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S1. Overview of Airborne Aerosol Sampling

The Center for Interdisciplinary Research Projects in Airborne Science (CIRPAS), operated by
the Naval Postgraduate School (NPS), provides a specialized Twin Otter research aircraft
designed to support environmental and atmospheric science missions. The Twin Otter is a
versatile aircraft well-suited for research flights enabling direct sampling of the lower
troposphere. Equipped with multiple wing pylons, fuselage ports, and integrated power systems,
the aircraft can accommodate a wide range of meteorological and aerosol instrumentation.
CIRPAS adheres to rigorous calibration protocols and offers comprehensive logistical support to

ensure high-quality data acquisition across multi-institutional field campaigns.

In situ measurements of air temperature (Rosemount total temperature probe, model E102AL)
(Friehe and Khelif, 1992) and dew point temperature (Vigilant Chilled Mirror Hygrometer,
Edgetech Instruments Inc., Hudson, MA) were used by flight scientists to determine the cloud
base height (CBH). During the initial sounding at each sampling station, vertical profiles of air
temperature and dewpoint temperature were monitored as they gradually converged with
increasing altitude. The CBH was identified as the first significant maximum in RH, typically
between 90-100% RH and the onset of condensation. This ascent or descent profiling strategy
was performed during each flight to establish sampling levels and capture the vertical moisture

structure critical for identifying the cloud base.
Aerosol measurements aboard the CIRPAS Twin Otter rely on the characterization
of aerosol sampling dynamics. The aircraft’s aerosol inlet has been evaluated under both flight

and wind tunnel conditions to quantify its transmission efficiency across a range of particle sizes.

Studies show that the inlet’s transmission efficiency begins to decline near 3.5 pm particle



diameter but stabilizes at 5.5 pm with a transmission efficiency just above 0.6 for particles up to
9 um (Hegg et al., 2005). This behavior is likely attributed to sub-isokinetic aspiration flow,
wherein the inlet flow velocity is lower than the freestream velocity, leading to inertial losses of

larger particles.

S2. Single Particle Aerosol Composition and Size Distribution

Single-particle chemical composition and morphology of aerosol samples collected during dust
events were examined using computer-controlled scanning electron microscopy with energy-
dispersive X-ray spectroscopy (CCSEM/EDX). The analysis revealed a diverse set of particle
types with distinct chemistries and morphologies, including mineral dust, sea spray, aged sea
spray, internally mixed mineral dust and sea spray, sulfates, and organics (Ault et al., 2014;
Royer et al., 2023). Representative scanning electron microscopy (SEM) images and

corresponding EDX spectra for each particle class are shown in Fig. 4a in main text.

Mineral Dust: Mineral dust particles were primarily characterized by the presence of
aluminosilicate elements such as Si, Al, Fe, K, Ca, and Mg, consistent with long-range
transported Saharan dust (Reid et al., 2003; Royer et al., 2023, 2025; Twohy et al., 2009; Levin
et al., 2005; Krueger et al., 2004; Hand et al., 2010; Denjean et al., 2015). Notably,
approximately only 25% of the dust particles analyzed contained sulfur and nitrogen, suggesting
atmospheric chemical aging either during transport or during entrainment into the marine
boundary layer (MBL). This is consistent with earlier findings at the site that reported minimal

evidence of aging in mineral dust (Kandler et al., 2018; Royer et al., 2025).

Sea Spray and Aged Sea Spray: Fresh sea spray particles were identified by a high relative
abundance of Na and Cl and exhibited crystalline morphologies indicative of halite (NaCl).

Small peaks of Mg further confirmed their marine origin. Aged sea spray particles were



distinguished by depleted chloride content and enriched sulfur and nitrogen signatures, likely
resulting from heterogeneous reactions with atmospheric acidic gases such as sulfuric acid
(H2S0.), nitric acid (HNOs), and dinitrogen pentoxide (N2Os). These interactions are known to
produce Cl-depleted sea spray and form secondary aerosol (Ault et al., 2013a; Royer et al., 2023,

2025; Gaston et al., 2011).

Internally Mixed Mineral Dust and Sea Spray: These particles exhibited a heterogeneous
composition, containing both dust-derived (Si, Al, Fe, K, Ca, Mg) and marine-derived (Na, CI)
components (Royer et al., 2023, 2025; Kandler et al., 2018). Elemental distributions varied
within individual particles, indicating spatially localized mixing of the two sources. The
generally low percentage of nitrogen and sulfur suggests limited atmospheric aging of this
particle type. This is contrary to wintertime observations at Barbados by Royer et al. (2025),
where SEM/EDX elemental mapping showed that signs of aging, such as the presence of sulfur
or nitrogen, were confined to the sea spray portions of these mixed particles. Previous work at
the same site proposed that this internal mixing likely occurs locally, potentially driven by

turbulent interactions between airborne dust and sea spray (Kandler et al., 2018).

Organics: Organic particles were predominantly composed of carbon and oxygen (>95%), with
minor contributions from inorganic constituents (<5%). Several larger particles were observed,
potentially corresponding to marine gels, characterized by Mg-rich shells and sea spray-
dominated cores (Ault et al., 2013b; Gaston et al., 2011). These marine gels are typically formed
from bubble-bursting processes at the ocean surface, where hydrophobic organic compounds
concentrated in the sea surface microlayer become aerosolized and associate with divalent

cations during gel formation (Chin et al., 1998).



Sulfates: Sulfate-rich particles were identified based on dominant sulfur signals accompanied by
carbon, oxygen, and nitrogen. These particles are consistent with marine secondary aerosol
components such as ammonium sulfate ((NH4)2SO4) and ammonium bisulfate (NH+sHSO.) (Hand
et al., 2010; Royer et al., 2023). The elevated carbon content suggests these particles also contain
a substantial organic fraction, a common feature in marine submicron aerosols (O’Dowd and de

Leeuw, 2007).
S3. Estimation of Expected Lidar Depolarization Ratio

S3.1 Modeling expected depolarization ratio mixture.

To estimate the expected aerosol depolarization ratio (9 expected), We begin by modeling the total
aerosol backscatter as a mixture of contributions from dust and marine aerosols. The total

backscatter coefficient (v) is expressed as:
v=v®4+yM (51)
where, v @ and v ™ are dust and marine air mass backscatter, respectively.

The total parallel (vi) and perpendicular (vi) components of the backscatter can be similarly

expressed as:

v=y"+y™ (52)

v, = vid) + vim) (S3)

The depolarization ratio mixture is then defined as:

§=-% (s4)

Y

Using this formulation, the expected depolarization ratio can be alternatively written as:
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This formulation requires estimation of the aerosol-specific backscatter and their polarized

components which are computed as described in the following sections.
S3.2 Estimating the aerosol specific polarized backscatter

To calculate the expected depolarization, we first estimate extinction p [m'] using the observed

particulate backscatter (v) and lidar ratio p [sr]:
B=vp (S6)

Next, the aerosol specific backscatter components for marine and dust contributions are derived
using their respective mass concentrations M@ and M™ [ug m™], and lidar ratio cut offs for dust

(u%) and marine aerosols (u™) were taken as 40 and 20, respectively:
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S3.3 Compute the marine and dust parallel and perpendicular backscatters

Using the campaign-derived in-situ linear depolarization ratios for dust and marine aerosols in-
situ marine 8 ™ and dust § @ (i.e., 0.3 for dust and 0.02 for marine), we calculate the aerosol

specific backscatter into polarized components.

a. the parallel polarized marine and dust backscatters is calculated as:

p(m
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b. the perpendicular polarized marine and dust backscatters is calculated as:
v = §My™  (511)

v =@y (512)

Finally, the expected linear depolarization ratio is computed by substituting Eqgs. (S7) — (S12)

into Eq. (S9).
S4. Estimation of the Expected Lidar Depolarization Ratio with Hygroscopic Growth

Here we model the expected aerosol depolarization ratio (0 expected) by taking into account the
hygroscopic growth of the water-soluble aerosol (i.e., marine) particles that are mixed with non-
hydrated dust particles. Hygroscopic growth describes how the particle volume increases as the
particle absorbs water vapor from the air (Hénel, 1976, 1972). The volumetric growth has a large
effect on the depolarization of the mixture of marine and dust particles; as the marine particle
volume increases, the backscatter [m™! sr'!] of this particle type increases relative to the dust
particle backscatter [m™ sr'!]. Consequently, the depolarization of the mixture of marine and dust

particles is driven lower by hygroscopic growth.

Similar to Eq. (S5) the expected depolarization ratio dexpected is modeled by the weighted sum

of the dust and marine (hygroscopic) particles.

Y@ g 4, m) 5m)

dexpected = (513)
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Since the HSRL 532nm wavelength is much smaller than the dust and marine particles sizes, the
extinction efficiency can be approximated by a factor 2 (Hanel, 1976). Hence, the dust

backscatter [m™! sr'!'] can be modeled as

XAq

@ = oy, X2
v@ = 2N,
1@

(514)

where N is the number density [m™], A, is the cross-sectional area [m?] of dust particles and

@ is the dust lidar ratio [sr]. The marine backscatter [m™ sr'] is similarly defined

where ¢ ™is the marine lidar ratio [sr].The enhancement factor x > 0 models the marine
aerosol extinction enhancement due to the marine particle cross-sectional area A,, increasing
with increasing RH (i.e., hygroscopic growth) (Eq. (S4) in Hénel, 1972). We approximate the

enhancement factor x relative to a dry RH of RHrer= 40%

1 — RH,o;/100\*
- 1
X ( 1— RH/100 (516)

where the “fitted” exponent 2e is approximately equal to 1 (Hénel, 1972). Thus, at a RH of 80%
the marine aerosol extinction is approximately three times as large compared to the marine
extinction at a RH of 40%, which implies that the marine aerosol backscatter is three times as

large if the number density is fixed.

Before we expand the depolarization ratio dexpected formulation Eq. (S13) with the backscatter
definitions Eqgs. (S14) and (S15), there are a couple of approximations that we can make to
simplify the formulation. First, since the RH in the MABL is approximately 80% the marine

particles have taken on water, are large (relative to the laser wavelength) and spherical (Hénel,



1976). As such we can approximate the marine linear depolarization to be approximately zero

8 ~ 0 and the lidar ratio to be approximately equal to u™ = 20. Second, based on the
HSRL dust measurements we can approximate the dust lidar ratio to be u@ =~ 35 and
depolarization to be §@ =~ 0.3. Third, based on the BACO tower in situ measurements, we can
approximate the ratios between the dust/marine densities and cross-sectional areas by N;/N,,, =

0.2 and A, /Ay ~ (2/1.2)% = 2.7.

With these approximations the reformulation of the expected depolarization ratio Sexpected is

dexpected =~ (517)

4 +945y
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Figure S1. (a) Box plot showing monthly AOD at 500 nm measured using the AERONET
(Holben et al., 1998) at Barbados for the last 17 years. AOD observed during MAGPIE are

shown in red circle.
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Figure S2. The systematic uncertainty standard deviation associated with the HSRL scan for
particulate linear depolarization ratio (LDR; shown in Fig. 3b in main text) within 6 km above

MSL for August 12 -18, 2023.
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Figure S3. Digital color stack plots of CCSEM/EDX elemental spectra for representative

ground-based particle clusters obtained after running the k-means clustering algorithm. The

stacked bars illustrate the characteristic elemental signatures used to differentiate particle classes

and the fraction of particles exhibiting each compositional pattern (e.g., Si, Al, Fe, Mg for

mineral dust; Na, Cl, Mg for sea salt; S for aged or secondary species; C, O for organics).
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Figure S4. Probability density distribution of different particle types vs particle diameter during

the dust event.



Table S1. Summary of CIRPAS Twin Otter airborne aerosol samples collected during the
MAGPIE campaign.

Date Time On Time Off MSL Altitude Sample | Cloud Base
[UTC] [UTC] taken [ft] | [ft]

13AUG23 15:02 15:30 100 2300
16:35 16:50 2100

14AUG23 14:50 15:08 10000 1800
15:15 15:56 500

15AUG23 15:30 15:37 3000 1000
15:40 15:46 4500

16AUG23 15:26 15:40 100 - 300 1500
16:10 16:24 7000 - 9000

18AUG23 14:35 15:00 100 1700
16:53 17:10 4100

Table S2. Statistical representation of airborne single-particle measurements showing the 95%

confidence intervals for the number fractions of each aerosol particle type.

95%

Dust Dust + Sea | Confidence

(%) Spray (%) | Interval®
SAL 0.90 0.10 +0.09
Above
cloud top 0.57 0.43 +0.21
Below
cloud base 0.42 0.58 +0.13

* Confidence intervals are calculated by assuming binomial statistics. For two complementary
particle classes (i.e., dust and sea salt), the interval widths are identical because both are

constrained by the same sampling variance term.



Table S3. List of Abbreviations

AERONET AErosol RObotic NETwork

AOD Aerosol Optical Depth
BACO Barbados Atmospheric Chemistry Observatory
CBH Cloud Base Height

CC/SEM Computer-Controlled Scanning Electron Microscopy

CIMH Caribbean Institute for Meteorology and Hydrology
CTO CIRPAS Twin Otter aircraft

EMSL Environmental Molecular Sciences Laboratory

IC Ion Chromatography

LDR Linear Depolarization Ratio

LR Lidar Ratio

MABL Marine Atmospheric Boundary Layer

MAGPIE Moisture and Aerosol Gradients/Physics of Inversion Evolution

MPI Max Planck Institute

MPS Microanalysis Particle Sampler
NPS Naval Postgraduate School
ONR Office of Naval Research

PM Particulate Matter



PNNL Pacific Northwest National Laboratory

SAL Saharan Air Layer

TSP Total Suspended Particulate

SSEC Space Science and Engineering Center
WHO World Health Organization
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