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Abstract. Windblown dust emissions are controlled by near-surface wind speed and sediment erodibility, the
latter modulated by hydroclimate and land-use conditions. Accurate representations of these drivers are critical
for reproducing historical dust variability and projecting future dust changes in Earth system models (ESMs).
This study examines the discrepancies among 21 ESMs in the relative importance of wind speed versus five
hydroclimate drivers in explaining the historical (1980–2014) variability of dust emissions from global drylands.
In hyperarid areas, models show poor agreement in the simulated dust variability, with only 9 % out of 210 inter-
model comparisons exhibiting significant positive correlations. In contrast, arid and semiarid areas exhibit a dual
pattern driven by a “double-edged sword” effect of land surface memory: models with coherent hydroclimate
variability show better agreement, whereas those with divergent hydroclimate representations show larger dis-
agreement. While the ESMs capture the dominant role of wind speed in hyperarid areas, they diverge markedly
in the relative contributions of wind and hydroclimate drivers in arid and semiarid areas. Replacing the Zender
et al. (2003) dust scheme with the Kok et al. (2014) scheme in CESM and E3SM generally strengthens hydro-
climate influences while reducing wind speed contributions to simulated dust variability. MERRA-2 reanalysis
produces stronger wind influences than most ESMs across all dryland regions. These results underscore the need
for improved near-surface wind simulations in hyperarid areas and more realistic land surface and hydroclimate
representations in arid and semiarid areas to reduce uncertainties in global dust emission simulations.

1 Introduction

Windblown dust emission is modulated by near-surface wind
speed and the supply and erodibility of fine-grain sediments,
which collectively determine the timing, location, duration,
and intensity of dust events. The most abundant sediment
supply is typically found in low-relief regions with thick
layers of unconsolidated materials produced by weathering,
fluvial, and/or aeolian processes (Bullard and Livingstone,
2002; Bullard et al., 2011). The erodibility of these fine
materials depends on environmental conditions such as sur-
face soil moisture and armoring (e.g., vegetation, soil crusts)

which determine the minimum or threshold wind velocity
that must be reached to initiate the saltation-sandblasting
process (e.g., Zender and Kwon, 2005; Shao et al., 2011;
Xi and Sokolik, 2015b). The environmental controls of dust
emission have been incorporated into Earth system models
(ESMs) via parameterizations of dust emission fluxes as a
function of various atmospheric, land surface, and soil pa-
rameters, many of which are interactively determined within
the models. For example, the horizontal saltation dust flux is
calculated as a function of the third or fourth power of wind
velocity, reflecting the dominant role of infrequent, high-
wind events in dust production (e.g., Owen, 1964; Bagnold,
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1974; White, 1979; Kok et al., 2012). Early parameteriza-
tions in ESMs use static dust source functions to represent
the spatially varying sediment supply, with large values as-
sociated with low-relief regions where elevated dust burden
has been frequently detected by satellite observations (e.g.,
Ginoux et al., 2001; Prospero et al., 2002; Zender et al.,
2003). The sediment supply is typically assumed to be un-
limited in ESMs without accounting for depletion or replen-
ishment over time. In addition, the sediment erodibility is
closely connected with hydroclimate and land surface pro-
cesses in ESMs. For example, surface soil moisture, which is
simulated by the land model component, is often used to ac-
count for increases in erosion thresholds due to enhanced soil
particle cohesion under wet conditions (Fécan et al., 1999).
Many ESMs also use the bare soil fraction to adjust dust
emissions from areas partially covered by snow, ice, or vege-
tation. Vegetation also acts to increase the aerodynamic sur-
face roughness and reduce the available wind shear stress ex-
erting on erodible surfaces, which can be represented by drag
partitioning schemes but is currently not considered in most
ESMs (Raupach et al., 1993; Marticorena and Bergametti,
1995; Shao, 2001).

Numerous studies have evaluated the consistency and per-
formance of current ESMs in simulating the global dust cycle
under the Aerosol Comparisons between Observations and
Models (AeroCom) initiative and Coupled Model Intercom-
parison Project (CMIP) (Textor et al., 2006; Huneeus et al.,
2011; Kim et al., 2014; Wu et al., 2020; Gliß et al., 2021;
Zhao et al., 2022; Kim et al., 2024). Overall, these studies
suggest that modern-day dust aerosol column burden is rea-
sonably constrained by ground- and satellite-based aerosol
optical depth (AOD) retrievals, leading to better inter-model
agreement than those in dust emission and deposition esti-
mates. Knippertz and Todd (2012) pointed out that model
tuning to match satellite observations, e.g., via the use of dust
source functions, induces a compensational effect between
dust emission and deposition, both of which lack direct ob-
servational constraints at the global scale. Indeed, previous
AeroCom and CMIP model intercomparisons reported sub-
stantial discrepancies in global dust emission estimates, with
differences spanning an order of magnitude, as well as per-
sistent difficulties in reproducing historical dust variability
and its relationships with key driving factors (Huneeus et al.,
2011; Evan et al., 2014; Evan, 2018; Pu and Ginoux, 2018;
Wu et al., 2020; Gliß et al., 2021; Zhao et al., 2022). Kok
et al. (2023) further suggested that current ESMs failed to
capture the increase of global dust burden since preindus-
trial times, likely due to inaccurate model representations of
the climate and land-use drivers of dust emissions, and/or the
dust sensitivity to these driving factors.

The model discrepancies can be partly explained by
the choice of dust emission schemes. Earlier schemes rely
on static dust source functions to shift emissions towards
satellite-observed hot spot regions (e.g., Ginoux et al., 2001;
Zender et al., 2003), whereas newer parameterizations re-

place prescribed dust source functions with more explicit for-
mulations of sediment erodibility that increase the dust emis-
sion sensitivity to soil-moisture-dependent erosion thresh-
olds (e.g., Kok et al., 2014b; Leung et al., 2023). Dust
schemes also differ in how they represent the sandblasting
efficiency, defined as the ratio of the vertical dust flux to the
saltation flux: some schemes assume a global constant (e.g.,
Ginoux et al., 2001; Volodin and Kostrykin, 2016), whereas
more sophisticated schemes account for the dependence of
sandblasting efficiency on soil properties and wind speed
(e.g., Zender et al., 2003; Kok et al., 2014b). The choice
of wind speed also varies: while some dust schemes use 10-
m winds, others use friction velocity which more accurately
represents the wind shear stress acting on erodible surfaces
but requires specification of surface roughness length. In gen-
eral, more sophisticated schemes, which are derived based on
small-scale wind tunnel experiments, require more extensive
input parameters which are often poorly constrained at cli-
mate model grid levels, necessitating assumptions and em-
pirical tunings. For instance, due to limited data availabil-
ity, surface aerodynamic roughness is often prescribed as a
global constant or based on static satellite-derived maps (e.g.,
Peng et al., 2012; Tegen et al., 2019). ESM-simulated soil
water content may lack the accuracy or dynamic range re-
quired by dust emission parameterizations. As a result, some
models apply additional tunings or alternative treatments of
soil moisture effects (e.g., Zender et al., 2003; Volodin and
Kostrykin, 2016), while others disable the soil moisture de-
pendence entirely (e.g., Noije et al., 2021; Shevliakova et al.,
2024).

Even when using the same dust emission scheme, ESMs
can still diverge in dust emission simulations due to differ-
ences in model configurations (e.g., horizontal resolution,
vertical levels), input datasets, parameter tunings, and cou-
pled physical processes. For instance, the bare soil fraction
is determined from land cover type, vegetation fraction, and
snow/ice area extent, all of which may differ across ESMs.
Vegetation cover itself may be prescribed from satellite cli-
matology or simulated interactively. ESMs also differ in their
representations of soil properties (e.g., hydraulic conductiv-
ity), soil column structure (e.g., number and thickness of lay-
ers), and land surface hydrologic formulations (e.g., precipi-
tation, runoff, evaporation), which collectively determine the
surface soil moisture needed by dust emission schemes. The
soil moisture effects may be treated inconsistently, e.g., in
how models define the residue moisture level below which
dust emission is assumed to be independent on soil water
content (e.g., Ginoux et al., 2001; Evans et al., 2016; Volodin
and Kostrykin, 2016). Moreover, ESMs employ different
planetary boundary layer and surface flux parameterizations,
which influence the simulation of near-surface winds and ex-
treme wind events pertinent to dust mobilization and trans-
port. Given the inherent differences in dust process represen-
tations and the lack of direct observational constraints, it is
thus not surprising that ESM-simulated dust emission fluxes

Atmos. Chem. Phys., 26, 963–981, 2026 https://doi.org/10.5194/acp-26-963-2026



X. Li et al.: Dust emission in Earth system models 965

exhibit substantial discrepancies, as documented in previ-
ous AeroCom and CMIP intercomparison studies. There-
fore, ESM-simulated dust emission fluxes are best viewed as
an unconstrained, model-specific quantity characterized by a
dynamic range defined by the parameterizations, configura-
tions, and parameter tunings of individual models, similar to
Koster et al. (2009)’s view on root-zone soil moisture.

While model discrepancies in global dust emission esti-
mates are well documented, a key remaining question is how
consistently and accurately current ESMs represent the tem-
poral variability of dust emission and its sensitivity to under-
lying physical drivers. Addressing this question is essential
for understanding and reducing model uncertainties in pre-
dicting dust responses to climate and land-use changes. In
this study, we focus on the interannual variability of ESM-
simulated dust emissions from global drylands and apply a
statistical framework to diagnose the physical controls of
dust emissions. Based on fully-coupled historical simulations
from a suite of ESMs and two aerosol reanalysis products,
we examine the extent of inter-model agreement in simu-
lating the interannual dust variability across different cli-
mate aridity regimes and quantify the relative importance
of a common set of physical drivers in explaining the sim-
ulated dust variability within individual models. Although
satellite-derived dust AOD and in-situ dust measurements
provide valuable constraints on dust variability (e.g., Pros-
pero and Lamb, 2003; Voss and Evan, 2020), they integrate
the effects of emission, transport, and deposition, making it
difficult to isolate the emission process itself. Also, due to
lack of global validation data, we focus on diagnosing inter-
model inconsistency in representing the dust emission vari-
ability and its physical controls, rather than validating indi-
vidual model performance against observations.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the ESMs and aerosol reanalysis datasets
and the dominance analysis technique. Section 3 presents
results on comparing model-simulated dust emission fluxes
and the relative influences of wind speed versus hydrocli-
mate drivers. Section 4 summarizes the main findings of this
study.

2 Data and Approach

2.1 ESMs and aerosol reanalysis

We consider a total of 21 ESMs as summarized in Table 1,
including 18 models from the CMIP6 fully coupled histor-
ical experiment (1980–2014). For each model, we use the
first ensemble member (r1i1p1f1) unless otherwise stated.
Two CESM variants use the same dust emission scheme
of Zender et al. (2003) (hereafter the Zender scheme) but
different atmospheric components: the Community Atmo-
sphere Model (CESM2-CAM-Zender) versus the Whole At-
mosphere Community Climate Model (CESM2-WACCM-
Zender). In addition, we conducted a CESM experiment

(2004–2013) using the dust emission scheme of Kok et al.
(2014b) (hereafter the Kok scheme; CESM2-CAM-Kok) (Li
et al., 2022). We further conduct two E3SM model ex-
periments (1980–2014) coupled with the Zender (E3SM2-
Zender) and Kok (E3SM3-Kok) schemes, respectively (Feng
et al., 2022; Xie et al., 2025). A key difference between
the two schemes is that, the Zender scheme relies on a pre-
scribed, time-invariant dust source function that shifts emis-
sions towards contemporary dust source regions, whereas
the Kok scheme applies more physically based parameter-
izations of soil erosion thresholds, thereby improving dust
simulations without using prescribed dust source functions
(Kok et al., 2014a). The paired CESM and E3SM experi-
ments allow us to examine how the choice of dust emission
schemes or host models affects the simulated dust variabil-
ity and sensitivity to driving factors. Nonetheless, it is im-
portant to note that comparing these experiments is compli-
cated by additional model differences. For example, CESM2-
CAM-Zender does not account for dust mineralogy, whereas
CESM2-CAM-Kok simulates dust as mineral components
with observationally constrained mineral optical properties
(Li et al., 2024). This may lead to inconsistent radiative feed-
back on meteorology and dust emissions. Similarly, E3SM3
incorporates extensive model updates relative to E3SM2,
which may affect near-surface meteorological and land sur-
face conditions relevant to dust emissions (Xie et al., 2025).

Several other model families share common heritage but
differ in physics options and configurations. For example,
CanESM5.1 incorporated physics and technical changes that
improved mean climate and dust simulations relative to
CanESM5.0 (Sigmond et al., 2023). Three GISS-E2 models
use the same dust scheme from Miller et al. (2006) but dif-
fer in model version (2.1 vs. 2.2) and aerosol microphysics
scheme: One-Moment Aerosol (OMA; ensemble member
r1i1p3f1) versus Multiconfiguration Aerosol TRacker of
mIXing state (MATRIX; ensemble member r1i1p5f1) (Rind
et al., 2020; Miller et al., 2021). UKESM1.0 is developed
based on the HadGEM3-GC3.1 general circulation model.
They use the same dust scheme from Woodward (2001) but
employ different parameter tunings and dust source represen-
tations (Woodward et al., 2022). MIROC-ES2L builds upon
the MIROC general circulation model version 5.2 (MIROC5)
(Hajima et al., 2020), while MIROC6 incorporates physics
updates that improved the mean climate state and internal
variability compared to MIROC5 (Tatebe et al., 2019). Both
MIROC-ES2L and MIROC6 use the dust scheme from the
SPRINTARS model (Takemura et al., 2009).

The ESMs are further compared with two aerosol reanaly-
sis products with dust emission flux output: Modern-Era Ret-
rospective Analysis for Research and Applications Version 2
(MERRA-2, 1980–2014) (Gelaro et al., 2017), and Japanese
Reanalysis for Aerosol (JRAero, 2011–2017) (Yumimoto
et al., 2017). Dust emission in MERRA-2 is simulated us-
ing the Ginoux et al. (2001) parameterization within the GO-
CART aerosol module of GEOS-5 model. In JRAero, dust
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Table 1. Summary of Earth system models and aerosol reanalysis datasets considered in this study. Dust source function (DSF) indicates
whether a static dust source function is used. Leaf area index (LAI) indicates whether LAI is treated as a prognostic variable. Dm is the dust
particle diameter upper limit. u∗ is friction velocity. u10 is 10 m wind velocity.

Model Resolution Dm Wind DSF LAI Dust Scheme Reference

CESM2-WACCM-Zender 0.9°× 1.25° 10 u3
∗ Y Y Zender et al. (2003) Gettelman et al. (2019)

CESM2-CAM-Zender 0.9°× 1.25° 10 u3
∗ Y Y Zender et al. (2003) Albani et al. (2015)

CESM2-CAM-Kok 0.9°× 1.25° 10 u3
∗ N Y Kok et al. (2014b) Li et al. (2022)

E3SM2-Zender 1°× 1° 10 u3
∗ Y N Zender et al. (2003) Feng et al. (2022)

E3SM3-Kok 1°× 1° 10 u3
∗ N Y Kok et al. (2014b) Xie et al. (2025)

CanESM5.0 2.8°× 2.8° – u3
∗ Y Y Peng et al. (2012) Swart et al. (2019)

CanESM5.1 2.8°× 2.8° – u3
∗ Y Y Peng et al. (2012) Sigmond et al. (2023)

CNRM-ESM2.1 1.4°× 1.4° 20 u3
∗ N Y Tegen et al. (2002) Séférian et al. (2019)

EC-Earth3-AerChem 2°× 3° 20 u3
∗ Y N Tegen et al. (2002) Noije et al. (2021)

GISS-E2.1-OMA 2°× 2.5° 32 u3
10 Y N Miller et al. (2006) Miller et al. (2021)

GISS-E2.1-MATRIX 2°× 2.5° 32 u3
10 Y N Miller et al. (2006) Miller et al. (2021)

GISS-E2.2-OMA 2°× 2.5° 32 u3
10 Y N Miller et al. (2006) Rind et al. (2020)

HadGEM3-GC31 0.6°× 0.8° 63 u3
∗ Y N Woodward (2011) Roberts et al. (2019)

UKESM1.0 1.25°× 1.9° 63 u3
∗ N Y Woodward (2001) Woodward et al. (2022)

INM-CM5.0 1.5°× 2° – u4
∗ N N Volodin and Kostrykin (2016) Volodin (2022)

IPSL-CM6A-LR 1.26°× 2.5° – u3
10 Y Y Balkanski et al. (2004) Lurton et al. (2020)

MRI-ESM2.0 1.9°× 1.9° 20 u3
∗ N N Shao et al. (1996) Yukimoto et al. (2019)

MIROC6 1.4°× 1.4° 10 u3
10 N Y Takemura et al. (2009) Tatebe et al. (2019)

MIROC-ES2L 2.8°× 2.8° 10 u3
10 N Y Takemura et al. (2009) Hajima et al. (2020)

MPI-ESM-1.2 1.9°× 1.9° – u3
∗ Y Y Tegen et al. (2019) Mauritsen et al. (2019)

NorESM2 0.9°× 1.25° 10 u3
∗ Y N Zender et al. (2003) Seland et al. (2020)

MERRA-2 0.5°× 0.63° 20 u3
10 Y N Ginoux et al. (2001) Randles et al. (2017)

JRAero 1.1°× 1.1° 20 u3
∗ N N Shao et al. (1996) Yumimoto et al. (2017)

emission is simulated using the Shao et al. (1996) energy-
based scheme (same as in MRI-ESM2.0) within the Japan
Meteorological Agency MASINGAR mk-2 global aerosol
transport model (Yumimoto et al., 2017; Yukimoto et al.,
2019). In both MERRA-2 and JRAero, the meteorological
inputs for dust emission calculations are constrained via data
assimilation of in situ and remote sensing observations (in-
cluding surface and upper-air wind measurements), which
improves near-surface wind simulations compared to CMIP6
models (Gelaro et al., 2017; Yumimoto et al., 2017). The sur-
face soil moisture in MERRA-2 also benefits from assimi-
lation of observation-corrected precipitation. While both re-
analyses assimilate bias-corrected total AOD from satellites,
the AOD assimilation is expected to have limited influence
on dust emission simulations.

To facilitate the comparison among the ESMs and reanal-
ysis products, we classify global drylands into three climate
zones–hyperarid, arid, and semiarid–based on the aridity in-
dex (AI), defined as the ratio of climatological mean pre-
cipitation to potential evapotranspiration for 1970–2000 fol-
lowing (Zomer et al., 2022). Dry subhumid areas are not
considered due to their negligible dust contributions. The
hyperarid climate zone is defined as AI≤ 0.05, arid zone
as 0.05 < AI≤ 0.2, and semiarid zone as 0.2 < AI≤ 0.5.

As shown in Fig. 1, hyperarid areas primarily cover North
Africa, Arabian Peninsula, Iranian Plateau, and Tarim Basin.
Arid and semiarid areas cover other major dust sources, in-
cluding the Sahel (North Africa), Turan Depression (Central
Asia), Gobi Desert (East Asia), Thar Desert (South Asia),
Kalahari Desert (Southern Africa), Chihuahua Desert (North
America), Patagonia steppe (South America), and the Great
Sandy and Simpson Deserts (Australia). Generally, hyper-
arid areas are dominated by permanently dry, barren surfaces
with very low hydroclimate variability, such that dust emis-
sion is expected to be primarily controlled by wind speed.
In contrast, arid and semiarid areas experience greater pre-
cipitation and hydroclimate fluctuations, which are expected
to exert stronger influence on sediment erodibility and dust
emissions.

2.2 Dominance analysis technique

Previous studies commonly used linear regression coeffi-
cients to quantify the dust sensitivity to its physical drivers
(e.g., Pu and Ginoux, 2016; Aryal and Evans, 2021; Zhao
et al., 2022). In multiple linear regression, a regression co-
efficient represents the mean change in the response vari-
able (e.g., dust emission flux or AOD) associated with a unit
change in a given predictor, while holding all other predic-
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Figure 1. Definitions of climate aridity zones for model intercom-
parisons.

tors constant. This interpretation assumes mutual indepen-
dence among predictors, an assumption that is often violated
by strong correlations among dust emission drivers. Conse-
quently, linear regression coefficients can cause misleading
inference of the relative importance of predictors. In addi-
tion, regression coefficients, standardized or not, may not
provide a consistent basis for comparing predictor impor-
tance across different ESMs, due to their inconsistent dy-
namic ranges.

In this study, we use the dominance analysis technique
to quantify the relative importance of multiple correlated
predictors in explaining the variability of monthly total
dust emission fluxes simulated by individual ESMs and the
MERRA-2 reanalysis. JRAero is excluded from this analysis
due to missing predictor data. Although the ESMs differ in
how they partition total emissions into discrete size modes
or bins, the size partitioning has minor effects on diagnosing
the emission process itself. The predictors considered here
operate upstream of the size partitioning, and control the ini-
tiation and magnitude of total dust emissions rather than its
size-resolved characteristics. Here we consider a common set
of six predictors from each model: 10 m wind speed, total
precipitation (including liquid and solid phases), water con-
tent in the uppermost soil layer, 2 m specific humidity, 2 m air
temperature, and leaf area index (LAI). Among them, 10 m
wind speed represents the wind shear stress driving dust mo-
bilization, while the remaining variables collectively repre-
sent the hydroclimate controls on sediment erodibility. The
selected predictors are either directly used in dust emission
parameterizations or strongly correlated with dust emission
intensity, as shown in numerous studies (e.g., Engelstaedter
et al., 2003; Ravi et al., 2006; Zou and Zhai, 2004; Cowie
et al., 2015; Kim and Choi, 2015; Xi and Sokolik, 2015b, a).
Note that we donot not include all the physical drivers repre-
sented in each model because of limited data availability in
the CMIP6 online archive, and because some models incor-
porate additional drivers not used by others. Hence we focus
on a common set of six readily available predictors to pro-
vide a consistent and fair comparison across the ESMs and
MERRA-2 reanalysis.

Dominance analysis is applied to the ESMs and MERRA-
2 over grid cells with nonzero dust emissions. The dust emis-
sion fluxes and predictors are first deseasonalized by sub-
tracting month-wise climatological means and then normal-
ized to 0–1 range via min-max scaling. Dominance analysis
quantifies the marginal contribution of each predictor to the
total explained variance (R2) by evaluating all possible sub-
set models (2p

−1 subsets for p predictors) in a multiple lin-
ear regression framework (Budescu, 1993; Azen and Bude-
scu, 2003). The approach first calculates the average incre-
mental contribution of each predictor to the total R2 across
all subset models of the same size (i.e., models with the same
number of predictors). These incremental R2 values are then
averaged to obtain the predictor’s overall contribution to the
total R2. A key feature of this approach is that the sum of
individual predictor contributions equals the total R2 of the
full model (i.e., with all predictors included), thereby allow-
ing the partitioning of total explained variance among corre-
lated predictors. The resulting grid-level predictor R2 values
from the ESMs and MERRA-2 are used to assess the spa-
tial variability of predictor influences over different climate
zones within each model, as well as the inter-model consis-
tency in representing the relative importance of wind speed
versus five hydroclimate drivers.

3 Results

3.1 Climatological distribution

Figure 2 displays the climatological mean annual dust emis-
sion fluxes from the 21 ESMs, their ensemble mean, and the
MERRA-2 and JRAero reanalyses during 2005–2014 (2004–
2013 for CESM2-CAM-Kok and 2011–2017 for JRAero).
All datasets capture the global dust belt stretching from West
Africa across the Middle East to East Asia, as well as weaker
sources in the Americas and Australia. Among the ESMs,
E3SM3-Kok and HadGEM2-GC31 simulate the most ex-
tensive dust-emitting areas extending to high-latitude and
subhumid areas. CESM2-CAM-Zender, CESM2-WACCM-
Zender and NorESM2 restrict emissions to regions where
the dust source function exceeds 0.1, resulting in discrete
and spatially limited emission patterns. Conversely, E3SM2-
Zender employs the original dust source function of Zender
et al. (2003), producing a more spatially continuous emission
pattern (Fig. 2e).

Global annual dust emissions simulated by the ESMs vary
greatly, ranging from 890 to 7727 Tg yr−1 with nearly an or-
der of magnitude difference (Fig. 2a–u). The ensemble mean
estimate (Fig. 2v) is 2857 Tg yr−1 with a standard deviation
of 1835 Tg yr−1, corresponding to a diversity of 64 % (de-
fined as the ratio of standard deviation to ensemble mean).
Based on models with an upper particle size limit of 20 µm,
global dust emissions vary from 1061 to 6561 Tg yr−1, with
a mean of 3048 Tg yr−1 and diversity of 55 %. The ensemble
mean is close to JRAero (2780 Tg yr−1, Fig. 2x), but con-
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Figure 2. Climatological mean dust emission fluxes from (a–u) 21 Earth system models , (v) model ensemble mean, (w) MERRA-2
reanalysis, and (x) JRAero reanalysis. Global annual total emissions are displayed on each panel.

siderably higher than MERRA-2 (1605 Tg yr−1, Fig. 2w).
Also, the ensemble mean exhibits a more spatially homoge-
neous pattern over North Africa and the Arabian Peninsula,
whereas MERRA-2 and JRAero display more heterogeneous
and localized emission patterns.

The model discrepancies in dust emission magnitude are
consistent with previous assessments. For example, Huneeus
et al. (2011) compared 14 AeroCom Phase I models and
reported a global dust emission range of 500–4400 Tg yr−1

(diversity= 58 %), of which seven using a 20 µm upper
size limit yielded 980–4300 Tg yr−1 (diversity= 46 %). Sim-

ilarly, Gliß et al. (2021) compared 14 AeroCom Phase III
models and reported a range of 850–5650 Tg yr−1 with a di-
versity of 64 %. Based on 15 CMIP5 models, Wu et al. (2020)
reported a range of 740–8200 Tg yr−1 (diversity= 66 %),
with seven models using particle diameters up to 20 µm pro-
ducing 740–3600 Tg yr−1 (diversity= 43 %). More recently,
Zhao et al. (2022) examined 15 CMIP6 AMIP models and
reported a range of 1400–7600 Tg yr−1 with a diversity of
61 %. Collectively, these studies, along with our results,
demonstrate persistent large model uncertainties in global
dust emission estimates despite advances in model resolu-
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tions and physics parameterizations, which reflects the un-
constrained, model-specific nature of dust emission fluxes.

Figure 3 displays the contributions of different climate
zones to global dust emissions. Based on the model ensem-
ble mean, global dust emissions are partitioned as 61 % from
hyperarid, 27 % from arid, and 5 % from semiarid zones. In
comparison, MERRA-2 and JRAero allocate the majority of
dust emissions to hyperarid and arid zones, with negligible
contributions from the semiarid zone.

The hyperarid zone accounts for more than half of global
emissions in all ESMs except CanESM5.0, CanESM5.1,
and INM-CM5.0. These models simulate relatively uniform
emission patterns with less than 50 % from hyperarid areas,
possibly related to their dust emission parameterizations. As
noted in Sigmond et al. (2023), parameter tunings related to
the hybridization of dust tracers caused spurious dust events
in CanESM5.0. An interpolation error in the bare soil frac-
tion also contributed to dust simulation biases in CanESM5.0
and CanESM5.1 compared to other CMIP6 models and satel-
lite aerosol observations (Sigmond et al., 2023). The newer
CanESM5.1 simulates 20 % less dust globally but simi-
lar spatial distributions compared to CanESM5.0. In INM-
CM5.0, the vertical dust flux is calculated as a function of
wind speed alone, without accounting for land surface ef-
fects on the threshold wind velocity (Volodin and Kostrykin,
2016; Volodin, 2022). While this simplification may be ap-
propriate for hyperarid areas, it can overestimate emissions
over arid and semiarid areas where increased soil wetness
and vegetation cover suppress dust mobilization.

Contributions of the arid zone range from 8 % (CESM2-
CAM-Kok) to 37 % (UKESM-1.0), indicating substantial
model discrepancies compared to the hyperarid zone. The
discrepancies become even larger over the semiarid zone,
where the emission fraction ranges from less than 1 % to
18 %. Particularly, four models allocate more than 10 % to
the semiarid zone: CanESM5.0 (16 %), CanESM5.1 (18 %),
INM-CM5.0 (15 %), and UKESM1.0 (12 %). Overall, as
the climate regime transitions from hyperarid to semiarid,
model-estimated dust source strengths become less consis-
tent, revealing increasing uncertainty in how ESMs represent
dust sensitivity to hydroclimate conditions.

Among the ESMs, CESM2-CAM-Zender and CESM2-
WACCM-Zender produce nearly identical total emissions
and spatial patterns, suggesting that the choice between
CAM and WACCM atmospheric components has minimal
effect. The paired CESM and E3SM experiments, however,
show opposite tendencies: contributions of the hyperarid
zone increase from 61 % in CESM2-CAM-Zender to 88 %
in CESM2-CAM-Kok, but slightly decrease from 63 % in
E3SM2-Zender to 58 % in E3SM3-Kok. The GISS-E2 mod-
els produce consistent distributions across different climate
zones, although total emissions are about 40 % lower when
using the MATRIX aerosol scheme, possibly due to param-
eter tunings or underrepresentation of coarse dust (diame-

ter > 5 µm) in the MATRIX modal size distribution, as noted
in Bauer et al. (2022).

UKESM1.0 emits nearly twice as much dust as
HadGEM3-GC3.1, and exhibits slightly more uniform spa-
tial distributions. As described in Woodward et al. (2022),
UKESM1.0 is built upon HadGEM3-GC3.1 but applies pa-
rameter tunings that enhance friction velocity and suppress
soil moisture, effectively increasing the wind gustiness and
soil aridity, leading to more emissions in UKESM1.0. The
three Japanese models (MRI-ESM2.0, MIROC-ES2L, and
MIROC6) also differ markedly in total emissions and, to a
lesser extent, spatial distributions. MRI-ESM2.0 produces
similar regional fractions to JRAero but nearly doubles
the total amount. Despite using the same dust parameteri-
zation, MIROC-ES2L emits roughly five times more dust
than MIROC6. This discrepancy can be largely explained
by stronger winds in MIROC-ES2L, which produces 50 %
higher global mean wind speed than MIROC6. Moreover,
MIROC6 prescribes non-zero LAI even in hyperarid ar-
eas, likely further suppressing dust generation relative to
MIROC-ES2L (Hiroaki Tatebe, personal communications,
2025).

3.2 Interannual variability

This section examines the consistency of ESMs in simulating
the interannual variability of dust emissions. Monthly dust
emission fluxes from all ESMs are first regridded to a com-
mon resolution of 0.9°× 1.25° (the native grid of CESM2).
To remove the influence of annual cycles, month-wise cli-
matological means are subtracted from each grid cell to cal-
culate deseasonalized dust emission flux anomalies. Spear-
man’s rank correlation coefficients are then calculated be-
tween the monthly anomalies for every possible model pair.
With 21 ESMs, this results in 210 pairwise comparisons.
To quantify the overall model agreement, we calculate the
percentage of model pairs exhibiting statistically significant
(p ≤ 0.1), positive correlations. A higher percentage indi-
cates stronger model agreement in simulating the dust vari-
ability, and vice versa. The results are displayed in Fig. 4.

Despite its dominant contribution to global dust emissions,
the hyperarid zone exhibits poor model agreement, with gen-
erally less than 10 % of pairwise comparisons showing sta-
tistically significant positive correlations. Because dust emis-
sions from hyperarid areas are predominantly controlled by
near-surface wind speed, this poor agreement reflects in-
consistent wind simulations among the ESMs. Indeed, we
find that only 10 % of model pairs produce positively corre-
lated monthly mean wind speed anomalies. Similarly, Evan
(2018) reported that dust-producing winds over the Sahara
Desert are driven by large-scale meteorological processes
and that most CMIP5 models failed to capture the near-
surface wind variability. These results suggest that improv-
ing near-surface wind simulations can potentially reduce dis-
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Figure 3. Contributions of different climate zones to global annual dust emissions. Numbers indicate percentages above 5 %.

Figure 4. Percentage of statistically significant (p ≤ 0.1), positive correlations out of 210 pairwise comparisons of deseasonalized monthly
dust emission fluxes from 21 Earth system models. Black contours indicate the model ensemble mean emission flux of 10 and 100 Tg yr−1.

crepancies in simulating the dust emission variability over
hyperarid regions.

In contrast to the hyperarid zone, arid and semiarid zones
– such as the Sahel, South Asia, East and Central Asia, Aus-
tralia, and North America – exhibit significantly better agree-
ment. To further assess how model consistency varies with
aridity, Fig. 5 presents pairwise correlation matrices based on
dust emission flux anomalies averaged over hyperarid, arid,
and semiarid zones. The percentage of statistically signifi-
cant, positively correlated model pairs increases from 9 % in
the hyperarid zone to 13 % in the arid zone and 16 % in the
semiarid zone. Meanwhile, the semiarid zone shows a larger
percentage of negatively correlated model pairs (16 %) than
the hyperarid (6 %) and arid (7 %) zones. This dual pattern
suggests that as the climate regime transitions from hyper-
arid to semiarid, the ESMs exhibit both stronger agreement

and heightened disagreement in simulating the interannual
variability of dust emissions.

This behavior can be explained by the influence of an-
tecedent land surface conditions on sediment erodibility
in semiarid environment such as temperate grasslands and
steppes (Shinoda and Nandintsetseg, 2011; Nandintsetseg
and Shinoda, 2015). In these regions, factors such as pre-
cipitation, soil moisture, and vegetation growth–decay cycles
have lagged and long-lasting effects on sediment erodibility.
For example, dry anomalies during the wet season, such as
reduced rainfall or earlier snowmelt, can reduce soil inter-
particle cohesion and suppress vegetation growth, thereby
prolonging bare soil exposure and increasing the wind ero-
sion risk. This delayed response exemplifies the land sur-
face memory effect, in which the slow adjustment of soil
and vegetation conditions over weeks to months influences
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Figure 5. Spearman’s rank correlation coefficients between dust emission flux anomalies averaged over hyperarid, arid, and semiarid climate
zones. Dots indicate statistically significant correlations (p ≤ 0.1). Summary tables are based on Earth system models only (MERRA-2 and
JRAero not included).

subsequent dust emission potentials long after the initial hy-
droclimate forcing (e.g., drought). Therefore, we hypothe-
size that the simultaneous increase in both model agreement
and disagreement from hyperarid to semiarid zones reflects a
“double-edged sword” effect of land surface memory: mod-
els with coherent representations of hydroclimate variability
tend to converge in the simulated dust variability (i.e., more
positive correlations), whereas those with divergent hydrocli-
mate representations diverge in the dust variability (i.e., more
negative correlations).

To verify this hypothesis, we examine the statistical as-
sociation between pairwise model correlations in dust emis-
sions and those in hydroclimate variability. Specifically, we
perform a principal component analysis (PCA) of the five
hydroclimate variables (i.e., precipitation, soil moisture, spe-
cific humidity, air temperature, LAI) separately for the hyper-
arid, arid, and semiarid zones. The leading principal compo-
nent (PC1), which explains at least 40 % of the total variance
in all zones, is used as a proxy for the dominant hydrocli-
mate variability. Spearman’s rank correlation coefficients are
then computed for all pairwise comparisons of deseasonal-
ized monthly PC1 values, following the same approach as in
Fig. 5.

Figure 6 compares the correlation coefficients for model
pairs with the same sign (i.e., both positive or both nega-
tive) in dust emission fluxes and hydroclimate PC1. The re-
gression slope and coefficient of determination (r2) quantify
the degree of statistical association between inter-model cor-
relations in dust emission and hydroclimate variability. The
positive relationships across all climate zones suggest that
ESMs with stronger consensus in hydroclimate variability
also tend to produce more consistent dust variability. More
importantly, the number of significantly correlated model
pairs (N ) and correlation strength (slope and r2) show signif-
icant increases from hyperarid to semiarid zones. This find-
ing supports our hypothesis on the dual role of land surface

memory: it tends to improve agreement among ESMs with
coherent hydroclimate representations, while simultaneously
amplifying disagreement among those with divergent hydro-
climate variability.

3.3 Relative importance of wind speed versus
hydroclimate drivers

In this section, we present dominance analysis results on the
joint and relative influences of wind speed and hydroclimate
drivers on the simulated dust variability within individual
ESMs. Figure 7 shows the total R2 by the six predictors com-
bined. Results for CESM2-WACCM-Zender and NorESM2
are very similar to those for CESM2-CAM-Zender and thus
not shown. The ESMs show large discrepancies in the total
R2, reflecting inherent differences in the coupling strength
between dust emission and the selected predictors. When
ranked by the global mean R2, CanESM5.0 and CanESM5.1
show the lowest explanatory power of the selected predic-
tors, followed by MPI-ESM1.2, MIROC6, and EC-Earth3-
AerChem. The low total R2 can be explained by several fac-
tors. We only consider six common predictors and may omit
other predictors that are specific to some models (such as
stem area index). Model biases (see Sect. 3.1) may weaken or
distort the relationship between dust emission and its physi-
cal drivers. Using simplified parameterizations and/or static
land surface input can reduce the dust sensitivity to hydrocli-
mate conditions. In addition, because dust emission is gov-
erned by highly nonlinear threshold processes, its depen-
dence on the predictors may deviate from the linear assump-
tion underlying dominance analysis. As shown in Fig. 7, total
R2 values are generally lower in arid and semiarid areas than
in hyperarid areas, likely due to increased nonlinearity be-
tween dust emission and hydroclimate variables that dimin-
ishes the explanatory power of multilinear regression.
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Figure 6. Statistical associations between pairwise model correlation coefficients (p ≤ 0.1 shown in red) in dust emission fluxes and hydro-
climate variability over (a) hyperarid, (b) arid, and (c) semiarid climate zones.

Figure 7. Total explained variance (R2) in dust emission fluxes by six near-surface predictors (wind speed, precipitation, soil moisture,
specific humidity, air temperature, and LAI) in Earth system models and MERRA-2. Global mean R2 values are shown on each panel.
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Despite these limitations, most ESMs produce significant
total R2 values, especially in hyperarid areas with R2 gen-
erally above 0.5. Replacing the Zender with the Kok dust
scheme generally reduces the total R2 in both CESM and
E3SM (Fig. 7a–d). GISS-E2 models show little differences
between the OMA and MATRIX aerosol schemes, and a
modest increase from version 2.1 to 2.2. UKESM1.0 and
HadGEM3-GC3.1 show minimal differences, both showing
high R2 values globally. MIROC6 yields lower R2 than
MIROC-ES2L, particularly in hyperarid areas. MERRA-2
produces higher R2 than most ESMs, especially in arid and
semiarid zones, indicating stronger coupling between dust
emission and the selected predictors.

Figure 8 presents the ratio of the wind-associated R2 to the
combined R2 of five hydroclimate variables (precipitation,
soil moisture, specific humidity, air temperature, and LAI).
In all ESMs, the wind-to-hydroclimate R2 ratio is well above
1 over hyperarid areas, which is consistent with the param-
eterization of vertical dust flux as a power-law function of
wind speed in all models, and the expectation that dust emis-
sion from permanently dry and sparsely vegetated surfaces
is primarily controlled by wind speed. In contrast, arid and
semiarid areas exhibit much larger inconsistency, with ratios
either above or below 1 depending on the model. This be-
havior may be due to inconsistent representations of hydro-
climate controls on sediment erodibility, which in turn leads
to disagreement in the relative importance of wind versus hy-
droclimate drivers. For example, most ESMs incorporate soil
moisture as a correction to the erosion threshold velocity al-
beit using different formulations, while INM-CM5.0 treats
soil moisture as a simple threshold above which dust emis-
sion is switched off. Such inconsistencies inevitably produce
varying coupling strengths between dust emission and hydro-
climate variables across models.

Based on the wind-to-hydroclimate R2 ratios, we
classify global dust-emitting areas into three regimes:
wind-dominated (ratio > 1.2), hydroclimate-dominated (ra-
tio < 0.8), and equally-important (0.8–1.2). Then we calcu-
late the fractions of dust emissions from these regimes within
each model. The results are displayed in Fig. 9. The ESMs
show general agreement in the “equally-important” regime,
with most models simulating less than 10 % from regions
where wind and hydroclimate drivers have nearly equal con-
tributions.

The wind-dominated regime accounts for more than 80 %
dust emissions in most ESMs, consistent with the domi-
nant contribution of the hyperarid zone (Fig. 3). Two models
yield significantly lower estimates: INM-CM5.0 (43 %) and
CanESM5.0 (65 %). As shown in Fig. 3, these models sim-
ulate relatively homogeneous emission patterns, which con-
sequently diminishes the relative contributions from wind-
dominated regions compared with other models. For CESM
and E3SM, replacing the Zender with Kok dust scheme
slightly reduces the wind-dominated dust fraction: from 85 %
to 79 % in CESM, and from 99 % to 96 % in E3SM. The

three GISS-E2 models yield similar results, with 87 %–90 %
dust from the wind-dominated regime. Likewise, UKESM1.0
and HadGEM3-GC3.1 yield nearly identical estimates, with
90 % of dust from wind-dominated regions. MERRA-2 sim-
ulates 98 % emissions from wind-dominated areas, higher
than most ESMs. Three models produce significantly higher
contributions from semiarid areas than others: CanESM5.0
(29 %), CanESM5.1 (21 %), and INM-CM5.0 (49 %).

To further assess the relative importance of wind speed
versus hydroclimate drivers, we compute the fractional con-
tributions of wind speed to the total R2 at each model
grid cell. The statistical distributions of grid-level wind-
associated R2 fractions are displayed in Fig. 10. In Fig. 10,
if the median wind-associated R2 fraction exceeds 50 %, it
indicates that wind speed dominates dust variability at more
than half of the grid cells within a climate zone. Conversely,
if the median falls below 50 %, hydroclimate drivers exert
dominant control over the majority of grid cells.

In the hyperarid zone (Fig. 10a), the majority of ESMs
capture the dominant wind control, with median wind-
associated R2 fractions exceeding 80 %. The three GISS-
E2 models display slightly lower wind contributions (67 %–
74 %). In contrast, CESM2-CAM-Kok exhibits greater spa-
tial variability and lower wind influence with a median
wind-associated R2 fraction of 63 %, consistent with the
model’s elevated hydroclimate influence over West Africa
and the Tarim Basin as shown in Fig. 8b. Compared to
CESM2-CAM-Kok, CESM2-CAM-Zender captures the ex-
pected wind dominance with a median of 87 %. The en-
hanced hydroclimate influence in CESM2-CAM-Kok rela-
tive to CESM2-CAM-Zender persists even when comparing
common dust-emitting areas in these two models.

In the arid zone (Fig. 10b), total R2 values are generally
lower, again reflecting reduced explanatory power of the se-
lected predictors. The ESMs exhibit greater discrepancies in
the relative importance of wind speed versus hydroclimate
drivers in the arid zone. Specifically, wind speed remains
the dominant driver of dust variability in most ESMs, de-
spite increased spatial variability. The three GISS-E2 mod-
els simulate nearly equal wind and hydroclimate influences.
INM-CM5.0, MIROC-ES2L and MIROC6 produce median
wind-associated R2 fractions well below 50 %, signifying a
transition from wind- to hydroclimate-dominated regimes.
CESM2-CAM-Kok also displays this transition, although
to a smaller extent with a median of 44 % and large spa-
tial variability. In both CESM and E3SM, replacing the
Zender with Kok dust scheme weakens the wind influence
and strengthens the hydroclimate influence, with the median
wind-associated R2 fraction declining from 56 % to 44 % in
CESM and from 86 % to 74 % in E3SM. This is somewhat
consistent with previous findings that the more physically
based sediment erodibility formulations in the Kok scheme
enhance the dust sensitivity to climate variability relative to
the Zender scheme (Kok et al., 2014a).
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Figure 8. The ratio of wind-associated R2 to the combined R2 of five hydroclimate variables (precipitation, soil moisture, specific humidity,
air temperature, and LAI) in Earth system models and MERRA-2.

Results for the semiarid zone (Fig. 10c) are considered
less robust due to significantly smaller dust-emitting ar-
eas (see Fig. 1). Overall, the contribution of wind speed
further weakens, while hydroclimate drivers become more
important. The resulting change of predictor relative im-
portance, however, varies considerably. Specifically, four
models (CESM2-CAM-Zender, E3SM3-Kok, EC-Earth3-
AerChem and MPI-ESM1.2) retain the wind dominance, al-
beit with increased spatial variability. Hydroclimate domi-
nance persists and strengthens in CESM2-CAM-Kok, INM-
CM5.0, MIROC-ES2L and MIROC6, consistent with their
behaviors in the arid zone. In contrast, the following models
transition from wind- to hydroclimate-dominated regimes:
E3SM2-Zender, CNRM-ESM2.1, CanESM5.0, CanESM5.1,
HadGEM3-GC3.1, UKESM1.0 and MRI-ESM2.0. GISS-
E2 models and IPSL-CM6A exhibit moderate increases of
hydroclimate influence, resulting in roughly equal impor-
tance of wind and hydroclimate drivers. Compared to the

ESMs, MERRA-2 generally produces dominant wind influ-
ence across all three climate zones.

To identify the sources of hydroclimate influence in the
ESMs, Fig. 11 presents the median fractional contributions of
five hydroclimate variables to the total R2 in each model. The
contribution attributed to specific humidity can largely be in-
terpreted as a soil moisture effect, given the strong coupling
between near-surface humidity and surface soil water content
through evapotranspiration. In hyperarid regions, dust vari-
ability is expected to be dominated by wind speed, with min-
imal hydroclimate influence. Thus, anomalously large hydro-
climate contributions in some ESMs may be explained by
two possible mechanisms: (1) the model overestimates hy-
droclimate variability, thereby producing spurious correla-
tions with dust emissions regardless of whether the hydrocli-
mate variable is explicitly used in the dust parameterizations;
and (2) the model reasonably represents hydroclimate vari-
ability but overestimates dust sensitivity to the hydroclimate
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Figure 9. Fractional contributions of wind-dominated, equally-
important, and hydroclimate-dominated regimes to global dust
emissions in Earth system models and MERRA-2.

variable, indicating a potential bias in the parameterization
itself. Understanding the causes for the statistically inferred
predictor influences would require detailed knowledge of the
physical parameterizations and model configurations specific
to each ESM.

In the hyperarid zone, the hydroclimate influence in
CESM2-CAM-Kok is associated with precipitation and spe-
cific humidity, which may partly reflect the increased dust
sensitivity to soil moisture in the Kok scheme relative to the
Zender scheme (Kok et al., 2014a). Another possible reason
is the short simulation period for CESM2-CAM-Kok (2004–
2013), which may not adequately capture the full range of
dust variability and predictor relationships as in CESM2-
CAM-Zender (1980–2014). In this regard, the E3SM exper-
iments provide a more robust comparison between the two
dust schemes. As shown in Fig. 11a, both E3SM2-Zender
and E3SM3-Kok produce the expected negligible hydrocli-
mate influence in the hyperarid zone. In the arid zone, how-
ever, E3SM3-Kok exhibits stronger hydroclimate influence
than E3SM2-Zender, consistent with previous findings that
the Kok scheme amplifies the dust sensitivity to hydrocli-
mate conditions compared to the Zender scheme (Kok et al.,
2014a). GISS models exhibit elevated influences from spe-
cific humidity and soil moisture, which explains their mod-
erate wind contributions as shown in Fig. 10a.

In the arid zone (Fig. 11b), the enhanced hydroclimate in-
fluence is primarily associated with soil moisture and spe-
cific humidity in most ESMs, consistent with their well-
established roles in modulating sediment erodibility (e.g.,
Csavina et al., 2014; Ravi et al., 2006; Kim and Choi, 2015).

Several models – including CESM and INM-CM5.0 – at-
tribute strong influences to LAI. Unlike other hydroclimate
variables, LAI may be prescribed from climatology or in-
teractively simulated by dynamic vegetation model compo-
nents (Table 1). Models using prescribed LAI typically ex-
hibit limited interannual variability in vegetation cover and
therefore weak influence on dust emissions. For CESM and
INM-CM5.0, the elevated LAI influence can be explained by
their parameterizations of the bare soil fraction as a function
of LAI.

4 Conclusions

This study examines discrepancies among 21 ESMs in rep-
resenting the interannual variability of windblown dust emis-
sions and the relative importance of near-surface wind speed
versus five hydroclimate drivers (precipitation, soil moisture,
specific humidity, air temperature, and LAI) across different
climate aridity zones (hyperarid, arid, and semiarid). Rec-
ognizing the unconstrained, model-specific nature of dust
emission fluxes, we use the dominance analysis technique to
quantify the relative influence of a common set of six physi-
cal drivers within each model.

The extent of inter-model agreement in dust variability
varies strongly with climate aridity. In the hyperarid zone,
the ESMs exhibit poor agreement, with only 9 % out of 210
pairwise comparisons showing statistically significant pos-
itive correlations, reflecting large inconsistencies in model-
simulated near-surface wind speeds. In arid and semiarid
zones, the ESMs exhibit a dual pattern driven by a “double-
edged sword” effect of land surface memory: models with
coherent representations of hydroclimate variability tend to
converge in their simulated dust variability, whereas those
with divergent hydroclimate representations diverge in dust
emission responses.

The relative importance of wind speed versus hydrocli-
mate drivers also varies with climate aridity. In hyperarid
areas, most ESMs capture the expected dominance of wind
speed and minimal hydroclimate influence. CESM2-CAM-
Kok exhibits elevated influences from precipitation and spe-
cific humidity, which may partly result from the more phys-
ically based sediment erodibility formulations in the Kok
et al. (2014b) scheme relative to the Zender et al. (2003)
dust emission scheme. A similar behavior is found in E3SM,
where replacing the Zender et al. (2003) scheme with the
Kok et al. (2014b) scheme reduces the wind dominance and
enhances the hydroclimate influence on dust emission. Due
to confounding model changes in the CESM and E3SM ex-
periments, however, targeted experiments will be needed to
isolate the effect of dust parameterization choice on the dust
sensitivity. In arid and semiarid areas, wind influence gen-
erally weakens while hydroclimate influence strengthens in
all ESMs. However, the relative importance between the two
becomes less consistent, with contrasting model behaviors
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Figure 10. Ridgeline plots for the fractional contributions of wind speed to the total R2 over (a) hyperarid, (b) arid, and (c) semiarid climate
zones. Black vertical lines indicate median values. Color shading represents mean total R2 values.

Figure 11. Median factional contributions of hydroclimate drivers to the total explained variance (R2) in Earth system models and MERRA-
2 over (a) hyperarid, (b) arid, and (c) semiarid climate zones. Hydroclimate variables are precipitation (P ), soil moisture (SM), specific
humidity (SH), air temperature (T ), and leaf area index (LAI).

in retaining wind dominance or shifting toward hydrocli-
mate dominance or near-equal importance. Compared to the
ESMs, the MERRA-2 aerosol reanalysis generally produce
stronger wind influence and weaker hydroclimate influence
across all climate aridity regimes.

Note that the physical drivers considered in this study
may not fully represent all the dust emission driving factors
for specific emission schemes; instead, we focus on a com-
mon set of drivers for all models to provide a fair compari-

son across the ESMs. Therefore, the inferred relative impor-
tance from this analysis is limited to those common drivers
considered and their influences on dust emissions in differ-
ent models. Also, because of the statistical nature of domi-
nance analysis, the predictor importance results shall be in-
terpreted with caution when linking to model parameteriza-
tions. Despite these limitations, this study introduces a new
framework for model intercomparison and yields new in-
sights into how current ESMs represent the variability and
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physical controls of dust emissions across different climate
aridity regimes. Overall, our findings highlight two promis-
ing directions for reducing model uncertainties in dust emis-
sion simulations: (1) improving the representation of near-
surface wind speeds and gustiness in hyperarid regions, and
(2) enhancing the representation of hydroclimate and land
surface processes that modulate sediment erodibility in arid
and semiarid areas.
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