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Abstract. Surface ozone, a major air pollutant with important implications for air quality, ecosystems, and cli-
mate, shows long-term trends shaped by both anthropogenic and climatic drivers. Here, we developed a machine
learning-based approach, namely the fixed emission approximation (FEA), to decouple the effects of meteoro-
logical variability and anthropogenic emissions on summertime ozone trends in China under the clean air actions.
Anthropogenic emissions drove an approximately +23.2± 1.1 µg m−3 increase in summer maximum daily 8 h
average ozone during 2013–2017, followed by an approximately −4.6± 1.5 µg m−3 decrease between 2017 and
2020 in response to strengthened emission controls. In contrast, meteorological anomalies, including heatwaves
and rainfall conditions, emerged as substantial drivers of ozone variability during 2020–2023. Satellite-derived
formaldehyde-to-nitrogen dioxide ratios revealed widespread urban volatile organic compounds-limited regimes
for ozone production, with a shift toward nitrogen oxides-limited sensitivity under influence of heatwaves. Ex-
tending the FEA framework to assess long-term climate influences from 1970 to 2023, we find that sustained cli-
mate warming has driven a substantial increase in urban summertime ozone in China. These results demonstrate
that climate change was increasingly offsetting the benefits of emission reductions and highlight the need for
integrated ozone mitigation strategies that jointly address emission controls and climate adaptation in a warming
world.
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1 Introduction

Surface ozone (O3) is a critical air pollutant that poses sig-
nificant threats to human health (Knowlton et al., 2004),
ecosystems (Agathokleous et al., 2020), and climate (Fish-
man et al., 1979; Hauglustaine et al., 1994). It forms through
complex photochemical reactions involving nitrogen oxides
(NOx) and volatile organic compounds (VOCs) in the pres-
ence of sunlight (Jacob, 2000; Wang et al., 2017), exhibit-
ing a nonlinear response to its precursors (Guo et al., 2023;
Liu and Shi, 2021; Wang et al., 2023a). Controlling ozone
pollution remains a global environmental challenge. In re-
cent years, China has implemented a series of national clean
air actions, most notably the Air Pollution Prevention and
Control Action Plan (2013–2017) and the Three-Year Action
Plan for Winning the Blue-Sky War (2018–2020) (Geng et
al., 2024; Zhang et al., 2019; Zheng et al., 2018), that have
markedly improved air quality, particularly by reducing fine
particulate matter (PM2.5) (Geng et al., 2024; Zhang et al.,
2019). However, surface ozone levels have continued to rise
in many regions, raising concerns over the complex drivers of
ozone trends and highlighting the need for scientific attribu-
tion to guide effective mitigation strategies (Li et al., 2019a;
Liu et al., 2023; Wang et al., 2023a; Weng et al., 2022).

Long-term ozone variability is jointly influenced by an-
thropogenic emissions and weather conditions as well as
regional climate (Hallquist et al., 2016; Li et al., 2019b;
Wang et al., 2022a). While emission controls directly reg-
ulate precursor abundance, climate change modulates ozone
through chemical feedbacks, meteorological dynamics, and
biosphere–atmosphere interactions (Ma and Yin, 2021; Xue
et al., 2020). Over the past century, global surface tem-
peratures have substantially increased relative to the pre-
industrial baseline (1850–1900), driven largely by human ac-
tivities (IPCC, 2021). In such a warming world, extreme cli-
mate anomalies – such as heatwaves and persistent rainfall
shifts – were expected to be intensified (Li et al., 2025a, b).
These events were increasingly recognized as critical mod-
ulators of ozone variability through their impacts on photo-
chemistry and precursor emissions (Gao et al., 2023; Pu et
al., 2017; Wang et al., 2022a).

Quantifying the respective roles of anthropogenic emis-
sions and meteorological variability in driving ozone trends
is therefore essential for evaluating the effectiveness of clean
air policies (Li et al., 2019a; Liu et al., 2023). Previous stud-
ies have reported rapid increases in surface ozone concentra-
tions in urban cluster regions in China – such as the Beijing–
Tianjin–Hebei (BTH) and Yangtze River Delta (YRD) – dur-
ing the Phase I (2013–2017), with increases of approximately
28 % and 18 %, respectively (Chen et al., 2020; Li et al.,
2019a; Liu et al., 2023). In contrast, a modest decline in
ozone levels was observed during 2018–2020, largely at-
tributed to emission reductions (Li et al., 2021; Liu and
Wang, 2020b; Wang et al., 2024b, 2023a). However, since
2021, observations indicate a renewed increase in ozone con-

centrations (Fig. S1 in the Supplement). These fluctuations
suggest oscillating trends over the past decade, the drivers of
which remain poorly constrained.

Two main approaches have been applied to attribute air
pollution trends: chemical transport models (CTMs) (Li et
al., 2021; Liu et al., 2023; Liu and Wang, 2020a) and data-
driven statistical frameworks (Li et al., 2019a, b, 2020). The
CTMs simulate atmospheric composition based on emission
inventories, meteorological fields, and chemical mechanisms
(Ivatt et al., 2022; Liu and Shi, 2021; Liu et al., 2023; Ye
et al., 2024). They allow attribution of trend components
to emissions or meteorology, and can also resolve sector-
specific impacts. However, these models face challenges, in-
cluding uncertainties and temporal lags in emission inven-
tories. Statistical models, on the other hand, rely on obser-
vational datasets and predictor-response relationships with-
out requiring explicit emissions or chemical schemes (Li et
al., 2019a, b, 2020; Zhai et al., 2019). With the growing
availability of atmospheric big data, machine learning mod-
els have emerged as useful tools for trend attribution (Dai et
al., 2023; Grange et al., 2018; Vu et al., 2019; Zhang et al.,
2025; Zheng et al., 2023). For instance, Grange et al. (2018)
developed a random forest-based framework to isolate mete-
orological influences on particulate matter. Similarly, Wang
et al. (2023a) used an enhanced extreme gradient boosting
(XGBoost) model to analyze spatial and temporal ozone pat-
terns in China from 2010 to 2021, confirming that emission
reductions played a key role in recent declines. Other recent
efforts have extended statistical models to long-term assess-
ments of air pollution drivers under climate change (Wang et
al., 2022b).

Here, we developed a machine learning-based model
framework – fixed emission approximation (FEA) – to quan-
tify the relative contribution of anthropogenic emissions
and meteorological conditions in shaping summertime sur-
face ozone trends in China. Applying the FEA to nation-
wide observational data from 2013 to 2023, we identi-
fied three phases of ozone evolution corresponding to the
major clean air actions. We further analyzed short-term
ozone anomalies associated with extreme weather events,
such as the 2022 heatwave and seasonal rainfall. To char-
acterize ozone production regimes, we integrated satellite-
derived formaldehyde-to-nitrogen dioxide (HCHO / NO2,
FNR) ratios from the tropospheric monitoring instrument
(TROPOMI), revealing spatiotemporal shifts in ozone for-
mation sensitivity across China. Finally, we extend our FEA
analysis to evaluate climate-driven ozone trends from 1970
to 2023, using historical meteorological reanalysis data. Col-
lectively, these analyses provide an integrated understanding
of how anthropogenic and climatic factors jointly shape sur-
face ozone dynamics under a warming climate.

Atmos. Chem. Phys., 26, 851–867, 2026 https://doi.org/10.5194/acp-26-851-2026



J. Fang et al.: Tracking surface ozone responses to clean air actions under a warming climate 853

2 Data and methods

2.1 Data sources and methodology overview

Figure 1 provides an overview of the data analysis and
methodological framework employed in this study. We first
integrated multi-dimensional datasets, including hourly sur-
face air pollutant concentrations, meteorological reanalysis
fields, and satellite remote sensing data. Hourly surface ob-
servations of ozone, NO2, carbon monoxide (CO), and PM2.5
were accessed from the National Environmental Monitor-
ing Center of China through the open website https://air.
cnemc.cn:18007/ (last access: 20 May 2024). Hourly me-
teorological data with a spatial resolution of 0.25°× 0.25°
were sourced from the ERA5 reanalysis dataset provided by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) and are available for download at https://cds.
climate.copernicus.eu (last access: 20 March 2025). Detailed
variables are listed in Table S1. The time variables – hour
(hour of day) and month (month of year) – are used as emis-
sion surrogates to capture regular diurnal and seasonal vari-
ations in anthropogenic activity. A similar strategy is widely
applied in previous studies about long-term trends in air pol-
lutants (e.g., Grange et al., 2018; Vu et al., 2019) to sepa-
rate short-term cyclical emission variability from long-term
trends. For 2013–2014, the surface MDA8 ozone data were
obtained from the Tracking Air Pollution in China (TAP)
dataset (Geng et al., 2021), which can be downloaded from
http://tapdata.org (last access: 20 May 2024). The TROPOMI
on the Sentinel-5P satellite provides global continuous obser-
vation data for two indicators of ozone precursors: NO2 and
HCHO column concentrations (Lamsal et al., 2014; Shen et
al., 2019). The FNR was used as a proxy for VOC / NOx re-
activity and as a diagnostic indicator of ozone formation sen-
sitivity (Sillman, 1995) to explain and verify the impact of
extreme weather and anthropogenic emissions on ozone. De-
tails of the ozone sensitivity diagnostic method are provided
in Sect. S1.

2.2 Machine learning-based FEA approach

In this study, we develop a machine learning-based FEA
approach to assess the impacts of meteorological factors
and anthropogenic emissions on the year-round variations in
ozone concentrations (Fig. 1). First, a regression model is
constructed using the random forest algorithm to relate ozone
concentrations to temporal emission surrogates and to mete-
orological parameters at multiple atmospheric levels. These
temporal emission surrogates, including month and hour,
represent short-term regular emission patterns (e.g., diurnal
cycles), thereby enabling the model to isolate the long-term
emission-driven component of ozone changes (Grange et al.,
2018; Meng et al., 2025; Shi et al., 2021; Vu et al., 2019).
The meteorological parameters include 18 distinct variables
at different altitudes (see Table S1). It should be noteworthy

that surface air pollutant observations for each city represent
multi-site averages rather than data from a single monitor-
ing station, which reduces the influence of local represen-
tativeness uncertainty. The meteorological data are obtained
from the nearest grid cell corresponding to each city, ensur-
ing spatial consistency between the pollutant and meteoro-
logical datasets. This approach was similar to the method-
ologies widely adopted in previous studies (Shi et al., 2021;
Wang et al., 2025; Yao et al., 2024; Zheng et al., 2023). Our
modeling strategy involves building and predicting models
for individual cities and for each year from 2015 to 2023,
which helps in minimizing the uncertainty caused by surface
heterogeneity. Due to the lack of available observational data
for many cities in 2013 and 2014, we did not develop mod-
els for these two years. In our approach, 80 % of the dataset
is used for model training, while the remaining 20 % is re-
served for testing. We perform ten-fold cross-validation and
assess model performance using seven statistical metrics, as
listed in Table S2.

Following the construction of the machine learning mod-
els for individual cities and years, we introduce the FEA ap-
proach. The key principle of FEA is the assumption that the
total emissions of ozone precursors remain unchanged from
the baseline year. Specifically, we establish hourly-resolution
models for the baseline year (i) during the summer season
(June to August) as a reference for anthropogenic emissions,
represented by the pink solid line in Fig. 1. These models
are then applied to predict ozone concentrations under the
meteorological conditions of the prediction year (j ), while
holding the emission levels constant at those of the baseline
year (i), as shown by the blue solid line in Fig. 1. The differ-
ence between the predicted values (Predi) and the observed
values (OBSi) for the baseline year (i) represents the model
residuals (RESi), as shown in Eq. (1). The difference in ob-
served MDA8 ozone concentrations between baseline year i

and prediction year j is driven by the differences in meteoro-
logical conditions METi(j ) and anthropogenic emission con-
trols ANTi(j ) (Eq. 2).The prediction result Predi(j ) obtained
by applying the model trained with data from year i to the
meteorological conditions of year j , the difference between
Predi(j ) and Baseline (Predi) is driven by METi(j ), while the
difference between Predi(j ) and the observed levels in year
j (OBSj ), minus the RESi , yields the ozone variation driven
by (ANTi(j )). Therefore, METi(j ) and ANTi(j ) can be quan-
tified and calculated using Eqs. (3)–(4).

OBSi = Predi +RESi, (1)
OBSi(j ) =METi(j )+ANTi(j ), (2)
METi(j ) = Predi(j )−Predi, (3)
ANTi(j ) = OBSj −Predi(j )−RESi, (4)

The difference in observed MDA8 ozone concentrations be-
tween two different prediction years (j1, j2) is driven by the
differences in meteorological conditions (1METi(j1,j2)) and
anthropogenic emission controls (1ANTi(j1,j2)) (Eq. 5). The

https://doi.org/10.5194/acp-26-851-2026 Atmos. Chem. Phys., 26, 851–867, 2026

https://air.cnemc.cn:18007/
https://air.cnemc.cn:18007/
https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
http://tapdata.org


854 J. Fang et al.: Tracking surface ozone responses to clean air actions under a warming climate

Figure 1. Schematic framework of data analysis and methodology. This study integrates multi-dimensional datasets, including ground-based
observations, meteorological reanalysis, and satellite remote sensing. A fixed emission approximation (FEA) approach, developed based on
the random forest (RF) model, is employed to quantitatively disentangle the contributions of meteorological conditions (MET) and anthro-
pogenic emissions (ANT) to ozone trend variations, and its performance is compared with the conventional meteorological normalization
method. The SHAP technique is further applied to assess the influence of extreme weather events, such as heatwaves (HW) and prolonged
rainfall (PR). The satellite-derived formaldehyde-to-nitrogen dioxide ratio (FNR) is used to diagnose ozone production sensitivity, to explain
and verify the impact of extreme weather and anthropogenic emissions on ozone. Finally, the FEA framework is extended to evaluate the
long-term impacts of climate change on ozone trends since 1970.

term 1METi(j1,j2) represents the changes in meteorological
conditions and can be calculated by the difference between
the predicted values, Predi(j1) and Predi(j2), for the corre-
sponding years (Eq. 6). Similarly, the value of 1ANTi(j1,j2),
representing the change in anthropogenic emissions between
the two years j1 and j2, can be therefore calculated using
Eq. (7). By performing these calculations, we can isolate
and quantify the contributions of meteorological conditions
and anthropogenic emission controls to the observed ozone
trends. We used a cross-matrix research method to assess
the uncertainty of FEA, with specific formulas available in
Sect. S2 in the Supplement.

1OBS(j1,j2) =1METi(j1,j2)+1ANTi(j1,j2), (5)
1METi(j1,j2) = Predi(j2)−Predi(j1), (6)

1ANTi(j1,j2) = ANTi(j2)−ANTi(j1)

=
(
OBSj2−Predi(j2)−RESi

)
−

(
OBSj1−Predi(j1)−RESi

)
=

(
OBSj2−OBSj1

)
−

(
Predi(j2)−Predi(j1)

)
, (7)

Model performance was first evaluated through ten-fold
cross-validation, revealing high predictive skill between ob-
served and predicted MDA8 ozone levels during 2015–
2023 in the BTH regions (Fig. S2). The index of agree-
ment (IOA) ranged from 0.96 to 0.97, with correlation co-
efficients (R) between 0.93 and 0.95. Root mean square er-
rors (RMSE) and normalized mean bias (NMB) varied from
16.9 to 21.9 µg m−3 and 8 % to 25 %, respectively, indicat-
ing high model accuracy. Nationally, the model yielded R

values of 0.88–0.91 and IOA of 0.93–0.95, with errors re-
maining within acceptable ranges (Tables S3–S8). To as-
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sess uncertainty stemming from interannual model training
variability, we applied a matrix-based resampling approach
(see Sect. S2). As shown in Fig. 2, the relative difference
in residuals ranged from −9 % to 3 %, and remained within
±12 % for all regions – supporting the robustness of the FEA
method. Notably, inclusion of time-related variables could
reduce model uncertainty compared to simulations exclud-
ing these predictors. The average uncertainty decreased by
approximately 2 %–4 % at the regional-mean level (Fig. S3).

2.3 Weather normalization analysis

To compare the FEA method with other commonly used sta-
tistical approaches, we also applied the widely adopted me-
teorological normalization technique based on the RF algo-
rithm (Grange et al., 2018; Vu et al., 2019). This approach
constructs a regression model that relates air pollutant con-
centrations to meteorological parameters and emission surro-
gate indicators (i.e., time variables such as unix time, day of
year, day of month, and hour of day) (Grange et al., 2018;
Vu et al., 2019). Once the model is trained, air pollutant
concentrations are predicted by randomly resampling meteo-
rological variables from long-term historical meteorological
datasets, thereby generating a new ensemble of predictions
(Vu et al., 2019). These predictions are made under consis-
tent meteorological conditions, enabling the isolation of me-
teorological influences from anthropogenic emission effects
on air pollutant trends. The resulting weather-normalized
pollutant concentrations (Fig. 1) represent the levels ex-
pected under average meteorological conditions, thus reflect-
ing the impact of emission changes alone. In this study, the
meteorological normalization follows this established frame-
work, with meteorological variables randomly sampled from
the long-term dataset spanning 1970–2023. Each normal-
ization process involves 1000 iterations, and the arithmetic
mean of these iterations’ simulated values was adopted as the
final normalized result. The alignment between FEA-based
and weather-normalized trends (Fig. S4) affirms the robust-
ness of the FEA framework.

2.4 Quantification of extreme weather-driven changes in
ozone

An unprecedented and persistent heatwave struck central and
eastern China during the summer of 2022, with the YRD
experiencing the most severe impacts (Wang et al., 2023b;
Zhang et al., 2023). This event has been identified as the
longest-lasting and most intense heatwave since at least 1961
(Mallapaty, 2022). In contrast, the Yangtze-Huaihe region
is climatologically prone to sustained extreme precipitation,
where prolonged rainfall episodes frequently occur during
the East Asian summer monsoon (Yin et al., 2020). Together,
the extreme heatwave (HW) in 2022 and recurrent prolonged
rainfall (PR) events provide unique and physically realistic

atmospheric conditions to investigate the impacts of typical
weather extremes on surface ozone.

To quantify the contributions of extreme meteorological
conditions to ozone variability, we applied the SHapley Ad-
ditive exPlanations (SHAP) method (Lundberg et al., 2020)
to interpret predictions from the random forest model. SHAP
assigns an importance value to each input feature k, rep-
resenting its marginal contribution to the model-predicted
MDA8 ozone. The PR period was defined as 15 June to 15
July for each year, while the remaining period from June to
August was classified as the non-prolonged rainfall (NPR)
period. The HW event in 2022 was defined as 16 July to 31
August, with the same calendar period in other years desig-
nated as non-heatwave (NHW) conditions.

SHAP values were calculated for all input features during
the PR and NPR periods, as well as during the HW and NHW
periods, respectively. The relative changes in SHAP values
(1SHAP) between these conditions were used to assess the
responses of MDA8 ozone to the rainy season or the 2022
heatwave weather conditions, as per the following equations:

1SHAPk = SHAPPR−SHAPNPR (8)
1SHAPk = SHAPHW−SHAPNHW (9)

2.5 FEA-based assessment of climate change impacts
on ozone

To evaluate the long-term impact of climate change on sur-
face ozone concentrations across China from 1970 to 2023,
we extended the framework of our machine learning-based
FEA method. The core idea of this analysis is to isolate the
influence of long-term meteorological variability on ozone
while assuming fixed anthropogenic emissions. Given the
availability of relatively complete and continuous hourly
ozone observations and meteorological data from 2015 to
2023, this period was used to construct nine emission base-
line scenarios. Following the modeling protocol described
in Sect. 2.2, nine independent random forest models were
trained for each city and scenario, with each year from 2015
to 2023 serving as an emissions reference. Model inputs in-
cluded hourly ozone observations, key meteorological pre-
dictors, and time-related variables (hour of day and month of
year). The trained models were then applied to historical me-
teorological reanalysis data from 1970 to 2023 to simulate
ozone trends under fixed emissions (Fig. 1), yielding nine in-
dependent ozone trajectories, each reflecting the influence of
long-term meteorological variability under a different fixed-
emissions assumption. While the choice of emission base-
line may affect the absolute magnitude of simulated ozone, it
does not alter the primary objective: assessing the sensitivity
of surface ozone to meteorological drivers over multidecadal
timescales (Lecœur et al., 2014; Leung et al., 2018; Wang et
al., 2022b). This approach could capture the climate-induced
ozone signal while adopting the common assumption that
emissions are not themselves influenced by climate change
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Figure 2. Uncertainty assessment of the FEA method. The uncertainty for the FEA method is calculated using the approach described in
Sect. S2. The x-axis represents the years used for model training, and the y-axis represents the years predicted by the trained model. The
diagonal line in each sub-panel represents the changes in the residuals of the models.

– a simplification consistent with prior attribution studies
(Dang and Liao, 2019; Leung et al., 2018; Shen et al., 2017;
Wang et al., 2022b). For comparison, we also estimated the
impact of anthropogenic emission changes on ozone concen-
trations during 2015–2023 using the same FEA methodol-
ogy and the complete hourly dataset for model training. This
dual-track analysis enables a clear distinction between the
impacts of climate variability and emission mitigation on ob-
served ozone trends.

To examine the sensitivity of urban ozone pollution to cli-
mate variability under different potential atmospheric con-
ditions (e.g., oxidation capacity) and its possible evolution
under global warming, we defined three representative re-
gional scenarios based on typical ozone pollution charac-
teristics in China (Fig. 3a): a high-pollution scenario for
BTH (BaseBTH), a moderate-pollution scenario for YRD
(BaseYRD), and a low-pollution scenario for Pearl River
Delta (PRD) (BasePRD). These scenarios allow assessment
of ozone trends and climate impacts under fixed emissions
across three distinct atmospheric conditions.

3 Results and Discussion

3.1 Spatiotemporal variation of summertime ozone

Figure 3 presents the spatial distribution of the average sum-
mertime (2018–2023) maximum daily 8 h average (MDA8)
ozone, surface NO2, and TROPOMI NO2, HCHO column

concentrations across China, along with the locations of
the country’s five typical city clusters: BTH, Fenwei Plain
(FWP), YRD, Sichuan Basin (SCB), and PRD. Across these
five city clusters, the average summer ozone concentrations
ranged from 88.9 to 161.3 µg m−3 – substantially exceeding
the 43.0 µg m−3 threshold associated with ecosystem produc-
tivity loss (Gong et al., 2021) and the World Health Organi-
zation (WHO, 2021) recommended peak seasonal average of
60 µg m−3. TROPOMI satellite observations of NO2 column
concentration show notably elevated concentrations over the
five city clusters, particularly in the BTH, YRD, and FWP,
which align with surface NO2 distribution patterns and con-
firm the scale of anthropogenic NOx emissions in these re-
gions (Zheng et al., 2021). TROPOMI satellite observations
of HCHO column concentrations similarly reveal these city
clusters as hotspots for VOC emissions (Fig. 3d). These con-
current high levels of NO2 and HCHO suggest a strong pho-
tochemical ozone pollution potential, as the abundant pre-
cursors in these urban clusters could drive substantial ozone
production during the summer months.

Figure 4 presents the interannual variations in MDA8
ozone concentrations during summertime across China,
with a focus on the five city cluster regions. During
the Phase I (2013–2017), the average nationwide MDA8
ozone increased significantly (p < 0.01), rising from 95.5
to 118.0 µg m−3. This growth was especially pronounced in
the BTH and FWP regions, where the concentrations in-
creased by approximately 38 % and 41 %, respectively. In
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Figure 3. Spatial distribution of summertime MDA8 ozone, surface NO2, and TROPOMI NO2, HCHO across major city clusters in China.
The panels represent the average MDA8 ozone, surface NO2, and TROPOMI NO2, HCHO column concentrations for 354 cities in China
during the summertime (June–August) from 2018 to 2023. The corresponding five regions includes BTH (37–41° N, 114–118° E); YRD
(30–33° N, 118.2–122° E); SCB (28.5–31.5° N, 103.5–107° E); PRD (21.5–24° N, 112–115.5° E) and FWP (33–35° N, 106.25–111.25° E,
and 35–37° N, 108.75–113.75° E).

contrast, ozone increases were more modest in the YRD
(∼ 11 %), SCB (∼ 15 %), and PRD (∼ 16 %) regions, respec-
tively. These results were consistent with the previous studies
(Li et al., 2021; Liu and Wang, 2020a, b; Wang et al., 2023a).
Corresponding to the implementation of more stringent emis-
sion controls on NOx and VOCs emissions during the Phase
II (Geng et al., 2024; Liu et al., 2023), a moderate national
decrease in MDA8 ozone was observed, with concentrations
declining to 109.0 µg m−3 from 2017 to 2020. The declines
during this period were most notable in FWP (−16 %) and
YRD (−15 %), while BTH (−6 %), SCB (−11 %), and PRD
(−4 %) also showed reductions compared to their concen-
tration peaks observed in 2017. However, the MDA8 ozone
rebounded, reaching 118.4 µg m−3 in 2023 – comparable to
its 2017 peak – with a particularly sharp increase during the
summer of 2022. From 2021 to 2023, MDA8 ozone con-
centrations rose by 2.8 µg m−3 in BTH, 3.1 µg m−3 in FWP,
16.1 µg m−3 in YRD, and 18.5 µg m−3 in SCB, respectively.

Figure S1 further illustrates the spatiotemporal evolution
of summertime MDA8 ozone in China from 2013 to 2023.
On average, approximately 68 % of the cities exceeded the
WHO air quality guideline of 100 µg m−3 for the MDA8
ozone. Elevated ozone levels were primarily observed in
densely populated and economically developed regions. Spa-
tially, ozone hotspot regions expanded between 2013 and

2017 (Fig. S1a–e), followed by contraction during 2018–
2020 (Fig. S1f–i). However, this progress stalled in 2021.
A sharp reversal was observed in 2022, with widespread in-
creases in MDA8 ozone (Fig. S1k). These changes could be
closely linked to emission control measures and meteorolog-
ical conditions, which will be further discussed in Sect. 3.2
and 3.3.

3.2 Anthropogenic emission drivers of ozone trends

To disentangle the relative impacts of anthropogenic emis-
sions and meteorological variability on observed ozone
trends, we applied the machine learning-based FEA frame-
work described in Sect. 2.2. As illustrated in Fig. 5,
anthropogenic emissions were the dominant driver of
ozone increases during 2013–2017, contributing an aver-
age rise of approximately 23.2± 1.1 µg m−3 nationwide.
The most pronounced increases occurred in the FWP
and BTH (45.0± 2.0 and 42.1± 2.0 µg m−3, respectively),
whereas the PRD exhibited a relatively modest enhance-
ment (13.4± 1.6 µg m−3), reflecting its predominantly NOx-
limited photochemical regime versus VOC-limited regimes
in other regions (Ren et al., 2022). As shown in Fig. S5,
the precursor gases NO2 and CO exhibited regionally dis-
tinct decreasing trends, partially explaining the spatial het-
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Figure 4. Interannual trends of summertime MDA8 ozone across China (2013–2023). (a) The seasonal variations of MDA8 ozone during
the summer months (June, July, and August) over China. (b–f) The average trend across the five city cluster regions in China: BTH, FWP,
YRD, SCB, and PRD, respectively. The summer months are defined according to meteorological seasonality, encompassing June, July,
and August. In the violin plots, hollow diamond markers denote the mean, while solid diamond markers represent the median. The Mann-
Kendall test and Sen’s slope estimator were employed to assess the statistical significance and rate of change in the monthly average MDA8
ozone concentrations. The p value represents the significance level from the Mann-Kendall test, which is used to determine the statistical
significance of the trend in the data.

erogeneity of ozone changes. The MDA8 ozone decreased
by 10.5± 2.0 µg m−3 in BTH and 10.4± 3.0 µg m−3 in FWP,
with smaller declines in YRD (−4.8± 3.8 µg m−3), SCB
(−2.8± 2.4 µg m−3), and PRD (−6.6± 1.4 µg m−3) between
2017 and 2020 (Fig. 5). These trends were overall consistent
with those derived using independent statistical approaches
(Wang et al., 2023a). The COVID-19 pandemic (January–
April 2020) introduced an unprecedented perturbation to an-
thropogenic activity, leading to sharp declines in industrial
production, energy consumption, and transportation (Shi and
Brasseur, 2020; Zheng et al., 2021). National emissions of
SO2, NOx , PM2.5, and VOCs were estimated to have de-
creased by 0.37 Tg (12 %), 0.87 Tg (13 %), 0.25 Tg (10 %),
and 1.07 Tg (12 %), respectively, relative to the same period
in 2019 (Geng et al., 2024). Despite these reductions, MDA8
ozone concentrations increased by 1.7–2.3 µg m−3 across
BTH, FWP, YRD, and SCB, while a slight decrease occurred

in PRD (Fig. S6). Overall, ∼ 79 % of monitored cities ex-
perienced ozone increases, with a national mean enhance-
ment of 2.1± 1.3 µg m−3 (Fig. S7). In the post-pandemic pe-
riod (2020–2023), concentrations of NO2, CO, and PM2.5
stabilized or declined more gradually (Fig. S5), and the
contribution of anthropogenic emissions to ozone variabil-
ity weakened considerably (Fig. S8). Regionally, emission-
driven changes ranged from −1.2 to +2.6 µg m−3 in BTH,
−1.6 to +4.0 µg m−3 in FWP, −4.7 to +7.4 µg m−3 in YRD,
−3.6 to +3.0 µg m−3 in SCB, and −3.8 to +7.7 µg m−3 in
PRD. These results indicate that while emission controls ini-
tially yielded substantial ozone mitigation benefits during the
Phase II, their effectiveness has gradually diminished, un-
derscoring the need for more targeted and region-specific
emission control strategies under evolving photochemical
regimes.
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Figure 5. Anthropogenic and meteorological drivers of ozone trends from 2013 to 2023. Changes in summertime MDA8 ozone concentra-
tions were decomposed into contributions from anthropogenic emissions and meteorological variability using the FEA framework. Results
reflect ensemble estimates based on multiple baseline years (2015–2023) for emissions. The interquartile range, with values in parentheses
denoting the 25th and 75th percentiles across all baseline scenarios.

Satellite retrievals of tropospheric NO2 and HCHO from
TROPOMI (Figs. S9–S10) further reveal evolving ozone pro-
duction chemistry. NO2 columns exhibited strong east-west
gradients, with eastern China maintaining levels five times
higher than the west. Between 2018 and 2023, NO2 columns
over the North China Plain (NCP) declined from 4.13× 1015

to 3.85× 1015 molec. cm−2, while HCHO remained stable
until 2021, followed by a sharp increase in 2022. The spa-
tial pattern of temperature anomalies between heatwave and
non-heatwave periods (Fig. S11) reveals strong positive dif-
ferences in the YRD and SCB, consistent with enhanced bio-
genic and anthropogenic VOC emissions under extreme heat
(Qin et al., 2025; Tao et al., 2024). By 2023, HCHO concen-
trations had returned to pre-heatwave levels. To diagnose the
evolving chemical sensitivity of ozone production, we exam-
ined the spatiotemporal evolution of the HCHO / NO2 ratio
(Sect. S1). Figure S12 shows that this ratio exhibited region-

ally distinct transitions from 2018 to 2023, reflecting shifts
in photochemical regimes. Figure 6 summarizes the relative
contributions of VOC-limited, NOx-limited, and transitional
regimes across the five key regions. In BTH, NOx-limited
areas accounted for ∼ 82 % of the domain in 2018 and re-
mained above 45 % thereafter, while VOC-limited regions
declined from ∼ 14 % to ∼ 2 %. In FWP, summertime ozone
formation was largely controlled by NOx-limited and tran-
sitional regimes. The YRD underwent a notable shift from
VOC- to NOx-limited chemistry, with VOC-limited fractions
decreasing from ∼ 35 % in 2018 to ∼ 22 % in 2023, partic-
ularly during 2022 when extreme heat amplified VOC emis-
sions and photochemical activity (Qin et al., 2025; Tao et al.,
2024). The SCB region consistently exhibited strong NOx

limitation (> 75 %), whereas the PRD showed a gradual ex-
pansion of the transitional regime alongside a modest con-
traction of VOC-limited regions. These shifts in photochem-
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Figure 6. Trends in the distributions of ozone production sensitivity regimes. Fractions of VOC-limited, NOx -limited, and transitional ozone
sensitivity regimes across five key regions during the summertime (June to August) from 2018 to 2023, based on the FNR analysis. (a–e)
The trend across the five city cluster regions in China during the summer months (June, July, and August): BTH, FWP, YRD, SCB, and PRD,
respectively. (f) The overall trends for all five regions.

ical sensitivity correspond well with the ozone decrease ob-
served during the Phase II emission reductions. Spatial dis-
tributions of ozone formation sensitivity during the COVID-
19 lockdown (Fig. S13) reveal that most of China was in
a transitional regime, with major urban clusters remaining
VOC-limited and only limited areas in southern China being
NOx-limited. This spatial pattern aligns with the observed
widespread ozone increases during the lockdown (Fig. S7).
These findings highlight that ozone production chemistry in
China was shaped by the complex interplay between emis-
sion reduction efforts and the rising frequency of meteoro-
logical extremes under a warming climate.

3.3 Meteorological impact on ozone variation

Figure 5 shows the interannual meteorological contribu-
tions to summertime MDA8 ozone across different emission-
control phases. During the Phase I, meteorology exerted rel-
atively weak influences on ozone variability, with contri-
butions ranging from −4.8 to +3.9 µg m−3 – far smaller
than those from anthropogenic emission changes. In con-
trast, meteorological anomalies became a decisive fac-
tor from 2017 to 2020, driving substantial ozone reduc-
tions. Ozone decreases attributable to meteorology reached
−14.4± 3.0 µg m−3 in the FWP, −15.9± 3.8 µg m−3 in

the YRD, and −11.1± 2.4 µg m−3 in the SCB, explaining
58± 12 %, 77± 18 %, and 80± 17 % of the total ozone de-
cline, respectively. A notable shift occurred from 2020 to
2023, when the influence of extreme meteorological events
increasingly dominated ozone variability. In the summer
of 2022, persistent heatwaves across eastern and south-
ern China (Mallapaty, 2022; Wang et al., 2023b) trig-
gered sharp ozone increases of +20.8± 3.6 µg m−3 in the
YRD and +22.1± 3.2 µg m−3 in the SCB, reflecting the en-
hanced photochemical activity under high-temperature and
intense solar radiation conditions. The following summer
(2023) featured anomalously heavy rainfall, resulting in
sharp ozone suppression (−17.8± 2.3 µg m−3 in the YRD
and −9.7± 3.3 µg m−3 in the SCB). This reduction coin-
cided with a remarkable increase in precipitation, i.e., 102 %
in YRD and 35 % in SCB (Fig. S14), indicating that rainy
meteorological conditions may have suppressed ozone pro-
duction.

To identify the dominant meteorological drivers, we an-
alyzed Gini importance scores derived from the RF model
across 18 predictor variables (Fig. S15). Temperature (T )
emerged as the most influential predictor in the BTH and
FWP regions, while shortwave solar radiation (SR), rela-
tive humidity (RH), and 850 hPa zonal wind (u850) were
most important in the YRD. In the PRD, ozone variability
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was primarily governed by temperature and transport-related
indices, including meridional winds at different altitudes.
These findings are consistent with the climatological contrast
between northern continental and southern coastal regimes:
in northern China, stagnant anticyclonic conditions (Gong
and Liao, 2019) and strong solar radiation promote photo-
chemical production (Bao et al., 2025), whereas in southern
regions, high humidity and convective rainfall could tend to
suppress ozone by reducing actinic flux and enhancing re-
moval of precursors(Lu et al., 2019).

Partial dependence analysis (Fig. S16) further illustrates
the nonlinear responses of ozone to key meteorological fac-
tors (T , RH, and SR) for representative cities in each cluster,
revealing clear regional contrasts. In Beijing (BTH), ozone
concentrations show the strongest positive response to T

(Fig. S16a), consistent with the enhancement of reaction ki-
netics and biogenic VOC emissions under hot conditions.
This behavior reflects the thermodynamic coupling between
surface heating, boundary-layer expansion, and photochem-
ical production. In Nanjing (YRD), ozone was more sensi-
tive to solar radiation than to temperature (Fig. S16c), high-
lighting the dominant role of actinic flux in controlling rad-
ical production during warm and dry conditions. Consistent
with these findings, Yang et al. (2024) reported that high-
temperature and low-RH conditions over the NCP and YRD
could enhance photochemical ozone formation, with chemi-
cal production dominating during peak pollution periods. In
the SCB, both T and RH exhibited strong influences, while
ozone variability was shaped primarily by T and large-scale
circulation patterns in the PRD associated with subtropical
maritime flow and typhoon incursions from the Northwest
Pacific (Chen et al., 2024; Wang et al., 2024a, 2022a).

To further quantify these relationships, we applied SHAP
(SHapley Additive exPlanations) analysis to evaluate the me-
teorological influence of the HW and the PR events in the
Yangtze-Huaihe region between 2015 and 2023 (Sect. 2.4).
As shown in Fig. S17, the HW events were associated
with strong positive SHAP values in southeastern coastal ar-
eas, especially the YRD and SCB, driven by elevated SR
and T . Mean SR during the HW periods was substantially
higher than during the NHW periods (Fig. S18), increasing
photochemical activity through increased radical generation
and faster reaction rates. Conversely, PR events produced
consistent negative SHAP contributions across all regions
(Fig. S19), reflecting the combined effects of reduced pho-
tolysis, increased humidity, and efficient wet scavenging on
ozone production (He and Carmichael, 1999). A multi-year
comparison (Fig. 7) highlights the opposing effects of key
meteorological variables – including RH, T , boundary layer
height (BLH), total precipitation (TP), and surface pressure
(SP) – on MDA8 ozone. The trend in 1SHAP values under
high-humidity conditions from 2015 to 2023 (Fig. S20) fur-
ther confirms the model’s ability to capture the suppressive
effects of wet weather conditions on ozone formation.

3.4 Reshaping distributions of ozone by climate change
and emission controls

To assess the long-term influence of climate change on sur-
face ozone concentrations, we applied the FEA framework
to simulate summertime ozone trends over the period 1970–
2023. In this analysis, anthropogenic emissions were held
constant at their 2015–2023 summertime levels, while in-
terannual variations in meteorological variables were in-
troduced using historical reanalysis data. This design iso-
lates the climate-driven component of ozone trends while
assuming that emission trajectories are independent of cli-
mate change – a simplification aligned with prior attribu-
tion frameworks (Wang et al., 2022b). The impact of an-
thropogenic emission controls was estimated by comparing
observed ozone concentrations with FEA-predicted values
during 2015–2023, thereby quantifying the residual effect of
emissions under fixed meteorology.

As shown in Fig. 8, under the 2015–2023 emission lev-
els, climate change has exerted a statistically significant
(p < 0.05) positive influence on urban summertime ozone
concentrations across China, resulting in a nationwide in-
crease of approximately 0.06 µg m−3 yr−1 since 1970. All
five major urban regions displayed upward trends, with
the most pronounced increase observed in the BTH and
SCB at 0.12 µg m−3 yr−1. Three sensitivity simulations (see
Sect. 2.5 and Fig. S21) confirm this robustness: trend
slopes range from 0.11–0.14 µg m−3 yr−1 in BaseBTH (high-
pollution scenario), 0.05–0.10 µg m−3 yr−1 in the BaseYRD
(moderate-pollution scenario), and 0.03–0.10 µg m−3 yr−1 in
the BasePRD (low-pollution scenario). Despite regional dif-
ferences in chemical regimes or pollution levels, the con-
sistent upward tendencies underscore the pervasive climatic
amplification of ozone formation. These results emphasize
that climate change acts as a systematic driver of ozone
growth across diverse atmospheric environments, reinforcing
the need to embed climate resilience within emission control
strategies. Spatial correlations between climate-driven ozone
increases and temperature changes (Fig. S22) further confirm
that warming is the dominant contributor to long-term ozone
enhancement. In particular, the correlation coefficients be-
tween ozone trends and temperature anomalies reached 0.90
(BTH), 0.89 (FWP), 0.72 (YRD), and 0.93 (SCB), indicating
a strong temperature dependence of climate-induced ozone
formation in these regions. The PRD showed a weaker corre-
lation, likely due to its unique subtropical maritime climate
and higher humidity and cloud cover, which tend to suppress
photochemical ozone production (Yang et al., 2019). The
right panel of Fig. 8 depicts summertime ozone trends from
2015 to 2023 under the combined influence of anthropogenic
emissions, derived from the FEA method. Ozone concen-
trations rose across all regions between 2015 and 2018, de-
clined modestly during 2018–2020, and rebounded thereafter
in most regions except the PRD.
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Figure 7. Meteorological impact on predicted ozone concentrations under heatwave and rainy weather conditions. (a) The differences in
SHAP values (1SHAP) between heatwave and non-heatwave periods in the Yangtze-Huaihe region during summer 2022. (b) The 1SHAP
between prolonged rainfall periods and non-prolonged rainfall periods in the same region from 2015 to 2023. Box plots show the distribution
of 1SHAP across cities; the center line indicates the median, boxes denote the interquartile range (25th–75th percentiles), and the whisker
line extends to one standard deviation.

Figure 8. Impact of climate change and emission controls on ozone trends. Left panels show ozone trends attributable to long-term climate
change from 1970 to 2023, simulated under fixed emission scenarios using the FEA framework. Right panels depict ozone trends from 2015
to 2023, reflecting the impact of anthropogenic emission controls. Each trajectory represents results based on a distinct emissions baseline
year. Shaded grey areas indicate the interquartile range (25th–75th percentiles), solid red lines denote trend estimates, and light red shading
marks the 5th–95th percentile confidence intervals. Statistical significance and trend slopes were assessed using the Mann-Kendall test. More
details of the sensitivity tests are provided in Fig. S18.
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These findings are consistent with future projections that
anticipate more frequent high-ozone episodes under contin-
ued warming (Li et al., 2023). Recent analyses (Yang et al.,
2024) show that the frequency of high-temperature and low-
humidity conditions during 2000–2019 was markedly higher
than in 1980–1999, suggesting that ozone pollution in both
the NCP and YRD has intensified under historical climate
change. Indeed, while national emission controls curbed
ozone growth after 2018, a post-2020 rebound has emerged,
implying that the climatic penalty on ozone is beginning to
offset emission gains. The extreme 2022 heatwave exempli-
fied this effect, substantially enhancing photochemical activ-
ity and shifting ozone sensitivity from VOC-limited to tran-
sitional or NOx-limited regimes. Although reductions in an-
thropogenic precursor emissions have improved ozone con-
trol efficiency, the warming-induced enhancement of ozone
increasingly interferes with – and in some regions may par-
tially offset – the air-quality gains achieved through emission
reduction efforts.

4 Conclusions and implications

In this study, we developed a machine learning-based FEA
framework to disentangle and quantify the respective roles
of anthropogenic emissions and meteorological drivers in
shaping ozone trends during 2013–2023. With a national-
level prediction uncertainty of approximately 6 %, the FEA
method provides a computationally efficient and scalable tool
for diagnosing atmospheric variability across large spatial
and temporal domains. However, the current model frame-
work did not explicitly resolve grid-scale spatial heterogene-
ity, vegetation feedbacks, or land-use dynamics, which may
influence the ozone prediction. In addition, the sensitivity
of the results to spatial resolution need further investigation
through coupled applications of machine learning and chem-
ical transport models.

Our results revealed that increased anthropogenic emis-
sions were the dominant driver of the sharp rise in summer-
time MDA8 ozone concentrations during the Phase I, con-
tributing an average increase of 23.2± 1.1 µg m−3. In con-
trast, the strengthened clean air actions during the Phase II
– particularly the synergistic control of NOx and VOCs –
led to measurable reductions in MDA8 ozone, with national-
average declines of 4.6± 1.5 µg m−3 from 2017 to 2020.
These improvements were especially evident in regions such
as BTH and FWP, where ozone formation was highly sensi-
tive to VOCs. However, the impact of emission reductions di-
minished considerably during the recent period (2021–2023).
This stagnation underscores the urgent need for more tar-
geted, region-specific emission control strategies that address
the shifting photochemical sensitivity of ozone formation
regimes.

Using the SHAP attribution analysis, we further quantified
the influence of meteorological extremes on ozone variabil-
ity. Record-breaking heatwaves in 2022 enhanced ozone con-
centrations by up to +5.8 µg m−3, while prolonged pluvial
episodes, particularly during the East Asian monsoon sea-
son, suppressed ozone by as much as −15.2 µg m−3. These
results highlight the dominance of short-term meteorologi-
cal extremes in shaping ozone air quality under a warming
climate. Complementary satellite-based FNR diagnostics re-
vealed that from 2018 to 2023, summertime ozone forma-
tion was predominantly influenced by NOx-limited and tran-
sitional regimes, while VOC-limited areas experienced a de-
cline.The 2022 heatwave induced regime shifts in regions
such as the YRD, where intensified VOC emissions and el-
evated temperatures drove transitions toward NOx-limited
conditions. These findings emphasize the need for dynamic,
region-specific assessments of ozone sensitivity to guide ef-
fective mitigation strategies.

To assess the climate penalty on ozone, we extended the
FEA framework to simulate long-term trends from 1970
to 2023 by fixing emissions and allowing meteorological
variables to evolve with observed climate trends. Our find-
ings show that climate change has contributed to a signif-
icant upward trend in urban summertime ozone, averaging
0.06 µg m−3 yr−1, with particularly strong increases in the
BTH and SCB. Good correlations between the modelled
ozone and surface temperature (r = 0.72–0.93) across major
urban clusters indicated that climate warming exerts a per-
sistent control on the long-term evolution of ozone. While re-
ductions in precursor emissions have improved ozone control
efficiency, the direct enhancement of ozone by rising tem-
peratures increasingly interferes with, and in some regions
may partially offset, the air-quality benefits achieved through
emission mitigation. Together, these findings highlight that
effective ozone management in a warming world will require
integrated strategies that jointly address emission reductions
and climate adaptation.
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