydro dynamical model results from Univ.
of Gothenburg. The total flux from the atmosphere and the deep-water entrainment is given in the last column for the Central Kattegat Strait

Chlorophyll a1 Atmospheric deposition Deep-water flux Total

Year Ca N wet dry sum north central south central
(mg m−3) mg N m−2 day−1 mg N m−2 day−1 mg N m−2 day−1 mg N m−2 day−1 mg N m−2 day−1 mg N m−2 day−1 mg N m−2 day−1

1989 1.94 78 2.7 n.a. 2.7 22.5 4.5 4.4 7.1
1990 2.40 100 2.9 0.2 3.1 12.0 0.8 1.4 4.5
1991 2.03 106 2.4 0.2 2.6 17.2 4.4 6.0 8.6
1992 2.11 98 2.7 0.3 3.0 5.8 0.8 0.6 3.6
1993 1.80 168 2.4 0.2 2.6 5.8 1.7 1.4 4
1994 2.11 176 3.0 0.2 3.2 12.2 1.5 1.3 4.5
1995 1.95 202 2.5 0.2 2.7 3.0 0.8 0.6 3.3
1996 1.56 139 2.4 0.2 2.6 6.3 1.8 1.4 4
1997 1.41 186 2.5 0.2 2.7 0.2 0.1 0.1 2.8
1998 2.11 153 2.2 0.1 2.3 6.0 1.3 1.6 3.9
1999 1.91 187 2.6 0.1 2.7 0.5 0.2 0.2 2.9

average 1.94 2.6 0.2 2.7 8.3 1.6 1.7 4.5

When the wind speed increases and/or the buoyancy sup-
ply ceases, the erosion will start by entraining water that re-
cently was within the mixed layer. Especially during sum-
mer, this water will be nearly depleted of nutrients and not
give a substantial increase of nutrients to the mixed layer.
Thus it is necessary to separate between entrainment of old
mixed layer water and nutrient rich deep-water. In principle,
this could be done by the use of salinity-nutrient relations.
However as the salinity difference may be small and the
model error comparatively large, it is not a practical method.

Instead an artificial “tracer” is introduced into the model.
The “tracer” has a concentration equal to 1 in the Skagerrak
water (which feeds the deep-water of Kattegat) and a concen-
tration equal to 0 in the surface mixed layer. This “tracer” is
used as a weight factor for estimating the entrainment of nu-
trient rich deep-water.

The entrainment flux is calculated at each time-step by
firstly estimating a nutrient concentration profile in the model
from the salinity-nutrient relation for that month, secondly
summing up the entrainment of nutrients using

F =

t+1t∫
t

wECNCWdt (8)

with wE the entrainment rate,CN the nutrient concentration
andCW the concentration of the “tracer” that approximates
the relative amount of deep-water. The nutrient fluxes calcu-
lated in this way will probably not give the total upwelling of
nutrients in Kattegat, but the resulting time-series represent
an order of magnitude estimate of the entrainment fluxes and
their frequency.

The calculations are done for the period 1976–1999 with
the observed salinity-nutrient relations from Rasmussen and
Gustafsson (2003). The fluxes appear to be somewhat higher
in the Southern than in Central Kattegat. This is mainly
explained from the fact that there are larger shallow areas
in Central Kattegat above the halocline depth whereas the
Southern basin is deeper. The maximum fluxes of dissolved
inorganic nitrogen reach values as high as 600 mg N m2 day1.
The Northern Kattegat has much higher fluxes due to the in-
flux of nutrient-rich water from the Skagerrak. A 10-year
average on nitrogen flux values is listed in Table 3 for the
summer period. The average values vary greatly between
the three sub-basins from 8.3 mg N m2 day1 in the North-
ern basin to 1.6 mg N m2 day1 in the Southern basin. Fur-
thermore there are large interannual variations e.g. ranging
from 0.1 to 4.5 mg N m2 day1 for the Central basin during the
decade from 1989–1999.

The extreme events are calculated from 25 years of daily
model results using Eqs. (4–7). The results are shown in
Table 1 and Fig. 2. The results show very large variations
in space and time. The extreme one-year reoccurrence val-
ues in summers and for the full year are very different. In
the summers, for the Central basin, the extreme value is
27 mg N m2 day1 whereas the value is 114 mg N m2 day1 for
the full year. The dynamics are also very different between
the basins, especially for the Northern basin where the ex-
treme one-year reoccurrence value is 173 mg N m2 day1. The
data set is successfully checked for the Gumbel probability
distribution (Fig. 3d).
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Fig. 4. The upper graphs show the empirical and estimated Gamma distribution for summer surface chlorophyll a at a coastal station (Station
190004) and an open sea station (Station 413). The lower graphs show chlorophyll a concentrations as a function of return period calculated
from the empirical and Gamma distribution.

5.3 Chlorophyll a

The combined dataset on in-situCa observations in the Kat-
tegat Strait from the Danish and Swedish monitoring author-
ities are analysed. The sampling sites include a total of 50
stations (see Fig. 5) with a sampling rate of 3 weeks or less
(1989 to 1999). Only samples from the top 10 meters of the
water column are considered for assessing the effect of atmo-
spheric deposition. The average level ofCa over the entire
Kattegat basin was 1.94 mg m−3 based on the 1593 observa-
tions (Table 3). A spatial analysis revealed that the average
Ca value is less than 1.4 mg m−3 in the Southern part increas-
ing to above 2 mg m−3 near the coasts and in the Northern
sub-basin (Hasager et al., 2003).

From a statistical analysis it is found that theCa frequency
distributions are Gamma distributed both in the relatively nu-
trient poor waters in the Southern basin and in the relatively
nutrient rich waters close to the Jutlandic coast. The Gamma
distributions fitted to data from two stations are shown in
Fig. 4 with calculatedCa concentrations versus return pe-
riods between 1 and 12 years. Figure 4 shows that blooms
of a given magnitude will occur much more frequent at the
coastal station (station 190004) compared to the open sea sta-
tion (station 413).

The spatial pattern of the expected maximum chlorophyll
a level for the Kattegat Strait is calculated for a 10-year return
period for all stations and the map is shown in Fig. 5. This
reveals that the western part of the Kattegat Strait is likely to
experienceCa levels up to 7 mg m−3 whereas the southern
part most likely will only experience up to 4 mg m−3 within
a decade. Some areas in the Kattegat Strait are identified as
zones with a high probability of generating blooms.

These areas are

1. the southern part where the Great Belt and the Sound
flow into the Kattegat Strait,

2. the frontal zone where Skagerrak mixes with the Katte-
gat Strait,

3. the eastern part of the Kattegat Strait.

For the first two, a strong periodic turbulent mixing char-
acterise the water masses. For the third, it is a combination
of the fact that the shallow eastern part of the Kattegat Strait
easily will have an in-flux of nutrient rich deep-water but also
that the major freshwater sources may dispatch nutrients to
the sea along the east-Jutlandic coastline.

Out of a total of 1786Ca observations, 233 were estimated
to be bloom events based on the graphs per station like those
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Fig. 5. The spatial distribution of expected chlorophyll a level in
mg m−3 with a 10-year return period based on weekly independent
samples in the Kattegat Strait. The dots indicate the locations of the
sampling sites used by the Danish and Swedish monitoring author-
ities.

in Fig. 4 for station 190004 where blooms appear whenCa >

4 mg m−3 and for station 413 where blooms appear forCa >

2 mg m−3. From the statistical analysis onCa , it occurs that a
few algal blooms may have occured in the early 1990’ties, i.e.
in the period after the CZCS but prior to the OCTS, POLDER
and SeaWiFS sensors. NOAA AVHRR data are rather cloudy
on all the days where algal blooms are likely to have occurred
except at one satellite scene that shows a SST gradient from
14◦C in the northern part of the Kattegat Strait to 17◦C near
Anholt. No clear SST anomalies are detected. Please refer to
Hasager et al. (2003) for further detail on these algal bloom
events and their species composition. It can be mentioned
that the algal bloom in 1988 (Johannessen et al., 1989) started
to appear where the highestCa may be expected according
to the results in Fig. 5. In the following days it then moved
towards the Norwegian coastline.

5.4 SeaWiFS case study

FiveCa-maps from SeaWiFS satellite scenes retrieved by the
OC4v4 algorithm (Eqs. 1–2) are compared to in-situCa ob-
servations from a buoy (four cases) and to ScanFish observa-
tions (one case).

Comparison of theCa values from the buoy and SeaWiFS
is shown in Fig. 7 and listed in Table 4. It is clear that the
SeaWiFS observations are much higher than the buoy ob-

Table 4. Chlorophyll a values from a buoy and from SeaWiFS
from the center pixel and the mean, minimum, maximum and stan-
dard deviation from a 3 by 3 window centered at the buoy. Unit is
mg m−3

Buoy Center Mean Min. Max. Std. dev. Pixels

20010513 0.3 1.9 2.8 1.9 4.0 0.7 9
20000519 1.8 4.1 4.5 3.3 6.1 0.8 9
20010527 n.a. 2.8 2.8 2.3 3.5 0.4 9
20010604 0.6 1.7 1.7 1.5 1.9 0.2 9
20010805 n.a. 1.5 1.5 1.4 1.5 0.1 9
20010807 n.a. 2.4 2.1 1.4 2.4 0.4 5∗

∗ the other pixels are cloud covered

servations. The observations are collected very closely in
time (less than±30 minute) and in space (less than 1 km
distance). The buoy observations onCa vary greatly at a
diurnal time scale from 8 mg m−3 in the night to less than
2 mg m−3 during the following day measured at a depth of
−2 m (Fig. 7). The diurnal variation in chlorophyll a flu-
orescence is to be expected. It could be attributed to real
changes in phytoplankton biomass because of e.g. vertical
migration. However, it is more likely that a physiological
phenomenon is observed. The sun acts as a large excitation
light, which stimulates the chlorophyll fluorescence in the
phytoplankton. The in-situ instrument, which has its own
excitation light source, thus will measure a lower emission
from the phytoplankton during daytime. It is likely that the
data from around midnight reflect the true chlorophyll con-
centrations (pers. comm. Bengt Karlson).

All SeaWiFS scenes are recorded around an hour after lo-
cal noon. The spatial variation inCa from SeaWiFS is mod-
erate in four cases (see standard deviation in Table 4 in the
local area around the position of the buoy. This local vari-
ation however does not indicate any values in the range of
the buoy. The buoy is moored at more than−70 m water
depth, hence limitations of SeaWiFS related to shallow wa-
ters (<10 m water depth) does not explain the relatively high
Ca values found in SeaWiFS.

In early August 2001, a series of ScanFish observations
were collected and the position of all ship tracks are shown
in Fig. 7. It may be noted that the ScanFish sampling only
took place at areas characterized by relatively deep water
(> −40 m depth). Only one cloud free SeaWiFS scene is
recorded close in time to the ScanFish sampling. The map of
Ca from the SeaWiFS scene is shown in Fig. 8. The scene
is recorded on 7 August, 2001 at 14:55 p.m. During this day
four ScanFish tracks were collected (number 2, 3, 4 and 5
in Fig. 7) and the values ofCa from the upper 5 m over the
mixed surface layer are averaged along the horizontal tran-
sects and compared to the SeaWiFS observations in Fig. 9.

The first three transects (Fig. 8) show lowerCa values in
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tegat Strait per hour and observed by the SeaWiFS satellite (pixel
collocated with buoy).
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Fig. 7. Ship tracks of ScanFish on the 6 to 10 August 2001 in the
Kattegat Strait. The buoy is moored at the position⊕. The transect
starts where the number is indicated, e.g. track 2 (East to West),
track 3 (North to south), track 4, (West to East) and track 5 (East to
West). Track 2, 3 and 4 are recorded 7–9 hours prior to the SeaWiFS
observation. Track 5 is recorded only 15 minutes to 2.5 hours after
the SeaWiFS observation.

the SeaWiFS scene than from ScanFish. The three ScanFish
transects were collected from 6:04 to 10:13 a.m. There is a
time difference in sampling of 7–9 hours between the Sea-
WiFS and ScanFish observations. This is thought to explain
that the values are very different.

The fourth transect (Fig. 9d) was collected from 15:13 to
17:25 p.m. local time. This means that the first few kilo-
metres of track 5 are nearly collocated in time to the Sea-

WiFS scene (14:55 p.m.). ScanFish started to sample track
5 only 18 minutes after the SeaWiFS scene was recorded.
The ship reached the 8-km distance around 37 minutes later.
During the first 8-km theCa values from SeaWiFS and Scan-
Fish compare reasonably. However after 8-km SeaWiFS and
ScanFishCa values deviates considerably due to the time dif-
ference in observations. The buoy is geolocated at ScanFish
track 4 and 5 but unfortunatelyCa was not successfully ob-
served at the buoy.

In summary,Ca was observed from an experimental buoy
equipped with a flourometer and from ScanFish flourome-
ter observations in the Kattegat Strait during the summer of
year 2001. Comparisons to the SeaWiFS satelliteCa maps
reveals rather large deviations between the three types of ob-
servations. SeaWiFS and ScanFish seem to correspond well
when almost truly collocated in space and time. Both sensors
provide estimates of the spatial distribution ofCa and this is
very important as the spatial variation is found to be large
in the Kattegat Strait. The SeaWiFS and buoy observations
are well collocated in time and space. The large differences
in Ca values between the two are most likely due to the sun
acting as a light source during daytime, thus the chlorophyll
level is measured too low at the in-situ buoy.

6 Discussion on the extreme events

The average annual atmospheric deposition is
2.7 mg N m−2 day−1 in the last decade at the island of
Anholt in the middle of the Kattegat Strait. The average
annual deep-water nitrogen flux is 1.6 mg N m−2 day−1 in
the Central and Southern Kattegat basin (Table 3) in the
same period. Hence the yearly cumulated contribution from
the atmosphere is larger than the cumulated deep-water
nitrogen flux in those two sub-basins in the summer periods.
Only in the Northern basin is the cumulated deep-water flux
of much greater importance than the atmospheric deposi-
tion. The nitrogen fuels the phytoplankton communities
but only in cases of extreme nitrogen flux events will an
algal bloom be able to develop. The average values for
the summer period (Table 3) do not show any correlation
between highCa and input of nitrogen from the atmosphere
and deep-water entrainment. The usual condition is that
the surface layer is depleted of nutrients in the summer
period, i.e. the average input from the atmosphere and the
deep-water entrainment values totalling 4.5 mg N m−2 day−1

(see Table 3) is efficiently digested. Both the calculated
deep-water nitrogen and the atmospheric nitrogen deposition
are readily available for phytoplankton growth.

The atmospheric dry deposition events seem too small to
support an algal bloom alone, as the one-year reoccurrence
of extreme event is around 0.7 mg N m2 day−1 in the summer
period. The atmospheric wet deposition events on the other
hand seem large enough to increase the growth by some per-
cent (e.g. of the order 20–50%).
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Fig. 8. Chlorophyll a map derived from SeaWiFS by the OC4v4 algorithm for the Danish waters.

The Anholt bi-monthly measurements on nitrogen wet de-
position compared to daily observations at Tange and to
daily model results, indicate a one-year reoccurrence extreme
events of 60 mg N m2 day−1. Wet deposition of particles and
passive tracers is known to occur in the very beginning of a
rain event and that the air is “clean” already after few min-
utes, hence an extreme wet nitrogen deposition most likely
could occur at a time scale of less than 15 minutes. The mix-
ing time scale of the water surface layer is of the order of
30-minutes, hence the nutrients are readily available for the
phytoplankton community. The doubling rate of phytoplank-
ton is about one day.

The deep-water nitrogen flux extreme event statistics is
based on 25 years of model results. In the summer months
the deep-water flux has a one-year reoccurrence value of
27 mg N m2 day−1 in the Central and Southern basin, i.e. a
value around half of the extreme wet deposition events. How-
ever, at longer times scales e.g. 10 and 100-years, the deep-
water nitrogen flux is larger than the extreme atmospheric
flux. Another major difference between the extreme nitro-
gen fluxes from the atmosphere and from the deep-water
entrainment is found in the summer period contra the full

year. The relative importance of extreme deep-water nitro-
gen flux events during autumn, winter and spring is signif-
icantly larger than the atmospheric deposition events (Ta-
ble 1). This has to do with the occurrences of stronger winds
during autumn and winter driving the deep-water nutrient
fluxes, whereas the wet deposition is closer linked to pre-
cipitation patterns.

A correlation analysis betweenCa , wind speed, modelled
atmospheric nitrogen deposition from the ACDEP at the Kat-
tegat basin scale and modelled deep-water nitrogen flux from
the hydrodynamic model has been carried out based on the
years 1989 to 1999 (Hasager et al., 2003). The main result is
that higher wind speed with a 2–6 day time-lag best explains
the bloom situations versus non-bloom situations. This sta-
tistical analysis indicates that the physical state (wind speed)
of the atmosphere influencesCa levels in the Kattegat Strait
during the last decade in the summer periods May to August.

It is found that the ACDEP model results on atmospheric
nitrogen deposition are not fully reliable at the daily scale due
to the fact that the meteorological input may have been too
coarse (in time and space) (compare to newer results, Am-
belas Skjøth et al. 2002). The newer model results compare
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Fig. 9. ScanFish and SeaWiFS chlorophyll a observations in four horizontal transects in the Kattegat Strait from 7 August 2001. Please refer
to Fig. 7 for the geo-position of the ship tracks.

well in the timing and magnitude of single (daily) nitrogen
wet deposition events, whereas the older model results do not
capture the daily scale well but only the monthly and yearly
average values. Hence correlation analysis at daily scale is
not really feasible for wet deposition (and the co-existence
of strong wind and high wet deposition could not be investi-
gated).

In other words, in the case of very strong winds the whole
Kattegat Strait typically is affected by the event. Therefore
correlation analysis between highCa and high deep-water
nitrogen entrainment flux is likely to be found through corre-
lation analysis if the nitrogen actually fuels the growth (e.g.
with a certain time lag). In contrast, a high wet deposition
event typically is very local (convective summer precipita-
tion) and the position and timing is not well known. Hence a
correlation analysis on wet nitrogen deposition andCa levels
at large scale cannot fully reveal the cause-effect relationship
even if it is actually existing. It is necessary to map nitrogen
wet deposition andCa levels at a higher spatial and temporal
resolution to infer this relationship from statistical correla-
tion analysis.

The relative importance of nitrogen wet deposition and
deep-water entrainment is reversed between the one-year and
the 10-year extreme events as shown in Fig. 2 and Table 1.
The reoccurrence value for nitrogen wet deposition quickly
levels off as a function of year compared to the steeply in-
creasing nitrogen deep-water flux. The physical explanation
of these two behaviours may be related to the actual pool of
nitrogen in the atmosphere versus the deep-water nitrogen
pool. Only a limited amount of nitrogen may be stored in the
atmosphere prior to a heavy rain event whereas the pool of
nitrogen at the bottom of the sea is an immense pool from
which nutrients steadily are released in response to extreme
winds (hurricanes).

So far atmospheric deposition and deep-water entrainment
is discussed only at basin or sub-basin scale. However at
higher resolution, the daily ACDEP model results in year
2001 shows significant spatial patterns in dry and wet deposi-
tion of nitrogen over the Kattegat Strait (Table 2). The spatial
resolution of the atmospheric model is 30 km by 30 km and
the model results for three grid cells located centrally in each
of the Kattegat sub-basins defined for the hydro dynamical
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model (Fig. 1) are extracted. The extreme and average val-
ues show the same trends as the multi-year records. The ex-
treme value of wet deposition from year 2001 is very high,
162 mg N m2 day−1 in the grid cell for the Northern basin
as compared to the extreme statistics for Anholt data (much
higher than the 100-year event). It is beyond the scope of the
present study to go into detail with the ACDEP model results.
However it is interesting to note that in summers, for the
Southern and Central basins, a similar (27 mg N m2 day−1)
value of the one-year extreme deep-water flux is predicted
(Table 1) but that theCa map on 10-year extreme events
(Fig. 5) has a minimum in the Southern basin.

The relative importance of nitrogen contributed from at-
mospheric deposition and deep-water flux to the Kattegat
Strait may be highly variable at a scale of e.g. 30 km by
30 km. Such variations, however, cannot be quantified from
the current dataset. The growth of algal blooms typically
is local, hence local extreme inputs typically from the atmo-
sphere may be important. The high spatial and temporal vari-
ation in Ca is documented from the case study (SeaWiFS,
buoy and ScanFish observations) within the Kattegat Strait.

7 Conclusions

Nitrogen typically is the limiting nutrient for chlorophyll
growth in the Kattegat Strait. The retrospective analysis fo-
cuses on the vertical nitrogen fluxes to the mixed sea surface
layer in which the chlorophyll growth may cause blooms of
harmful algae and subsequent turn over and oxygen deple-
tion at the sea bottom. The expected chlorophyll a level with
a 10-year return period has been calculated based on in-situ
observations and the map shows a gradient from 4 mg m−3

in the southern part of the basin to 8 mg m−3 in the northern
part for the summer period (May to August). The most likely
input of nitrogen during the summer period is from either the
atmosphere or deep-water entrainment as the riverine input
is limited.

The reoccurrence values at one, ten and hundred year ex-
treme events of nitrogen fluxes from atmospheric dry and wet
deposition and deep-water flux entrainment are calculated. It
is found that the one-year reoccurrence value of atmospheric
wet deposition is around 60 mg N m−2 day−1 whereas the dry
deposition is an order of magnitude smaller. Hence only the
first input may trigger a bloom of algae comparing to the
Redfield ratio where more than 70% of the average primary
production then would be contributed from the atmospheric
input. The one-year reoccurrence value of deep-water nitro-
gen entrainment is around 30 mg N m−2 day−1 in the Cen-
tral and Southern part of the Kattegat Strait whereas a much
higher value (170 mg N m−2 day−1) is found in the Northern
part. The latter is explained by the proxity to the Skager-
rak. The one-year reoccurrence value of nitrogen deep-water
entrainment is four times smaller than atmospheric wet de-
position in the summer period.

The 10-year reoccurrence value of atmospheric wet de-
position is around 90 mg N m−2 day−1 and the deep-water
entrainment is around 110 mg N m−2 day−1 in the Central
basin, i.e. at this time-scale the extreme events of deep-water
flux are larger than the atmospheric wet deposition. This is
in contrast to the one-year reoccurrence. The reoccurrence
curve for wet deposition gradually reaches a “threshold” that
physically is explained by the maximum content of nitrogen
the atmosphere may contain prior to a heavy rain event. The
reoccurrence curve for deep-water entrainment on the other
hand, continues to rise rather steeply. Physically this is a
function of extreme wind conditions (hurricanes) where the
large pool of nutrients stored at the bottom of the sea readily
are released to the surface water.

The map of 10-year chlorophyll a levels in the Kattegat
Strait corresponds well to the spatial distribution of nitrogen
deep-water flux entrainment as well as to the nitrogen atmo-
spheric wet deposition gradient from a single year. Chloro-
phyll a levels are highly variable in space and time in the
Kattegat Strait as demonstrated from the SeaWiFS, ScanFish
and buoy observations from an experimental period.

It is recommended that in-situ chlorophyll observations
from monitoring stations in the future are sampled collocated
in time with the SeaWiFS and/or ENVISAT MERIS satellite
ocean colour Earth Observations. This definitely would be a
benefit for future investigations on the chlorophyll conditions
in space and time of the Danish waters.

In summary, the occurrence of algal blooms in the Kattegat
Strait is likely to happen around a 5 to 10 year time-scale and
the deep-water entrainment (driven by strong winds) is the
most likely mechanism to fuel an algal bloom. The events of
high atmospheric wet deposition could increase the growth
of chlorophyll around 20% or more. The local nature of high
nitrogen wet deposition events makes it a challenge to infer
the cause-effect relationship at daily time scale between at-
mospheric deposition and algal blooms.
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