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Abstract. Foot-and-mouth disease (FMD) is a highly conta-
gious viral disease of cloven-hoofed domesticated and wild
animals. The highly contagious nature of FMD is a reflection
of the wide range of host species, the enormous quantities of
virus liberated by infected animals, the range of excretions
and secretions which can be infectious, the stability of the
virus in the environment, the multiplicity of routes of infec-
tion and the very small doses of the virus that can initiate
infection.

One of the mechanisms of spread is the carriage of droplets
and droplet nuclei exhaled in the breath of infected animals.
Such spread can be rapid and extensive, and it is known in
certain circumstances to have transmitted disease over a dis-
tance of several hundred kilometres.

During the 2001 FMD epidemic in the United Kingdom
(UK), atmospheric dispersion models were applied in real
time in order to assess the potential for atmospheric disper-
sion of the disease. The operational value of such modelling
is primarily to identify premises which may have been ex-
posed so that the human resources for surveillance and dis-
ease control purposes are employed most effectively.

The paper describes the combined modelling techniques
and presents the results obtained of detailed analyses per-
formed during the early stages of the UK 2001 epidemic.

This paper investigates the potential for disease spread in
relation to two outbreaks (Burnside Farm, Heddon-on-the-
Wall and Prestwick Hall Farm, Ponteland, Northumberland).
A separate paper (Gloster et al., 2002) provides a more de-
tailed analysis of the airborne disease transmission in the
vicinity of Burnside Farm.

Correspondence to:T. Mikkelsen
torben.mikkelsen@risoe.dk

The combined results are consistent with airborne trans-
mission of disease to livestock in the Heddon-on-the-Wall
area. Local topography may have played a significant role in
influencing the pattern of disease spread.

1 Introduction

Animals infected with foot-and-mouth disease (FMD) exhale
virus in their breath as droplets and droplet nuclei at various
levels depending on the virus strain, disease stage, and ani-
mal species. For instance, pigs infected with certain strains
of virus can emit more than three orders of magnitude more
airborne virus than cattle or sheep.

The corresponding air concentrations downwind can vary
by over two or three orders of magnitude, depending on the
prevailing atmospheric conditions. The highest concentra-
tions can be expected in stable, low-wind conditions, where
there will be low levels of turbulence and hence minimal
mixing.

In previous outbreaks it has been concluded that the quan-
tities of viral emissions from pigs were sufficiently large for
infectious concentrations to be present at a distance up to
100 km or more from the source, even in moderate winds
(Sørensen et al., 2000).

This paper investigates the airborne spread of disease
from Burnside Farm, Heddon-on-the-Wall, Northumberland,
probably the site of introduction of FMD in the UK 2001
epidemic.
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2 Airborne spread of foot-and-mouth disease

Most commonly the movement of infected animals spreads
FMD. Contact between infected and susceptible animals re-
sults in aerogenous transmission of infectious droplets and
droplet nuclei. These particles originate mainly from the res-
piratory tract and are exhaled in the breath of infected ani-
mals. The next most common mechanism of spread is by the
movement of contaminated animal products such as meat,
milk etc. FMD virus can also be transmitted mechanically
e.g. by contaminated vehicles and by people. In addition,
FMD can be spread by the wind. This is not a common mech-
anism of spread, as it requires the simultaneous occurrence
of particular epidemiological and climatic conditions. How-
ever, when it takes place it can be both rapid and extensive.
For example, during the first 3 weeks of the 1967–1968 UK
epidemic around 300 outbreaks were reported downwind of
the primary outbreak. Simulation models have been devel-
oped which can be used to predict the risk of virus dissemina-
tion and the probable direction and distance of spread. This
information can assist control procedures during emergen-
cies as the manpower for surveillance activities can be di-
rected in the most efficient manner (Donaldson and Alexan-
dersen, 2002).

3 The UK 2001 FMD epidemic

The first outbreak of the 2001 FMD epidemic in the UK was
reported on 20 February when disease was confirmed at an
abattoir near Brentwood, Essex, which specialised in the pro-
cessing of culled sows and boars. On 23 February the disease
was also confirmed at a pig farm near Heddon-on-the-Wall in
Northumberland. This was followed shortly after by disease
being confirmed at additional premises in Essex, Northum-
berland and Devon. Alexandersen et al. (2002b, 2003) have
given detailed accounts of the findings at five of the premises
investigated during the early stages of the epidemic.

Within a matter of days disease was detected in many
counties throughout the UK, including Wiltshire on 26
February; Anglesey, Durham, Herefordshire, Lancashire and
Northumberland on 27 February; Leicestershire, Warwick-
shire and Powys on 28th February. The epidemic peaked on
26 March when 54 outbreaks were recorded.

It is clearly important to understand the epidemiology of
the disease and in particular why it spread so rapidly in the
initial stages.

3.1 Burnside Farm

In this paper we report a detailed investigation into the spread
of disease from Burnside Farm, Northumberland in 2001,
known as FMD Outbreak 4 (the fourth outbreak to be re-
ported). Particular attention has been given to assessing the
potential for airborne spread. This outbreak was selected, as
it is believed to be one of the major sources for many other

outbreaks during the 2001 epidemic and involved in excess
of 100 pigs excreting virus (Alexandersen et al., 2002b).

3.2 Epidemiological data

The transmission of virus from Burnside Farm (FMD out-
break 4) at Heddon-on-the-Wall, to Prestwick Hall Farm
(FMD Outbreak 6), located 6.4 km to the northeast near Pon-
teland, is investigated in detail because this transmission is
believed to be critical for the spread of disease throughout
the UK. Detailed descriptions of five early outbreaks during
the epidemic, including Burnside Farm and Prestwick Hall
Farm, have been recorded by Alexandersen et al. (2002b,
2003). Based on estimates of the age of FMD lesions ob-
served in the pigs, Alexandersen et al. (2002b, 2003) con-
sidered that significant amounts of airborne virus may have
been released from Burnside Farm in the period from 3 to 24
February.

Of significance to this study is that no means of disease
spread other than by windborne carriage of virus have been
identified as the method by which disease spread to Prest-
wick Hall Farm (i.e. no history of the movement of animals,
people, or vehicles). Alexandersen et al. (2002b) in their
account of their investigations at Prestwick Hall Farm also
failed to establish any direct link to Burnside Farm. The only
movement link from Burnside Farm was to the abattoir in Es-
sex, where disease was first reported. The database records
seven secondary outbreaks as “local spread”, four as “air-
borne” and one “under investigation”. Disease spread from
two of these farms, in particular the movement of sheep from
Prestwick Hall and Lough House, is believed to have been
key to the rapid escalation of the epidemic throughout the
UK. Animals from these farms were moved to Ponteland and
Hexham Markets on 12 and 13 February, i.e. before the pres-
ence of FMD in the country was known.

FMD experts from IAH, Pirbright, have estimated the
likely infection period for the outbreak at Prestwick Hall
Farm. Infection is believed to have occurred between 25 Jan-
uary and 14 February, dependent on whether sheep or cat-
tle were actually the first infected animals. According to
Alexandersen et al. (2002b, 2003) the first clinical disease
could have been on 10 February if the lameness in sheep
observed then was indeed FMD, however, they consider it
more likely that lameness in sheep on 20 February was FMD
and on 10 February not, although this is speculative. Clin-
ical disease in cattle was dated back to 16 February based
on the lesions, so the timing for “first disease observed” de-
pends on whether it was in sheep on 10th otherwise it was
first in cattle on 16 February, which the FMD experts from
IAH consider is most likely. In addition the timing of when
the animals got infected has to take incubation period into ac-
count to find the infection period. Taking the incubation pe-
riod into account the sheep may have been exposed between
25 January–4 February if disease was indeed present on 10
February, but the period of exposure was likely 4 February–
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14 February if disease in sheep was on 20 February However,
if cattle were the species in which infection was introduced
(as thought most likely by the FMD experts), the most prob-
able exposure period was from 2–12 February.

3.3 Meteorological data

Detailed meteorological information was available for the
whole period including observations from the Met Office’s
observation data bank, and numerical weather prediction
(NWP) data from the Met Office’s Unified Model and the
Danish Meteorological Institute’s DMI-HIRLAM model.

For the Heddon-Ponteland analyses we have in retrospect
included additional data from the hourly weather reports
from Newcastle Airport and Newcastle Weather Centre; the
first being located within 2 km of the Ponteland outbreak and
the second in the Newcastle city centre approximately 7–
8 km to the east.

The NAME, DERMA and LSMC models can run on out-
puts from numerical weather prediction models. The NAME
model used input from the Met Office’s Unified Model, and
DERMA and LSMC from the Danish Meteorological Insti-
tute’s numerical weather prediction model (DMI-HIRLAM).
The numerical weather prediction data, which were available
to LSMC on a 16 km×16 km grid, included the following
fields: wind speed, direction, near surface temperature, rel-
ative humidity (RH), cloud cover, precipitation, surface heat
flux, boundary layer depth and Monin-Obukhov length.

The synoptic weather charts revealed that a variety of me-
teorological conditions were experienced in the Newcastle
area between 25 January and 24 February. Apart from a
brief spell on 29 January and again on 9 February, the first
part of the period was dominated by low-pressure conditions.
The weather then changed significantly to higher pressure be-
tween 12 and 22 February. On the 23 and 24 February low
pressure once again dominated.

For much of the period, i.e. 8, 9, and 12–22 February, it
was dry with no rainfall recorded at Newcastle Weather Cen-
tre. Newcastle Airport recorded only a total of 8 h when the
RH was below 60% (airborne FMD virus is inactivated at RH
less than 55 to 60%). Of these, three were during the after-
noon of 12 February and the remainder from 14 to 18 on 14
February. Temperatures ranged from−5◦C on 1 February
to +12◦C on 14 February. The coldest periods were expe-
rienced during the light wind, anticyclonic nighttime condi-
tions. Overall, virus viability would have been high during
the full period.

A meteorological local weather database was created con-
sisting of hourly observations extracted by hand from the
Newcastle Airport observations. The database includes ob-
served wind speed and wind direction data for the period 25
January through 24 February (Gloster et al., 2002).

Whilst nearly all wind directions were experienced, there
were a total of 495 h when local winds were in the South-
westerly sector 170–340◦.

From the database of meteorological observations we have
counted the hours during the possible infection period (esti-
mated as 25 January to 24 February) when airborne virus
could have been transported from Burnside Farm to Prest-
wick Hall Farm at Ponteland during low wind speed sta-
ble conditions. During this period we recorded a total of
337 h when wind speeds were lower than 5 kts (2.6 m/s) at the
same time as the wind directions were in the Southwesterly
sector (between 170–340◦). In addition, there were 143 h
of recorded calm (reported as 0 kts) conditions (less than
∼0.5 m/s). Of these, 113 h can be allocated to the South-
westerly sector by use of the direction distribution recorded
for the 1 kts wind speeds.

4 Modelling of the virus plume from Burnside Farm

Accurate modelling of atmospheric dispersion can be quite a
challenge, particularly during stable stratified low-wind con-
ditions as prevailed over hilly Northumberland during Febru-
ary 2001. In these situations it is believed that we benefit
from investigating the dispersion by looking at the ensemble
of several atmospheric flow and dispersion models.

In the spring of 2001, during the period of the out-
breaks, we produced daily airborne disease spread calcula-
tions whenever a large pig farm was identified as infected.
Pig farms are most critical because pigs produce by far the
most concentrated virus plumes, cf. Sørensen et al. (2001).
We ran four different models in real time: two developed in
the UK (10 km Gaussian plume and NAME) and two in Den-
mark (DERMA and LSMC/RIMPUFF), and handed over the
model results to the UK veterinary authorities.

Here follows a short description of the various long-range
and short-range models used. A more detailed description
of the models and their application to the FMD UK 2001
outbreaks is given by Gloster et al. (2002).

10 km Gaussian plume model

The “10 km Gaussian plume model”, developed in 1980 for
the specific purpose of predicting the local area at risk from
an FMD virus source (Gloster, 1981; Gloster et al., 1982)
was used both in the predictive and subsequent epidemio-
logical analysis. Meteorological data, taken from the near-
est meteorological observing station was input to the model
together with virus emission information. The model calcu-
lates the daily and total inhaled virus dosage at 1 km intervals
from the source. This model takes no account of topography.

NAME

The NAME model, originally developed to provide emer-
gency response to nuclear accidents, volcanic eruptions, ma-
jor chemical releases and routine daily predictions of air
quality was adapted to calculate downwind concentrations
at 1 km intervals (Ryall and Maryon, 1998). The model uses
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 Figures 
 
 
Figure 1 Outbreak at Burnside Farm - Long-range prediction.  
 
Virus plume from Burnside Farm, Heddon-on-the-Wall, simulated by the DERMA long-range 
model.  The contours indicate 24-hour average FMD virus concentrations in units of 
TCID50/m3 for 17 February 2001. 
 
The left figure shows a calculation based on virus excretion data for pigs infected with 
historical stains of virus that were later found to be excreted in much greater amounts than the 
UK 2001 strain.  Therefore these results represent a “worst-case” scenario. 
 
The right figure shows the results obtained later in the epidemic when virus excretion data 
were changed to those obtained from pigs infected with the UK 2001 strain, all other data 
remaining unchanged.  
 
 
 

 

 
Fig. 1. Outbreak at Burnside Farm – Long-range prediction. Virus plume from Burnside Farm, Heddon-on-the-Wall, simulated by the
DERMA long-range model. The contours indicate 24-h average FMD virus concentrations in units of TCID50/m3 for 17 February 2001.
The left figure shows a calculation based on virus excretion data for pigs infected with historical stains of virus that were later found to be
excreted in much greater amounts than the UK 2001 strain. Therefore these results represent a “worst-case” scenario. The right figure shows
the results obtained later in the epidemic when virus excretion data were changed to those obtained from pigs infected with the UK 2001
strain, all other data remaining unchanged.

three dimensional wind fields and other meteorological data
from the Met Office’s numerical weather prediction model
(the Unified Model).

RIMPUFF

The real-time emergency preparedness and decision support
model RIMPUFF (Mikkelsen et al., 1984; Mikkelsen et al.,
1997), embedded in the Local Scale Model Chain (LSMC)
which includes an integral meteorological pre-processor (As-
trup et al., 2001) and the LINCOM wind models, was also
applied in both predictive mode and for retrospective analy-
ses.

In predictive mode, winds over local scale topography
and roughness variations were modelled by the wind model
LINCOM-Z0 (this model accounts for roughness changes
and neutral flow over topography). During the outbreak,
real-time calculations were performed with this model on a
500×500 m grid covering a 40×40 km domain.

Subsequently, the LINCOM-T model was applied to cal-
culate streamlines in stable stratified low-wind conditions.
LINCOM-T is specially designed for calculating stratified
wind fields over topography. These calculations were per-
formed with a 250×250 m grid resolution.

The RIMPUFF model releases virus particles in puffs, a
single puff containing the equivalent of 10 min release. The
puffs grow in size due to local turbulence; they rise due to
the growth and follow the local winds.

DERMA

The Danish Emergency Response Model of the Atmosphere
(DERMA) is developed at the Danish Meteorological Insti-
tute (DMI), where it is used mainly for nuclear emergency
preparedness purposes (Sørensen, 1998). DERMA, which
is an atmospheric long-range dispersion model describing
plumes at downwind distances greater than about 20 km,
makes use of high-resolution data available from the vari-
ous numerical weather prediction models at DMI. DERMA
was used in the early stages of the UK 2001 FMD epidemic
for assessments of the risk of infection for the European
Continent due to long-range transport of virus from infected
premises in the UK (Alexandersen et al., 2002b, 2003). At
this stage of the epidemic the UK virus had been identified
as a member of the Pan Asia group of strains but its aerobi-
ological characteristics, in particular the amount excreted by
infected animals, was unknown. Once these parameters had
been determined experimentally (Alexandersen and Donald-
son, 2002), it became clear that long-range atmospheric dis-
ease spread was highly unlikely.

4.1 Dispersion analysis

The dispersion models were run for the period 3–24 Febru-
ary. As the Burnside Farm contained hundreds of pigs it
raised concerns about the risk of airborne spread not only
in the local area but also more distantly, including possible
transmission to the Continent.

The risks of airborne spread were first analysed using data
for historical strains of virus, which are excreted in high
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Figure 2. Outbreak at Burnside Farm - Local scale dispersion. 
 
RIMPUFF predicted virus dose footprints in units of [TCID50/m3] from Burnside Farm, 
Heddon-on-the-Wall (FMD outbreak 4). The different infection levels for cattle, sheep and 
pigs are shown on the legend. The input data for virus excretion are those determined 
experimentally for the type O UK 2001 strain of virus.  
 
The left figure shows the predicted 24-hour average concentration contour lines in units of 
[TCID50/m3] from Burnside Farm over Northumberland for February 14. 
 
The right figure shows the infective dose footprint in units of [TCID50/m3] obtained by 
selecting the daily maximums from all 22 daily averaged footprints in the period 3 to 24 
February 2001. 
 
Legend: 
   
O:   Burnside Farm, Heddon 
+:  Prestwick Hall Farm, Ponteland,  
 
Domain 30 km x 30 km 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   a      b 
 
  
 

Fig. 2. Outbreak at Burnside Farm – Local scale dispersion. RIMPUFF predicted virus dose footprints in units of (TCID50/m3) from
Burnside Farm, Heddon-on-the-Wall (FMD outbreak 4). The different infection levels for cattle, sheep and pigs are shown on the legend.
The input data for virus excretion are those determined experimentally for the type O UK 2001 strain of virus. The left figure shows the
predicted 24-h average concentration contour lines in units of (TCID50/m3) from Burnside Farm over Northumberland for 14 February.
The right figure shows the infective dose footprint in units of (TCID50/m3) obtained by selecting the daily maximums from all 22 daily
averaged footprints in the period 3 to 24 February 2001. Legend:O = Burnside Farm, Heddon, + = Prestwick Hall Farm, Ponteland, Domain
30 km×30 km.

quantities by infected pigs (Donaldson et al., 1982; Sørensen
et al., 2000). These therefore gave “worst-case” scenarios for
predicted spread. Once data for the UK 2001 strain of virus
became available these were used instead.

Both the local-scale RIMPUFF and the long range
DERMA model have previously been used for the retrospec-
tive estimation of the dispersion of the FMD virus (Sørensen
et al., 2000, Sørensen et al., 2001). Calculations performed
showed that the long-range DERMA calculations gave simi-
lar results to the long range NAME model.

The dispersion models treat FMD virus as a depositing
aerosol. Model outputs were post-processed to produce 24-
h average concentrations in units of TCID1

50/m3 at ground
level – i.e. the results were daily mean infective dose foot-
prints in the surroundings of infected premises.

Firstly the amounts of virus emitted from the outbreak at
Burnside Farm were calculated using the original Virus Pro-
duction Model (VPM) (Sørensen et al., 2000). But as new ex-
perimental virus excretion data became available for the UK
2001 strain of virus (Alexandersen and Donaldson, 2002),
the predictions were all re-calculated. This immediately re-
sulted in a decrease of concentrations of several orders of
magnitude (cf. Fig. 1).

1Tissue Culture Infective Dose

Figure 1a shows a prediction of long-range virus dis-
persion from Burnside Farm calculated by DERMA using
“worst-case” virus excretion estimates. The calculations
show large temporal and spatial variations in the plume posi-
tion and spread. In comparison Fig. 1b shows similar results
using the experimentally determined excretion rates for the
UK 2001 strain of virus. Also the NAME model was run for
several pig outbreaks using input data from the Virus Produc-
tion Model, with the UK2001 strain and meteorological data
generated by the Met Office’s operational Mesoscale weather
prediction model. DERMA and NAME gave quantitatively
similar results. Once the virus production model was up-
dated with data for the actual UK2001 virus strain, the risk
of long distance spread of the disease to Europe through air-
borne transport was concluded to be extremely low.

On the local scale, airborne transmission was modelled in
real time using the 10 km Gaussian plume dispersion model
and the Local Scale Model Chain pre-processor and RIM-
PUFF with additional input on local scale topography. Both
models required real-time meteorological data, which were
obtained from the Met Office, UK and from the Danish Me-
teorological Institute, respectively. For the subsequent epi-
demiological study, more local and detailed hourly meteoro-
logical observational data were available for the whole pe-
riod.

www.atmos-chem-phys.org/acp/3/2101/ Atmos. Chem. Phys., 3, 2101–2110, 2003
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Figure 3. The Heddon - Ponteland local topography.  
 
The circle indicates Burnside Farm, Heddon-on-the-Wall.  The cross near Ponteland shows 
the location of one of the farms where local spread occurred (Prestwick Hall Farm). Also 
shown is Newcastle Airport from where local meteorological data was obtained. Elevation 
changes more than 80 meters over the 10 km by 10 km area, dominated by the big bluff 
located immediately to the north of Heddon.  

Fig. 3. The Heddon – Ponteland local topography. The circle in-
dicates Burnside Farm, Heddon-on-the-Wall. The cross near Pon-
teland shows the location of one of the farms where local spread
occurred (Prestwick Hall Farm). Also shown is Newcastle Air-
port from where local meteorological data was obtained. Elevation
changes more than 80 m over the 10 km by 10 km area, dominated
by the big bluff located immediately to the north of Heddon.

The two local area models (10 km Gaussian plume and
RIMPUFF) were also run initially with virus production data
from VPM (Sørensen et al., 2000) for Burnside Farm. Both
models at first showed huge potential for local scale trans-
mission. However, when the actual UK2001 virus data were
inserted these models also predicted less risk of local air-
borne disease spread.

RIMPUFF can include local scale topography and land-
use information via its local scale pre-processor that calcu-
lates local wind fields and turbulence estimates. In this case
we applied a 500×500 m local scale grid. DMI-HIRLAM
numerical weather data are therefore modified locally by the
local-scale LINCOM flow and turbulence model suite. One
of these models, the LINCOM-Z0 model, takes the influence
of the ground into account, i.e. the topography and the pat-
tern of surface roughness. This model was applied during the
early phase real-time assessments.

Another LINCOM Model, the mean wind model
LINCOM-T (Dunkerley et al., 2001), is specially designed
for calculation of stable and unstable stratified flow fields
over topography during low wind speed conditions. This
model was applied in the subsequent epidemiological assess-
ments of Burnside Farm.

Figure 2a shows a RIMPUFF prediction of a mean in-
fective FMD dose footprint over a 30 km by 30 km area in
Northumberland resulting from the estimated virus produc-
tion from outbreak FMD4 for 14 February 2001. The as-
sumed infection thresholds for cattle, sheep and pigs are
shown on the legend.

Figure 2b shows the corresponding maximum 24-h aver-
age concentration over the area obtained from the 22 daily
footprints (like Fig. 2a) during the period 3 February to

24 February 2001. Apparently from the plots, none of the
doses exceeded the assumed threshold for infecting cattle
(0.06 TCID50/m3). Reported minimum infective doses are
based on experiments involving short-term exposure peri-
ods, which are extrapolated to 24-h average concentration
thresholds in the legends in Fig. 2. It is not known, however,
whether a short-time exposure to a large virus concentration
equates to the same dose when less virus is inhaled over a
longer period (Alexandersen and Donaldson, 2002).

The “10 km model” estimated that during the first period
animals within 3 km of the source in a sector from north to
southeast would have been exposed to total doses of up to
5.0 C.I.U.2 and from northwest to southeast a total dosage
of between 0.1 and 1.0 C.I.U. out to the limit of the model.
Detailed analyses of the results of these models, in particu-
lar of the dispersion models, are being published elsewhere
(Gloster et al., 2002).

5 Airflow over the Heddon-Ponteland topography dur-
ing low-wind stable conditions

Over extended periods in the beginning of February 2001
warm Atlantic air was advected up over the UK from the
south. Over Northumberland, which was partly snow cov-
ered due to prevailing winter conditions in January 2001, the
warm Atlantic air at times became strongly stably stratified
and exhibited profound low wind conditions.

Under low-wind stable conditions it is well known that the
corresponding stratified airflow can interact with the local to-
pography, in particular with hills and slopes, and flow around
rather than over the hills.

The effects of neutrally stratified flow and its interaction
with hilly terrain and changes in surface roughness have al-
ready been included in the RIMPUFF real-time calculations
via the LSMC LINCOM-Z0 model (Astrup et al., 1997).
However, for FMD virus plumes, submerged within strati-
fied flow of low wind and being advected over hilly terrain,
the wind direction in particular can be significantly modified.

Burnside Farm is located in Heddon-on-the-Wall on the
northern banks of the river Tyne immediately to the west of
Newcastle, cf. Fig. 3. Immediately to the north of Burnside
Farm there is a small ridge, reaching a maximum height of
140 m, running southwest to northeast (see Fig. 3). Under
stable atmospheric conditions this feature is likely to influ-
ence the wind flow in the area. The location of Burnside
Farm at Heddon (O), the secondary outbreak at Prestwick
Hall Farm (+), the Newcastle Airport and the topography are
also shown.

To study the effect of this topography in detail, we im-
plemented, in a subsequent study, the LINCOM-T wind
model, which is specially designed to account for thermally
stratified flows’ interaction with topography, such as val-
ley breezes and nocturnal drainage winds. LINCOM-T was

2C.I.U.: Cattle Infectious Units
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originally designed to model effects of stratified airflow in-
cluding drainage flow and valley breezes over hilly terrain
(Dunkerley et al., 2002).

5.1 The LINCOM-T model

The LINCOM flow models are all based on simplified lin-
earized versions of the Navier-Stokes equations and makes
use of Fourier transform techniques to generate equations
which can be solved partly using analytical techniques. Like
the other models, LINCOM-T also solves a set of linearized
equations for conservation of momentum and mass, but in
addition, LINCOM-T encompasses a pre-described vertical
thermal stratification. Closure is also here introduced via a
first-order spectral diffusivity scheme.

In LINCOM-T, thermal effects are accounted for by spec-
ifying the vertical form of the potential temperature field (θ ).
Henceθ is a fixed temperature field (not a variable). It is fur-
ther assumed that can be written in terms of a perturbation to
a background value (2), where the perturbation is expressed
in variable separable form in a terrain following coordinate
system (x, y, z′) such that:

θ(x, y, z′)=τe−z′/λ. (1)

The constantsτ and λ are the surface layer’s temperature
deviation from neutral and its vertical depth, respectively.

These parameters can either be set explicitly (if measure-
ments are available), or be estimated within LINCOM-T
from surface layer parameter scaling (such as surface heat
flux and surface friction velocity) as available from within
the LSMC pre-processor for example.

Equation (1) can then be expressed in Cartesian coordi-
nates(x1, x2, x3) by substitutingz′ by x3−h(x1, x2), where
h is the terrain height. The horizontally Fourier transformed
governing

(ik1U+ik2V )ũ+ik1p̃+K
∂2ũ

∂x2
3

=0

(ik1U+ik2V )ṽ+ik2p̃+K
∂2ṽ

∂x2
3

=0

−(ik1U+ik2V )w̃+
∂p̃

∂x3
+

∂P̃

∂x3
−K

∂2w̃

∂x2
3

=
g

2
θ̃

(
x3−h̃(k1, k2)

)
−i(k1ũ+ik2ṽ)+

∂w̃

∂x3
=0, (2)

where ũ, ṽ and w̃ are the spectral thermal induced veloc-
ity perturbations;k1 andk2 the horizontal wave numbers;K

a spectral diffusivity, and̃p the thermally induced pressure
perturbation. The set of Eq. (2) form a 2nd order linear dif-
ferential equation inx3, which can be solved analytically for
ũ, ṽ, w̃ andp̃. Inverse Fourier transformation of these ana-
lytical solutions with terrain boundary conditions then yields
the thermal wind componentsu, v and w. The model is
extremely fast. A run takes 5–10 s on a standard PC. See
Dunkerley et al. (2001) for details.
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Figure 4. Lincom-T model output (a stable stratified case) 
 

LINCOM-T predicted wind field over Northumberland for the period between 9 February and 
10 February, where the atmosphere’s stratification was very stable, and winds of low speed 
prevailed from a southerly direction. 
 
Model inputs: wind direction 192 degrees, mean wind speed 1 m/s; Monin-Obukhov stability 
length scale L= +10 m. The figure shows the calculated wind vectors (white arrows) and the 
corresponding streamlines (black lines) 10 meters above terrain.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Lincom-T model output (a stable stratified case). LINCOM-
T predicted wind field over Northumberland for the period between
9 February and 10 February, where the atmosphere’s stratification
was very stable, and winds of low speed prevailed from a southerly
direction. Model inputs: wind direction 192◦, mean wind speed
1 m/s; Monin-Obukhov stability length scaleL = +10 m. The fig-
ure shows the calculated wind vectors (white arrows) and the corre-
sponding streamlines (black lines) 10 m above terrain.

5.2 LINCOM-T model results

When the UK FMD 2001 outbreak was brought under con-
trol, we investigated in greater detail the possibility of air-
borne transmission for specific outbreaks.

For Burnside Farm, we analysed the flow pattern in the
area between Heddon and Ponteland by taking account of its
special topography with help from the LINCOM-T model.
We performed a study on trajectories emerging from Burn-
side Farm and investigated under which wind directions and
wind speeds these trajectories would go over Ponteland, lo-
cated∼6 km to the north east during the prevailing low wind
and stable atmospheric conditions.

Figure 3 shows the topography. It is seen that Prestwick
Hall Farm (Ponteland) is located downwind from Heddon
in southerly winds but behind the ridge, which extends a
distance of several kilometers. It could be anticipated that
trajectories interact with this ridge, in particular during low-
wind stable conditions.

Figure 4 shows LINCOM-T’s prediction of wind vectors
and trajectories during a low-wind stable case, where the
model has been run with a southerly mean input wind direc-
tion (input wind direction was 192◦ in this case). The wind
vectors are seen to be perturbed predominantly on the down
slopes and the streamlines are deflected from the hilltops as
a consequence of the stable stratification. The streamlines
seek a path through the passes and valleys rather than over
the hilltops due to the air’s stable stratification. The wind
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Table 1. Lincom-T input parameters used for Burnside Farm,
Heddon-on-the-Wall, Ponteland: For each of the wind directions
(180, 190, 200, ...290, 300), five calculations were performed with
the mean wind speed and Monin-Obukhov length scales shown as
input parameters. Lincom-T’s pre-processor calculated the temper-
ature difference over the stable surface layerτ , and its correspond-
ing depthλ, cf. Eq. (1). Also the model’s corresponding Froude
No. (defined asU2/gλ) was calculated. It is a measure for the sta-
ble stratified flow’s kinetic energy relative to its potential energy.

Mean wind Stability τ (◦C) λ (m) Froude
U (m/s) L (m) No.

1 10 −0.27 23 1.00
2 20 −0.95 52 2.25
3 33 −1.60 87 3.80
4 50 −2.06 127 5.75
5 100 −1.50 208 10.50

vectors are seen to reduce their speed on up-slopes, while on
the contrary they increase – even quite significantly, as cold
air is falling down on the lee of the ridge. The wind speeds
do not pick up immediately as the flow goes over the top.
Rather the down slope increase in wind speeds appears as
a delayed effect on the back slopes. This is due to the in-
ertia (momentum conservation) in the model – it takes time
to accelerate the flow. In Fig. 4, streamlines and trajecto-
ries are identical because the meteorological conditions were
constant over time (hourly mean values).

In direct line-of sight, Ponteland is located on a 220◦

bearing∼6.3 km down wind to the north east of Burnside
Farm, Heddon. In Fig. 4, LINCOM-T trajectories emerging
from Burnside hits Ponteland with an input mean direction
of 192◦. The deflection caused by the stratified flows inter-
action with the topography is therefore∼28◦ in this case.

During the period in question atmospheric stability was
either stable, neutral or slightly unstable. There were no pe-
riods of strong instability. Nevertheless, to demonstrate the
ability of LINCOM-T to deal also with unstable stratification
we have in Fig. 5 changed the air flows stratification param-
eter L from stable to unstable (by just changing the sign on
the Monin-Obukhov stability parameter L). Otherwise the in-
put direction and wind speeds have been kept the same as in
Fig. 4. In this case, the wind vectors tend to turn upslope,
and the trajectories seeks to climb the hills (like in a valley
breeze) rather than drain down the valleys. The trajectory
that starts at Burnside Farm, Heddon is seen to veer far off
to the west of Ponteland in this case. Overall, the airflow
over the Heddon-Ponteland topography appears, as modeled
by LINCOM-T, to be strongly influenced by the local topog-
raphy in combination with stratification effects.

We further investigated a range of conditions (direction,
speed and stability) under which trajectories of virus released
from Heddon reached Ponteland.
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Figure 5. Lincom-T model output  (an unstable stratified case) 
 
This figure shows the model response to the same wind speed and direction inputs as 
performed in Fig. 4, but for a case where the temperature stratification (vertical temperature 
gradient) were deliberately changed from stable (L= +10, c.f. Fig. 4) to unstable (L= -10 m in 
this figure).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Lincom-T model output (an unstable stratified case). This
figure shows the model response to the same wind speed and direc-
tion inputs as performed in Fig. 4, but for a case where the temper-
ature stratification (vertical temperature gradient) were deliberately
changed from stable (L = +10, cf. Fig. 4) to unstable (L = −10 m in
this figure).

We varied the input synoptic wind direction in steps of 10◦

from 180◦ to 300◦, and calculated for each of these directions
trajectory plots corresponding to Fig. 4, for five bins of wind
speed and stability as shown in Table 1.

The values of the Froude number shown in Table 1 for a
number of mean wind speeds indicate that the flow is sub-
critical at the lowest wind speeds. This implies that the flow
will tend to go around rather than over the hill in this case.

Figure 6 shows the resulting plots for a fixed input mean
wind direction of 190◦. It is seen that the local stratification
effects are strongest with the lowest (U=1,m/s) input wind
speed, and that the effect of stratification almost vanishes at
U=5 m/s.

With the lowest wind speed applied (1 m/s) the results
showed that Ponteland was hit by the stable stratified,
topography-deflected Burnside farm trajectories whenever
the model’s mean input direction was in the range 180 to
210◦; that is, whenever the input wind direction for the model
was within an∼30◦ wide sector.

As the wind speed increased, this sector became smaller,
and at 5 m/s, this sector had shrunk to only a few degrees
centred about the line of sight 220◦ bearing.

6 Conclusions

We have modelled the infection dose footprints and investi-
gated the trajectories of possible airborne transmission from
a critical outbreak in a pig farm (Burnside Farm) at Heddon-
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Figure 6 Lincom-T model output for varying mean wind speeds and stability. 
 
LINCOM-T produced wind fields and streamlines over the Heddon-Ponteland site for a fixed 
mean wind direction of 190 degrees. The figures show the LINCOM-T model response to 
increasing mean wind speed U, starting with: upper left 1 m/s, upper right 2m/s; middle left 3 
m/s; middle right 4 m/s and lower left 5m/s. The corresponding stability parameter L has been 
set in the five cases to reflect the effects on stability from increasing wind speeds. 
   
 
 
 
 
 
 
 

 
 
 

 
 
 

 
 
 
 
 

 
 

LINCOM-T produced wind fields and streamlines over 
 Heddon-Ponteland for wind direction 190o: 
 

a) U=1m/s; L=10 m  b) U=2m/s; L=20 m 
c) U=3m/s; L=33 m d) U=4m/s; L= 50 m 
e) U=5m/s; L=100 m 

 
 
 
 
 
 

Fig. 6. Lincom-T model output for varying mean wind speeds and stability. LINCOM-T produced wind fields and streamlines over the
Heddon-Ponteland site for a fixed mean wind direction of 190◦. The figures show the LINCOM-T model response to increasing mean wind
speedU , starting with: upper left 1 m/s, upper right 2 m/s; middle left 3 m/s; middle right 4 m/s and lower left 5 m/s. The corresponding
stability parameterL has been set in the five cases to reflect the effects on stability from increasing wind speeds.

on-the-Wall, Northumberland at the start of the foot- and
mouth disease epidemic in the UK in February 2001.

Simulation of the virus plumes from the farm were per-
formed with four different dispersion models all run with
actual weather data during the period of airborne virus emis-
sion, estimated to have commenced around∼1 February, and
to have ended on 24 February 2001 when the animals were
culled.

The daily virus excretion rates from Burnside Farm were
calculated in the first series of analyses from estimations of
the number of infected pigs in the premises, the stage of their

clinical disease and historical data from a virus production
model. Later, when daily excretion data became available
from experimental investigations with the UK 2001 strain,
the simulations were re-run using those input data.

The results obtained showed that:

1. The risk of airborne virus transmission from the out-
break at Burnside Farm over intercontinental ranges was
extremely low due to the limited excretion of airborne
virus by pigs infected with the O UK 2001 virus strain.
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2. The risk of local scale inter-farm airborne spread
depended strongly on downwind distance. For the
Burnside Farm Heddon-Ponteland investigation, the
daily infection doses as predicted by LSMC/RIMPUFF
were designated “high” (cf. Fig. 2) and appeared just be-
low the experimentally determined minimum infection
dose required to infect cattle.

3. LINCOM-T model calculations showed that the local
topographical features, combined with stable wind strat-
ification and low wind speed, would have caused virus
plumes from Heddon to pass over farms at Ponteland
whenever the synoptic winds were from south-south
westerly directions in the wide range between∼180 and
210◦.

4. Infection at Prestwick Hall is consistent with airborne
disease spread from Burnside Farm. During the first
half of February 2001 there were South-westerly winds
often combined with stable stratified atmospheric con-
ditions over Northumberland. These conditions would
have produced narrow plumes containing high concen-
trations of virus.
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