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Abstract. Air temperature (Ta) has critical implications for various socioeconomic sectors, yet its dynamics
are particularly complex in urban areas due to heterogeneous built environments, landscapes, and diverse an-
thropogenic activities. Physics-based models struggle with intra-city Ta forecasts due to inadequate urban rep-
resentation and limited spatial resolution. While weather observation networks offer promising alternatives for
direct modeling with local Ta time-series, an effective framework to leverage these intra-city discrete sensor
data remains lacking. Here, we demonstrate that graph neural networks (GNNs) can harness observation net-
work information to refine Ta prediction at individual locations and elucidate underlying mechanisms. Our novel
Mix-n-Scale framework with GNNs achieves over 12 % improvement in short-term Ta forecasts compared to
conventional local time-series approaches. Further model evaluation disentangles performance variations with
local Ta variability in diverse spatiotemporal contexts, indicating distinct patterns of intra-city heterogeneity
across seasonal and diurnal scales. Our findings establish graph-based approaches for leveraging proliferating
urban sensor data and advancing understanding of Ta spatiotemporal dynamics in complex urban environments.

1 Introduction

Air temperature (Ta) is a crucial meteorological variable that
profoundly affects various facets of human welfare (Mora et
al., 2017; Yuan et al., 2025; Zhang et al., 2023), including
health (Tuholske et al., 2021), energy consumption (Perera
et al., 2020; Wang et al., 2023a), and carbon emission (Li
et al., 2024), to name a few. Its significance is particularly
pronounced in urban areas, where 55 % of the global popu-
lation resides (UN Statistics Division, 2023). Rapid urban-
ization, characterized by extensive modifications in land use
and land cover, has significantly altered the surface energy
balance and the overlying climate (Arnfield, 2003; Oke et al.,
2017). These transformations, in conjunction with the spatial
heterogeneity of the built environment, anthropogenic activ-

ities and local landscapes, generate highly localized varia-
tions in Ta at scales of approximately 100–1000 m (Stew-
art and Oke, 2012). The increasing frequency and intensity
of anomalous events under changing climate further compli-
cates Ta pattern in urban areas (Gao et al., 2024; Li and Bou-
Zeid, 2013). Accurate and timely local-scale Ta forecasting
within cities presents great challenges, despite its critical role
in urban management systems (Chen et al., 2024). The con-
ventional approach to Ta forecasting primarily relies on nu-
merical weather prediction (NWP) models, which necessi-
tate solving complex governing equations. However, gener-
ating high-resolution forecasts using this physics-based ap-
proach presents unique challenges due to urban character-
istics, scales issues, and computational demand. First, ex-
isting NWP models often lack adequate parameterization
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schemes to represent complex processes within urban envi-
ronments (Chen et al., 2011; Nogueira et al., 2022; Sharma et
al., 2021). The requirement to specify numerous parameters
for urban modules also introduces additional data challenges
and uncertainties, which hinder their effective implementa-
tion (Chen et al., 2011). Second, substantial knowledge gaps
persist in convective scale (< 5 km resolution) modelling, in-
cluding the absence of basic dynamical balances under non-
hydrostatic formulations and the inherent complexity of re-
solving turbulent processes (Kendon et al., 2021; Schär et al.,
2020; Yano et al., 2018). Third, the high computational de-
mand of running NWP models, particularly when applying
ensemble approaches to address forecast uncertainty, impede
their feasibility for real-time operational use. These limita-
tions constrain accurate local Ta forecasts within cities.

Deep learning (DL) has emerged as a promising alterna-
tive approach for meteorological variables forecasting. These
DL models can be primarily grouped into two paradigms:
training with products of physics-based models or direct
weather observations. The former paradigm typically re-
lies on ECMWF’s ERA5 reanalysis datasets to learn rela-
tionships between atmospheric states across successive time
steps, and has recently achieved overall superior performance
to state-of-the-art operational NWP systems (Bi et al., 2023;
Lam et al., 2023; Price et al., 2024). However, this mod-
eling paradigm inevitably inherits issues in urban areas, as
the models are trained on data with insufficient urban repre-
sentations and coarse spatial resolution. The latter paradigm
utilizes in situ observations from weather stations or sen-
sors and thus enables models to learn from data that authen-
tically reflect local meteorological conditions (Effrosynidis
et al., 2023; Wang et al., 2023b). The typical modeling ap-
proach adopts a time-series regression framework, wherein
sequences of measurements at each individual locations are
used to predict their respective values at subsequent time
steps (Haque et al., 2021; Salcedo-Sanz et al., 2016; Wang
et al., 2024; Yu et al., 2021). However, the forecast accuracy
under this framework remains limited and has improved only
marginally despite the progressive adoption of increasingly
sophisticated DL methods (Elsayed et al., 2021; Wang et al.,
2024; Zeng et al., 2022). These limitations may stem from
modeling approaches that rely purely on local time-series
information, which on the one hand may fail to capture es-
sential spatial contextual information, rendering the learning
task underdetermined and semantically ambiguous (Iakovlev
and Lähdesmäki, 2024). On the other hand, this inherently
overlooks critical interactions with the surrounding environ-
ment that may be essential for accurate forecasting. Mod-
eling observational data within cities provides a solution to
deliver local-scale Ta forecasts, while its potential remains
underexplored.

With the development of graph neural networks (GNNs),
which are capable of modeling discrete and irregularly dis-
tributed observation sites, pioneering studies have explored
their use in connecting observations across locations to lever-

age spatial information for enhancing meteorological vari-
able forecasting. Most existing efforts have focused on mod-
eling large-scale observational networks sparsely distributed
across broad regions, with the primary rationale being to
address: (1) the atmospheric transport and advection pro-
cesses among locations (Wang et al., 2020; Zhou et al.,
2022); (2) weather propagation patterns (Wu et al., 2023);
and (3) identify certain causal relationships among differ-
ent cities (Li et al., 2023). Despite advances in understand-
ing and modeling large-scale dynamics and their associated
spatial interactions, it remains largely unknown whether ob-
servational network modeling approaches (i.e. incorporating
spatial information) are effective at smaller intra-city scales.
Furthermore, the underlying mechanisms and spatial depen-
dencies that drive performance improvements in such scale
remain unclear.

To study potential interactions among intra-city observa-
tions, we implement two GNNs with distinct spatial informa-
tion aggregation mechanisms (directed and undirected) for
short-term (1–6 h) Ta forecasting, using local measurements
of Ta and wind vectors across 16 locations in Hong Kong
(Fig. 1a). In support of these GNN’s implementation, we pro-
pose a novel framework Mix-n-Scale, which integrates opti-
mization and ensemble processes to address the challenge in
configuring graph topologies, particularly when prior knowl-
edge of intra-city scale interactions is limited. Furthermore,
we quantify the spatial information impacts on each location
based on the GNN’s information passing principle and com-
pare the results with conventional time-series models where
each location is modeled independently. This allows us to
separate the contribution of intra-city spatial information on
model behavior and understand the underlying mechanisms.
This study offers critical insights into effective frameworks
for modeling local observational data and sensor networks,
which is increasingly important as crowd-sourced weather
sensors continue to proliferate within urban environments
(Chapman and Bell, 2018). The flexibility of this framework
also makes it well-suited for adaptation to the modeling of
similar environmental variables.

This paper is organized as follows. Section 2 provides
details of datasets, problem formulation, DL models and
their training framework, and metrics used in this study. In
Sect. 3.1, we first present the overall spatial characteristics of
intra-city Ta. Section 3.2 presents modeling results for over-
all performance and extreme values, followed by an analy-
sis disentangling the impact of spatial information on fore-
casting in Sect. 3.3. The spatiotemporal dynamics of Ta fore-
cast performance are further analyzed in Sect. 3.4. Section 4
presents the summary and conclusions.
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2 Data and Methods

2.1 Datasets

Hong Kong, a densely populated coastal city at the southern
edge of East Asia, features complex atmospheric circulation
patterns due to its hilly terrain, land-sea contrasts, and hetero-
geneous urban morphology. make Hong Kong an ideal set-
ting to examine a model’s ability to capture local heterogene-
ity and intra-city Ta dynamics. In this study, we use hourly
meteorological data from 16 weather stations (Fig. 1a) op-
erated by the Hong Kong Observatory. Although more sta-
tions exist, we limit our selection to sites with both Ta and
wind observations to ensure complete records for exploring
the potential effects of wind. More specifically, three types
of variables are incorporated into the model training. The
first type includes local, spatially varying observations, in-
cluding Ta and wind speed (both U and V components). The
second type includes globally uniform predictors across all
sites, such as solar radiation (direct and diffuse) and mean
sea level pressure; details and statistics of these variables
are provided in Table 1. Additionally, we include spatial and
temporal stamps for each site to represent its spatiotemporal
context, but we do not incorporate detailed land use or ur-
ban morphology data, as the focus of this study is time-series
forecasting at fixed observation sites rather than spatial pre-
diction at unmeasured locations. Static variables are useful
for spatial generalization, but their benefit is limited here, as
the model focuses solely on short-range forecasts at the ex-
isting observation sites. It is worth noting that the final model
performance is reported based on training without global pre-
dictors, as their inclusion did not yield improvement. These
variables are retained only for ablation analysis (Sect. 3.2;
Fig. 4b) to illustrate their potential influence on model perfor-
mance. The entire dataset is divided into three disjoint sub-
sets for training, validation, and testing. The training set cov-
ers four full years from 2016 to 2019, while the validation
and test sets use data from 2020 and 2021, respectively, for
model tuning and final performance evaluation.

2.2 Problem formulation and DL models

The task of Ta forecasting at multiple locations is framed as
a spatiotemporal prediction problem that uses existing ob-
servations to estimate the state of each location over sev-
eral subsequent time steps. This is processed through a two-
stage modeling approach. First, we embed the temporal dy-
namics at each location separately using Long Short-Term
Memory (LSTM) networks, which are effective for encod-
ing temporal information of time-series (Greff et al., 2017).
We also employ LSTM combining with decoder as a bench-
mark for time-series modeling using purely local information
(Fig. 1b). Based on the time-series embeddings for each lo-
cation, we then use GNNs to aggregate spatial information
from irregularly distributed neighboring locations (Fig. 1a

and c). The forecast horizon is set to six hours in this study,
as longer lead times would require capturing large-scale dy-
namics that fall outside the scope of our target domain. The
details of these two stages are as follows:

Temporal dynamics embedding: Let the input at a histori-
cal time step t as Xt ∈ RN×F , where N represents the num-
ber of nodes (i.e., weather stations) and F denotes the num-
ber of predictor features. The LSTM captures the temporal
evolution by processing observations over the previous T
time steps (time lag), yielding a set of temporal embeddings
h= {h1,h2, . . .,hN }, with each hi ∈RF

′

where F ′ is the di-
mensionality of the temporal embedding for nodes from 1 to
u (Hochreiter and Schmidhuber, 1997). This can be concep-
tually denoted as:

fLSTM(Xt ,Xt+1, . . ., Xt+T )= h. (1)

Spatial information aggregating: Let the spatial connections
between weather stations as a graph G(V,E), with V is the
set of nodes with their respective temporal embeddings hi as
node features, and E is the edge denotes the connection be-
tween the nodes. Each node i ∈ V aggregates the represen-
tations from its immediate neighbors, hku,∀u ∈N (v)}, into a
single vector hk−1

N (i). The k is the iteration of spatial aggrega-
tion (i.e., the depth of the GNN), and k = 0 corresponds to
the initial embeddings h from the LSTM. We implemented
two GNN architectures, GraphSAGE (GSAGE; Hamilton et
al., 2017) and graph attention network (GAT; Brody et al.,
2021), because they representing two distinct learning mech-
anism for spatial information. GSAGE adopts an undirected
graph structure with uniform neighbor weighting via mean
aggregation, which was selected over max/min pooling in
preliminary testing. In contrast, GAT learns directional influ-
ences by implementing an asymmetric attention mechanism
that dynamically computes neighbor weights (Brody et al.,
2021; Veličković et al., 2018), potentially capturing direc-
tional influences and causal relationships where one node im-
pacts another asymmetrically. However, GAT’s greater mod-
eling flexibility does not necessarily translate to superior per-
formance. The details of two models are described formally
in Sect. S1 in the Supplement.

2.3 Mix-n-Scale framework

Although GNNs offer a flexible modeling paradigm for in-
tegrating discrete local observations, determining appropri-
ate graph structure remains an open and challenging prob-
lem. Specifically, defining appropriate connectivity patterns
between locations and selecting the optimal number of neigh-
boring nodes represents a significant challenge. Such graph
topologies are typically constructed through trial and er-
ror, involving extensive manual experimentation and itera-
tive testing (Chen and Wu, 2022; Ma et al., 2023; Zheng et
al., 2024).

This study therefore treats graph formation, along with
time lag T , as hyperparameters and uses a greedy sequential
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Table 1. Statistics of Variables Used for Model Training and Evaluation.

Type Input variable Range Mean Unit Abbreviation

Global Direct solar radiation [0, 3.64] 0.38 MJ m−2 –
Diffuse solar radiation [0, 2.24] 0.31 MJ m−2 –
Mean sea level pressure [977.8, 1037.3] 1013.0 hPa –

Local Zonal wind speed* [−13.7, 7.3] −0.2 m s−1 U

Meridional wind speed* [−13.2, 5.5] −0.9 m s−1 V

2 m Air temperature [−0.9, 38.2] 23.4 °C Ta

Temporal Hour of day [0, 23] – – –
Day of year [1, 366] – – –
Month [1, 12] – – –

Spatial Longitude [113.92, 114.42] 114.156 degree Lon
Latitude [22.20, 22.55] 22.529 degree Lat
Altitude [4, 955] 120 m Alt

Note. ∗ Positive value of U and V denote the wind is from the west and south, respectively.

method to search for and optimize their optimal configura-
tion. Moreover, one novelty of our approach is that we do
not simply use the best-tuned model but additionally employ
an ensemble-based approach to combine the top 10 % of val-
idated models composed of different graph topologies and
time lags. We call this training framework Mix-n-Scale, and
we refer to the trained model as a “hyper-model”. To the best
of our knowledge, such an ensemble-based approach using
various graph structures for sensor network modeling has not
been studied or examined. Our rationale for employing this
framework is twofold: (1) the selection of neighboring sta-
tions to establish connections and the time-series length po-
tentially incorporates information from different spatiotem-
poral scales, enriching the representation of existing infor-
mation; (2) since DL model training accounts for the major-
ity of computational resources in model development pro-
cess (conventional trial and error or our optimization pro-
cess), while each inference (i.e., forecast) can be completed
within seconds with minimal computational cost compared
to the training stage (Goodfellow et al., 2016), our proposed
hyper-model approach incurs marginal additional computa-
tional overhead in real-world applications while more effec-
tively leveraging the substantial resources already required
for model development.

Specifically, we use tree-structured Parzen estimator
(Bergstra et al., 2011) based on the its loss on validation
set, examining various edge formation strategies (from self-
connection to connection across all neighbors) for the graphs,
look-back lengths (from 1 to 200 time steps) for the input
time-series, and varying model architecture hyperparame-
ters. The selection process can be formulated as follows:

(λ) ∈ argminE(x,y)∈D
[
l (fθ (X,y,θ ,λ))

]
(2)

where l represents the mean squared error loss. X and
y denote individual features and labels, respectively, that

comprise the dataset D. fθ represents corresponding test
DL architecture, where θ encompasses all the model train-
able parameters; λ represents hyperparameters determining
the graph structure, time lags and a few learning hyper-
parameters including learning rate and hidden dimensions.
E(x,y)∈D[·] stands for the expectation with the distribution
overD. The search process iterates 100 times and selects the
model based on the top 10 % (10 out of 100) λ hyperparam-
eter settings.

2.4 Metrics

2.4.1 Temperature variability metrics

The daily Ta evolution pattern can be primarily described by
two metrics, including the mean daily value and the mag-
nitude of diurnal variation. In this study, we introduce diur-
nal temperature standard deviation (DTSD) to quantify and
characterize the intensity of diurnal Ta fluctuations at each
location, serving as an indicator to show local Ta pattern. For
location i, the DTSD is defined as:

DTSD(i) =

√√√√ 1
24D

D∑
j=1

24∑
h=1

(
Ta(i,j,h)− T a(i,j )

)2
(3)

where Ta(i,j,h) is the Ta at location I , on day j , at hour h;
T a(i,j ) is the mean daily Ta at location I on day j ; D is the
Total number of days in the datasets.

2.4.2 Model evaluation metrics

We calculate the root mean squared error (RMSE) and Bias
to evaluate model performance. These metrics are calculated
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as follows:

RMSE=

√√√√ 1
NTh

Th∑
t=1

N∑
i=1

(
T̂a(i,t) − Ta(i,t)

)2
, (4)

Bias=
1
NTh

Th∑
t=1

N∑
i=1

(
T̂a(i,t) − Ta(i,t)

)
, (5)

where T̂a(i,j ) is the predicted Ta at location i at time t . Ta(i,t) is
corresponding true Ta.N is the total number of the locations,
and Th is the total number of hourly samples. Here, a positive
bias indicates overestimation, and vice versa for a negative
bias.

2.4.3 Local oscillation index (LOI)

LOI is a metric that we proposed based on the graph Lapla-
cian (Hamilton et al., 2017) that quantifies the surrounding
information inflow to each node. This is utilized to quan-
tify the impact of spatial information from surrounding nodes
on local forecasting. Mathematically, let Ta(i,t) be the Ta ob-
served at location i at the time t , and TaN(i, t) as the mean Ta
of the neighboring stations of station i at the same time is
calculated as:

TaN (i, t) =
1
N

∑
u∈N (i)

Tau, t (6)

where N (i) represents the set of neighboring stations to i,
and N is the number of neighbors. For each station i, the de-
viation of Ta from its neighbors at any given time t is1Ta(i,t) :

1Ta(i, t) = Ta(i,t) − TaN (i,t) . (7)

Based on 1Ta(i,t) , one can calculate the historical normal de-
viation of one station from its neighbors by averaging the
deviations over records across the training period. The his-
torical normal deviations 1T a(i, h, m) for location i at hour h
and month m is calculated as follows:

1T a(i, h, m) =
1
|Th,m|

∑
t∈Th,m

1Ta(i,t) , (8)

where Th,m represents the set of all historical time points cor-
responding to hour h and month m, and |Th,m| is the number
of time points. And then the LOI is calculated as follows:

LOIi,t =1Ta(i,t) −1T a(i, h, m) . (9)

LOI essentially reflects how a node differs from its surround-
ings while eliminating climatological differences. This pri-
marily captures the effect of the graph processing procedure
and helps disentangle the impact of spatial information. Note
that LOI is an hourly metric, rather than reflecting daily de-
viation.

3 Results and Discussions

3.1 Intra-city Ta characteristics

We first present the intra-city spatiotemporal dynamics of
Ta within our study areas. Overall, the mean Ta patterns is
relatively homogeneous, with majority sites recording mean
values within a narrow range of 23.2 to 24.2 °C. Two no-
table exceptions are high elevation sites, location 15 (eleva-
tion: 955 m) and location 13 (elevation: 572 m), which ex-
hibit the lowest annual mean Ta of 17.6 and 19.6 °C, respec-
tively. In contrast, Hong Kong International Airport, location
3, dominated by concrete structures with high thermal iner-
tia, records the highest mean Ta of 24.8 °C.

In comparison, diurnal Ta fluctuation exhibits a more het-
erogenous pattern. The DTSD (Sect. 2.4.1) evenly distributed
from 1.3 to 2.5 °C, indicating substantial relative spatial vari-
ability (Fig. 2b). The lowest DTSD of 1.3 °C occurs at the
mountain peak (location 15), while the highest value of
2.5 °C is observed at location 14 in the northern inland sub-
urban area. Notably, diurnal fluctuations tend to be greater in
northern areas at shown in the right panel of Fig. 2b, likely
due to reduced oceanic thermal moderation and stronger in-
fluence from continental air masses (Scheitlin, 2013). The
relative magnitude of variation among locations reveals sim-
ilar mean value patterns but more pronounced differences in
diurnal fluctuations.

3.2 Overall evaluation of DL models

We evaluate the DL models based on their average per-
formance for 1–6 h forecasts across 16 weather stations in
Hong Kong. The graph-based models consistently outper-
form purely local time-series models. Specifically, GSAGE
achieves the lowest RMSE of 0.96 °C, followed by the
GAT with 1.03 °C, both outperforming the LSTM baseline
(1.06 °C). These results highlight the benefit of incorporat-
ing spatial information from neighboring stations for local
Ta forecasting.

Our Mix-n-Scale framework achieves varying perfor-
mance gains across different DL models (red triangles,
Fig. 3a). Since simple LSTM does not involve graph struc-
ture, we therefore apply a naïve hyperparameter ensemble
that includes models with varying learning rate and hid-
den dimensions and time lags. While hyper-LSTM shows
only marginal gains over the single LSTM (Fig. 3a), apply-
ing the Mix-n-Scale framework to GSAGE yields roughly
threefold greater improvements, highlighting its suitability
for our graph-based task. Overall, Hyper-GSAGE reduces
RMSE from 1.06 to 0.92 °C, representing a 12.5 % enhance-
ment over the best LSTM. Its performance remains highly
stable across different ensemble sizes, achieving optimal ac-
curacy when incorporating the top ∼ 10 % of models from
validated pool (10 out of 100; Fig. S1 in the Supplement).
Building such a pool typically requires around 50 hyperpa-
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Figure 1. Schematic of the modelling framework. (a) Spatial distribution of weather observation stations across Hong Kong (basemap
© Mapbox), with location IDs labeled. The edges between stations represent the schematic GNN structure, showing nine connections per
node. (b, c) Conceptual diagram comparing the local time-series modeling approach with the graph-based approach, in which LSTM-based
temporal embeddings are spatially aggregated using GNN across neighboring stations. (d) Overview of the Mix-n-Scale framework, which
leverages intra-city observations using diversely configured GNNs.

Figure 2. Spatial distribution of (a) mean Ta and (b) mean diurnal standard deviation (DTSD) over the six-year datasets (basemap © Map-
box). Node colors indicate the magnitude at each location, and numbers denote location IDs using different colors for clearer visualization.
The upper and right panels show corresponding values along longitude and latitude, respectively, with the solid line indicating a LOESS-
smoothed value.
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rameter trials drawn from a broad initial search space (Fig. S2
in the Supplement), which can be completed within 10 h on a
single RTX 4090 GPU. Once finalized, the model generates
forecasts within seconds, enabling efficient real-time appli-
cations.

Across all forecast horizons, Hyper-GSAGE consistently
outperformed the baseline models, exhibiting reduced errors
and uncertainties. Moreover, compared with recent large-
scale evaluations of multiple physics-based (e.g., ECMWF,
GFS) and data-driven models (e.g., Pangu, Fuxi, Fengwu)
against observations from over 2000 stations across China,
which reported near-surface temperature forecast errors typ-
ically exceeding 2 °C at a 3 h lead time (Xu et al., 2025). In
contrast, Hyper-GSAGE achieve RMSEs ranging from 0.88–
1.17 °C for 3–6 h forecasts, demonstrating a clear advantage
in local-scale Ta forecasting skill.

Between the two spatial information learning approaches,
it is worth noting that GSAGE’s simple mean aggregation of
neighbor’s temporal embeddings outperforms GAT’s adap-
tive attention mechanism, which assigns dynamic weights to
neighbors. Although GAT theoretically offers greater flexi-
bility by identifying variable inter-station relationships, and
wind vectors are included to provide potential directional
cues, this advantage does not manifest here and may instead
lead to overfitting issues. This suggests that, at the intra-city
scale, there may be no distinct “upstream” information flow
or dominant “super-nodes”, or, if present, such relationships
may occur at shorter timescales. We further examined this
hypothesis from a statistical perspective by conducting cross-
correlation analyses among station observations with vary-
ing time lags to assess whether Ta changes at one site could
precede others. The lag-shifted results show that most inter-
station correlations peak at zero lag (even for the most distant
station pair), with only a few pairs exhibiting slightly higher
correlations at ±1 h (Fig. S3 in the Supplement).

Based on the GSAGE model, we further examine how
graph construction affects model performance. We find that
connecting each station to its nearest neighbor generally
yields better performance than linking to the most distant
ones (Fig. 4a), even though the latter could capture broader
meteorological context and longer-range propagation. This
result is consistent with our cross-correlation analysis. Re-
garding edge formation, the GSAGE model tends to per-
form better when each node connects more neighbors, par-
ticularly larger than nine (Fig. 4a). Another key structural
factor is graph depth, which determines how many hops
of neighbor information each node can access. We observe
more than a 5 % RMSE reduction when using two GNN
layers compared to a single layer (Fig. S4 in the Supple-
ment). Although a single layer with full connectivity can
theoretically access the entire graph, adding a second layer
does not expand the receptive field but introduces addi-
tional nonlinearity and feature-transformation capacity, po-
tentially improving model expressiveness. However, deeper
architectures that repeatedly aggregate neighbor information

do not provide further gains in our case and may instead
lead to over-smoothing, making node representations less
distinguishable. Collectively, these findings clarify the opti-
mal GNN configuration for the Ta forecasting task and indi-
cate that domain-wide spatial context is likely to play a key
role in enhancing model performance, which will be further
explored in Sect. 3.3. The remaining key hyperparameters
and their optimal ranges are summarized in Sect. S2 in the
Supplement.

To understand the significance of each predictor, we per-
form ablation experiments by systematically removing pre-
dictors. Including wind vectors reduces RMSEs from 0.98
to 0.96 °C, whereas global variables that are uniform across
stations (i.e. solar radiation and MSLP) do not further en-
hance forecast accuracy (Fig. 4b). This is likely because such
variables are more physically meaningful when their spatial
patterns and gradients are represented (e.g., pressure gradi-
ents that drive large-scale flows or synoptic features such as
troughs and ridges). When incorporated as single-point val-
ues, they provide limited information and may even intro-
duce noise.

Does Hyper-GSAGE preserve extreme values? Given that
the model is essentially generated through a multi-model en-
semble approach, a major concern is that the results tend to
smooth predicted values and sacrifice the ability to capture
extreme values (Knutti et al., 2010; Wilks, 2011). Therefore,
we examine the distribution of the 5 % most extreme val-
ues (both warmer and colder) in model forecasts. We find
that predicting these values is highly challenging for all mod-
els, where we observe rightward-shifted forecasts for colder
values and more pronounced leftward shifts for warmer val-
ues, reflecting overestimation of low and underestimation of
high Ta (Fig. 5a). The greater cold bias for warmer values
indicates inherent challenges in capturing extreme high tem-
peratures. However, it is worth noting that Hyper-GSAGE
demonstrates better alignment with distribution of observa-
tions.

Furthermore, we compare model accuracy under extreme
conditions using the predicted and corresponding observed
values (Fig. 5b). For colder values, both GSAGE and
Hyper-GSAGE reach comparable results, significantly out-
perform than LSTM model by reducing RMSE from 1.76 to
∼ 1.50 °C. However, for warmer values, while GSAGE im-
proved RMSE from 1.62 to 1.53 °C, Hyper-GSAGE achieves
clear better results (RMSE: 1.41 °C) with additional bias re-
duction from −1.13 to −0.99 °C. These results demonstrate
that Hyper-GSAGE enhances performance under both over-
all and extreme conditions.

3.3 Impacts of intra-city scale spatial information

The superior performance of graph-based models demon-
strates the critical influence of spatial information, motivat-
ing investigation of the underlying mechanisms driving these
improvements. This requires quantifying both spatial infor-
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Figure 3. Ta forecast accuracy for the next 6 h over 16 studied weather stations by different models. (a) Overall results of three deep learning
models. Each box contains the 10 % best individual models (10 out of 100 trained models based on validation results). Box plots show the
median (line), 25 %–75 % range (box), and whiskers are drawn to the farthest datapoint within 1.5 inner quantile range. The red triangle
denotes the model accuracy with the Mix-n-Scale framework based on the 10 % best models. (b) Forecast accuracy at different lead times.
Shaded areas denote the range of RMSEs among the 10 % best models.

Figure 4. (a) Variation of RMSE with the number of neighboring nodes used to form edge connection under two strategies. The solid curve
denotes the mean RMSE, and the shaded area represents the standard deviation across models trained with different hyperparameter settings.
(b) Impact of predictors on Ta forecast accuracy. Performance of LSTM and GSAGE models with various combinations of predictors. ST
represent spatial and temporal predictors. Global represents global meteorological predictors (uniform across stations) include direct and
diffuse solar radiation, and mean sea level pressure. Wind includes zonal and meridional wind speed at individual stations. Detailed variable
descriptions are available in Table 1. Box plots show the median (line), 25 %–75 % range (box) based on the 10 % best models, and whiskers
are drawn to the farthest datapoint within 1.5 inner quantile range.

mation inflow to each node and how model behavior changes
after incorporating this information. The latter is relatively
straightforward to identify by directly calculating the differ-
ence between predictions from graph-based models and lo-
cal time-series-based LSTM models. However, quantifying
spatial information flows to individual nodes is challenging
because these flows are learned as high-dimensional latent
representations in an end-to-end manner by DL models. To
explicitly quantify this information, we propose LOI, an in-
dex calculated based on GSAGE’s message-passing process
(Sect. 2.4.2) that allows us to track how spatial information
influences model behavior. In our context, LOI can be inter-
preted as the extent to which a location’s Ta anomaly deviates
from the mean value of its neighboring nodes.

We observe an inverse relationship between the LOI and
its impact on Ta forecasts (Hyper-GSAGE minus LSTM,
denote as 1T̂a hereafter), as shown in Fig. 6a. This indi-
cates that Hyper-GSAGE tends to adjust a node’s prediction
upward (positive 1T̂a) when its current Ta value is abnor-
mally below its neighbors (negative LOI), as illustrated in
Fig. 6b. In other words, this promotes convergence of mean
Ta patterns across locations. The rationale behind is that daily
mean Ta maintains similar patterns within the city as noted in
Sect. 3.1, with a limited variance of 0.35 °C2 among locations
(Fig. S5 in the Supplement). The spatially stable mean Ta pat-
tern therefore serves as a dynamic indicator that constrains
and refine forecasts on each node’s diurnal amplitude rather
than relying solely on local time-series trajectories. Graph
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Figure 5. (a) Probability density distributions of the observed Ta and corresponding predictions (6 h lead time) from the LSTM, GSAGE,
and Hyper-GSAGE models for the coldest 5 % (obs.≤ 13.3 °C, left) and warmest 5 % (obs.≥ 31.6 °C, right) of samples. The dashed blue line
represents the observed distribution, while solid lines show predictions from each model. (b) Scatter plots comparing observed and predicted
Ta (6 h lead time) for the same extremes (coldest 5 %, top row; warmest 5 %, bottom row). Each column corresponds to a different model:
LSTM (left), GSAGE (middle), and Hyper-GSAGE (right). The 1 : 1 line (dashed) indicates perfect prediction; solid black lines show the
linearly fitted regression trend for each case. RMSE and Bias are provided to quantify model performance for the respective extremes.

regularization naturally enforces such adjustment through
its smoothness property (Kipf and Welling, 2017), enhanc-
ing model’s capacity to modulating local heterogeneous re-
sponse. We term this effect “mean state regularization” for
Ta forecasting. Figure 5c presents a case study in location
14 that clearly demonstrates this effect during 12–15 Jan-
uary when weather starts turning to fine condition (The Hong
Kong Observatory, 2025), when Ta pattern shifts to stronger
fluctuation with higher cooling and heating rate. Since this
location exhibits abnormally cooler Ta than its neighbors dur-
ing nighttime, Hyper-GSAGE produces additional upward
adjustment in its subsequent daytime Ta forecasts compared
with LSTM, effectively capturing the dynamics, especially

the daily peak Ta across those days. In contrast, the LSTM
forecasts largely replicate the time-series evolution from the
preceding day (Fig. 5c).

In essence, LOI reflects the heterogeneous local Ta re-
sponse that are jointly shaped by environmental factors and
background weather conditions. A more direct investigation
of how these modulate local Ta diurnal variation amplitude,
as well as how the performance gains of GSAGE vary across
different cities, would be valuable directions for future work.
It is also important to note that our current interpretation of-
fers only a conceptual representation of the GSAGE model,
as it cannot fully encapsulate the complexity of deep learn-
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ing architectures involving multi-layer nonlinear propagation
and higher-order feature interactions.

3.4 Spatiotemporal dynamics of forecast performance

Following the successful development of the Hyper-GSAGE
model, we further evaluate its spatiotemporal forecast per-
formance to elucidate the variability and underlying dynam-
ics of prediction errors. The results reveal a pronounced di-
urnal contrast, with RMSEs increasing during the daytime
and peaking between 10:00–14:00 (1.27–1.40 °C), coincid-
ing with the warmest period of the day (Fig. S6 in the Supple-
ment). In contrast, nighttime forecasts, particularly between
00:00–04:00, exhibit the lowest RMSEs (0.61–0.63 °C). This
pattern remains consistent even when RMSEs are normal-
ized by the mean hourly Ta of the corresponding periods
(Fig. S7 in the Supplement). The distinct diurnal variation
in forecast skill can be primarily attributed to differences in
Ta evolution dynamics between day and night. During day-
time, solar radiation–induced surface heating and subsequent
atmosphere–land interactions introduce strong perturbations,
amplifying Ta variability and increasing forecast difficulty.
After sunset, however, Ta evolves more smoothly under sta-
ble boundary-layer conditions, resulting in reduced variabil-
ity and lower forecast errors. This diurnal contrast is further
supported by the autocorrelation analysis (Fig. S8a in the
Supplement), which indicates substantially higher nighttime
persistence (∼ 0.94) compared with daytime, particularly
around 12:00–14:00 when persistence reaches a minimum
(∼ 0.84) at the 1 h lag. A similar contrast is also observed
for the 1 d lag (same hour on the previous day), with persis-
tence values of ∼ 0.75 at night and ∼ 0.57 during midday.
Collectively, these results demonstrate that daytime Ta vari-
ability is more dynamic and thus inherently less predictable
from a statistical perspective. Seasonally, both summer and
winter exhibit elevated forecast errors (RMSEs of 1.00 and
0.92 °C, respectively). While summer remains relatively sta-
ble under the control of the subtropical high-pressure system
(24 h lag autocorrelation of 0.37 in summer, compared with
−0.01 in winter; Fig. S8b in the Supplement), stronger ra-
diative forcing and turbulent energy exchange within a more
energetic atmosphere likely contribute to greater short-term
Ta variability at hourly scales. This is reflected by the lower
1 h autocorrelation (0.48 in summer compared with 0.72 in
winter; Fig. S8b in the Supplement), presenting greater chal-
lenges for short-range forecasting.

Forecast accuracy shows substantial spatial variability,
with RMSEs ranging from 0.72 to 1.10 °C (Fig. 6b). Two lo-
cations within the most densely developed urban areas show
the lowest RMSEs (0.72 and 0.76 °C for location 4 and 7,
respectively). These locations are surrounded by high-rise
buildings in the urban core, where local areas typically have
large thermal inertial and reduced ventilation. Location 3
records the highest mean Ta at the airport while demonstrat-
ing a relatively low RMSE of 0.82 °C. The highest RMSEs

are found at locations 14 and 10 where they are in the most
inland place (expect the mountain station) and interface of
sea water and freshwater reservoir with RMSE of 1.10 and
1.07 °C.

Across all classified periods, we find that the hetero-
geneous spatial RMSEs within the city are highly posi-
tively correlated with corresponding observed local variabil-
ity (Fig. 7c), as measured by the standard deviation (SD)
Ta observations at each location. While we find this pat-
tern varies dynamically among periods. Summer patterns
exhibit distinct diurnal differences. During daytime, local
Ta variability diverges significantly across locations (SD
from 1.6 to 3.0 °C). We treat location 15 as a proxy for
background weather conditions, as it is situated atop the
city’s highest mountain and is therefore minimally perturbed
by atmosphere-land interactions. The mountain-top station
shows the least local variability and forecast errors, which
aligns with Hong Kong’s stable summer weather patterns
typically dominated by subtropical high-pressure systems.
The remaining locations experience greater Ta variability and
associated forecast errors during daytime, likely caused by
intense solar radiation and subsequent thermal instability and
convective turbulence. This variability, along with associated
RMSEs, diminishes and converges at night, highlighting the
substantial uncertainties induced by solar radiation in gener-
ating Ta instability and spatial heterogeneity during summer.
Winter presents a different scenario. Although daytime still
shows higher Ta variability and RMSEs, a wide spread per-
sists throughout the nighttime. This pattern likely reflects the
influence of more variable synoptic conditions, particularly
monsoon surges and cold-front passages, as evidenced by
the markedly increased variability at the mountain-top sta-
tion (location 15) during this period (Fig. 7b). In this con-
text, local ventilation conditions (e.g., building configuration
and urban morphology) and thermal properties play crucial
roles in modulating how local thermal environments respond
to background forcing. Indeed, we observe that stations with
higher forecast errors typically under prevailing northerly
winds during winter nights (Fig. S9 in the Supplement).

Despite the temporal variability, consistent spatial patterns
emerge across periods. Location 10, situated at the interface
between the sea and Hong Kong’s largest freshwater reser-
voir, consistently exhibits the largest forecast errors during
daytime in both seasons. This behavior can be attributed to
pronounced thermal contrasts induced by strong solar radi-
ation and the resulting complex local sea–lake–land breeze
circulations and turbulence. In contrast, its nighttime Ta re-
main relatively stable. At the most inland site (location 14),
we observe persistently higher daytime Ta and lower night-
time Ta across both seasons (Fig. S10 in the Supplement).
This pattern likely arises from reduced moderation by sea
breezes and stronger advection of warm air towards the in-
land during the day, followed by more efficient cooling of
land breezes at night. Such a amplification or diurnal con-
trast on the inland areas has also been documented in other
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Figure 6. Change in Ta forecast after incorporating spatial information with Hyper-GSAGE. (a) Negative relationship between LOI and
1T̂a. The difference (1) is defined as Hyper-GSAGE minus LSTM output at the lead time of 6 h. Each point in the scatter denotes a daily
mean value at a single station, with color indicating the point density. The trend is fitted by Gaussian process regression, with shaded areas
denoting the 95 % confidence interval of the probabilistic model. (b) A diagram illustrating how spatial information influences Ta forecasting
at one specific location, where a negative LOI prompts the model to forecast a higher Ta, thereby refining the local magnitude. (c) A case
study illustrating the temporal evolution of observed Ta and forecasts produced by the LSTM, Hyper-GSAGE models and their difference
(1Ta) at a 6 h lead time. The LOI evolution is shown relative to the forecast initialization time to reflect the information can be received by
the model.

coastal cities (Bauer, 2020; Yang et al., 2023). Conversely,
the most densely urbanized areas display consistently lower
Ta variability and smaller forecast errors across all periods.
This stable pattern can be explained by that dense high-rise
structures tend to suppress daytime heating while enhancing
nocturnal heat retention (Oke et al., 2017; Shi et al., 2024).
Collectively, these complex spatiotemporal dynamics under-
score the diverse physical processes governing intra-urban
temperature variability and forecast uncertainty, highlight-
ing the need for refined model representations and period-
specific evaluations in urban Ta prediction studies.

4 Concluding remarks

This study highlights the importance of a graph-based ap-
proach for modeling intra-city observation networks collec-
tively to improve short-range Ta forecasts at individual lo-

cations. We demonstrate that an undirected graph forma-
tion using the GSAGE model can refine local forecasting
by effectively enforcing constraints captured from the mean
states of neighboring observations, as revealed by our pro-
posed LOI. Within the proposed Mix-n-Scale framework, the
Hyper-GSAGE model produces more accurate forecasts un-
der both general and extreme conditions, achieving an aver-
age RMSE reduction exceeding 12.5 % for 1–6 h forecasts
compared with the conventional time-series method.

The spatial distribution of Ta forecast accuracy exhibits
substantial heterogeneity that strongly correlates with lo-
cal Ta variability, while these patterns vary considerably
across temporal periods. Summer demonstrates distinct di-
urnal variations in spatial patterns, where daytime condi-
tions substantially amplify both spatial heterogeneity and er-
ror magnitude, suggesting a critical role for solar radiation.
In contrast, winter exhibits more consistent diurnal patterns,
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Figure 7. (a) Temporal variation of forecast accuracy. The top and right panels display the mean hourly RMSE of Hyper-GSAGE aggregated
over hours and months, respectively. (b) Same as Fig. 2 but for Spatial distribution of RMSEs (basemap © Mapbox). The light-blue area to
the right of Location 10 represents a freshwater reservoir. (c) The relationship between local Ta variability and forecast RMSE. Each point
represents a location, and shaded areas indicate 95 % confidence intervals derived from bootstrapping. Key locations discussed in the text are
highlighted using the shapes indicated in the legend. Three (∗∗∗) and two (∗∗) asterisks next to each period indicate that the relationship is
significant at p ≤ 0.001 and p ≤ 0.01, respectively.

where local ventilation and thermal properties start emerging
as critical factors under a more variable background condi-
tion.

Given our focus on intra-city spatial interactions, our mod-
els are developed without incorporating meso-scale weather
information. We acknowledge this design choice limits our
ability to capture weather propagation beyond the domain
boundaries, and we therefore constrain the forecast horizon
to 6 h in this study. Incorporating large-scale patterns, such
as cold frontal passages propagating from outside the do-
main, through lateral boundary conditions or broader-scale
atmospheric predictors could be critical for capturing overall
trends, particularly during the more variable winter season.
Nonetheless, as Ta patterns are influenced by various local
circulations, integrating high-resolution computational fluid
dynamics simulations holds great potential for elucidating
intra-city airflow dynamics and further refining forecast ac-

curacy through hybrid modeling approaches. Hyper-GSAGE
serves as a foundational yet flexible framework for modeling
local observation networks, with the capability to integrate
this information with NWP systems or their DL-based sur-
rogates, thereby leveraging advantages from both physics-
based and data-driven approaches. With the increasing de-
ployment of IoT weather observation sensors in cities (Chap-
man and Bell, 2018), such models offer substantial potential
for improving urban environmental management at finer spa-
tiotemporal scales, providing a pathway toward more precise
and intelligent oversight of urban systems.

Code and data availability. The meteorological data for Hong
Kong, originally obtained from the Hong Kong Observatory,
have been archived to ensure accessibility. These data, along
with the complete workflow, model files, and outputs generated
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during testing and validation, are publicly available on Zenodo
(https://doi.org/10.5281/zenodo.17900788, Wang, 2025) under the
Creative Commons Attribution 4.0 International License.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/acp-26-947-2026-supplement.

Author contributions. The paper was designed and written by
HW and JY. The model was developed by HW and subsequently
discussed and validated with JT and JZ. HW, JY, JT and JZ per-
formed the result analyses. All co-authors actively contributed to
the extended discussions, refinement of the study design, and criti-
cal review of the final manuscript.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. The authors bear the ultimate responsibil-
ity for providing appropriate place names. Views expressed in the
text are those of the authors and do not necessarily reflect the views
of the publisher.

Acknowledgements. We gratefully acknowledge funding from
the Natural Science Foundation of China for Excellent Young
Scientists (Grant No. 42322903) and the State Key Laboratory
of Climate Resilience for Coastal Cities (Project code: ITC-
SKLCRCC26EG01). The authors acknowledge the assistance of
the Hong Kong Observatory in data acquisition and preprocessing.
We sincerely appreciate the reviewers for their valuable suggestions
and insightful comments on the original manuscript. We also ac-
knowledge the use of OpenAI’s ChatGPT for language refinement
in improving the grammar and clarity of an earlier version of this
manuscript. All content has been thoroughly reviewed and edited
by the authors, who take full responsibility for the final publication.

Financial support. This research has been supported by study the
National Natural Science Foundation of China (Excellent Young
Scientists Fund, Grant No. 42322903) and the State Key Labora-
tory of Climate Resilience for Coastal Cities (Project code: ITC-
SKLCRCC26EG01).

Review statement. This paper was edited by Zhonghua Zheng
and reviewed by Yiwen Zhang and one anonymous referee.

References

Arnfield, A. J.: Two decades of urban climate research: a re-
view of turbulence, exchanges of energy and water, and the ur-
ban heat island, International Journal of Climatology, 23, 1–26,
https://doi.org/10.1002/joc.859, 2003.

Bauer, T. J.: Interaction of Urban Heat Island Effects and Land–
Sea Breezes during a New York City Heat Event, Jour-
nal of Applied Meteorology and Climatology, 59, 477–495,
https://doi.org/10.1175/JAMC-D-19-0061.1, 2020.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B.: Algorithms
for Hyper-Parameter Optimization, Advances in Neural In-
formation Processing Systems, 24, https://papers.nips.cc/paper/
4443-algorithms-for-hyper-parameter-optimization (last access:
14 January 2026), 2011.

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Accurate
medium-range global weather forecasting with 3D neural net-
works, Nature, 619, 533–538, https://doi.org/10.1038/s41586-
023-06185-3, 2023.

Brody, S., Alon, U., and Yahav, E.: How Attentive are Graph Atten-
tion Networks?, in: International Conference on Learning Repre-
sentations, https://openreview.net/forum?id=F72ximsx7C1 (last
access: 14 January 2026), 2021.

Chapman, L. and Bell, S. J.: High-Resolution Monitoring of
Weather Impacts on Infrastructure Networks Using the Inter-
net of Things, Bulletin of the American Meteorological Society,
1147–1154, https://doi.org/10.1175/BAMS-D-17-0214.1, 2018.

Chen, B., Kong, F., Meadows, M. E., Pan, H., Zhu, A.-X., Chen, L.,
Yin, H., and Yang, L.: The evolution of social-ecological system
interactions and their impact on the urban thermal environment,
npj Urban Sustain, 4, 1–11, https://doi.org/10.1038/s42949-024-
00141-4, 2024.

Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C.
S. B., Grossman-Clarke, S., Loridan, T., Manning, K. W.,
Martilli, A., Miao, S., Sailor, D., Salamanca, F. P., Taha,
H., Tewari, M., Wang, X., Wyszogrodzki, A. A., and Zhang,
C.: The integrated WRF/urban modelling system: develop-
ment, evaluation, and applications to urban environmental
problems, International Journal of Climatology, 31, 273–288,
https://doi.org/10.1002/joc.2158, 2011.

Chen, Y. and Wu, L.: Graph Neural Networks: Graph Struc-
ture Learning, in: Graph Neural Networks: Foundations, Fron-
tiers, and Applications, edited by: Wu, L., Cui, P., Pei, J.,
and Zhao, L., Springer Nature Singapore, Singapore, 297–321,
https://doi.org/10.1007/978-981-16-6054-2_14, 2022.

Effrosynidis, D., Spiliotis, E., Sylaios, G., and Aram-
patzis, A.: Time series and regression methods for uni-
variate environmental forecasting: An empirical evalu-
ation, Science of The Total Environment, 875, 162580,
https://doi.org/10.1016/j.scitotenv.2023.162580, 2023.

Elsayed, S., Thyssens, D., Rashed, A., Jomaa, H. S., and
Schmidt-Thieme, L.: Do We Really Need Deep Learn-
ing Models for Time Series Forecasting?, arXiv [preprint],
https://doi.org/10.48550/arXiv.2101.02118, 2021.

Gao, S., Chen, Y., Chen, D., He, B., Gong, A., Hou, P., Li, K., and
Cui, Y.: Urbanization-induced warming amplifies population ex-
posure to compound heatwaves but narrows exposure inequality
between global North and South cities, npj Clim. Atmos. Sci., 7,
1–10, https://doi.org/10.1038/s41612-024-00708-z, 2024.

https://doi.org/10.5194/acp-26-947-2026 Atmos. Chem. Phys., 26, 947–961, 2026

https://doi.org/10.5281/zenodo.17900788
https://doi.org/10.5194/acp-26-947-2026-supplement
https://doi.org/10.1002/joc.859
https://doi.org/10.1175/JAMC-D-19-0061.1
https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization
https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://openreview.net/forum?id=F72ximsx7C1
https://doi.org/10.1175/BAMS-D-17-0214.1
https://doi.org/10.1038/s42949-024-00141-4
https://doi.org/10.1038/s42949-024-00141-4
https://doi.org/10.1002/joc.2158
https://doi.org/10.1007/978-981-16-6054-2_14
https://doi.org/10.1016/j.scitotenv.2023.162580
https://doi.org/10.48550/arXiv.2101.02118
https://doi.org/10.1038/s41612-024-00708-z


960 H. Wang et al.: Intra-city GNN for temperature forecasting

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y.: Deep
learning, MIT press Cambridge, http://www.deeplearningbook.
org (last access: 14 January 2026), 2016.

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., and
Schmidhuber, J.: LSTM: A Search Space Odyssey, IEEE Trans-
actions on Neural Networks and Learning Systems, 28, 2222–
2232, https://doi.org/10.1109/TNNLS.2016.2582924, 2017.

Hamilton, W., Ying, Z., and Leskovec, J.: Inductive represen-
tation learning on large graphs, Advances in neural infor-
mation processing systems, 30, https://papers.nips.cc/paper/
6703-inductive-representation-learning-on-large-graphs (last
access: 14 January 2026), 2017.

Haque, E., Tabassum, S., and Hossain, E.: A Comparative
Analysis of Deep Neural Networks for Hourly Tem-
perature Forecasting, IEEE Access, 9, 160646–160660,
https://doi.org/10.1109/ACCESS.2021.3131533, 2021.

Hochreiter, S. and Schmidhuber, J.: Long Short-
Term Memory, Neural Computation, 9, 1735–1780,
https://doi.org/10.1162/neco.1997.9.8.1735, 1997.

Iakovlev, V. and Lähdesmäki, H.: Learning Spatiotemporal Dynam-
ical Systems from Point Process Observations, arXiv [preprint],
https://doi.org/10.48550/arXiv.2406.00368, 2024.

Kendon, E. J., Prein, A. F., Senior, C. A., and Stirling, A.:
Challenges and outlook for convection-permitting climate mod-
elling, Philosophical Transactions of the Royal Society A,
https://doi.org/10.1098/rsta.2019.0547, 2021.

Kipf, T. N. and Welling, M.: Semi-Supervised Classifica-
tion with Graph Convolutional Networks, arXiv [preprint],
https://doi.org/10.48550/arXiv.1609.02907, 22 February 2017.

Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and
Meehl, G. A.: Challenges in Combining Projections
from Multiple Climate Models, Journal of Climate,
https://doi.org/10.1175/2009JCLI3361.1, 2010.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., For-
tunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-Rosen, Z., Hu,
W., Merose, A., Hoyer, S., Holland, G., Vinyals, O., Stott, J.,
Pritzel, A., Mohamed, S., and Battaglia, P.: GraphCast: Learn-
ing skillful medium-range global weather forecasting, arXiv
[preprint], https://doi.org/10.48550/arXiv.2212.12794, 2023.

Li, D. and Bou-Zeid, E.: Synergistic Interactions between Urban
Heat Islands and Heat Waves: The Impact in Cities Is Larger
than the Sum of Its Parts, Journal of Applied Meteorology and
Climatology, https://doi.org/10.1175/JAMC-D-13-02.1, 2013.

Li, P., Yu, Y., Huang, D., Wang, Z.-H., and Sharma, A.: Re-
gional Heatwave Prediction Using Graph Neural Network
and Weather Station Data, Geophysical Research Letters, 50,
e2023GL103405, https://doi.org/10.1029/2023GL103405, 2023.

Li, P., Wang, Z.-H., and Wang, C.: The potential of urban irrigation
for counteracting carbon-climate feedback, Nat. Commun., 15,
2437, https://doi.org/10.1038/s41467-024-46826-3, 2024.

Ma, M., Xie, P., Teng, F., Wang, B., Ji, S., Zhang, J., and Li, T.:
HiSTGNN: Hierarchical spatio-temporal graph neural network
for weather forecasting, Information Sciences, 648, 119580,
https://doi.org/10.1016/j.ins.2023.119580, 2023.

Mora, C., Dousset, B., Caldwell, I. R., Powell, F. E., Geronimo, R.
C., Bielecki, C. R., Counsell, C. W. W., Dietrich, B. S., Johnston,
E. T., Louis, L. V., Lucas, M. P., McKenzie, M. M., Shea, A.
G., Tseng, H., Giambelluca, T. W., Leon, L. R., Hawkins, E., and

Trauernicht, C.: Global risk of deadly heat, Nature Clim. Change,
7, 501–506, https://doi.org/10.1038/nclimate3322, 2017.

Nogueira, M., Hurduc, A., Ermida, S., Lima, D. C. A., Soares,
P. M. M., Johannsen, F., and Dutra, E.: Assessment of
the Paris urban heat island in ERA5 and offline SURFEX-
TEB (v8.1) simulations using the METEOSAT land surface
temperature product, Geosci. Model Dev., 15, 5949–5965,
https://doi.org/10.5194/gmd-15-5949-2022, 2022.

Oke, T. R., Mills, G., Christen, A., and Voogt, J. A.:
Urban Climates, 1st Edn., Cambridge University Press,
https://doi.org/10.1017/9781139016476, 2017.

Perera, A. T. D., Nik, V. M., Chen, D., Scartezzini, J.-L., and
Hong, T.: Quantifying the impacts of climate change and ex-
treme climate events on energy systems, Nat. Energy, 5, 150–
159, https://doi.org/10.1038/s41560-020-0558-0, 2020.

Price, I., Sanchez-Gonzalez, A., Alet, F., Andersson, T. R., El-Kadi,
A., Masters, D., Ewalds, T., Stott, J., Mohamed, S., Battaglia,
P., Lam, R., and Willson, M.: GenCast: Diffusion-based en-
semble forecasting for medium-range weather, arXiv [preprint],
https://doi.org/10.48550/arXiv.2312.15796, 2024.

Salcedo-Sanz, S., Deo, R. C., Carro-Calvo, L., and Saavedra-
Moreno, B.: Monthly prediction of air temperature in Australia
and New Zealand with machine learning algorithms, Theor.
Appl. Climatol., 125, 13–25, https://doi.org/10.1007/s00704-
015-1480-4, 2016.

Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C.,
Girolamo, S. D., Hentgen, L., Hoefler, T., Lapillonne, X.,
Leutwyler, D., Osterried, K., Panosetti, D., Rüdisühli, S.,
Schlemmer, L., Schulthess, T. C., Sprenger, M., Ubbiali, S.,
and Wernli, H.: Kilometer-Scale Climate Models: Prospects and
Challenges, Bulletin of the American Meteorological Society,
https://doi.org/10.1175/BAMS-D-18-0167.1, 2020.

Scheitlin, K.: The Maritime Influence on Diurnal Tempera-
ture Range in the Chesapeake Bay Area, Earth Interactions,
https://doi.org/10.1175/2013EI000546.1, 2013.

Sharma, A., Wuebbles, D. J., and Kotamarthi, R.:
The Need for Urban-Resolving Climate Modeling
Across Scales, AGU Advances, 2, e2020AV000271,
https://doi.org/10.1029/2020AV000271, 2021.

Shi, T., Yang, Y., Qi, P., and Lolli, S.: Diurnal variation in an
amplified canopy urban heat island during heat wave periods
in the megacity of Beijing: roles of mountain–valley breeze
and urban morphology, Atmos. Chem. Phys., 24, 12807–12822,
https://doi.org/10.5194/acp-24-12807-2024, 2024.

Stewart, I. D. and Oke, T. R.: Local Climate Zones for Urban
Temperature Studies, Bulletin of the American Meteorologi-
cal Society, 93, 1879–1900, https://doi.org/10.1175/BAMS-D-
11-00019.1, 2012.

The Hong Kong Observatory: The Weather of January 2021
in Hong Kong: https://www.hko.gov.hk/en/wxinfo/pastwx/
mws2021/mws202101.htm, last access: 30 June 2025.

Tuholske, C., Caylor, K., Funk, C., Verdin, A., Sweeney,
S., Grace, K., Peterson, P., and Evans, T.: Global ur-
ban population exposure to extreme heat, Proceedings of
the National Academy of Sciences, 118, e2024792118,
https://doi.org/10.1073/pnas.2024792118, 2021.

UN Statistics Division: Goal 11: Make cities and human settlements
inclusive, safe, resilient and sustainable, https://unstats.un.org/
sdgs/report/2023/goal-11/ (last access: 14 January 2026), 2023.

Atmos. Chem. Phys., 26, 947–961, 2026 https://doi.org/10.5194/acp-26-947-2026

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/TNNLS.2016.2582924
https://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs
https://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs
https://doi.org/10.1109/ACCESS.2021.3131533
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.48550/arXiv.2406.00368
https://doi.org/10.1098/rsta.2019.0547
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.1175/2009JCLI3361.1
https://doi.org/10.48550/arXiv.2212.12794
https://doi.org/10.1175/JAMC-D-13-02.1
https://doi.org/10.1029/2023GL103405
https://doi.org/10.1038/s41467-024-46826-3
https://doi.org/10.1016/j.ins.2023.119580
https://doi.org/10.1038/nclimate3322
https://doi.org/10.5194/gmd-15-5949-2022
https://doi.org/10.1017/9781139016476
https://doi.org/10.1038/s41560-020-0558-0
https://doi.org/10.48550/arXiv.2312.15796
https://doi.org/10.1007/s00704-015-1480-4
https://doi.org/10.1007/s00704-015-1480-4
https://doi.org/10.1175/BAMS-D-18-0167.1
https://doi.org/10.1175/2013EI000546.1
https://doi.org/10.1029/2020AV000271
https://doi.org/10.5194/acp-24-12807-2024
https://doi.org/10.1175/BAMS-D-11-00019.1
https://doi.org/10.1175/BAMS-D-11-00019.1
https://www.hko.gov.hk/en/wxinfo/pastwx/mws2021/mws202101.htm
https://www.hko.gov.hk/en/wxinfo/pastwx/mws2021/mws202101.htm
https://doi.org/10.1073/pnas.2024792118
https://unstats.un.org/sdgs/report/2023/goal-11/
https://unstats.un.org/sdgs/report/2023/goal-11/


H. Wang et al.: Intra-city GNN for temperature forecasting 961
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