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Abstract. Understanding the variability and sources of atmospheric CO2 is essential for improving greenhouse
gas monitoring and model performance. This study investigates temporal CO2 variability at the Xianghe site
in China, which hosts both remote sensed (TCCON-affiliated) and in situ (PICARRO) observations. Using the
Weather Research and Forecast model coupled with Chemistry, in its greenhouse gas option (WRF-GHG), we
performed a one-year simulation of surface and column-averaged CO2 mole fractions, evaluated model per-
formance and conducted sensitivity experiments to assess the influence of key model configuration choices.
The model captured the temporal variability of column-averaged mole fraction of CO2 (XCO2) reasonably well
(r = 0.7), although a persistent bias in background values was found. A July 2019 heatwave case study further
demonstrated the model’s ability to reproduce a synoptically driven anomaly. Near the surface, performance
was good during afternoon hours (r = 0.75, MBE= 2.44 ppm), nighttime mole fractions were overestimated
(MBE= 7.86 ppm), resulting in an exaggerated diurnal amplitude. Sensitivity tests revealed that land cover data,
vertical emission profiles, and adjusted VPRM-parameters (Vegetation Photosynthesis and Respiration Model)
can significantly influence modeled mole fractions, particularly at night. Tracer analysis identified industry and
energy as dominant sources, while biospheric fluxes introduced seasonal variability – acting as a moderate sink
in summer for XCO2 and a net source in most months near the surface. These findings demonstrate the utility
of WRF-GHG for interpreting temporal patterns and sectoral contributions to CO2 variability at Xianghe, while
emphasizing the importance of careful model configuration to ensure reliable simulations.
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1 Introduction

Climate change is one of the most pressing global challenges,
and carbon dioxide (CO2) is its primary driver due to its
long atmospheric lifetime and rising atmospheric abundance
(Masson-Delmotte et al., 2021). Understanding how atmo-
spheric CO2 levels vary over time and space is essential
for detecting long-term trends, distinguishing natural fluc-
tuations from anthropogenic signals, and deepening our in-
sight into the carbon cycle and its interactions with the at-
mosphere. Observational records are key to unraveling local
and regional carbon budgets and assessing the effectiveness
of mitigation strategies. To fully interpret such observations,
especially in complex environments, we rely on atmospheric
transport models, which provide spatial and temporal context
and help disentangle the observed CO2 signal into contribu-
tions from different sources and processes. As the world’s
largest fossil CO2 emitter (Friedlingstein et al., 2025), our
study focuses on China – a country whose vast and densely
populated regions, strong industrial activity, and ecological
diversity make it a complex but highly relevant area for at-
mospheric CO2 research. In this context, a ground-based re-
mote sensing instrument was installed in 2018 at the Xianghe
site, a suburban location approximately 50 km southeast of
Beijing. The Fourier Transform Infrared (FTIR) spectrome-
ter provides high-precision column-averaged CO2 mole frac-
tions and is part of the global Total Carbon Column Observ-
ing Network (TCCON). Complementing this, a PICARRO
Cavity Ring-Down Spectroscopy (CRDS) analyzer measures
near-surface CO2 mole fractions at 60 m above ground level.
This unique combination of collocated column and in situ ob-
servations – to our knowledge currently the only such setup
in China – offers a valuable opportunity to study both local
and regional CO2 signals and to evaluate model performance
for different levels of the atmosphere.

Previous studies by Yang et al. (2020, 2021) provided ini-
tial insights into the seasonal and diurnal variability of both
column-averaged and near-surface CO2 mole fractions at Xi-
anghe. Their work highlighted the strong influence of local
and regional emissions, as well as planetary boundary layer
dynamics, on observed CO2 levels. However, these analy-
ses were either purely observational or relied on coarser-
resolution model products such as CarbonTracker, which are
limited in their ability to resolve mesoscale variability. Fur-
thermore, the two observation types were not jointly ana-
lyzed within a high-resolution modeling framework, leav-
ing room for a more detailed and integrated approach. To
gain a deeper understanding of the processes shaping the ob-
served CO2 mole fractions at Xianghe, we apply the high-
resolution WRF-GHG model in this work, a specific config-
uration of the widely used WRF-Chem model tailored for
greenhouse gas simulations (Beck et al., 2011). The current
study is part of a broader research effort investigating mul-
tiple greenhouse gases at the site. While a companion paper

has already presented the results for CH4 (Callewaert et al.,
2025), the present work focuses exclusively on CO2.

The WRF-GHG model was originally developed to ad-
dress the limitations of coarse-resolution global models by
providing a more detailed representation of CO2 transport,
surface flux exchanges, and meteorological processes at the
mesoscale. Thanks to its coupling with the Vegetation Pho-
tosynthesis and Respiration Model (VPRM), WRF-GHG has
demonstrated strong capabilities in simulating biogenic CO2
fluxes (NEE, net ecosystem exchange) and atmospheric dy-
namics. It has been successfully applied across a range of
environments, from rural areas influenced by sea-breeze cir-
culations (Ahmadov et al., 2007, 2009, there referred to as
WRF-VPRM) to urban regions with complex emission pat-
terns and boundary layer processes (Feng et al., 2016; Park
et al., 2018; Zhao et al., 2019). Further, the model has been
evaluated against in situ, tower, aircraft and satellite data dur-
ing large-scale campaigns such as ACT-America in the US
(Hu et al., 2020) and KORUS-AQ in South-Korea (Park et al.,
2020), showing its ability to reasonably capture spatiotempo-
ral variability of CO2. In China, WRF-GHG has been used
to study CO2 fluxes and atmospheric mole fractions on a
national scale and to explore the role of biospheric and an-
thropogenic sources (Dong et al., 2021; Ballav et al., 2020).
Li et al. (2020) evaluated WRF-GHG against tower observa-
tions in northeast China, showing the model could capture
seasonal trends and episodic enhancements, despite underes-
timating diurnal variability and respiration fluxes.

Our study uses WRF-GHG to investigate the main drivers
of observed temporal variations at Xianghe and to evalu-
ate the model’s ability to reproduce these patterns, identify-
ing key sources of error where relevant. The model’s tracer
framework further allows us to disentangle the contributions
of anthropogenic, biogenic, and meteorological processes to
simulated CO2 levels. The structure of the paper is as fol-
lows: Sect. 2 describes the observations, model configura-
tion, and the design of additional model sensitivity experi-
ments. Section 3 presents the results, including model per-
formance, tracer-based analyses and sensitivity experiments.
Section 4 discusses some of the results in more detail, while
Sect. 5 summarizes the conclusions and provides an outlook.

2 Methods

2.1 Observations at Xianghe site

We use observational data from the atmospheric mon-
itoring station situated in Xianghe county (39.7536° N,
116.96155° E; 30 m a.s.l.). This site is located in a subur-
ban part of the Beijing-Tianjin-Hebei (BTH) region in north-
ern China. The town center of Xianghe lies approximately
2 km to the east, while the major metropolitan areas of Bei-
jing and Tianjin are situated roughly 50 km to the northwest
and 70 km to the south-southeast, respectively (Fig. 1b). The
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dominant vegetation in the surrounding area consists of crop-
land.

Continuous atmospheric measurements have been con-
ducted at the Xianghe observatory by the Institute of Atmo-
spheric Physics (IAP), Chinese Academy of Sciences (CAS),
since 1974. FTIR solar absorption measurements have been
performed since June 2018, from the roof of the observatory
by a Bruker IFS 125HR. This ground-based remote sensing
instrument records spectra in the infrared range and is part of
the TCCON network (Wunch et al., 2011; Zhou et al., 2022),
providing data on total column-averaged dry air mole frac-
tions for gases such as CO2, CH4, and CO (noted as XCO2,
XCH4 and XCO, respectively). The current study employs
the GGG2020 data product (Laughner et al., 2024). Obser-
vations are typically taken every 5 to 20 min, depending on
weather conditions and instrument status. TCCON measure-
ments are exclusively performed under clear skies. The un-
certainty associated with the XCO2 measurements is approx-
imately 0.5 ppm. Further details regarding the instrument and
the retrieval methodology can be found in Yang et al. (2020).

In addition to the FTIR measurements, in situ measure-
ments of CO2 and CH4 mole fractions have been conducted
since June 2018 using a PICARRO cavity ring-down spec-
troscopy G2301 analyzer. This instrument draws air from an
inlet situated on a 60 m tower. A more comprehensive de-
scription of this measurement setup is available in Yang et al.
(2021). The measurement uncertainty for CO2 with this in-
strument is about 0.06 ppm. The data used in this study were
converted to align with the WMO CO2 X2019 scale (Hall
et al., 2021).

2.2 WRF-GHG model simulations

We make use of the WRF-GHG model simulations elabo-
rated in Part 1 of this work (Callewaert et al., 2025), and
provide a brief summary here for completeness. The simula-
tions were performed using the Weather Research and Fore-
casting model with Chemistry (WRF-Chem v4.1.5; Grell
et al., 2005; Skamarock et al., 2019; Fast et al., 2006) in
its greenhouse gas configuration, called WRF-GHG (Beck
et al., 2011). This Eulerian transport model simulates three-
dimensional greenhouse gas mole fractions simultaneously
with meteorological fields, without accounting for chemical
reactions. The model setup includes three nested domains
with horizontal resolutions of 27, 9, and 3 km (Fig. 1a), and
60 vertical levels extending from the surface up to 50 hPa.
There are 11 layers in the lowest 2 km, with a layer thick-
ness ranging from about 50 m near the surface, to 400 m
above 2 km.

Anthropogenic CO2 emissions were obtained from
CAMS-GLOB-ANT v5.3 (Granier et al., 2019; Soulie et al.,
2024) and temporally disaggregated using CAMS-TEMPO
profiles (Guevara et al., 2021). The original 11 source sectors
were aggregated into four broader categories and included in
separate tracers: energy, industry, transportation, and residen-

tial & waste. Biomass burning emissions were taken from the
FINN v2.5 inventory (Wiedinmyer et al., 2011), and ocean-
atmosphere CO2 fluxes were prescribed based on the clima-
tology from Landschützer et al. (2017). Finally, net biogenic
CO2 fluxes were calculated online using VPRM (Mahade-
van et al., 2008; Ahmadov et al., 2007), driven by WRF-
GHG meteorology and MODIS surface reflectance data, with
ecosystem-specific VPRM parameters from Li et al. (2020)
and land cover information from SYNMAP (Jung et al.,
2006). Meteorological fields (e.g., wind, temperature, hu-
midity) were driven by hourly data from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) ERA5
hourly data (0.25°× 0.25°; Hersbach et al., 2023a, b). Daily
restarts were performed at 00:00 UTC, with model initializa-
tion at 18:00 UTC the day before to allow for a 6-h spin-up,
stabilizing the simulation. For tracer fields, mole fractions
at 00:00 UTC were copied from the previous day’s simula-
tion to maintain consistency. The initial and lateral bound-
ary conditions for CO2 were prescribed using the 3-hourly
Copernicus Atmosphere Monitoring Service (CAMS) global
reanalysis (EGG4, Agustí-Panareda et al., 2023).

The final simulated CO2 field is composed of the sum
of several tracers that track contributions from individual
sources. These include a background tracer (reflecting the
evolution of initial and lateral boundary conditions from
CAMS), as well as tracers for energy, industry, residential,
transportation, ocean, biomass burning, and biogenic fluxes.

WRF-GHG was run from 15 August 2018 to 1 Septem-
ber 2019. However, the first two weeks were regarded
as a spin-up phase, so the analysis in Sect. 3.1 is made
on one full year of data: from 1 September 2018 until
1 September 2019. The complete data set can be accessed
on https://doi.org/10.18758/P34WJEW2 (Callewaert, 2023).

To enable comparison with the observations, model data
from the grid cell containing the measurement site are ex-
tracted. For near-surface observations, the model profile is in-
terpolated to the altitude of the instrument, while for column
measurements the model output is smoothed with the FTIR
retrieval’s a priori profile and averaging kernel, after being
extended above the model top with the FTIR a priori profile.
The hourly model output represents instantaneous values,
as do the observational measurements. To align the datasets
temporally, the observations are averaged around each model
output time step – using a ±15-min window. Further details
are provided in Part 1 (Callewaert et al., 2025).

2.3 Sensitivity experiment design

A series of sensitivity experiments was conducted to assess
the impact of key model assumptions on surface CO2 fluxes,
such as the treatment of emission heights, land cover classi-
fication, and biogenic flux parameterizations. Four two-week
periods were selected for these sensitivity simulations, span-
ning from the 15–29 March, May, July, and December. These
months were identified as being most critical for simulating
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Figure 1. (a) Location of the WRF-GHG domains, with horizontal resolutions of 27 km (d01), 9 km (d02) and 3 km (d03). All domains have
60 (hybrid) vertical levels extending from the surface up to 50 hPa. (b) Terrain map including the largest cities in the region of Xianghe,
roughly corresponding to d03. The location of the Xianghe site is indicated by the red triangle in both maps. Figure taken from Callewaert
et al. (2025). ©OpenStreetMap.

the diurnal CO2 cycle while representing different seasons.
Although the specific dates within each month (15–29) were
chosen somewhat arbitrarily, they were applied consistently
across all four months to ensure comparability. Four different
simulation experiments (BASE, PROF, LC, PARAM) were
performed over these four periods to isolate the impact of
three model assumptions (see Table 1):

– Emission height. To assess the impact on simulated
in situ CO2 mole fractions at Xianghe of the height at
which anthropogenic emissions are released in the at-
mosphere (all at the lowest model level near the sur-
face, or according to sector-specific vertical profiles),
we applied the vertical profiles for point sources from
Brunner et al. (2019) to the CAMS-GLOB-ANT sector-
specific CO2 emissions. For the fluxes in the ’industrial
processes’ sector, we used the average of the profiles of
SNAP 3 (Combustion in manufacturing industry) and
SNAP 4 (Production processes). Note that we do not
make a distinction between area and point sources as in
Brunner et al. (2019), as this information is not available
for our study region. Profile emissions were included in
all but the BASE experiment: PROF, LC and PARAM.

– Land cover classification. The net biogenic CO2 fluxes
are calculated online in WRF-GHG as the weighted av-
erage of the Net Ecosystem Exchange (NEE) for eight
vegetation classes (evergreen trees, deciduous trees,
mixed trees, shrubland, savanna, cropland, grassland
and non-vegetated land) (Mahadevan et al., 2008). As
a default, the SYNMAP land cover map is used to cal-
culate the vegetation fraction for every model grid cell.
To assess the impact of this classification, we prepare
the VPRM model input files for the LC and PARAM
experiments with the global 100-m Copernicus Dy-
namic Land Cover Collection 3 (epoch 2019) (Buch-
horn et al., 2020), using the pyVPRM python pack-
age (Glauch et al., 2025), allowing for an updated and

Table 1. Overview of the model configuration for the sensitivity
experiments. Note that the Glauch parameter table does not include
values for the “Savanna” class, consistent with its absence in the
Copernicus land cover map.

Experiment Emission Land VPRM
name height cover map parameters

BASE SFC SYNMAP Li table
PROF PROF SYNMAP Li table
LC PROF Copernicus LC Li table
PARAM PROF Copernicus LC Glauch table

higher-resolution representation of vegetation types in
the domain.

– VPRM parameterization. The VPRM-calculated NEE
can be tuned for different regions around the globe
by specifying four empirical parameters (α, β, λ and
PAR0) per vegetation class. These parameter tables are
a mandatory input to the WRF-GHG model and can be
calibrated using a network of eddy flux tower sites, rep-
resenting the different vegetation classes in the region,
or taken from literature. Due to the lack of a dedicated
calibration study in China, we applied the table from Li
et al. (2020) in the one-year simulations, and the BASE
and LC experiments. Seo et al. (2024) reported the low-
est RMSE in East Asia using these parameter values,
relative to the default US settings and those of Dayalu
et al. (2018). To evaluate the impact of these parame-
ters at Xianghe, we conducted an experiment (PARAM)
with an alternative parameter table, optimized over Eu-
rope by Glauch et al. (2025). The exact parameter values
used in each experiment are provided in Table A1.

By comparing the results from the four sensitivity exper-
iments, the influence of individual model components can
be isolated. The role of vertical emission distribution can be
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assessed by comparing the BASE and PROF experiments.
Similarly, the impact of land cover classification is assessed
by comparing the PROF and LC simulations, which differ
only in the land cover dataset used. Finally, the effect of
VPRM parameterization can be evaluated by comparing LC
and PARAM, which share the same land cover input but dif-
fer in the VPRM parameter table. This approach enables a
systematic investigation of potential model deficiencies af-
fecting the representation of CO2 at Xianghe. Note that the
BASE experiment corresponds exactly with the settings of
the one-year simulation described above.

3 Results

3.1 Evaluation of one-year simulation

3.1.1 Timeseries and statistical comparison

Table 2 summarizes the comparison between simulated and
observed CO2 mole fractions at Xianghe. Overall, WRF-
GHG demonstrates a reasonable accuracy in replicating these
measurements: the XCO2 observations are slightly underes-
timated, with a mean bias error of −1.43 (±1.99) ppm and a
Pearson correlation coefficient of 0.70. Note that the XCO2
time series was de-seasonalized before calculating the corre-
lation coefficient in order to remove the effect of the seasonal
variation. After applying a bias correction to the modeled
values, the XCO2 MBE decreases to −0.86 (±1.57) ppm
(corrected values shown in parentheses in Table 2), and the
RMSE improves from 2.45 to 1.80 ppm, while the correlation
remains unchanged. Details of the bias correction are pro-
vided in Sect. 3.1.2, and the resulting time series are shown
in Fig. 2 (and Fig. A1).

The data near the surface has been divided into afternoon
(12:00–15:00 LT), nighttime (22:00–04:00 LT) and morn-
ing (08:00–12:00 LT) periods to assess model performance
under different boundary layer conditions. Indeed, WRF-
GHG shows a smaller bias (−2.44 ppm) during the after-
noon, when the lower atmosphere is well-mixed, compared
to nighttime (7.86 ppm). Additionally, the MBE differs in
sign between the two periods: near-surface CO2 levels tend
to be underestimated by the model in the afternoon but over-
estimated at night. Except for the moderate correlation ob-
served for in situ CO2 during nighttime (0.60), WRF-GHG
achieves relatively high correlation coefficients (≥ 0.7) for
other CO2 data, indicating satisfactory model performance.
Overall, the bias correction has only a minor influence on
the comparison with near-surface mole fractions, where the
effect on RMSE and correlation coefficients are negligible
(< 1.2 % and < 0.01, respectively).

Finally, the XCO2 time series in Fig. 2a reveals a notable
spike between 20–29 July (highlighted in gray), interrupt-
ing the general decline associated with northern hemispheric
photosynthetic uptake during the growing season, from May
onwards. A dedicated analysis of this July XCO2 event is

provided in Sect. 4.2. Note that there is a gap in the in situ
CO2 time series during this period due to instrument mal-
functions (Yang et al., 2021).

3.1.2 Correction of background bias

Our WRF-GHG simulations underestimate XCO2 by ap-
proximately 2 ppm until May 2019, after which the negative
bias diminishes (see Fig. A1a, c). This bias likely originates
from a similar error in the background data, inaccuracies in
representing the actual sources and sinks in the region, or a
combination of both.

The CAMS validation report (Ramonet et al., 2021)
presents “a very good agreement for all (TCCON) sites”,
suggesting that the CAMS reanalysis that is driving the
WRF-GHG simulations is of good quality without known bi-
ases. However, their criteria for what constitutes “very good”
appears to be relatively mild (within ±2 ppm). Moreover,
the Xianghe site was not included in this report and the ac-
companying figure does not provide very detailed informa-
tion. Therefore, we reproduced their analysis for several TC-
CON sites at similar latitudes for the period of our inter-
est (September 2018–September 2019): Karlsruhe (49.1° N),
Orleans (48.0° N), Garmisch (47.5° N), Park Falls (45.9° N),
Rikubetsu (43.5◦ N), Lamont (36.6◦ N), Tsukuba (36.0° N),
Edwards (35.0° N), Pasadena (34.1° N), Saga (33.2° N), and
Hefei (31.9° N). The results of this analysis are presented in
Fig. 3.

We find an underestimation of the CAMS reanaly-
sis XCO2 at all TCCON sites between 30–50° N (except
Pasadena) from October 2018 until May 2019. More specif-
ically for Xianghe, monthly mean errors range from −2.20
(±1.3) ppm in January 2019 to 3.38 (±1.28) ppm in July
2019, which is of a similar magnitude as the bias found
with WRF-GHG (where the monthly mean differences with
respect to the TCCON site of Xianghe range from −2.53
(±1.7) ppm in December 2018 to 1.28 (±1.57) ppm in July
2019).

Therefore, we assume that the error pattern detected in the
XCO2 time series is primarily the result of the same pattern
in the background information. Moreover, this bias pattern is
not found in the in situ CO2 time series, likely because the
relative contribution from the background to the in situ mole
fractions is smaller than it is to the column data.

To account for the systematic bias introduced by the back-
ground values, we applied a bias correction to the WRF-
GHG simulations. Specifically, we subtract the monthly
mean difference between CAMS and TCCON XCO2, aver-
aged across all TCCON sites located between 30–50° N (ex-
cluding Pasadena due to outlier behavior), from the model’s
background tracer. The resulting improvements in model per-
formance are summarized in Table 2 between parentheses.
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Table 2. Statistics of the model-data comparison of the ground-based CO2 observations at the Xianghe site from 1 September 2018 until
1 September 2019. We present the mean bias error (MBE), root mean square error (RMSE) and Pearson correlation coefficient (CORR).
The MBE and RMSE are given in ppm. For in situ observations, the data is split in afternoon (12:00–15:00 LT), night (22:00–04:00 LT) and
morning transition (08:00–12:00 LT) hours. The bias corrected model values are given between brackets.

insitu CO2 XCO2

afternoon night morning transition

MBE −3.12 (−2.44) 7.18 (7.86) −0.73 (−0.04) −1.43 (−0.86)
RMSE 15.35 (15.27) 23.77 (24.04) 22.04 (22.15) 2.45 (1.80)
CORR 0.75 (0.76) 0.60 (0.60) 0.69 (0.69) 0.70 (0.70)

Figure 2. Time series of the observed (black) and simulated (red) (a) XCO2 and (b) insitu CO2 mole fractions at the Xianghe site. Panels
(c) and (d) show the differences between (smoothed) WRF-GHG simulations and observations for XCO2 and in situ CO2, respectively. Data
points are hourly, if available. The red data points in (b) and (d) represent the monthly mean differences. A bias correction was applied to
the WRF-GHG values.

3.2 Sector contributions to observed mole fractions

WRF-GHG tracks all fluxes in separate tracers, enabling the
decomposition of the total simulated CO2 mole fractions
at Xianghe into contributions from different source sectors.
Figure 4 shows the monthly mean values, while additionally
the median and interquartile ranges are presented in Table 3.
Note that all simulated hours were used for this analysis, not
just the ones coinciding with observations.

The main sectors contributing to the modeled CO2 vari-
ability at Xianghe are energy, industry, and the biosphere.
For XCO2, we find median values of 0.85 and 0.63 ppm for
the energy and industry sectors, respectively. Furthermore,
the biosphere significantly influences the column-averaged
CO2 values, where it acts as a sink from April to September
with a median value of−0.77 ppm during this period. During
the rest of the year, the biogenic tracer acts as a small source
(median value of 0.22 ppm).

Near the surface, median enhancements of in situ CO2
mole fractions are 6.85 and 5.69 ppm for the energy and in-
dustry sectors, respectively. The biosphere generally acts as
a source throughout the year, with a median contribution of

2.69 ppm, except in August, when it becomes a significant
sink of −6.76 ppm.

Next to the three dominant sectors (biosphere, industry,
and energy), transportation and also residential sources have
a smaller but still relevant influence on the Xianghe data.
During winter, the contribution of residential sources in-
creases, where the highest values for the column simulations
are found in February (median of 0.45 ppm) while near the
surface this occurs in January (4.28 ppm). This peak aligns
with heightened residential emissions in winter, driven by
increased heating demands correlated with air temperature
(Guevara et al., 2021). Finally, no relevant impact was found
from biomass burning and the ocean. Overall, the total tracer
enhancement for the in situ mole fractions is about ten times
greater than that of the column-averaged values.

3.3 Diurnal cycle analysis of in situ data

The planetary boundary layer (PBL) plays a crucial role in
regulating near-surface CO2 mole fractions. Figure 6 dis-
plays the diurnal variation of the PBL height as simulated by
WRF-GHG, along with the corresponding CO2 mole frac-
tions near the surface (both simulated and observed).

Atmos. Chem. Phys., 26, 899–921, 2026 https://doi.org/10.5194/acp-26-899-2026
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Figure 3. Monthly mean difference (in ppm) between CAMS reanalysis model and TCCON XCO2 between 30–50° N over the simulation
period of this study.

Figure 4. Monthly mean tracer contributions above the background for (a) XCO2 and (b) in situ CO2 simulated mole fractions at Xianghe.

During the day, solar radiation promotes turbulent mixing,
leading to a deepening of the PBL and the dilution of near-
surface CO2. The PBL reaches its maximum height around
15:00 local time (LT), coinciding with the lowest surface
CO2 mole fractions. Conversely, during the night, radiative
cooling leads to the formation of a stable, shallow PBL, trap-
ping CO2 near the surface and causing mole fractions to rise.
As the sun rises and the PBL height begins to increase again,
the CO2 mole fractions drop, giving rise to a characteristic
diurnal cycle.

Indeed, the lowest values are observed between 14:00
and 16:00 LT, with a minimum of 421.32 (hourly median
value, with an interquartile range of 415.80–431.76) ppm
at 16:00 LT. In the early morning, the observed CO2 mole
fractions show a distinct peak at 07:00 LT, reaching 443.42
(428.00–459.32) ppm. WRF-GHG successfully captures the
general shape of this diurnal cycle, but discrepancies remain
in the amplitude and timing. The model slightly underesti-
mates daytime mole fractions, with a minimum value that
is 1.22 ppm lower and occurs one hour earlier than the ob-

servations (at 15:00 LT). The peak CO2 mole fractions in
WRF-GHG are also reached at 07:00 LT, but overestimated
by 3.36 ppm. Furthermore, this peak is less distinct as in the
observations, where the model remains relatively stable be-
tween 03:00 and 08:00 LT. This results in an overestimation
of the diurnal amplitude by approximately 4.58 ppm. Such
a nighttime overestimation was not observed for CH4 at the
same site (Callewaert et al., 2025), suggesting that the bias is
more likely related to the surface fluxes of CO2 than to PBL
dynamics.

3.4 Sensitivity experiments

Several sources of uncertainty may affect the accuracy of
the simulated anthropogenic CO2 fluxes and NEE in WRF-
GHG. First of all, the parameters used in VPRM in this
study are based on Li et al. (2020), who optimized them for
ecosystems in the United States. Applying these values to
China likely introduces regional mismatches, as differences
in dominant species, climate conditions, and land use his-
tory can significantly alter ecosystem carbon dynamics even
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Table 3. Statistics of the total simulated CO2 mole fractions and the different tracer contributions over the complete simulation period. Q1
and Q3 represent the first and third quartile, respectively, between which 50 % of the data fall.

XCO2 (ppm) in situ CO2 (ppm)

Q1 median mean Q3 Q1 median mean Q3

Total 408.32 412.11 411.37 414.11 419.44 430.93 437.86 450.14
Background 407.2 410.21 409.54 412.12 397.63 412.42 411.08 414.69

Biomass burning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Energy 0.36 0.85 1.07 1.53 2.74 6.85 10.51 14.06
Residential 0.03 0.06 0.17 0.17 0.30 0.65 1.88 1.95
Industry 0.24 0.63 0.79 1.14 2.70 5.69 8.53 10.51
Transportation 0.08 0.16 0.18 0.25 0.81 1.73 2.43 3.19
Biosphere −0.77 0.04 −0.38 0.31 −0.01 2.36 3.44 7.39
Ocean −0.00 −0.00 −0.00 −0.00 −0.01 −0.00 −0.01 −0.00

Total tracers 0.33 1.23 1.82 2.80 7.36 18.99 26.78 38.30

Figure 5. Map of the mean CO2 flux (mol km−2 h−1) in WRF-GHG domain d03 during the entire simulation period from September 2018
until September 2019, for the most important sectors. Remark that the panels have different color scales. The location of the Xianghe site is
indicated by a blue cross.

within the same vegetation class (Mahadevan et al., 2008;
Seo et al., 2024). Moreover, the linear formulation of the res-
piration term in VPRM has been identified as a source of po-
tential bias (Dong et al., 2021; Hu et al., 2021). A third con-
cern is the land cover classification. VPRM uses the SYN-
MAP product (Jung et al., 2006), which is a 1-km global
land cover map that classifies the area around Xianghe as
100 % cropland. While broadly consistent with the regional
land use, this dataset does not account for increasing urban-
ization during the last decades. In WRF-GHG, built-up areas
are assigned zero NEE, so their omission could contribute
to the observed nighttime overestimation of respiration and
daytime photosynthetic uptake.

Further, the representation of anthropogenic emission
heights may also affect the modeled surface mole fractions.
In this study, all anthropogenic CO2 emissions are released
in the lowest model layer, which simplifies reality. Especially
for sectors such as energy and industry, this is a crude ap-
proximation, since facilities like power plants typically emit
at elevated stacks. Previous work by Brunner et al. (2019)
has shown that ignoring the vertical distribution of emissions
can lead to overestimation of near-surface mole fractions.

Finally, while it is well known that uncertainties in simu-
lating planetary boundary layer (PBL) dynamics can substan-
tially affect near-surface CO2 mole fractions, the influence
of different PBL parameterization schemes is not explored in
the current sensitivity experiments. WRF-GHG offers sev-
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Figure 6. Hourly median and interquartile range of the (a) simulated planetary boundary layer height, and observed and simulated surface
(b) CO2 mole fraction at Xianghe.

eral PBL schemes, some of which were tested and discussed
in Part 1 of this work (Callewaert et al., 2025). Here, the fo-
cus is instead on evaluating how model configuration choices
related to CO2 fluxes impact the simulated mole fractions.

3.4.1 Emission height sensitivity

To evaluate the impact of emission injection height on simu-
lated CO2 mole fractions at Xianghe, we compare the BASE
and PROF sensitivity experiments (see Sect. 2.3). Figure 7
presents the median diurnal cycle of the anthropogenic CO2
tracer across the four 14-d simulation periods (top), together
with the total simulated and observed CO2 mole fractions
(bottom). Similarly, Table 4 provides a summary of the im-
pact on the anthropogenic tracer.

Simulations using elevated emission profiles (PROF) con-
sistently yield lower near-surface CO2 mole fractions than
those with surface-only emissions (BASE), with the most
pronounced differences occurring during nighttime and the
morning transition. The largest reduction is observed in De-
cember, where mean nighttime mole fractions in the PROF
simulation are 16.92 ppm lower than in BASE.

An overview of the key statistical performance metrics
with respect to the observations at Xianghe is given in Ta-
ble 5. In December and March, BASE shows large posi-
tive mean biases (MBE), primarily driven by nighttime over-
estimation; this bias is substantially reduced in PROF. By
contrast, in May and July the absolute MBE increases and
changes sign from positive to negative. The use of elevated
emissions leads to a reduction in the RMSE compared to the
surface-only configuration in all periods, while the correla-
tion coefficient remains largely unaffected. The use of ele-
vated emission profiles also has a pronounced effect on the
simulated diurnal amplitude of near-surface CO2. Compared
to the surface-only configuration, which strongly overesti-
mates the amplitude, the more realistic vertical distribution

results in a better agreement with observations – particularly
in March and July. In March, for example, the amplitude
overestimation is reduced from 22.73 ppm to just 1.74 ppm,
and in July from 14.16 to −5.96 ppm. The implementation
of elevated anthropogenic emissions has a minimal effect on
the column-averaged XCO2 mole fractions at Xianghe, see
statistical metrics in Table A2.

3.4.2 Biogenic flux and land cover sensitivity

To evaluate the impact of land cover representation on the
VPRM-calculated CO2 fluxes, we compare the PROF and
LC sensitivity experiments. In the PROF simulation, the
WRF-GHG grid cell containing the Xianghe site is classi-
fied as 100 % cropland using the SYNMAP dataset. In con-
trast, the Copernicus Dynamic Land Cover data, used in the
LC experiment, classifies the same cell as 68.88 % crop-
land, 23.5 % no vegetation (representing urban surfaces, wa-
ter, ice, rocks, etc.), 3.45 % mixed forest, 2.03 % wetland,
1.5 % shrubland, and 0.64 % grassland. A comparison of the
two land cover datasets over the innermost WRF-GHG do-
main (d03) is shown in Fig. A4. Due to its higher spatial
resolution and more up-to-date information, the Copernicus
dataset introduces more heterogeneous vegetation fractions
and especially reduces the cropland fraction while increas-
ing the urban land category compared to SYNMAP.

The top panels of Fig. 8 present the median diurnal cycles
of NEE, at Xianghe across the four 14-d simulation periods.
Differences between the experiments are negligible in win-
ter months (December and March), whereas during May and
July, the LC simulation exhibits both reduced daytime CO2
uptake and lower nighttime respiration compared to PROF.
This change in NEE is reflected in the simulated biogenic
CO2 tracer at Xianghe (Fig. 8e–h, Table 6). However, we
notice that the magnitude of the difference between LC and
PROF is more pronounced at night. For instance, in July, the
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Figure 7. Median diurnal cycle of in situ CO2 mole fractions (ppm) at Xianghe. The solid red line presents the simulated values of the
PROF sensitivity experiment (using vertical profiles for the anthropogenic emissions), while the dashed blue line represents the simulated
CO2 values using only surface emissions (SFC). Observations are plotted in black.

Table 4. Mean and standard deviation (in ppm) of the total anthropogenic CO2 tracer contribution (sum of industry, energy, transportation
and residential tracer) to near-surface mole fractions at Xianghe for the BASE and PROF sensitivity experiments, and simulation period.
“All” indicates that all simulated hours (00:00–23:00 LT) were used to calculate the metrics, in contrast to “Afternoon” (12:00–15:00 LT),
“Night” (22:00–04:00 LT) and “Morning” (08:00–12:00 LT).

December 2018 March 2019 May 2019 July 2019

All
BASE 34.32± 33.64 18.94± 18.74 15.59± 14.35 24.25± 14.78
PROF 20.37± 20.47 9.51± 7.76 8.5± 6.16 13.98± 5.32

Afternoon
BASE 17.13± 17.23 9.12± 9.07 8.94± 7.44 15.53± 9.99
PROF 11.82± 11.10 6.54± 5.73 7.09± 5.24 12.06± 4.85

Night
BASE 41.43± 35.36 23.17± 16.14 18.41± 15.23 27.57± 11.99
PROF 24.51± 22.15 10.80± 7.02 8.89± 5.60 15.07± 5.62

Morning
BASE 31.07± 31.45 22.75± 27.99 19.36± 14.53 27.43± 14.45
PROF 14.30± 10.16 10.27± 10.25 10.83± 6.31 14.77± 4.19

mean (± standard deviation) difference in the biogenic tracer
is −3.91 (±2.13) ppm during nighttime, while the daytime
difference is only −1.41 (±1.26) ppm.

To assess the impact of the VPRM parameterization
on CO2 simulations at Xianghe, we compare the LC
and PARAM experiments. Both simulations use the 100-
m Copernicus Dynamic Land Cover dataset but differ in
their VPRM parameter tables (see Table 1). The compar-
ison reveals that PARAM systematically produces more
positive NEE than LC, both during daytime and night-
time. The change in NEE is reflected in the biogenic CO2
tracer mole fractions at Xianghe. In July, for example,
tracer values in PARAM are on average 10.61 (±5.03) ppm
higher than in LC. This difference is again more pro-

nounced at night (11.48± 4.27 ppm) than during the after-
noon (8.01± 3.09 ppm).

A summary of the model performance of the different ex-
periments is shown in Table 5. Generally, the PARAM exper-
iment yields the best agreement with observations. Across
all months, PARAM shows the highest correlation coeffi-
cients and the lowest MBE and RMSE, with the exception
of March. In that month, the LC experiment outperforms
PARAM, with a smaller MBE (−0.2 ppm vs. 4.61 ppm) and
RMSE (10.73 ppm vs. 13.09 ppm).

The various VPRM inputs have only a minor influence on
the column-averaged XCO2 mole fractions at Xianghe, as in-
dicated by the statistical metrics in Table A2.
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Table 5. Overview of statistical metrics (MBE, RMSE and CORR) for the different sensitivity experiments BASE, PROF, LC and PARAM
with respect to the observations, per simulation period. Values for MBE and RMSE are given in ppm.

MBE RMSE CORR

Dec Mar May Jul Dec Mar May Jul Dec Mar May Jul

All
BASE 10.04 10.80 0.69 1.99 31.90 22.41 17.22 19.22 0.55 0.47 0.61 0.64
PROF −3.91 1.38 −6.40 −8.27 23.51 11.47 16.08 16.82 0.53 0.49 0.62 0.67
LC −3.92 −0.20 −8.04 −9.72 23.52 10.73 17.20 17.30 0.53 0.48 0.58 0.69
PARAM −1.82 4.61 0.34 0.82 23.60 13.09 13.79 13.64 0.55 0.50 0.68 0.73

Afternoon
BASE −3.96 −0.51 −2.67 −6.70 21.59 10.49 12.22 18.76 0.58 0.63 0.12 −0.11
PROF −9.28 −3.09 −4.53 −10.17 24.42 8.88 11.92 17.11 0.47 0.66 0.11 −0.03
LC −9.29 −3.80 −4.54 −8.77 24.43 8.85 11.90 15.91 0.47 0.66 0.13 0.03
PARAM −8.53 −0.23 2.32 −0.84 23.84 9.75 11.00 13.70 0.50 0.63 0.23 0.10

Night
BASE 17.00 17.75 6.38 7.64 32.42 23.81 19.21 20.71 0.69 0.55 0.54 0.35
PROF 0.08 5.37 −3.15 −4.86 18.57 11.14 11.69 16.12 0.72 0.49 0.70 0.43
LC 0.06 3.17 −6.56 −8.77 18.58 9.51 14.06 17.26 0.72 0.49 0.61 0.46
PARAM 3.00 8.90 2.56 2.64 19.38 13.78 11.15 14.47 0.73 0.48 0.73 0.54

Morning
BASE −0.79 11.49 −1.44 −3.51 32.79 31.13 19.83 19.34 0.46 0.39 0.39 0.52
PROF −17.57 −1.00 −9.98 −16.17 30.43 14.28 20.44 21.50 0.60 0.47 0.35 0.57
LC −17.58 −2.60 −10.59 −15.97 30.45 13.85 20.72 21.10 0.59 0.45 0.33 0.59
PARAM −15.66 2.21 −0.66 −3.87 29.27 15.18 17.09 14.44 0.58 0.50 0.46 0.62

Figure 8. Median diurnal cycle of NEE (a–d), biogenic CO2 tracer contribution (e–h) to the near surface CO2 mole fractions (i–l) at Xianghe
for the different simulation periods (columns). Different curves (colors) represent different sensitivity experiments PROF, LC and PARAM.
Observations are plotted in black in the bottom row.
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Table 6. Mean and standard deviation of the biogenic CO2 tracer at Xianghe for the different sensitivity experiments BASE, LC and PARAM,
per simulation period. “All” indicates all simulated hours (00:00–23:00 LT) were used to calculate the metrics, in contrast to “Afternoon”
(12:00–15:00 LT), “Night” (22:00–04:00 LT), and “Morning” (08:00–12:00 LT).

December 2018 March 2019 May 2019 July 2019

All
PROF 2.29± 2.67 6.25± 5.60 3.79± 9.35 8.07± 12.89
LC 2.28± 2.66 4.67± 4.19 2.15± 7.91 6.62± 10.04
PARAM 4.38± 4.91 9.49± 7.54 10.53± 10.09 17.24± 13.85

Afternoon
PROF 1.24± 1.72 3.34± 4.64 −2.62± 3.02 −3.19± 4.44
LC 1.23± 1.70 2.63± 3.60 −2.62± 4.08 −1.78± 3.51
PARAM 1.99± 2.91 6.20± 7.13 4.23± 3.11 6.23± 5.32

Night
PROF 3.03± 3.30 8.25± 5.01 9.91± 9.26 16.68± 9.92
LC 3.02± 3.28 6.05± 3.55 6.50± 8.38 12.77± 8.11
PARAM 5.96± 5.84 11.78± 6.57 15.62± 10.11 24.25± 11.18

Morning
PROF 1.88± 2.51 6.49± 6.78 0.42± 6.35 4.60± 9.35
LC 1.87± 2.50 4.89± 5.21 −0.19± 5.39 4.80± 7.92
PARAM 3.78± 4.90 9.70± 9.12 9.75± 8.73 17.00± 12.16

4 Discussion

4.1 Sector contributions: differences between in situ
CO2 and XCO2

In Sect. 3.2 we compared relative tracer contributions in the
WRF-GHG simulations for near-surface CO2 and column-
averaged XCO2, and found a notable difference in the bio-
genic contribution between the two. To analyze this differ-
ence, Fig. 9 presents mean vertical profiles of the simulated
CO2 tracers at Xianghe.

The profiles show that the dominant tracer signals in WRF-
GHG are limited to the lowest 4 km of the column. Panel (a)
reveals a large monthly variability in the vertical distribution
of the biogenic tracer. From May through September the bio-
genic signal at Xianghe is generally negative through much
of the column but positive in the lowest levels. Near-surface
values (below 200 m) are, on average, positive in all months
except August. This pattern is consistent with Fig. 4, which
shows a negative biosphere contribution in August for in situ
CO2 while XCO2 indicates a biospheric sink across May–
September. These vertical profiles indicate that the differ-
ence can be linked to two factors: the different sensitivities of
the measurement techniques and Xianghe’s location relative
to strong land sinks. In situ observations are typically more
sensitive to local fluxes (i.e. from urban areas and cropland),
which are a net source for most months (except August) as
calculated by VPRM (see Fig. 5). In contrast, column mea-
surements (XCO2) integrate the entire atmosphere and are
sensitive to fluxes on a larger scale: in this case the forested
mountains roughly 50 km north and 90 km east of Xianghe
(see Fig. 5), producing a sink over Summer.

Panel (b) of Fig. 9 shows mean profiles of all tracers av-
eraged over the full simulation period. Unlike the biogenic
tracer, the industry, residential, and energy tracers are posi-

tive at all heights and exhibit a strong near-surface maximum
that decays exponentially with altitude. Because these an-
thropogenic tracers do not change sign with height, their rela-
tive contributions are similar for both in situ CO2 and XCO2.

4.2 July XCO2 anomaly case study

A notable spike in XCO2 levels is observed between 20–
29 July (see Fig. 2a), diverging from the typical decreasing
trend of XCO2 from May to September. We will focus on
the model simulations between 7 July and 30 August 2019
to explain the causes of this XCO2 summer spike, as WRF-
GHG correlates well with the observations during this period
(correlation coefficient of 0.84).

As shown in Fig. 10a, the total simulated XCO2 in-
creases from 406.30± 1.97 ppm before the summer spike (7–
19 July) to 408.23± 1.67 ppm during the spike (20–29 July),
then decreases to 405.01± 1.63 ppm afterward (30 July–30
August). These values represent the mean and standard devi-
ation of all hourly WRF-GHG simulated XCO2 values dur-
ing each period. Figure 10 shows the simulated background
and tracer contributions during this period. Figure 10a shows
that the background XCO2 remains relatively constant in July
(406.65± 0.93 ppm), and decreases to 405.63± 1.19 ppm in
August. It further clearly indicates a negative contribution of
the tracers before and after the summer spike to a positive
enhancement during the spike period. Looking at the differ-
ent tracers in Fig. 10b, we see that it is mainly the biogenic
tracer that has a different behavior in the spike period com-
pared to the periods before and after. Thus, the increase in
XCO2 between 20–29 July is mainly linked to a weaker bio-
genic sink (−0.86± 1.04 ppm) compared to the periods be-
fore (−3.56± 1.44 ppm) and after (−2.19± 1.39 ppm).

Further analysis reveals that during the spike, a heatwave
with surface temperatures up to 39 °C occurred, together with
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Figure 9. Vertical distribution of simulated CO2 tracers in WRF-GHG at Xianghe up to 12 km altitude (a) at monthly scale for the biogenic
tracer and (b) annual scale for all tracers.

800 hPa winds predominantly from the west (see Fig. 10a and
c). The biogenic tracer also shows increased values across a
large vertical extent in the troposphere (Fig. 10c), indicat-
ing advection from other regions. Synoptic maps (Figs. A2
and A3) show that at the onset of the event, on 20 July 2019,
a warm air mass arrived from the northwest. This air mass,
originating from the Gobi Desert and grasslands in Inner
Mongolia, both areas that are characterized by sparse veg-
etation and elevated temperatures, carried a lack of biogenic
signal and coincides with the jump in the biogenic XCO2
tracer.

Additionally, the mean NEE around Xianghe, as calcu-
lated by VPRM, is slightly higher between 20 and 29 July
(average of −5941 mol km−2 h−1 over domain d03) com-
pared to the periods before and after (respectively−9153 and
−12 785 mol km−2 h−1). In VPRM, the respiration compo-
nent is linearly dependent on surface temperature, and the
gross ecosystem exchange also has a temperature depen-
dency representing the temperature sensitivity of photosyn-
thesis, with CO2 uptake decreasing at temperatures higher
than optimal (Mahadevan et al., 2008). Indeed, it has been
shown that extreme temperatures impact CO2 fluxes (Xu
et al., 2020; Ramonet et al., 2020; Gupta et al., 2021).

Therefore, we conclude that the spike was caused by an
atmospheric circulation anomaly resulting in the advection
of a warm air mass with high biogenic CO2 levels, followed
by locally reduced photosynthesis and increased respiration
due to the resulting hot temperatures.

4.3 Sensitivity of near-surface CO2 simulations to model
configuration choices

4.3.1 Emission height

In Sect. 3.4.1, we showed that applying vertical profiles
to anthropogenic emissions improved the near-surface CO2
simulations at Xianghe, substantially reducing the observed
nighttime overestimation in the BASE experiment. These
findings are consistent with Brunner et al. (2019) and Peng
et al. (2023), who highlighted the critical role of emission
height in determining near-surface CO2 mole fractions, par-
ticularly under weak mixing conditions. The strong impact
on nighttime simulations at Xianghe is likely driven by the
proximity of strong point sources (Fig. 5a, b), where the ef-
fective release height determines whether emissions remain
trapped below or mix above the shallow nocturnal boundary
layer.

Nevertheless, some discrepancies with observations re-
main. In May, for instance, BASE agrees better with ob-
servations than PROF, despite May being selected due to
poor agreement in the one-year BASE simulation. This ap-
parent contradiction reflects both the short (two-week) du-
ration of the sensitivity runs and the temporal variability of
model performance: the main mismatch in BASE occurred
in early May, which was not included in the experiments. A
full-year sensitivity study would better capture meteorologi-
cal variability and provide a more robust evaluation, but was
not feasible here. The poorer performance of PROF in the
second half of May, and the larger MBE in July, remain un-
explained, and suggest that further assessment is needed to
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Figure 10. Simulated time series of XCO2 at Xianghe from 7 July to 30 August 2019, with the spike period highlighted in all panels. Daily
mean (a) background tracer (cyan triangles) and total tracers (red diamonds) from WRF-GHG at Xianghe, and TCCON values (black dots).
Error bars represent the standard deviation of the daily mean. Daily mean 800 hPa wind direction is indicated by wind barbs at the bottom.
(b) Time series of different tracer contributions at Xianghe, with hourly values shown as thin lines and points for TCCON observation times.
(c) Color coded vertical profiles of the biogenic CO2 contributions (left y-axis) shown in red and blue, and surface temperature (right y-axis)
in black.

determine whether the vertical profiles from Brunner et al.
(2019) are appropriate for China and consistent with the sec-
toral and spatial patterns of the emission inventory used in
this study.

4.3.2 Land cover representation

Replacing the land-cover dataset with the Copernicus prod-
uct systematically reduced simulated NEE and nighttime
CO2 mole fractions at Xianghe. This weakening of the bio-
spheric signal is consistent with the larger fraction of non-
vegetated land in the Copernicus compared to SYNMAP,

leading to smaller VPRM-driven fluxes. The differences are
negligible in December and March, when biospheric activ-
ity is minimal. While implementing the Copernicus map
does not uniformly improve agreement with observations and
slightly worsens performance in some periods, it provides a
more realistic land-cover representation and is therefore rec-
ommended for future regional experiments.

4.3.3 VPRM parameterization

Applying the VPRM parameters from Glauch et al. (2025)
produces higher NEE, primarily due to larger α and β values
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that enhance respiration rates (Table A1). Gross ecosystem
exchange (GEE) remains similar between the two configu-
rations, indicating that the net effect is primarily driven by
increased respiration rather than changes in photosynthetic
uptake. Across all experiments and periods, the PARAM con-
figuration shows the closest agreement with observations,
though residual discrepancies suggest that additional model
errors remain.

A key limitation is the absence of a standardized VPRM
parameter set optimized for China. The only known regional
calibration, by Dayalu et al. (2018), introduces seasonal crop
subtypes but requires detailed, time-varying land-cover input
that is not readily available. Moreover, Seo et al. (2024) re-
ported that the parameter values adopted here (Li et al., 2020)
outperform those of Dayalu et al. (2018) over East Asia, sup-
porting our choice.

Recent studies also show that including soil moisture ef-
fects in VPRM can improve simulated NEE (Gourdji et al.,
2022; Segura-Barrero et al., 2025). However, implementing
such modifications would require additional region-specific
parameters and could introduce further uncertainty. While
the Glauch et al. (2025) parameter set reduces model–
observation errors, future work should focus on dedicated
VPRM calibration using multi-site eddy-covariance data to
develop parameter sets representative of Chinese ecosys-
tems.

4.3.4 Remaining sources of uncertainty

Several factors that were not explicitly tested in this study
may still contribute to the remaining biases in simulated near-
surface CO2. One potential source of uncertainty in many
regional modeling studies is the coupling between planetary
boundary layer (PBL) dynamics and biogenic CO2 fluxes, a
relationship often referred to as the atmospheric CO2 rectifier
effect (Larson and Volkmer, 2008). Since both processes are
driven by solar radiation, they interact nonlinearly through-
out the diurnal cycle: daytime CO2 minima result from en-
hanced turbulent mixing and photosynthetic uptake, whereas
nighttime maxima arise from stable stratification and ecosys-
tem respiration. Consequently, accurate simulations require
both realistic net ecosystem exchange (NEE) and reliable
PBL dynamics. However, in our case, the companion study
on CH4 did not reveal any systematic biases in the mean di-
urnal cycle, suggesting that PBL processes are reasonably
well represented here and unlikely to be the dominant cause
of the remaining CO2 discrepancies. Nevertheless, it is well
known that the choice of PBL schemes can have a substan-
tial influence on simulated tracer concentrations (Yu et al.,
2022; Kretschmer et al., 2014; Feng et al., 2019; Díaz-Isaac
et al., 2018), and uncertainties are generally amplified un-
der weak mixing conditions, such as during the night (Maier
et al., 2022). Minor deviations in modeled turbulence or noc-
turnal stability could therefore still contribute to the observed
nighttime biases.

Another contributing factor is the vertical representation
of the atmosphere near the surface. Since the observations
are collected at 60 m above ground, the simulated CO2 fields
were interpolated to this height. However, in our configu-
ration, the difference in simulated nighttime CO2 between
the two lowest model layers (about 50 and 64 m thick) can
reach 20 ppm. This implies that combining an interpolation
with too coarse a resolution may introduce errors of several
ppm. Increasing vertical resolution within the PBL would
help to reduce these artifacts. Overall, the accuracy of near-
surface CO2 simulations depends on the interplay between
several model components, including emission height pro-
files, land cover representation, biogenic flux parameteriza-
tion, and PBL scheme choice. Improving each of these as-
pects not only reduces biases but most of all enhances the
physical realism of the modeled processes, ultimately lead-
ing to more reliable simulations of surface–atmosphere CO2
exchanges.

5 Conclusions

This study is the second part of a broader investigation into
greenhouse gas variability and model performance at the Xi-
anghe site, following earlier work focused on CH4. Here, we
shift the focus to CO2, aiming to better understand the ob-
served variability through source attribution and model sim-
ulations. Using the WRF-GHG model, we performed a one-
year simulation of both surface and column-averaged CO2,
evaluated model performance against FTIR and in situ ob-
servations, and carried out sensitivity experiments to assess
the impact of key model settings.

Model evaluation against FTIR observations at Xianghe
shows that WRF-GHG is capable of capturing the temporal
variability in column-averaged CO2 (XCO2), with a correla-
tion coefficient of 0.7. However, a systematic bias was iden-
tified in the model’s background CO2 values from CAMS,
with a negative offset exceeding 2 ppm between Septem-
ber and May. After applying a bias correction based on
monthly mean CAMS–TCCON differences, the mean bias
error was reduced to −0.86 ppm. These findings underscore
the importance of accurate boundary conditions when simu-
lating XCO2, particularly due to the long atmospheric life-
time of CO2 and the relatively small contribution of regional
emissions to the total column. In our simulations, emissions
within the model domain contributed only ∼ 1.82 ppm to
XCO2, making the column signal highly sensitive to back-
ground mole fractions. Furthermore, the model successfully
captured a strong positive anomaly observed in July 2019, at-
tributed to the advection of a warm, CO2-rich air mass. This
case study illustrates the value of combining transport and
mole fraction diagnostics for interpreting episodic events in
column data and highlights the dominant role of synoptic me-
teorology in driving short-term variability in XCO2.
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For near-surface CO2 mole fractions, WRF-GHG shows
good agreement with afternoon observations at Xianghe,
achieving a correlation coefficient of 0.75 and a mean bias er-
ror of −2.44 ppm after bias correction. In contrast to XCO2,
near-surface CO2 was more strongly influenced by local
sources, with a mean tracer enhancement of 26.78 ppm, re-
sulting in a smaller relative importance of boundary condi-
tion errors. Nighttime mole fractions are consistently overes-
timated, with a mean bias of 7.86 ppm and a lower correla-
tion of 0.60. These discrepancies are reflected in the diurnal
cycle: while the model captures the overall structure driven
by planetary boundary layer dynamics, it overestimates the
daily amplitude of 22.1 ppm by 4.58 ppm. Likely causes in-
clude inaccuracies in NEE and the vertical distribution of an-
thropogenic emissions.

Additional sensitivity experiments show that applying ver-
tical emission profiles and a more recent land cover map can
reduce nighttime CO2 mole fractions and improve agreement
with observations. Adjustments to the VPRM vegetation pa-
rameters substantially affected near-surface mole fractions,
with differences up to 10 ppm, underscoring the critical role
of appropriate parameter selection–especially in the absence
of a standardized VPRM configuration for China.

Tracer analysis confirms that the industry and energy sec-
tors are the dominant contributors to CO2 levels at Xianghe,
while the biosphere plays a secondary, seasonal role. For
XCO2, the biosphere acts as a sink from April to September
(−0.77 ppm on average) and a weak source in the remain-
ing months (+0.22 ppm). At the surface, biospheric uptake
is only seen in August (−6.76 ppm), while respiration domi-
nates the rest of the year (+2.69 ppm on average). These dif-
ferences illustrate the greater local sensitivity of in situ mea-
surements compared to column observations and the varying
spatial influence of different source types.

Overall, this study demonstrates the value of using a mod-
eling framework like WRF-GHG to interpret both temporal
and sectoral variations in surface and column CO2 observa-
tions. It also highlights that model accuracy is strongly de-
pendent on appropriate configuration choices, including the
representation of boundary conditions, vertical emission pro-
files, and biogenic flux parameterizations. Addressing these
factors is essential for improving simulations and supporting
more accurate source attribution of observed CO2 variability.
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Appendix A: Additional tables and figures

Figure A1. Same as Fig. 2 but showing the original (not bias corrected) model values.

Table A1. VPRM parameter values for different vegetation classes.

Evergreen Deciduous Mixed
forest forest forest Shrubland Savanna Cropland Grassland Wetland

Li table PAR0 745.306 514.13 419.5 590.7 600 1074.9 717.1 392.666
λ 0.13 0.1 0.1 0.18 0.18 0.085 0.115 0.1377
α 0.1247 0.092 0.2 0.0634 0.2 0.13 0.0515 0.0779
β 0.2496 0.8430 0.27248 0.2684 0.3376 0.542 −0.0986 0.0902

Glauch table PAR0 521.9 500.8 451.1 444.1 960.8 443.4 399.7
λ 0.13 0.13 0.14 0.1 0.09 0.22 0.12
α 0.21 0.23 0.19 0.08 0.17 0.27 0.3
β 1.15 1.26 0.93 0.56 1.14 1.63 −0.39

Table A2. Same as Table 5 but for XCO2.

MBE RMSE CORR

Dec Mar May Jul Dec Mar May Jul Dec Mar May Jul

All
BASE −3.15 −2.15 −1.45 0.37 4.07 2.36 1.8 1.36 0.6 0.67 0.38 0.59
PROF −3.55 −2.22 −1.56 0.02 4.29 2.41 1.89 1.09 0.63 0.69 0.35 0.71

LC −3.56 −2.27 −1.44 0.14 4.29 2.45 1.8 1.07 0.63 0.67 0.33 0.73
PARAM −3.56 −1.8 −0.44 1.6 4.29 2.13 1.14 1.97 0.63 0.66 0.39 0.71

https://doi.org/10.5194/acp-26-899-2026 Atmos. Chem. Phys., 26, 899–921, 2026



916 S. Callewaert et al.: Part 2: Sensitivity of carbon dioxide (CO2) simulations to critical model parameters

Figure A2. Maps of eastern China at 800 hPa for 19–23 July 2019,
07:00 UTC (15:00 LT). Panels in the first column show potential
temperature (K, in color) with wind barbs and geopotential height
contour lines at 800 hPa (contour interval every 20 m); panels in the
second column show biogenic XCO2 enhancements (ppm, in color)
with the same wind vectors and contours; the third column shows
the NEE. The Xianghe site is marked by a black star.

Figure A3. Same as Fig. A2 but over the period 24–28 July 2019.
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Figure A4. Dominant VPRM vegetation category in WRF-GHG domain d03 (3 km) for (a) 1-km SYNMAP and (b) 100-m Copernicus
Dynamic Land Cover Collection 3 (epoch 2019). The black cross indicates the location of the Xianghe site.
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