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Supporting Text
S1. Ozone sensitivity diagnosis with FNR
Ozone concentrations show a significant nonlinear relationship with their precursors, which can be

classified into three types: the VOC-limited regime, the NOy-limited regime, and translational. The ratio
of HCHO to NO, (FNR) serves as a reactive weighting of VOC/NOy and is one of the diagnostic
indicators of ozone-sensitive intervals (Sillman, 1995), this is particularly suited to the analysis of
satellite data and has been widely used in related research (Jin et al., 2020; Jin and Holloway, 2015;
Wang et al., 2021). Based on the framework described by Ren et al. (2022) and Jin et al. (2015), we
developed a diagnostic approach better suited to our dataset, and this study on ozone sensitivity diagnosis
for the summer periods of 2018-2023 is based on the following criteria:

FNRavg < 3.0 and FNRavg + FNRsd < 4.0 : VOC — limited

FNRavg > 3.0 and FNRavg — FNRsd > 2.0 : NOx — limited

Otherwise: translational

where FNRavg and FNRsd denote the time-mean and standard deviation of the FNR for the target

time period.

S2. Uncertainty analysis for the FEA method

To assess the uncertainty associated with the FEA method, we applied a cross-matrix validation
approach, training models for each year as the baseline year (i.c., using each year as a reference for
emissions) to calculate the relative contribution of anthropogenic emissions in different years.
Specifically, we alternated the role of each year as the model training year (i.e., the fixed emission
reference year) and the prediction year. As illustrated in Eqgs. S1 and S2, for any two years, n and m, can
both serve as either the model training year or the model prediction year. For instance, 4ANTy )
represents the scenario where year 7 is used as the model training year and year m as the model prediction
year, while AANT,,;,) denotes the reverse, with year m as the model training year and year n as the

model prediction year.

AANT, gy = OBS,, — Predy,m) — RES, (S1)

AANT, () = OBS,, — Pred iy — RESy, (S2)



From Eq. (S1), the observed data for year m (OBS,,) can be expressed as the sum of Pred, ),
RES,, and AANT, ). Theoretically, if there were no uncertainty in the use of data from different years
for model training, then AANT, )y = —AANTp, (. Therefore, the uncertainty u,y) associated with

the FEA method can be represented by Eq. S3:

(Predy(m)+RESn—(0BSy—Predy, (ny~RESm))~0BSn
Un@m) = 0BSm

(S3)

S3. COVID-19 lockdown-driven computation based on the FEA method

Wuhan, where the outbreak of the virus was first detected, issued a lockdown policy on January 23,
2020, followed by outbreaks in other Chinese cities within the next few days. A strict national quarantine
lasting one to two months was then imposed. Most Chinese cities gradually relaxed their quarantine
measures starting in April, and Wuhan reopened on April 8th. Therefore, we consider the first four
months of 2020 as the COVID-19 Lockdown period (LD) by referring to the definition of COVID-19
lockdown by Geng et al. (2024). The difference between the observed MDAS ozone concentration in LD
(Obs,p) and the corresponding model prediction (Pred; p)) is scaled by the ratio of the samples in LD
(nyp) to the total number of samples in 2020 (nyy;) (i.e., Cp = n;p/nyuy). This value represents the
combined contribution of short-term unconventional emission reductions and long-term conventional
emission control policies during the COVID-19 lockdown. The impact of long-term conventional
emission reductions is estimated by the difference between observed and predicted MDAS ozone
concentrations during non-blockade periods (Obsy,p, — Pred(nip)), scaled by C,p. Thus, the relative
contribution of the COVID-19 lockdown to the MDAS ozone trend (COVID(;,p)) can be calculated by
Eq. S4:

COVID i 1py = Cup X (0BSyp — P(irpy) — Cup X (OBSyip — P(inin)) (S4)



Supporting Tables
Table S1. Overview of the characteristics of the ERAS variables used in the analysis of this study.

Abbreviations Description

T2m Temperature at 2m (K)

SR Shortwave solar radiation (W/m?)

SP Sea level pressure (Pa)

BLH Boundary layer height (m)

TP Total precipitation (m)

RH Surface relative humidity (%)
TCC Total cloud cover

uU10 Zonal wind at 10m (m s™)
V10 Meridional wind at 10m (m s™)
U850 Zonal wind at 850 hPa (m s™)
V850 Meridional wind at 850 hPa (m s™!)
W850 Vertical velocity at 850 hPa (Pas™)
U650 Zonal wind at 650 hPa (m s™)
V650 Meridional wind at 650 hPa (m s™!)
W650 Vertical velocity at 650 hPa (Pas™)
U500 Zonal wind at 500 hPa (m s™)
V500 Meridional wind at 500 hPa (m s™!)
W500 Vertical velocity at 500 hPa (Pas™)




Table S2. Definitions of the 7 statistical indicators used in this study.

No. Statistics Definition Note
(abbreviation)
L. Mean Absolute Error 1 n 3
MAEz—ZIPi—OL-I Hg m
(MAE) ned
2. Root mean square n 2 s
RMSE = i=1(Pi — 0y) ug m-
error(RMSE) n
3. Normalized Mean 1 MSE
_ Unitless, 0 < NMSE <1
NMSE =— ) —— > V= =
Squared S n L VAR(P)
Error(NMSE) =1
4. Correlation ~100; — 5) (P — 13) .
R = Unitless, -1 <R <1
=2 ~.2
coeffcient(R) \/Z?=1(Pi - P) ¥iL.(0:-0)
5. 1<
; 3
Mean bias (MB) MB = HZ(PE _ 01) Hg m
i=1
6. : m.(P;—0)
Normalized mean _ &i=1\"i i
NMB ===sa 5 * 100 -100% < NMB < +o0
bias(NMB)
7. L1 (P, — 0)?

Index of Agreement 10A=1—

_ — 2
i=1(IP; = 0| +|0; — 0)
(I0A)

Unitless, 0 <IOA <1




Table S3. Ten-fold cross-validation results of RF models for national input datasets.

0O; MAE RMSE NMSE R MB NMB I0A
2015 13.8 20.9 0.06 0.88 0.07 21 0.93
2016 13.7 20.4 0.06 0.89 0.05 20 0.94
2017 14.3 21.3 0.05 0.90 0.06 19 0.95
2018 14.8 21.8 0.05 0.90 0.06 16 0.94
2019 14.1 20.7 0.05 0.90 0.02 17 0.94
2020 12.9 19.1 0.05 0.90 0.03 16 0.94
2021 13.2 19.2 0.05 0.90 0.01 15 0.94
2022 12.7 18.8 0.04 0.91 -0.004 13 0.95
2023 13.0 18.8 0.04 0.91 -0.02 12 0.95

Table S4. Ten-fold cross-validation results of RF models for BTH input datasets.

0O; MAE RMSE NMSE R MB NMB I0A
2015 14.9 19.9 0.04 0.93 0.01 17 0.96
2016 15.0 20.2 0.04 0.94 0.09 21 0.96
2017 16.2 21.5 0.03 0.94 0.02 17 0.97
2018 16.7 21.9 0.03 0.94 0.09 12 0.96
2019 15.3 20.2 0.03 0.94 -0.04 12 0.97
2020 13.6 18.0 0.02 0.94 -0.06 10 0.96
2021 14.0 18.4 0.03 0.94 -0.02 11 0.96
2022 12.6 16.9 0.02 0.95 -0.06 0.97
2023 12.7 16.9 0.02 0.95 -0.12 0.97

Table S5. Ten-fold cross-validation results of RF models for FWP input datasets.

03 MAE RMSE NMSE R MB NMB I0A
2015 11.6 15.7 0.03 0.94 0.04 13 0.96
2016 12.9 17.5 0.03 0.93 0.05 14 0.96
2017 14.8 19.8 0.03 0.95 0.07 14 0.97
2018 15.0 19.9 0.03 0.94 0.06 14 0.96
2019 13.8 18.2 0.03 0.95 0.12 15 0.97
2020 13.0 17.4 0.03 0.94 -0.02 17 0.97
2021 14.1 18.8 0.03 0.94 0.04 14 0.96
2022 12.6 16.9 0.02 0.95 -0.1 13 0.97
2023 12.4 16.6 0.02 0.95 0.02 10 0.97




Table S6. Ten-fold cross-validation results of RF models for YRD input datasets.

0O; MAE RMSE NMSE R MB NMB I0A
2015 17.2 26.6 0.09 0.85 0.11 27 0.91
2016 16.6 24.2 0.07 0.87 0.07 20 0.93
2017 17.0 24.5 0.06 0.89 0.06 20 0.94
2018 16.7 23.9 0.06 0.9 0.08 16 0.94
2019 16.3 22.7 0.05 0.9 0.09 18 0.94
2020 15.6 22.4 0.07 0.87 0.12 21 0.92
2021 14.9 21.5 0.06 0.9 0.02 16 0.94
2022 16.1 22.2 0.05 0.89 0.12 13 0.94
2023 15.7 21.8 0.05 0.9 -0.04 15 0.94

Table S7. Ten-fold cross-validation results of RF models for SCB input datasets.

0O; MAE RMSE NMSE R MB NMB I0A
2015 21.8 31.2 0.14 0.72 0.06 39 0.83
2016 233 33.0 0.15 0.72 0.08 44 0.83
2017 24.3 34.1 0.15 0.72 0.04 48 0.83
2018 24.2 343 0.14 0.71 0.03 34 0.82
2019 23.4 33.2 0.15 0.72 0.05 37 0.83
2020 20.9 29.3 0.13 0.73 0.04 31 0.83
2021 20.7 29.0 0.11 0.75 0.07 26 0.85
2022 21.0 29.6 0.09 0.77 0.02 24 0.86
2023 20.8 29.3 0.10 0.75 0.01 21 0.85

Table S8. Ten-fold cross-validation results of RF models for PRD input datasets.

03 MAE RMSE NMSE R MB NMB I0A
2015 9.3 14.5 0.05 0.94 0.11 17 0.96
2016 11.5 18.0 0.06 0.93 0.11 20 0.95
2017 9.6 16.1 0.07 0.93 0.06 21 0.96
2018 12.2 18.4 0.06 0.92 0.11 23 0.95
2019 10.8 16.3 0.06 0.93 0.07 21 0.95
2020 7.7 12.3 0.04 0.95 -0.03 14 0.97
2021 9.8 14.8 0.05 0.93 -0.004 14 0.96
2022 8.7 13.5 0.04 0.94 0.09 13 0.96
2023 9.5 14.0 0.05 0.93 0.05 14 0.96
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Figure S1. Spatial distribution of MDAS ozone from 2013 to 2023. a-f display the mass concentrations

of MDAS ozone in 354 cities across China during the summertime months (June-July-August) from 2013

to 2023. 1 illustrates the average MDAS ozone concentration over the 11-year period.
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Figure S2. Model performance evaluation. Results of ten-fold cross-validation comparing observed
and predicted values of the RF models for each year from 2015 to 2023 in the BTH region, using this

region as an example.
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Figure S6. Driving factors of MDAS ozone from 2013 to 2023. Changes in annual MDAS ozone

concentrations were decomposed into contributions from anthropogenic emissions, meteorological

variability , and the COVID-19 lockdown using the FEA framework. Results reflect ensemble estimates

based on multiple baseline years (2015-2023) for emissions. The interquartile range, with values in

parentheses denoting the 25th and 75th percentiles across all baseline scenarios.
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Figure S7. Distribution of the relative contribution of the COVID-19 lockdown to MDAS ozone in

Chinese cities. The quantified results in the figure were derived using the formula in Text S3.
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Figure S8. Anthropogenic and meteorological drivers of ozone trends from 2020 to 2023. Changes

in summertime MDAS ozone concentrations were decomposed into contributions from anthropogenic

emissions and meteorological variability using the FEA framework. Results reflect ensemble estimates

based on multiple baseline years (2015-2023) for emissions. The interquartile range, with values in

parentheses denoting the 25th and 75th percentiles across all baseline scenarios.
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Figure S13. Ozone formation sensitivity regimes during COVID-19. Spatial distribution of ozone
formation sensitivity regimes in China from January to April 2020 during the COVID-19 pandemic. The

hollow triangles represent the geographical coordinates of five city cluster regions in China.
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Figure S14. Interannual variation in total precipitation. Total precipitation in the SCB and YRD
regions from June to August 2020 to 2023.
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Figure S15. Predicting the relative importance of characteristics. The RF model has built-in

importance (mean reduced impurity) for each predicted feature in each of the five typical regions.
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Figure S16. Partial dependence of ozone on 7, RH, and SR for representative cities. Panels show
the 3D-dependence plots of MDAS ozone with RH, 7, and SR for representative cities in BTH, FWP,
YRD, and PRD, including MDAS ozone-RH-7, MDAS ozone-RH-SR, and MDAS ozone-SR-7.

23



Latitude (°)

55

50
45
40
35
30
25
20
15

2022 Heatwave

80 90 100 110
Longitude (°)

120

130

140

)
‘w Br) enjea gyHSV

N}

o

(
€

&
S

Figure S17. Impact of the 2022 heatwave on MDAS8 ozone. Total relative contribution of

meteorological conditions to MDAS8 ozone during the 2022 heatwave period (from 16" July to 31%

August).
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Figure S18. Comparison of solar radiation between the HW and NHW periods. Temporal and spatial

distribution of daytime (10:00-17:00) mean solar radiation during the HW and NHW periods.
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Figure S19. Impact of the prolonged rainfall season on MDAS ozone. Total rainfall (a), and total

relative contribution of meteorological conditions to MDAS ozone (b) for 354 cities in China during the

rainy season (from 15" June to 15" July) in the PR season during 2015-2023.
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Figure S20. Impact of the prolonged rainfall season on ozone concentrations. a shows interannual
variations in mean daily precipitation in the Yangtze-Huaihe region during the PR period. b presents

relative contributions of meteorological conditions to MDAS ozone from 2015 to 2023.
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Figure S21. Sensitivity simulation tests for different regions. Three representative regional scenarios
based on the characteristics of ozone pollution in China: the high ozone pollution scenario for BTH
(BaseBTH), the moderate ozone pollution scenario for YRD (BaseYRD), and the low ozone pollution
scenario for PRD (BasePRD). The figure evaluates trends in ozone pollution and climate impacts under

different fixed anthropogenic emissions and atmospheric oxidative states.
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Figure S22. Correlation between summertime ozone and mean surface temperature. Changes in
mean surface temperature and changes in mean ozone concentration driven by climate change over the
period 1970 to 2023 (June-August). Correlation coefficients (r) between ozone and mean surface
temperature for different regions are given in each panel.
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