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Abstract. Previous studies on net ozone production rates (PO3) and their sensitivities to precursors relied on
limited in-situ data, often coarse and uncertain chemical transport models (CTMs), and ozone indicators like the
formaldehyde-to-nitrogen dioxide ratio (FNR). However, FNR fails to fully capture PO3’s complex relationships
with pollution, light, and water vapor. To address this, we refine the satellite-based PO3 product from Souri et
al. (2025) with key advancements: (i) a deep neural network to parametrize high-dimensional non-linear ozone
chemistry without the need for empirical linearization of atmospheric conditions, (ii) incorporation of water va-
por, (iii) improved error characterization, and (iv) the application of a finer CTM to dynamically convert column
retrievals into near-surface mixing ratios. Our PO3 sensitivity maps surpass traditional FNR-based assessments
by quantifying sensitivity magnitudes — factoring in photolysis rates and water vapor — with greater spatial in-
formation. Our new product provides daily near-clear sky PO3 and sensitivity maps using bias-corrected OMI
(2005-2019, 0.25° x 0.25°) and TROPOMI (2018-2023, 0.1° x 0.1°), with values aligning within 10 %. High
PO; rates (> 8 ppbvh~!) appear in urban and biomass-burning regions under strong photochemical activity,
including during a heatwave in the northeastern U.S. Photolysis rates are the dominant factor dictating the sea-
sonality of PO3 magnitudes and sensitivities. The stability and long-term records of OMI retrievals (2005-2019)
enable us to provide the first global maps of PO3 linear trends showing a surge of > 30 % over China, the Middle
East, and India, while a reduction in the eastern U.S., southern Europe, and several regions in Africa.

itself. The first component provides insights into the positive

To mitigate tropospheric ozone pollution, a pervasive trace
gas that impacts human health, climate, and crop productiv-
ity (Fleming et al., 2018; Mills et al., 2018; Gaudel et al.,
2018), it is essential to quantify the spatiotemporal varia-
tions of two primary components: (i) the sensitivity of the
chemical net production rates of ozone (PO3) to its two main
precursors, nitrogen oxides (NO, = NO + NO») and volatile
organic compounds (VOCs), and (ii) the magnitude of PO3

and negative contributions of these precursors to POz, which
are typically categorized as NO,-sensitive (where PO3 is in-
fluenced mainly by NO,), VOC-sensitive (where PO3 is af-
fected primarily by VOCs), and transitional regimes (where
POj3 is responsive to both NO, and VOCs) (Kleinman et al.,
2002; Sillman and He, 2002; Duncan et al., 2010). The latter
component is crucial for understanding how locally produced
ozone, in conjunction with advected or diffused ozone, can
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lead to high-ozone events (e.g., Kleinman et al., 2002, 2005;
Sullivan et al., 2019).

Creating global maps of POz and its sensitivity at spa-
tiotemporal scales relevant to air quality policies is a chal-
lenge. Unique instruments can directly measure PO3 by cal-
culating the difference in ozone molecules from air samples
drawn through two distinct tubes — one exposed to sunlight
and the other shielded by an ultra-violet (UV) filter (Ca-
zorla and Brune, 2010; Sadanaga et al., 2017; Sklaveniti
et al., 2018). However, these instruments suffer from vari-
ous interferences, such as heterogeneous chemistry or photo-
enhanced loss of ozone within the tubes, and they are limited
to sparse super sites that restrict spatial variability. Similarly,
box-model simulations of PO3, which are observationally
constrained by intensive atmospheric composition measure-
ments, are also limited by sparse aircraft sampling (Cazorla
et al., 2012; Ren et al., 2013; Mazzuca et al., 2016; Souri et
al., 2020a; Schroeder et al., 2020; Brune et al., 2022; Wolfe
et al., 2022; Souri et al., 2023a). Currently, our understand-
ing of the global spatiotemporal variability of PO3 mainly
relies on chemical transport models, which can possess sig-
nificant uncertainties such as those associated with transport,
emissions, and dry deposition. Moreover, they may lack the
spatial resolution necessary to capture the non-linear dynam-
ics associated with NO, and thus, ozone chemistry (Valin et
al., 2011; Vinken et al., 2011; Yu et al., 2016).

The “gold standard” approach to determine three-
dimensional PO3 within a process-based framework involves
running a high-resolution chemical transport model, with
prognostic inputs constrained by observations. This approach
falls into the realm of an inversion/data assimilation frame-
work (Bocquet et al., 2015). Numerous studies have aimed
to constrain various model prognostic inputs, including NO,
and VOCs emissions and/or concentrations, using aircraft
and satellite remote sensing retrievals (e.g., Stavrakou et
al., 2009, 2016; Souri et al., 2016; Bauwens et al., 2016;
Miyazaki et al., 2020; Opacka et al., 2025). Notably, Souri et
al. (2020b) developed a non-linear joint inversion of NO, and
VOC:s to better constrain PO3, thereby shedding light on the
impact of recent emission regulations in East Asia on the dif-
ferent chemical pathways governing the formation and loss
of surface ozone. However, these studies face a fundamental
challenge: discrepancies between simulated fields and obser-
vations are often blamed solely on emissions. In fact, such
discrepancies can also stem from various model components,
including chemical mechanisms, dry deposition, photolysis
rates, vertical diffusion, and transport. Given the limited ob-
servations available for constraining all of these uncertain pa-
rameters, the optimization problem becomes grossly under-
determined. This means we lack sufficient information to
uniquely determine the optimal values of these parameters al-
together. Additionally, the underlying physics of these mod-
els is inherently uncertain, necessitating the explicit propa-
gation of model physics errors into our final estimates or the
execution of ensemble model realizations to stochastically
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vet the credibility of the top-down estimates across differ-
ent realizations. Conducting these ensemble optimizations at
fine-scale grid boxes around the globe is prohibitively com-
putationally intensive.

At the expense of sacrificing the full capability of a
physics-based model, we can take advantage of a statisti-
cal approach to predict PO3 using several observable vari-
ables with improved computational efficiency. Chatfield et al.
(2010) made an early effort to parameterize the gross produc-
tion of ozone via NO 4+ HO» through a multivariable power
law function that depended on formaldehyde (HCHO), nitro-
gen dioxide (NO3), UV photolysis rates, and ambient tem-
perature. Their model successfully reproduced over 60 % of
the variance observed in the ozone gross production rates.
Souri et al. (2023a) introduced a bilinear equation based on
HCHO x NO; and HCHO/NO,, which explained more than
80 % of the variance in simulated PO3. Building on these
findings, Souri et al. (2025) developed a regularized piece-
wise linear regression to parameterize PO3 using retrospec-
tive aircraft observations and a set of variables, including
HCHO/NO,, HCHO, NO», jO'D (photolysis frequency for
O'D + hv), and jNO, (photolysis frequency for NOy+hv).
Their algorithm successfully reproduced over 90 % of the
variance in observationally-constrained POz with minimal
biases across moderately to extremely polluted regions.

These parameterizations present a unique opportunity to
globally map POs, as their primary inputs can be largely con-
strained by well-characterized satellite retrievals with exten-
sive horizontal coverage (Gonzalez Abad et al., 2019). For
this reason, Souri et al. (2025), compiled various satellite ob-
servations including TROPOspheric Monitoring Instrument
(TROPOMI) surface albedo, HCHO, and NO;, columns in
conjunction with pre-computed model fields to populate the
inputs to their parametrization, allowing them to generate the
first-ever maps of PO3; worldwide. Because their algorithm
had an explicit mathematical form, they were also able to
break down POj3; into HCHO and NO; contributions, pro-
viding much more detailed spatial information about ozone
sensitivity maps compared to binary information (i.e., NOy-
sensitive or VOC-sensitive) made from HCHO to NO; ratios
(known as formaldehyde to nitrogen dioxide ratios — FNR)
(Martin et al., 2004; Duncan et al., 2010; Choi et al., 2012;
Choi and Souri, 2015a, b; Jin et al., 2017; Schroeder et al.,
2017; Souri et al., 2017; Jeon et al., 2018; Tao et al., 2022;
Johnson et al., 2024). However, FNR was a central com-
ponent of their algorithm to transform the non-linear ozone
chemistry into several linear segments (i.e., a piecewise re-
gression).

The inclusion of FNR in Souri et al. (2025) introduces
several complications, such as (i) the amplification of unre-
solved systematic and random errors in satellite retrievals as-
sociated with POj3 estimates, and (ii) discounting the depen-
dency of POj3 sensitivity to HCHO and NO; concentrations
as function of available light and water vapor. In fact, FNR
does not provide useful information about ozone chemistry
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in less photochemically active environments, such as early
morning or late afternoon conditions (known as light-limited
or radical-limited conditions). Although the parametrization
of PO3 crafted in Souri et al. (2025) relied on photolysis
rates, the sensitivity of PO3 to NO, (a proxy for reactive
nitrogen) and HCHO (a proxy for VOC reactivity) did not
directly depend on photolysis rates.

The overarching goal of producing ozone chemistry sen-
sitivity maps is to inform regulatory agencies about the im-
pact of emission reductions on locally produced ozone. Un-
like conventional FNR-based binary maps, these maps must
quantify the magnitude of sensitivity rather than merely in-
dicating its direction. This quantitative approach is essential
because both the sign and magnitude of sensitivities are cru-
cial for understanding the impact of emission changes. While
detailed sensitivity maps can be derived from chemical trans-
port models by perturbing underlying emissions, the lack
of observational constraints on these models can introduce
significant biases. Souri et al. (2025) attempted to address
this limitation by providing magnitude-dependent sensitiv-
ity maps of PO3 to NO, and HCHO using piecewise lin-
ear regression. However, their approach yielded derivatives
of PO3 with respect to NO, and HCHO that remained in-
variant with changes in light and humidity conditions. This
limitation is problematic because reduced light conditions
are known to substantially dampen the sensitivity of PO3
to NO, and VOCs, even under identical emission rates. The
current work is therefore motivated by the need to capture the
complex, multidimensional dependencies of PO3 on ozone
precursors, light intensity, and humidity using a more flex-
ible data-driven approach through a machine learning algo-
rithm without the need for segregation or linearization. While
these maps will not replace process-based chemical trans-
port model experiments, they can efficiently provide first-
order assessments to: (i) strategize improved modeling ex-
periments, (ii) gauge the added value of satellites on predic-
tions of PO3, and (iii) guide the design of sub-orbital mis-
sions in regions with poorly documented elevated PO3.

The new product of PO3; along with spatially vary-
ing ozone sensitivity maps using bias-corrected OMI and
TROPOMI retrievals are generated globally for 2005-2023.
We will document the advantages of this algorithm over
the older one and how the new results can bring fresh in-
sights into PO3; behavior across various seasons, locations,
and global trends.

2 Data

2.1 Satellite Retrievals
2.1.1 TROPOMI HCHO and NO»

We use daily level-2 (L2) products of TROPOMI (v2.4—v2.5)
tropospheric NO; and total HCHO columns (v2.4-v2.6) ob-
tained from UV-Vis radiances (~ 328-496 nm) onboard the
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European Space Agency’s (ESA’s) Sentinel Precursor (S5P)
spacecraft with an equatorial overpass time of ~ 13:30 local
standard time (LST) (Veefkind et al., 2012; van Geffen et al.,
2022; De Smedt et al. 2021). These products offer near-daily
global coverage of NO; and HCHO columns at a horizontal
resolution of 7.2 km (reduced to 5.6 km after August 2019)
by 3.6 km at nadir, extending to approximately 14 km at the
edges of the scanline, with a swath width of 2600 km. The
data products used in this study span from May 2018 to the
end of 2023. The retrieval process follows a two-step frame-
work: first, a differential spectral fitting algorithm is used to
determine the number of integrated molecules along the slant
light path, and second, air mass factor calculations are done
based on simulated gas absorber profiles and radiative trans-
fer model calculations to convert slant columns into vertical
ones.

Both products have been thoroughly vetted against
ground-based remote sensing retrievals, including the multi-
axis differential optical absorption spectrometer (MAX-
DOAS) (De Smedt et al., 2021; Verhoelst et al., 2021; van
Geffen et al. 2022; Souri et al., 2025) and Fourier transform
infrared spectroscopy (FTIR) (Vigouroux et al., 2020; Souri
et al., 2025), showing a general tendency towards underesti-
mation in polluted regions. We include in our study only pix-
els with a quality flag (q_value) exceeding 0.5 and 0.75 for
HCHO and NO; products, respectively. The quality flag en-
capsulates errors coming from clouds, snow, surface refrac-
tivity, and algorithm performance. The selected values are
based on the user manual recommendation. The daily HCHO
and NO; columns, along with the retrieval errors, are mapped
onto a 0.1° x 0.1° global grid using a mass-conserved bilin-
ear interpolation approach described in Souri et al. (2024).

2.1.2 OMI HCHO and NO»

We use the Quality Assurance for the Essential Climate Vari-
ables (QA4ECV) NO; daily Level 2 product (Boersma et al.,
2018) which is based on global radiances captured by the
Ozone Monitoring Instrument (OMI) sensor aboard NASA’s
Aura spacecraft. This product is retrieved with a similar over-
pass time as TROPOMI. The horizontal resolution of the
product ranges from 13 x 24km? at nadir to 165 x 13km?
at the edge of the scanline. It relies on OMI Collection 3
radiance data. Since 2008, OMI has faced significant anoma-
lies resulting in the loss of reliable data in areas of its de-
tector, a situation referred to as the “row anomaly.” This
has led to inconsistent spatial resolution and global coverage
throughout its operational phase. However, the unaffected
pixels have demonstrated a high level of stability over the
past two decades, making this product suitable for long-term
trend analysis. Detailed description of the retrieval algorithm,
along with validation against ground remote sensing data,
can be found in Boersma et al. (2018), Compernolle et al.
(2020), and Pinardi et al. (2020). We include good quality
pixels based on an effective cloud fraction below 50 %, a
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quality processing flag parameter equal to zero, and exclu-
sion of snowy regions. Additionally, we discard the last two
rows of the detector because of their poor horizontal resolu-
tion. We use the OMI NO» product for the period from 2005
until the end of 2019.

We also use the OMI Smithsonian astrophysical obser-
vatory (SAO) daily HCHO Level 2 product from the same
sensor, which is generated using a newly developed algo-
rithm and Collection 4 OMI radiances (Ayazpour et al. 2025;
Nowlan et al., 2023). This improved algorithm enhances
the radiance information content used to retrieved HCHO
columns, significantly reducing noise in the slant column fit.
The stability of this product in extracting new information
related to long-term global trends of HCHO has been well
demonstrated in recent studies (Souri et al., 2024; Anderson
et al., 2024). We include only good data following the qual-
ity flag provided with the dataset along with effective cloud
fraction below 40 %. Both OMI products are mapped onto a
global grid with a resolution of 0.25° x 0.25° using the same
algorithm used for TROPOMI daily.

2.1.3 Bias correction using ground-based remote
sensing data

In order to remove large biases in both TROPOMI and OMI
products, we bias correct their columns using the offset (ad-
ditive term) and slope (multiplicative term) determined from
a linear fit to paired MAX-DOAS/FTIR and these datasets, as
described by Souri et al. (2025). The rationale for defining re-
trieval biases as a function of magnitude is to enhance correc-
tion factor generalizability across seasons and locations. We
take advantage of three studies characterizing the bias correc-
tion factors, listed in Table 1. The application of these correc-
tion factors yields consistency across OMI and TROPOMI
NO;, and HCHO columns within 10 % (Sect. 4.4.4)

2.1.4 Surface albedo

To estimate near-surface photolysis rates of jO'D (O3 + hv,
<350nm) and jNO; (NO> + hv, ~400-500 nm) used in the
parametrization of PO3, we are required to provide reason-
able surface albedo estimates (Sect. 2.4). We use a monthly
Directionally Dependent Lambertian-Equivalent reflectivity
(DLER) climatology derived from TROPOMI radiances at
the spatial resolution of 0.125° x 0.125°; the product is in
good agreement with the MODIS BRDF product (Tilstra et
al., 2024). This climatology has two sets of values for both
shortwave (328 nm) and longwave UV (463 nm) that are used
separately for calculating jO'D and jNO,, respectively. We
use only the isotropic part of the DLER product (named min-
imum_LER), which is added to an offset coefficient provided
with the dataset.
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2.2 Aircraft Measurements

The use of aircraft observations is twofold: first, they pro-
vide a vast number of measured geophysical variables suit-
able to simulate our observationally-constrained POj3 train-
ing dataset (Sect. 3.1); second, they enable a rigorous vali-
dation of column-to-planetary boundary layer (PBL) conver-
sion factors derived from a chemical transport model (Ap-
pendix B). We use the dataset compiled by Souri et al.
(2025), who curated various aircraft campaigns measuring
photolysis rates, meteorological variables, and atmospheric
composition from varying atmospheric conditions, including
urban/suburban settings (DISCOVER-AQs, and KORUS-
AQ), high-vegetated regions (SENEX), and remote areas
(INTEX-B and AToms). The sampling frequency varies from
10 to 30 s. More detailed information regarding the choice of
instrument, gap filling, and data exclusion can be found in
Souri et al. (2025).

2.3 MINDS simulations

We use a global chemical transport model simulation de-
signed to support trace gas retrievals. The simulation, called
Multi-Decadal Nitrogen Dioxide and Derived Products from
Satellites (MINDS) (Fisher et al., 2024), was generated using
the Goddard Earth Observing System (GEOS) Earth system
model (Molod et al., 2015; Nielsen et al., 2017) equipped
with the full chemistry Global Modeling Initiative (GMI)
mechanism (Duncan et al., 2007; Strahan et al., 2007) and
coupled with the Goddard Chemistry Aerosol Radiation and
Transport (GOCART) aerosol module (Chin et al., 2002).
The rapid radiative transfer model, which was designed for
global climate models (GCMs) and is known as the Radiative
Transfer Module for GCM (RRTMG), calculates the long-
wave and shortwave radiation influenced by aerosols simu-
lated by GOCART, enabling the incorporation of the direct
effects of aerosols on meteorological conditions (Nielsen et
al., 2017). Meteorology is resolved using GEOS with several
prognostic inputs, including water vapor, being constrained
by MERRA-2 reanalysis using “replay” mode at 3-hourly
basis (Orbe et al., 2017). The model is setup at ¢360 grid
(0.25° x 0.25°) and covers the period of 1993 until the end
of 2023. The model follows 72 hybrid sigma values ranging
from the surface to 0.01 hPa.

Lightning production of NO is parametrized based on the
simulated convection. The model uses the Monitoring At-
mospheric Chemistry and Climate and CityZen (MACCity)
inventory (Granier et al., 2011) of anthropogenic emissions
downscaled to 0.1° x 0.1° using the Emissions Database for
Global Atmospheric Research version 4.2 (EDGAR 4.2).
These anthropogenic emissions change by year and month.
Biomass burning emissions rely on the Fire Energetics and
Emissions Research (FEER) dataset (Ichoku and Ellison,
2014). Biogenic emissions are modeled interactively by the
Model of Emissions of Gases and Aerosols from Nature
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Table 1. The slopes and offsets derived from various validation studies used to bias correct the satellite retrievals employed in the parame-

terization of PO3.

Product Slope  Offset Benchmark Time period of validation Reference

TROPOMI 0.66 0.32 x 1015 molec.cm™2 Global MAX-DOAS 2018-2023 Souri et al. (2025)

NO, observations

TROPOMI 0.59  0.90 x 10" molec.cm™=2 Global FTIR 2018-2023 Souri et al. (2025)

HCHO observations

OMI NO, 0.83  0.26 x 10!5 molec.cm™2 Global MAX-DOAS Varies for each station Pinardi et al.
observations spanning from 2010-2018 (2020)

OMI 0.79  0.82 x 101 molec.cm=2 Global FTIR Varies for each station Ayazpour et al.

HCHO observations spanning from 2004-2020 (2025)

(MEGAN) v2.1 (Guenther et al., 2012). It is known that iso-
prene emissions in MEGANv2.1 are largely overestimated
(Bauwens et al., 2016; Souri et al., 2020b), therefore they are
scaled down by a factor of two.

2.4 TUV NCAR Photolysis Rates Look-up Table

To estimate jNO, and jO'D, we refer to a detailed look-
up table provided by the Framework for 0-D Atmospheric
Modeling (FOAM) model (Wolfe et al. 2016). This table is
developed for clear-sky conditions based on over 20 064 so-
lar spectra calculations. The data encompasses a broad spec-
trum of solar zenith angles (SZA) from 0 to 90° in 5° in-
crements, altitudes ranging from 0 to 15km in 1km steps,
overhead total ozone columns from 100 to 600 DU in incre-
ments of 50 DU, and surface UV albedo values from 0 to
1 in 0.2 increments. These calculations were carried out us-
ing NCAR'’s Tropospheric Ultraviolet and Visible radiation
model (TUV v5.2), along with cross sections and quantum
yields from TUPAC and JPL (Wolfe et al., 2016). Informa-
tion on SZA and surface elevation is obtained from the L2
TROPOMI/OMI granule data. Surface albedo is based on the
TROPOMI DLER climatology (Sect. 2.1.4). The overhead
total ozone columns are derived from MINDS simulations
(Sect. 2.3). For any values that fall between the entries in the
tables, we apply a linear interpolation method.

2.5 Empirical PO3 estimates using LASSO

We will compare our new product (Sect. 3.2) to an empiri-
cal method developed by Souri et al. (2025), who took ad-
vantage of simulated PO3 data constrained by aircraft mea-
surements to parameterize PO3 using four geophysical vari-
ables: NO,, HCHO, jNO;, and jO]D. Their algorithm used
a piecewise L1-regularized linear regression model known as
Least Absolute Shrinkage and Selection Operator (LASSO).
Since the algorithm was based on a linear model which was
ill-suited for the non-linear ozone chemistry, it was neces-
sary to linearize the parameterization using various thresh-
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olds for FNRs. Despite the method’s simplicity, Souri et al.
(2025) were able to reproduce approximately 88 % of the
variance with low biases (less than 20 %) in observationally-
constrained PO3. Using the empirical method, they gen-
erated the first maps of PO3 by combining bias-corrected
TROPOMI HCHO and NO; columns, simulated photolysis
rates, and a global transport model designed for the conver-
sion from column measurements to the PBL.

To isolate the performance of the PO3 estimator used in
Souri et al. (2025) in comparison to the proposed algorithm
in this study, we will ensure that the input variables, includ-
ing the mixing ratios of HCHO and NO; within the PBL as
well as the photolysis rates, remain identical for both the em-
pirical product and our new algorithm. Hereafter, we will re-
fer to this empirical product as “PO3;LASSO”.

3 Methodology

Figure 1 illustrates the three-stage process of our newly de-
veloped algorithm to operationally produce long-term maps
of PO3 within the PBL along with the sensitivity and error
maps. The product is called “PO3;DNN”.

— Stage I. This stage serves as the foundation for the prod-
uct, focusing on parameterizing PO3 using a regularized
Deep Neural Network (DNN). The training dataset, de-
tailed in Sect. 3.1, is derived from an observationally-
constrained FOAM box model that provides simulated
PO3 along with various atmospheric quantities directly
or indirectly constrained by aircraft measurements. The
decision to make use of aircraft data is based on two
main factors: (i) they capture real-world atmospheric
conditions across diverse parts of the atmosphere and
various geographic regions, and (ii) the significant fluc-
tuations inherent in the data rigorously test the DNN’s
capability to generalize (i.e., to fit the model through
the data rather than merely to the data). However, a no-
table limitation of aircraft data is its restriction to spe-
cific atmospheric conditions. To address this, we have
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expanded the training dataset by perturbing the inputs
to the FOAM model (Sect. 3.1), resulting in a synthetic
dataset. This expanded training dataset is then used for
validation, testing, and calibration of the DNN algo-
rithm.

— Stage II. The objective of this stage is to prepare spa-
tiotemporal geophysical variables necessary for the pre-
diction of PO3 (done in Stage III). We need five pa-
rameters on a global scale with daily frequency: jNO>,
jOlD, HCHO, NO,, and H>O(v). To generate global
daily maps of near-surface photolysis rates, we use the
NCAR’s look-up table as detailed in Sect. 2.4; this ta-
ble relies on SZA, which varies with time and loca-
tion, as well as surface UV-Vis albedo, ozone overhead
columns, and surface altitudes. Both SZA and surface
altitude are provided as auxiliary fields in the satel-
lite L2 products. Ozone overhead columns are from
MINDS. For surface UV-Vis albedo, we use two dif-
ferent wavelengths based on TROPOMTI’s climatology
(Sect. 2.1.4). These calculations assume clear sky con-
ditions, which are somewhat achieved by the effective
cloud fraction thresholds derived from both the OMI
and TROPOMI products. Our algorithm uses HCHO
and NO; columns obtained from OMI or TROPOMI,
which are bias-corrected against ground remote sens-
ing data. These measurements are then transformed into
the mixing ratios in the PBL region using the vertical
distribution of HCHO and NO, profiles simulated by
MINDS. The final variable is the average number of wa-
ter vapor (H,O(v)) molecules per cubic meters in the
PBL region at the satellite overpass time, which is ob-
tained directly from the MINDS simulation. It is impor-
tant to note that the MINDS simulation is based on con-
straints from MERRA-2 reanalysis, underscoring that
the HyO(v) simulations are constrained by many obser-
vations.

— Stage III. In the final stage, we predict PO3, generate
sensitivity maps, and provide both systematic and ran-
dom errors associated with these estimates. To create
PO3; maps, we input the five parameters from Stage
II into the DNN model developed in Stage 1. To gen-
erate the sensitivity maps of PO3 in relation to NO;
and HCHO, we apply perturbations to NO, and HCHO
based on the methodology described in Sect. 3.3. These
perturbations also serve another purpose which is to
propagate the errors associated with the retrievals of
HCHO and NO,, as well as their corresponding con-
version factors from MINDS into the final product. A
comprehensive explanation of the error budget and char-
acterization can be found in Sect. 3.4.

While we perform Stage I only once to establish a PO3 es-
timator, we need to run Stage II and III for any desired loca-
tion/time or spatial resolution. The need to operationally run
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these two stages has motivated us to create an open-source
and object-oriented Python package called ozonerates v1.0
(Souri and Gonzalez Abad, 2025), which is capable of run-
ning all steps while leveraging parallel computation.

3.1 Training dataset generation using FOAM box model

To establish a relationship between several geophysical vari-
ables related to PO3, we use FOAM version 4 box model
(Wolfe et al., 2016). This model is capable of simulating de-
tailed chemical kinetics based on user inputs regarding me-
teorological variables, atmospheric compositions, and pho-
tolysis rates. FOAM uses a solver for ordinary differential
equations (ODESs) designed for stiff systems, which allows it
to determine the chemical evolution of all species included
in the selected chemical mechanism. We adhere to previ-
ous configurations that apply the Carbon Bond 6 (CBO6,
r2) chemical mechanism within FOAM (Souri et al., 2020a;
Souri et al., 2023a; Souri et al., 2025). The model is con-
strained by data collected during aircraft campaigns, includ-
ing meteorological data, photolysis rates, and various trace
gas concentrations. Additional details regarding the selection
of instruments, bias corrections for photolysis, choices of di-
lution factors, and other configurations can be found in Souri
et al. (2025). We incorporate data from seven aircraft cam-
paigns, including DISCOVER-AQ (Texas, Washington D.C.,
Colorado), KORUS-AQ, ATOMs, INTEX-B, and SENEX, to
further constrain the model. Souri et al. (2025) demonstrated
that this setup effectively reproduces several unconstrained
yet measured compounds, such as HCHO, HO,, OH, and
PAN; moreover, the performance of the model was on par
with other studies (e.g., Brune et al., 2020; Brune et al., 2022;
Miller and Brune, 2022), indicating that it is a suitable model
setup for understanding local ozone chemistry. This model-
derived dataset consists of ~ 134 000 points.

A limitation to the training dataset prepared by Souri et al.
(2025) originates from the fact that only a subset of atmo-
spheric conditions could be observed by the suborbital mis-
sions. A remedy for this limitation is to synthetically regen-
erate data by systematically perturbing several of the inputs
used in the FOAM model. As a result, we apply a scaling
factor, ranging from 0.1 up to 10 in 12 evenly-spaced steps,
separately to NO,, VOCs, HyO(v), and photolysis rates. This
expands the dataset to ~ 6.4 million datapoints, covering a
much wider range of atmospheric states.

Once the simulations are done, we determine simulated
PO3 by:

PO3 =FO3 —LO3 (1

where LO3 is all possible chemical loss pathways of ozone
(negative stoichiometric multiplier matrix) and FOs3 is all
possible chemical pathways producing ozone molecules
(positive stoichiometric multiplier matrix). This equation is
also known as ozone tendency. This definition simplifies in-
tercomparison with estimates derived from different chemi-
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Figure 1. Processing stages developed to operationally generate PO3 and sensitivity maps along with daily frequency errors on a global
scale. Stage I aims to establish a regularized DNN model based on synthetic and real-world aircraft measurements. Stage II prepares the
necessary satellite-based input features used for PO3 prediction in Stage III. Stage III feeds the DNN model with Stage II values and some

statistical error analysis to generate the final product.

cal mechanisms by eliminating the requirement to explicitly
match individual production and loss terms, which often ex-
hibit inconsistencies across mechanisms, especially in their
treatment of peroxy radicals. The calculation of PO3 is under
a steady-state assumption.
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3.2 DNN architecture and configuration

The overall architecture of the DNN model is portrayed in
Fig. 2. The design consists of three fully-connected hidden
layers each having 32 neurons. The neurons are equipped
with rectified linear unit (ReLU) activation functions. The
training dataset (~ 6.4 millions) is split into 20 % test,
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24 9% wvalidation, and 56 % training. Training inputs to the
parametrization consists of HCHO, NO», jO]D, jNO3,, and
H>O(v). Prior to the training, we normalize them, such that
each feature (x) is rescaled according to x’ = x;“x, where
n and o represent the mean and standard deviation of the
feature, respectively, ensuring a mean of zero and a variance
of one. The optimization (training) of the DNN follows the
backpropagation rule armed with Adaptive Moment Estima-
tion (ADAM) optimizer which is known to perform well with
noisy data (Kingma and Ba, 2017). The initial learning rate
is set to 107>, We use 500 epochs. The loss function (L) of
the optimalization problem is:

1 a 2 L 2
L=51;<yk—ok> +x;w,~ 2

where the first term on the right side represents the mean
squares error (MSE) of the prediction derived from differ-
ence between the target PO3 (y) and the predicted POs (o).
N represents the number of training datapoints. The second
term is L2-regularization with a factor of A to reduce the
squares of p number of neuron weights (w).

An important aspect of this optimization is the use of L2
regularization, which effectively helped us determine the op-
timal number of hidden layers and neurons. L2 regulariza-
tion penalizes the cost function if an illusion of high pre-
diction accuracy (the first term) is achieved with excessive
variance in the solution (weights). Failing to balance the pre-
diction error and the solution variance can lead to overfitting,
which harms model performance in two ways: (i) it results
in erroneous predictions for atmospheric conditions that fall
outside the training dataset; (ii) it diminishes the physical in-
terpretability of the statistical model because of large fluc-
tuations in the weights, a common issue in regression mod-
els known as collinearity. When we used too many neurons
or layers, the regularization penalized the weights, causing
a substantial proportion to approach zero (not shown), indi-
cating that those neurons were unnecessary. However, incor-
porating regularization does have some drawbacks: (i) it re-
quires a smaller initial learning rate (set to 1073) to avoid
falling into local minima, which demands more computa-
tional resources; and (ii) the regularization factor also needs
to be optimized. We find that a value of A =107 provides
the best results among the set of values [10’4, 1075, and
107], based on the symmetry in the statistical distributions
of the test residuals, MSE, and the overall level of physical
interpretability observed in the sensitivity tests.

The implementation of the DNN model is done using the
open-source TensorFlow application programming interface
(API) package in Python (Abadi et al., 2016). To thoroughly
validate the performance of this model from various angles
we (i) compare the DNN prediction with the test data us-
ing various standard metrics, (ii) investigate the evolution of
the loss function derived from both the training set and the
validation one over epochs, (iii) study the physical explana-
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tion of the response of PO3 to NO, and HCHO, water va-
por, and photolysis rates, and (iv) finally compare the DNN
results to PO3LASSO. We will use a number of statistical
metrics, including the coefficient of the determination (R?),
mean bias, mean square error, mean absolute error, and root
mean square error (RMSE), to carry out the quantitative as-
sessment (Sect. 4.1).

3.3 Sensitivity calculations

To elucidate the response of POs to its inputs, we calcu-
late the semi-normalized sensitivities through the finite dif-
ference method:

[PO3; 1% —
0.2

PO3] 0%
SPOs, = [PO3];

3)

where [PO3] ll 10% and [POg]?O% are PO3 from perturbing in-
put parameters (i = 1 for NO,, and i =2 for HCHO) by 1.1
and 0.9 scaling factors. A mathematical proof showing that
these sensitivity calculations are equivalent to the directional
derivative is provided in Appendix A.

3.4 Error budget and characterization

Since the PO3DNN integrates atmospheric models, satellite
trace gas retrievals, ground remote sensing, and a machine
learning approach, it contains various sources of errors, some
of which will be formulated in this section. Spatially and
temporally averaging satellite-based products is a common
practice to reduce noise and fill gaps; therefore, we attempt
to separate systematic errors (irreducible by averaging) from
random ones (reducible by averaging). We assign the total
PO3 within PBL region error (eg1) based on the following
equation:

2 2
Ctotal = 4/ Esyst * €rand 4)

where egyt and ernd are systematic and random er-
rors associated with PO3 estimates. Systematic errors ac-
count for the errors associated with the bias correc-
tion of OMI and TROPOMI against ground remote sens-
ing retrievals (eHCHO bias ¢ and eNO, bias c)» the model-
based conversion of columns to the PBL mixing ratios
(eHCHO_conversions €NO,_conversion)> and the DNN estimator er-
ror (eppN), and are given by:
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Figure 2. The architecture of the DNN model. The model contains three hidden layers with 32 neurons each.
esyst = €rand =
\/el%lCHO,bias,c + e%oz,bias,c + eﬁCHO,conversion + eﬁoz,conversion + el%)NN (5) 8P03 2 aPO3 2 10
3POs ) 9HCHO Y * €rand-HCHO | + aNO, Y * €rand-NO, (10)
CHCHO bias_c = <—8HCHO e ebc-HCHo) (6) .
where erand-HcHO and erand-No, are random retrieval errors.
2 dPO3 2 All terms in Eq. (10) vary by time and location.
NO_bias ¢ = INO; Y * €be-NC, ) Table 2 summarizes the numbers used in the above equa-
9PO 5 tions and their origin.
eﬁCHO_Conversion = (BHCH30 - VCDycHo - econV_HCH()) 8) It is important to acknowledge that the defined total er-
ror budget here is only a good guess and optimistic. Some
2 _ ( 9PO3 VeD 2 9 underlying sources of error, which are difficult to quantify,
€NO,_conversion = aNO, ’ NO; * €conv-NO, ®) are not included. For example, errors related to the training

where y is the conversion factor of the satellite total to the
PBL columns translation based on MINDS and the formula-
tion by Souri et al. (2025); epc-HcHO and epc-NO,, in column
units, are calculated following the formulation from Souri et
al. (2025) who used the errors of slope and offset obtained
from the comparison of satellite VCDs to ground remote
sensing benchmarks; econy-HCHO and econv-NO, are quantified
by validating the simulated conversion factors compared to
those of aircraft vertical spirals (Appendix B). The unit for
these two errors is ppbv per the column unit; accordingly,
we multiply these terms to satellite VCDs. The last term in
Eq. (5) is a fixed systematic error associated with the DNN
estimates which will be quantified based on the MSE of the
DNN prediction. Both % and g;gz are derived from the
sensitivity calculations from Eq. (3) divided by the satellite
columns. All error terms in Eqs. (6)—(9) are spatially and
temporally invariant, but the derivatives vary from pixel to
pixel resulting in spatiotemporally-varying systematic errors.
Random errors originate from the uncertainty estimates
coming with the TROPOMI and OMI L2 products and are
somewhat reducible by averaging, and are given by:
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dataset derived from the FOAM model are challenging to as-
sess because of the lack of PO3 measurements. We assume
other inputs to the PO3 parametrization, such as the monthly
climatology TROPOMI surface albedo to be error-free. Ad-
ditionally, all datasets used to estimate PO3 contain spatial
representation errors (Souri et al., 2022), which are difficult
to measure without knowing their true state of global spa-
tial variability. Moreover, we do not consider correlated er-
rors among HCHO and NO, retrievals. It is worth noting that
some of the inputs such as HyO(v) and the overhead ozone
column have minimal biases because of MINDS simulations
being observationally constrained (Fisher et al., 2024; Souri
et al., 2024).

There are also assumptions regarding the equations men-
tioned earlier. For instance, it is assumed that the valida-
tion of conversion factors can account for all systematic is-
sues related to the vertical distribution of NO, and HCHO in
MINDS. Furthermore, we presume that the reported retrieval
errors are mostly random; however, this is not the case (Eskes
and Boersma, 2003; Boersma et al., 2018) and distinguishing
between these errors is not straightforward.

Another source of uncertainty arises from partially cloudy
pixels and aerosols, which can introduce errors in calculated
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Table 2. Values used in error calculations.

A. H. Souri et al.: Beyond binary maps from HCHO/NO,

Error terms Systematic/Random Value Unit Source

€be-NO, and epe HCHO Systematic 0.01 x VCD+0.06  x 10! molec. cm™2 Souri et al. (2025)
€econv-HCHO and econy-NO, Systematic 0.09 ppbv (10" molec. cm=2)~! Appendix B
€DNN Systematic 0.88 ppbv h—1 Sect. 4.1
€rand-NO, and €rand-HCHO Random Variable x 1013 molec. cm™2 L2 Products

photolysis rates. While we successfully filtered out cloud
cover and strong aerosol loadings (e.g., from wildfires) using
effective cloud fraction thresholds, some aerosol or cloud-
contaminated pixels may pass cloud screening due to low op-
tical depth or height characteristics. Rigorously quantifying
the errors coming from these effects would require running a
radiative transfer model with detailed three-dimensional op-
tical properties of clouds and aerosols on a global scale, par-
ticularly critical for aerosols, which can have complex effects
on photolysis rates depending on their absorption and scatter-
ing properties and vertical distribution. Unfortunately, such
comprehensive datasets are typically limited to the narrow
swaths of spaceborne lidar observations, which themselves
carry substantial uncertainties (Thorsen and Fu, 2015). While
these complications cannot be entirely avoided, particularly
for aerosol effects, users can apply additional quality con-
trol measures by filtering pixels using aerosol optical depth
retrievals from TROPOMI, OMI, or other sensors to more
rigorously identify contaminated observations.

In case of oversampling of the PO3 product both tempo-
rally and spatially, the total error will be given by:

1 1
§ : 2 § : 2
€total ]d—\/_ e + — e (11)
otal_oversample syst 2 rand

where m is the total number of samples. Equation (11) sug-
gests that the systematic errors are persistent across all sam-
ples and are not reducible by averaging, whereas the ran-
dom errors become smaller by root square of samples. In this
equation, the assumption is that the root-mean-square of the
systematic errors is a good approximation of the systematic
errors in the oversampled data because they are independent
of each other.

4 Results and Discussion

In this section, we begin by validating and contrasting
PO3;DNN against PO3;LASSO. Following that, we use OMI
to investigate the spatiotemporal variability of PO3; and its
sensitivity to photolysis rates, HCHO, and NO, globally. We
provide an application of data to understand the global long-
term trends POj derived from OMI. Afterward, we offer a
comprehensive global view of the POj3 estimates algorithm
by integrating data from the TROPOMI compared with that
one based on OMI. Finally, we document the total error bud-
get of the products.

Atmos. Chem. Phys., 26, 809-837, 2026

4.1 DNN performance

We investigate the predictive power of the DNN algorithm
against both validation and test data for each air quality cam-
paign or the entire aircraft dataset (Sect. 2.2). All training
datasets described in Sect. 3.1 are used in this stage. Ex-
cept for the early stages of training, both training and valida-
tion curves, explaining the evolution of the prediction against
the number of epochs corresponding to the number of itera-
tions of training the network for one cycle, closely follow
each other, indicating that we possibly do not have overfitting
issues (Fig. S11 in the Supplement). The curves are fairly
smooth, resulting from using the ADAM optimizer with a
strictly small learning rate initially. Both curves converge to
RMSE below 0.88 ppbv h~! which we use to assign the error
of PO3DNN prediction in Eq. (5).

PO3DNN has promising skill at predicting PO3 across var-
ious atmospheric conditions. Figure 3 presents a compar-
ison of the predicted PO3 values against observationally-
constrained FOAM values for the test data for each sub-
orbital mission. A similar comparison, which includes all
data points measured during each mission, can be found in
Fig. S12. The primary reason for highlighting the test data
is that they have never been used to fine-tune the DNN pa-
rameters. There is a strong correlation between the predic-
tions and the benchmarks across most campaigns for both
the test data points (Fig. 3) and the complete set of aircraft
measurements (Fig. S12). Notably, the slope for the “All” test
dataset is close to the unity line. The DNN algorithm can re-
produce over 96 % of the variance in the test data. Similar to
the approach of Souri et al. (2025), we completely exclude
each suborbital mission from the training dataset and use it
as an independent benchmark to evaluate the model’s perfor-
mance. The resulting accuracy is comparable to that achieved
when 56 % of the data are used for training, indicating that
the PO3 parameterization has reached a high degree of gen-
eralization (Fig. S13).

The model performs significantly better than PO3LASSO
over INTEX-B compared to LASSO (as shown in Fig. 7 in
Souri et al., 2025). While the DNN’s performance over the
ATom campaigns is less impressive than in other areas, it still
represents a considerable improvement over LASSO, which
was unable to reproduce PO3 in pristine regions (R? < 0.05).
One key factor contributing to this improvement is the in-
clusion of H,O(v) in the input. Various parameters, includ-
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Figure 3. Scatterplots comparing observationally-constrained FOAM model PO3 and the predictions that were based on the DNN for the
test data from each air quality campaign. The test data have never been used for hyper tuning the algorithm. “All” denotes all test data.

ing HO,, are known to influence PO3; in remote regions,
but these factors were not included in our parametrization.
The method does not artificially inflate results by introducing
non-physical relationships in remote regions; the inability of
the DNN to fully explain PO3 during AToms suggests that it
does not force unrealistic relationships between PO3 and the
inputs to completely align with the FOAM results, leaving
areas for future improvement in parametrization over remote
regions.

4.2 Advantages of PO3DNN over PO3LASSO

There are primarily four major benefits of PO3DNN over
PO3LASSO that make the former parameterization a supe-
rior algorithm. The discussion of these advantages is as fol-
lows:

— Higher predictive power. PO3LASSO predicted PO3 for
all datapoints collected from the suborbital missions
with a R> =0.88, RMSE=1.2ppbvh~!, and a slope
of 0.87 (Souri et al., 2025), whereas PO3DNN repro-
duced the exact datapoints (Fig. S12) with a R? =0.96,
RMSE =0.7ppbvh~!, and a slope of 1.00. Further-
more, as shown in Fig. 3, PO3DNN has a great degree of
generalization for datapoints outside of the training/val-
idation data points. Consequently, these statistics sug-
gest that DNN is a more powerful predictor.

— Better representation of PO3 over remote regions. One
notable limitation of PO3LASSO was its inadequate
representation of PO3 in remote regions, such as dur-
ing the ATOMs or INTEX-B campaigns. This led
Souri et al. (2025) to entirely mask PO3 estimates be-
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low 1ppbvh~!. In these remote areas, PO3 is typi-
cally influenced by the reactions between ozone and
HOy in addition to j O'D and H,0. While Souri et al.
(2025) attempted to incorporate H>O into the LASSO
parametrization, the algorithm assigned a zero coeffi-
cient to this parameter because of the use of the L1-
regularization term. This term typically assigns a zero
coefficient for a geophysical variable that is either irrele-
vant to the target or shows strong non-linear relationship
with the target. PO3LASSO did not factor in HyO(v)
because H,O(v) exhibits a non-linear relationship with
POj3 — although the reaction between O'D and H>O can
suppress ozone formation through the removal of O'D,
it produces two molecules of OH regenerating ozone in
polluted places (Bates and Jacob, 2020). Consequently,
the non-linear relationship between H, O and POj3 is one
that LASSO was unable to capture. While we could
have addressed this by dividing the training dataset into
different humidity levels (i.e., dry and humid), such an
approach would have resulted in more discretization in
the parametrization. Conversely, PO3DNN can consider
the non-linear relationship between H>O and PO3; with-
out the need for empirical linearization. We observe
a significant improvement in predicted PO3 for both
AToms and INTEX-B campaigns compared to Souri et
al. (2025).

— Diminished satellite error effects. The reliance of

PO3LASSO on FNR increases the contamination of
POj3 predictions from satellite random noise. This pri-
marily occurs because satellite errors associated with
HCHO and NO» adversely influence FNR (see Fig. 12
in Souri et al., 2023a), resulting in noise in the empiri-
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cal linearization approach used in PO3LASSO. Even if
we assume that all inputs to the PO3LASSO parame-
terization, except for FNR, are error-free, the inherent
randomness from choosing among four different sets of
equations segregated by the noisy FNR will still feed
noise into the final estimate. Although PO3DNN is in-
evitably influenced by satellite errors because of its de-
pendence on HCHO and NO; columns, it does not ex-
acerbate these errors because it operates independently
of FNR. To demonstrate this tendency, Fig. 4 shows the
global PO3; random error maps induced by OMI HCHO
and NO; retrieval random errors averaged in June 2006.
We use identical inputs and errors for both algorithms.
Figure 4 is evidence of the diminished contamination
of satellite random errors in PO3DNN as compared to
PO3LASSO. The error differences tend to be larger
over clean areas, because FNR random errors are higher
when both HCHO and NO; levels are small.

— Continuity. It is known that neural networks equipped
with three hidden layers can well approximate al-
most any high-dimensional non-linear function (Shen et
al., 2021). An important superiority of PO3DNN over
PO3LASSO lies in the strength of the DNN algorithm
at approximating high-dimensional non-linear relation-
ships between PO3 and HCHO (a proxy for VOCR),
NO> (a proxy for reactive nitrogen), jNO, and jO'D
(a proxy for photochemistry), and H>O. While some
of these non-linearities were reasonably approximated
in PO3LASSO by empirically segregating the chemi-
cal conditions using FNR, the non-linear ozone pho-
tochemistry can go beyond the dependency on VOCs
and NO, levels. In fact, the relationship between PO3
and VOCs and NO, can behave non-linearly depend-
ing on the available light and water vapor as discussed
in Sect. 4.3. This indicates that traditional linear mod-
els, such as those using VOCR/NO, (or HCHO/NO3)
ratios, often fall short in capturing this complexity be-
cause of the continuous and non-linear nature of these
relationships.

4.3 PO3DNN can capture non-linear POz chemistry as
a function of pollution, light, and humidity

To further elaborate on the capability of PO3sDNN to rea-
sonably respond to variations in its five major parameters
in a mathematically continuous fashion, we create six iso-
pleths, each specifically designed to represent a particular at-
mospheric condition listed in Table 3. These isopleths are
based on perturbing HCHO and NO; in PO3;DNN and are
shown in Fig. 5.

It is immediately apparent that the hyperbolic shape of
the PO3 curve relative to NO, and HCHO can be recre-
ated by our algorithm, displaying a positive response to both
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HCHO and NO; on the right and left sides of the ridge-
lines. This observation underscores the effective parametriza-
tion of the non-linearities in ozone photochemistry achieved
through the DNN algorithm. In the subplot representing
normal conditions, we overlaid three lines indicating FNR
values of 1.5 (blue), 2.5 (green), and 3.5 (cyan). Souri
et al. (2025) used these lines to determine various coef-
ficients in the PO3LASSO parameterization. For instance,
the derivative of POs with respect to NO, was deter-
mined to be —0.14ppbvh~! for FNR < 1.5 but increased
to 6.54ppbvh~! for FNR > 3.5. However, in practice, the
thickness and curvature of the POj3 isopleths vary based
on the prevailing atmospheric conditions, implying that the
derivatives cannot consistently retain the same values across
the broad range of conditions.

In bright conditions, not only do we observe a significantly
accelerated response of PO3 compared to the norm at iden-
tical NO, and HCHO concentrations, but the responses of
POj3 to these two compounds also become more pronounced.
Conversely, in dim conditions, both the magnitudes and re-
sponses are weaker.

These results underscore the importance of including pho-
tolysis rates in ozone sensitivity analysis, rather than rely-
ing solely on FNR in former studies. For example, a lower
FNR in the morning (~ 09:30LST) compared to the after-
noon may wrongly suggest that PO3 would become more
sensitive to VOCs earlier in the day. However, decreased light
in the morning reduces the sensitivity of POz to VOCs, de-
spite a lower FNR (Sect. S1).

The contrast between dry and humid isopleths suggests
that the presence of H,O(v) enhances PO3 when abundant
NO; and HCHO are present. This trend is similarly observed
in the FOAM model, as depicted in Figure S4, indicating
that an increase in HyO(v) over polluted regions (arbitrarily
defined as HCHO x NO; > 10) increases PO3. Nonetheless,
more humidity suppresses PO3 especially where VOC is lim-
ited and NO;, is elevated possibly because the generated OH
molecules from O'D + H,O(v) predominantly react with el-
evated NO;.

Lastly, we see the highest PO3 rates recorded among
all scenarios under a hypothetical condition character-
ized by high humidity and photolysis rates. This condi-
tion is rare in nature because large amounts of HyO(v)
(0.8 x 10'® molec.cm™3) are confined to marine regions
where surface reflectivity is low; nonetheless, an intuitive
tendency from PO3DNN suggests that the algorithm does not
create non-physical extrapolation values.
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Figure 4. The comparison of the effect of satellite random errors in HCHO and NO, on PO3 predictions based on PO3LASSO and PO3DNN
algorithms in June 2006. The data used for generating these maps are based on OMI retrievals.

Table 3. Six different atmospheric conditions defined to understand the response of PO3 to HCHO and NO; changes.

Labels H,0 jolD[ls™!]  jNO,[1s™!] Notes
[molec. cm73]

Norm 0.4 x 108 4x1073 12x1072 A typical condition in summer in the eastern US at
noon

Bright 0.4 x10'8 7% 1073 1.4x 1072 Central America with abundant sunshine in the
afternoon

Dim 0.4 x10'8 3x 1072 0.7 x 1072 Scandinavia in the afternoon summer

Dry 0.1 x 108 4x1073 12x1072  Anarid region such as Spain Meseta Central in the
afternoon summer

Humid 0.8 x 1018 4x107 12x 1072 A place like Persian Gulf with high humidity and
abundant sunshine

Humid and 0.8 x 10'8 7%x1073 1.4x 1072 Since accelerated photolysis rates close-to-surface

Bright usually occur over bright regions (arid) with low

humidity, this condition is rare in nature.

4.4 POg3 Maps and Sensitivities using OMI and
TROPOMI: A General View, Long-term analysis,
Intercomparisons, and Error Analysis

4.4.1 Global POz and Seasonality using OMI in
20052007

Figure 6 shows the global distribution of PO3 rates aver-
aged over a quarter-degree in 2005-2007, using OMI HCHO
and NO; retrievals. It also includes whisker-box plots high-
lighting seasonal variations in POs3 for selected regions and
cities. We selected the 2005-2007 timeframe for this analy-
sis because the OMI data were free from degradation issues,
including the row anomaly. The map indicates accelerated
POj3 rates across heavily polluted regions, such as cities in
the Middle East, Asia, the U.S., Central Europe, and Africa,
aligning with what we observed in Souri et al. (2025). While
some areas exhibit significant seasonal fluctuations, others
show little variability throughout the seasons. Notably, the
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east coast of the U.S., Central Europe, China, Tehran, and Jo-
hannesburg experience peak POj3 rates in summer. This pat-
tern is primarily attributed to enhanced photochemistry and
the elevated sensitivity of PO3 to NO,, driven by increases
in VOCR/NOy (Souri et al., 2025).

The seasonal variability of POz in two African re-
gions, characterized by biomass burning, exhibits an anti-
correlation. This occurs because biomass burning in the
northern hemisphere of Africa occurs from November to
March, while the southern hemisphere in Africa experiences
it from June to September (Roberts et al., 2009). Maritime
Southeast Asia also shows a peak in PO3 during the biomass
burning season (August—September).

Places like Mexico City, several major Brazilian cities (in-
cluding Sao Paulo and Rio de Janeiro), northern India, and
the southwest coast of the U.S. show minimal seasonal vari-
ability in PO3. The lack of pronounced seasonal changes
may be attributed to less pronounced fluctuations in pho-
tolysis rates or substantial spatial heterogeneity in the sea-

Atmos. Chem. Phys., 26, 809-837, 2026
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Figure 5. The contour maps of POj3 isopleth generated by PO3DNN algorithm for six different atmospheric conditions defined in Table 3.
In the first subplot, blue, green, and cyan lines indicate FNR = 1.5, 2.5, and 3.5, respectively. Numbers on isopleths are in ppbv h=l.
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Figure 6. (center) The averaged global PO3 map at 0.25° x 0.25° in 2005-2007 based on the new algorithm. OMI data are used to populate
HCHO and NO, abundance. (margins) the whisker-box plots of PO3 seasonality over various selected regions. In the box plot, the central
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by any value above g3 + 1.5 x (g3 — ¢q1) or below g1 — 1.5 x (g3 — q1)-
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sonal variabilities of HCHO and NO;, resulting in reduced
seasonal variations but with greater variance. Nonetheless,
certain weather conditions can influence these results; for in-
stance, monsoon flows can disperse and scavenge pollution
from the northern India around July-September (David and
Nair, 2013), dampening PO3. Mexico City also experiences a
monsoon season in summer causing pollution to subside tem-
porarily. The attribution of the seasonality will be discussed
in the next section.

4.4.2 The attribution of PO3 seasonality

Figure 7 illustrates the sensitivity of POs to NO,, HCHO,
and combined J-values (jNO; and j 0!D) based on Eq. (3)
across the same regions and months presented in Fig. 6. The
absolute values of PBL HCHO, NO,, and jNO, are shown in
Fig. S14. As shown in Appendix A, these sensitivity values
are influenced by both the magnitude of the precursor and the
first derivative of PO3 with respect to that precursor. Thus,
the sensitivity values should be interpreted as the result of
these combined effects. Moreover, these sensitivities are cal-
culated with respect to local HCHO and NO, concentrations
rather than local emissions (unlike typical modeling experi-
ments). Local concentrations reflect the combined influence
of both local and external emissions through various physico-
chemical processes. We exclude water vapor from sensitivity
analysis because its impact is an order of magnitude smaller
than the three other factors.

The amplitude of photolysis rates dictates the amplitude of
the sensitivity of PO3 to NO, and HCHO. For instance, over
East Coast, Central Europe, and Tehran, the first derivative of
POj3 to NO, tends to be small during colder months, primar-
ily because of reduced photochemistry. As a result, despite
significantly higher NO; concentrations in these months, the
sensitivity of PO3z to NO» is muted. Conversely, in warmer
months, the larger positive derivative of PO3 relative to NO»,
driven by increased HCHO levels (shifting away from VOC-
sensitive regimes) and enhanced photolysis rates, markedly
increases the contributions of low summer NO; levels to
POs. Likewise, we observe substantially higher sensitivity of
PO3; to HCHO concentrations during warmer seasons. This
increase is attributed to both the elevated levels of HCHO
and the growing derivative of PO3 with respect to HCHO,
both of which are directly influenced by enhanced photo-
chemistry. One might argue that summer conditions should
lead to a shift towards extremely NO, -sensitive regimes, re-
sulting in a reduced first-order derivative of PO3 to HCHO.
However, most polluted regions chosen for this figure are in
transitional regimes during the summer, which renders PO3
fairly responsive to HCHO concentrations.

The sensitivity of PO3 to photolysis rates is dependent on
pollution levels, just as its sensitivity to HCHO and NO; con-
centrations is influenced by photolysis rates. This is primary
reason for seeing minimal seasonality of PO3 over Mexico
City, various Brazilian cities, and northern India. These min-
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imal changes in photolysis rate sensitivities are caused by the
less pronounced seasonality in both photolysis rates and pol-
lution levels compared to other areas (Fig. S14). Souri et al.
(2025) found that photolysis rates significantly contribute to
the production of PO3 when there is an adequate amount of
ozone precursors. This was reflected in larger (smaller) coef-
ficients associated with photolysis rates in PO3LASSO algo-
rithm for polluted (pristine) regions. For example, high pho-
tolysis rates over the Sahara do not significantly contribute
to PO3 because of the limited availability of ozone precur-
sors needed to initiate the RO,—HO, cycle. A notable exam-
ple can be observed in Africa, where photolysis rates tend
to remain consistently high throughout the year under near
cloud-free conditions (Fig. S14). However, there is a marked
seasonality in the sensitivity of POz with respect to photol-
ysis rates during polluted months suggesting that the ample
precursors can leverage available lights to form more ozone
molecules. This pattern underscores the algorithm’s capabil-
ity to understand the intertwined relationships between the
photolysis rate sensitivities and pollution levels, as well as
the pollution sensitivities and photolysis rates.

4.4.3 Gilobal POg linear trends using OMI (2005-2019)

Using the linear trend calculation method outlined by Souri
et al. (2024), we compute global long-term linear trends of
PO3 from OMI data, shown in Fig. 8. High-latitude regions
(> 65°) are excluded due to limited photochemical activity.
We observe large variability in both the signs and magnitudes
of the linear trends. Predominantly positive trends occur over
the Middle East, India, and China, while negative trends are
mostly found in the eastern U.S., southern parts of Europe,
maritime Southeast Asia, and several areas in Africa. The
largest upward trend in PO3 over the U.S. occurs in oil and
gas producing regions, including the Permian Basin. While
various physicochemical processes beyond near-surface PO3
influence tropospheric ozone trends, the strong agreement
between predominantly upward POj3 trends in Asia and the
Middle East suggested by satellite-based ozone observations
(Gaudel et al., 2018; Boynard et al., 2025) is noteworthy.

To gather a more relative perspective, Fig. 9 shows relative
PO3 trends (as percentages relative to 2005 annual averages)
for regions where PO3 exceeds 0.5 ppbvh~!. The largest rel-
ative changes (> 30 %) are evident over the Persian Gulf,
Chile, India, and China. Large negative values dominate over
the eastern U.S. and over the central Africa (> 20 %).

Multiple factors in our parameterization can simultane-
ously influence these trends, including changes in HCHO
VCDs, NO, VCDs, dynamic changes in column-to-PBL
conversion factors from MINDS, water vapor, and photol-
ysis rates. However, photolysis rate trends should be neg-
ligible because long-term changes in total overhead ozone
are insignificant at midlatitudes (Fig. S2 in Souri et al.,
2024), and surface albedo is based on a monthly climatology
dataset. While water vapor increases over time in response to
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within the PBL over the selected regions shown in Fig. 6. These sensitivities are influenced by both the magnitude of the precursors and the
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Figure 8. The linear trend maps of PO3 within PBL derived from our new algorithm using OMI in 2005-2019. Dots indicate that the trend
has passed a statistical test based on the Mann—Kendall test at 95 % confidence interval.

global warming (Souri et al., 2024; Borger et al., 2022), these
changes are insufficient to explain the large variability in PO3
linear trends over polluted regions. Accordingly, simultane-
ous changes in HCHO and NO; boundary layer mixing ratios
are the main drivers of PO3 trends.

The POs trends are generally explained by changes
in ozone precursor concentrations which are mapped in

Atmos. Chem. Phys., 26, 809-837, 2026

Figs. S15 and S16. The attribution of trends in OMI HCHO
and NO; have been partly discussed in Souri et al. (2024)
and the references therein. Increases in both HCHO and NO,
over the Middle East, India, and China drive rising PO3 over
time. Conversely, reduced HCHO and NO, concentrations
over parts of Africa, the eastern U.S., and maritime South-
east Asia, have led to PO3 reductions. However, many local-
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Figure 9. Similar to Fig. 8 but percentage changes are instead shown over PO3 > 0.5 ppbv h—L

ized areas exhibit strong non-linearity. For instance, Tehran
(Iran) shows positive PO3 trends caused by NO» increases in
a predominantly VOC-sensitive regime, reducing ozone loss
through NO,+ OH reactions. Los Angeles (USA) shows up-
ward trends attributed to rapid NO, reductions, resulting in
the opposite effect (Sect. S2)

The quantitative characterization of these trends (similar
to our analysis of PO3 seasonality in Sect. 4.4.2 or rapid
PO3 changes during a heatwave in Sect. S3) presents sig-
nificant challenges for several reasons: (i) the amplitudes of
these trends are generally an order of magnitude smaller than
seasonal changes, requiring more stringent attribution meth-
ods, (ii) the sensitivities of PO3 to input parameterization can
behave non-linearly, making a linear trend analysis ill-suited
for some localized areas, and (iii) changes in ozone precur-
sors have effects on the sensitivity of PO3 to photolysis rates
as described in Sect. 4.4.2, introducing a convoluted prob-
lem.

Since our PO3 parameterization encapsulates non-linear
and interdependent relationships between pollution levels,
light intensity, and water vapor, fully isolating individual ef-
fects on POj3 trends requires reproducing the product while
holding either NO, or HCHO constant individually and al-
lowing others to evolve over time (an approach similar to
modeling experiments in Souri et al., 2024). This approach
comprehensively captures the non-linear dependencies be-
tween input variables and PO3, circumventing the need for
crude linear approximations.

4.4.4 High resolution TROPOMI-based PO3z maps
contrasted with OMI in 2019

Accelerated rates of POj3 at approximately 13:30 LST are ob-
served consistently across polluted midlatitude regions char-
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acterized by high photolysis rates. This pattern is substan-
tiated by the global PO3 maps derived from TROPOMI
and OMI data for the year 2019 illustrated in Fig. 10.
While the maps presented are averages for 2019, signifi-
cant PO3 hotspots (exceeding 8 ppbv h™!) are identified over
metropolitan/industrial areas including Mexico City (Mex-
ico), Tehran (Iran), the Persian Gulf, and Hunan Province
(China). There are less documented regions undergoing el-
evated locally-produced ozone such as Johannesburg (South
Africa), Rio de Janeiro (Brazil), Sao Paulo (Brazil), and San-
tiago (Chile). In contrast, Europe emerges as a region with
comparatively low PO3 levels despite its dense population.
This tendency may be attributed to lower photolysis rates
(characterized by high solar zenith angles and low surface re-
flectivity) as well as effective emissions mitigation strategies.
A notable similarity exists between these identified hotspots
and those reported by Souri et al. (2025), although the con-
trast between clean and polluted areas is more pronounced in
the PO3DNN product because of an improved representation
of PO3DNN in clean regions.

PO3 exhibits a slight negative value over oceanic and
densely forested areas (such as the Amazon and Congo), pri-
marily because of ozone sinks associated with water vapor
(H>O(v)) and alkenes, which are implicitly included in our
parametrization. However, a marked contrast is observed be-
tween the slightly negative and positive POj3 levels along ma-
rine vessel pathways. These ship paths are informed not only
by remote sensing data (Georgoulias et al., 2020) but also
by the conversion of column measurements to PBL mixing
ratios thorough the MINDS simulation, which accounts for
ship emissions. Given that the PBL is typically shallow over
marine regions, the conversion factor is expected to be sub-
stantial for these pathways, resulting in a pronounced con-
trast in pollution levels.
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Figure 10. Global maps of PO3 derived from TROPOMI (top) and OMI (bottom) datasets based on the PO3DNN algorithm in 2019. These
values are estimated within the PBL region at ~ 13:30 LST. The data exclude cloudy pixels, strong smoke, sensor anomalies, and snow based
on the recommended quality flags coming with TROPOMI and OMI products.

The finer spatial resolution of the TROPOMI dataset en-
hances the detail of the POz maps compared to those derived
from OMI, yielding less noise and fuller data. This reduc-
tion in gaps in TROPOMI-based POs is attributed to a lower
likelihood of cloud contamination and the full coverage of all
pixels in the detector, in contrast to OMI, which suffers from
the row anomaly. Visual analysis of the two datasets indicates
that TROPOMI often shows higher PO3 than OMI over pol-
luted regions. Except for NO, and HCHO VCDs, the inputs
to the parametrization are identical across both products.

To further investigate these differences, we synchronize
the TROPOMI datasets at the OMI-based spatial resolution
and produced scatterplots, as displayed in Fig. 11. The cor-
respondence between the two products is high (R =0.86).

Atmos. Chem. Phys., 26, 809-837, 2026

Nonetheless, TROPOMI-based PO3 levels are approximately
10 % greater than those derived from OMI. The fact that we
observe this overestimation given that TROPOMI has been
coarsened to match OMI’s footprint suggests that the differ-
ing spatial resolutions (0.25° vs. 0.1°) are unlikely to account
for the discrepancy. Moreover, we undertake a comparative
analysis of NO; and HCHO mixing ratios within the PBL re-
gion as obtained from MINDS alongside these two satellite
datasets. Given that the conversion factor remains consistent
between the two products, any observed differences can be
attributed to variations in their respective VCDs. Our analy-
sis reveals that both NO, and HCHO mixing ratios are higher
in TROPOMI relative to OMI (by 5 %—6 %), thereby provid-
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ing a good explanation for higher TROPOMI-based PO3 in
comparison to OMI.

4.4.5 Error Analysis

Based on the formulation outlined in Sect. 3.4, we evaluate
both the systematic and random error components of PO3
for July 2019, based on data from both OMI and TROPOMI
retrievals. Figure 12 presents the average error values for
the month. Total PO3 errors range from 25 % to 80 % in ar-
eas characterized by moderate to extreme pollution, while in
more remote regions, errors can surpass 200 %.

On average, random errors constitute only a small frac-
tion of the total error budget, with OMI showing consistently
larger random errors than TROPOMI across the region. This
is primarily a result of OMI’s limited sampling caused by
row anomaly issues. As mentioned in Sect. 4.2, these ran-
dom errors are significantly lower when compared to the
PO3LASSO random errors (Souri et al., 2025).

Systematic errors account for most of the total error, ex-
ceeding 90 %. These systematic errors are comprised of three
components: biases arising from the correction of VCDs us-
ing ground-based remote sensing data, errors related to DNN
predictions, and conversion factors derived from the MINDS
framework. The first two components contribute minimally
to the overall error (Iess than 5 %), making the MINDS con-
version factors the dominant contributor to the total error
budget. Therefore, any parametrization aimed at converting
satellite-based VCDs to near-surface concentrations, includ-
ing the one presented in this study, should always seek out a
model that accurately reflects the shape of the profiles.

We also quantify the impact of inconsistent shape factors
used in the retrievals and the MINDS profile on POs3 esti-
mates and find them introducing systematic errors of 5 %—
25% over PO3 > 0.5ppbvh™! (Figs. S17-S20). Refining
TROPOMI and OMI products with MINDS shape factors
would require reproducing several large-scale validation ef-
forts (e.g., Verhoelst et al., 2021; Vigouroux et al., 2020;
Pinardi et al., 2020; Ayazpour et al., 2025), which is beyond
the practical scope and resources of this study.

4.4.6 Beyond binary maps obtained from FNR: Ozone
sensitivity maps using high-resolution TROPOMI
data

We explore the spatially varying sensitivity of POz to HCHO
and NO; worldwide using TROPOMI. These maps provide
finer information compared to binary maps obtained from
FNRs. Figure 13 illustrates global maps of these sensitivities
averaged for the year 2019. We observe negative sensitivity
values of PO3 to NO» in urban areas, which aligns with our
understanding of non-linear ozone chemistry. These negative
values are particularly pronounced in northern China, where
VOCR/NO, ratios remain low throughout the year. Simi-
lar non-linear feedback patterns can be seen in the Benelux
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region and the United Kingdom, primarily driven by ele-
vated NO; levels. In contrast, NO, significantly contributes
to higher PO3 in southern China, India, Mexico, and several
regions across Africa.

As indicated in Souri et al. (2025), the influence of HCHO
on POs is largely governed by NO, emissions. This relation-
ship explains why the sensitivity of PO3 to HCHO closely
mirrors global NO; levels, which dictates the locations of
VOC-sensitive regimes. We observe slightly negative sen-
sitivity of PO3 to HCHO in remote and densely vegetated
regions, likely a result of the effects of alkenes on ozone.
However, the implicit nature of DNN makes it challenging
to identify the exact chemical reasons behind these patterns.
Noteworthy examples of areas where PO3 is significantly
influenced by HCHO include eastern China, Los Angeles
(USA), Tehran (Iran), Mexico City (Mexico), and Johannes-
burg (South Africa).

Figure 14 presents the maps of PO3 along with sensitiv-
ities across four seasons in 2019 over Middle East, derived
from TROPOMI data. Notably, PO3 values surge during the
summer months in several densely populated and industrial
regions of the Middle East. Furthermore, we observe consid-
erable PO3 values in the fall, primarily caused by the influ-
ence of HCHO. This fall peak is consistent with the observa-
tions made by Souri et al. (2025), who reported a sharp rise in
POs in late fall 2019 over Tehran (Iran). The overall season-
ality of POs is well aligned with the discussions presented
in Sect. 4.4.1. The sensitivity of PO3 to NO, exhibits no-
table variation, shifting from low and negative values during
the colder months to positive and high values in the warmer
months. We identify HCHO as the predominant contributor
to POs3 in these regions, as the majority of these cities fall in
VOC-sensitive environments and emit significant amounts of
anthropogenic HCHO, whether from primary or secondary
sources.

These maps eliminate the need for binarization of chem-
ical conditions, as they effectively illustrate the spatial vari-
ability in ozone response to HCHO and NO; while account-
ing for light and humidity, two important dimensions missing
in FNR-based ozone sensitivity diagnosis. A more detailed
discussion about FNR’s inability to fully describe ozone
chemistry is documented in Sect. S1.

5 Summary

Early data-driven analyses of ozone chemistry sensitivity pri-
marily relied on “ratio-based” indicators to partially linearize
the non-linear aspects of urban ozone chemistry, which are
influenced by pollution levels, light, and water vapor. With
the development of more sophisticated algorithms, includ-
ing machine learning techniques capable of fitting high-
dimensional non-linear functions, we have shown that a
highly effective parameterization of net ozone production
rates (PO3) can be achieved. This approach not only elim-
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Figure 12. The maps of total error, systematic, and random errors for (a) OMI, and (b) TROPOMI computed for July 2019.

inates the need for empirical linearization of ozone chem-
istry through various indicators, but it also allows for the pri-
mary inputs to be accurately constrained using satellite ob-
servations. This advancement allowed us to move beyond the
previously employed formaldehyde-to-nitrogen dioxide ratio
(FNR) and to generate more comprehensive sensitivity maps,
which account for variations not only in HCHO and NO» but
also in light and water vapor.

We significantly enhanced the empirical parametrization
of PO3 described in Souri et al. (2025), in several key ways:
(i) we improved the representation of PO3 in both polluted
and clean areas using a L2-regularized deep neural network
(DNN) and eliminated the need for empirical linearization
of atmospheric conditions with the FNR approach, result-
ing in reduced complexity and noise in the final estimates;
(i1) we used a finer, up-to-date global transport model called
MINDS to convert satellite-retrieved vertical column density
(VCD) into planetary boundary layer (PBL) mixing ratios;
(iii) we incorporated the error from these conversion factors,
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derived from comprehensive validation against aircraft spi-
rals, into the total error budget; and (iv) we generated long-
term records of PO3 magnitudes and sensitivities to nitro-
gen dioxide (NO;) and formaldehyde (HCHO) using bias-
corrected data from the Ozone Monitoring Instrument (OMI)
for the years 2005-2019 (at a resolution of 0.25° x 0.25°)
and the TROPOspheric Monitoring Instrument (TROPOMI)
for 2018-2023 (at a resolution of 0.1° x 0.1°). These datasets
were collected under partially cloud-free conditions around
13:30 equatorial local standard time. The two products show
strong agreement, with TROPOMI-based PO3 being approx-
imately 10 % higher than OMI, which is attributed to higher
NO; and HCHO concentrations noted by TROPOMI.

The DNN algorithm (PO3DNN) accounted for more than
96 % of the variance in both the test and training datasets
derived from observationally-constrained box simulations
across various atmospheric composition campaigns, with a
slope close to the unity line. The new algorithm improved the
representation of PO3 in remote regions compared to the ver-
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Sensitivity of PO, to NO,

[ppbv/h]

Figure 13. The sensitivity of PO3 to NO, (top) and HCHO (bottom) based on our algorithm using TROPOMI data in 2019.

sion developed in Souri et al. (2025), due to the inclusion of
water vapor and the use of a more robust regression model.
We found PO3DNN to be logically responsive to its inputs
during various idealized experiments that involved changing
light conditions, pollution levels, and water vapor.
Expectedly, our results indicate that PO3 magnitudes and
sensitivity maps are primarily influenced by the levels of
ozone precursors, non-linearity of ozone chemistry, and pho-
tolysis rates. We revisited the accelerated PO3 observed in
Souri et al. (2025) across polluted areas, such as major cities
and during biomass burning activities in photochemically
active environments. Using sensitivity calculations derived
from the new algorithm, we investigated the contributors to
PO3 seasonality around the globe. We found that photoly-
sis rates were the primary drivers of PO3 seasonality. During
darker months, both the magnitude of PO3 and its sensitivity
to NO; and HCHO decrease due to limited light availabil-
ity to initiate the RO,—HO, cycle. This critical trend is not

https://doi.org/10.5194/acp-26-809-2026

represented by the pollution levels alone, highlighting the ne-
cessity of including photolysis rates in ozone sensitivity anal-
yses. Fortunately, we can largely constrain these rates using
satellite observations. In regions with minimal variability in
photolysis rates (such as the tropics), pollution levels became
the main driver of PO3 seasonality.

The long record of stable observations from OMI al-
lowed us to generate the first-ever maps of PO3 linear trends
from 2005 to 2019 globally. The global long-term trends
revealed substantial spatial variability, with predominantly
positive trends over Asia and the Middle East (> 30 % rel-
ative to 2005) and negative trends across the eastern U.S.,
Europe, and parts of Africa. Analysis indicated that simul-
taneous changes in HCHO and NO;, boundary layer con-
centrations were the primary drivers of these trends. Al-
though increases in both precursors over Asia and the Mid-
dle East, rising PO3 and reduced concentrations elsewhere
lead to PO3 decreases, localized non-linearities complicated

Atmos. Chem. Phys., 26, 809-837, 2026
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Figure 14. The magnitude of PO3 and the corresponding sensitivity to NO, and HCHO over Middle East grouped into four different seasons.
DJF: December-January-February, MAM: March-April-May, JJA: June-July-August, and SON: September-October-November. Sens. means

sensitivity.

this relationship, as demonstrated by contrasting chemical
regimes in Tehran vs. Los Angeles. Quantitative attribution
of these trends presents challenges because of their small am-
plitudes relative to seasonal variations and non-linear sensi-
tivities in the parameterization, necessitating ‘“hold-one-out”
approaches that account for complex interdependencies be-
tween input variables.

We error characterized both systematic and random er-
rors associated with PO3DNN for both OMI and TROPOMI-
based products. We showed that total errors range from 25 %
to over 200 %, with smaller errors in polluted areas. Ran-
dom errors are minor on monthly-basis, with OMI exhibiting
larger errors due to row anomaly issues. Systematic errors
exceed 90 % of the total error, primarily driven by MINDS
conversion factors. The total errors budget emphasizes on the
role of model used for converting satellite-based VCDs to
near-surface concentrations and its importance for precisely
determining ozone precursors levels near to the surface. Fur-
thermore, in future efforts, we also need to refine satellite re-
trievals using spatially higher-resolution AMFs derived from
MINDS while simultaneously performing retrieval valida-
tion against ground-based remote sensing observations.

We developed a novel product aimed at enhancing our
understanding of the variability in PO3; and its interactions
with NO, and VOCs on a global scale. This advanced al-
gorithm has undergone meticulous tuning and training us-
ing an extensive dataset derived from a reliable box model,
which is further constrained by intensive atmospheric com-
position campaigns conducted by NASA and NOAA. The al-
gorithm not only yields accurate estimates of PO3 with mini-
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mal bias in comparison to observationally-constrained values
but also facilitates the derivation of POj3 in relation to HCHO
and NO,. However, as indicated by Souri et al. (2025), there
remain several opportunities for further improvement, in-
cluding: (i) the incorporation of heterogeneous chemistry;
(ii) consideration of the impact of partially cloudy regions
and aerosols on photolysis rates; (iii) gauging the potential
benefits of using more sophisticated chemical mechanisms
for the generation of the training dataset; and (iv) enhanced
representation of vertical profiles of NO, and HCHO using
observationally-constrained chemical transport models with
more rigorous column to near-surface conversion methods
(Cooper et al., 2020). Some of these enhancements present
significant challenges, particularly the fine-resolution three-
dimensional characterization of aerosol and cloud properties
on a global scale, which is not obtainable with current re-
analysis data. However, with the advent of newer satellite
technologies such as PACE and MAIA, there may be oppor-
tunities to improve the representation of atmospheric models
with respect to cloud and aerosol characteristics.

While the OMI- and TROPOMI-based PO3; products
maintain algorithmic consistency in several key components,
including photolysis rates and water vapor calculations, the
underlying satellite retrievals of HCHO and NO, VCDs re-
main unharmonized between the two instruments. To ad-
dress the resulting inter-instrument biases, we implemented
bias correction using ground-based remote sensing retrievals
as reference standards. This approach achieved OMI and
TROPOMI PO;3; agreement within 10 % on average. How-
ever, this level of consistency may be insufficient for robust
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joint trend analysis of the combined OMI-TROPOMI POj3
record over areas with non-linear or minor trends, potentially
requiring the implementation of trend harmonization algo-
rithms (e.g., Hilboll et al., 2013) to ensure statistical reliabil-
ity in long-term analyses.

The emergence of novel geosynchronous orbit (GEO)
technologies is becoming increasingly important for mon-
itoring the daylight hourly variability in ozone precursors.
In particular, the finer spatial and temporal resolution of-
fered by the Tropospheric Emissions: Monitoring of Pol-
lution (TEMPO), Geostationary Environment Monitoring
Spectrometer (GEMS), and Sentinel-4 instruments will aid in
distinguishing exceptional events from typical atmospheric
conditions. In light of the success of emission mitigation
strategies over high income countries, the occurrences of el-
evated PO3 are becoming more infrequent, thereby neces-
sitating a more detailed and rapid observational strategy for
monitoring such events. This presents a timely opportunity to
address ozone exceedance events using TEMPO in conjunc-
tion with our PO3 estimator, especially since the algorithm
is designed to handle light-limited conditions — such as those
encountered during early morning and late afternoon periods
when TEMPO collects data — conditions that are not feasible
to analyze via the FNR approach.

Appendix A: The sensitivity maps are the directional
derivative

To demonstrate that the sensitivity calculation of POj3 to its
inputs resembles (Eq. 3) a directional derivative output, we
can approximate the perturbations in the PO3DNN (denoted
as f(x), where x is the targeted sensitivity parameter) using
the Taylor expansion:

fIlx)y= fx)+ 1. 1x —x)Vf(x)

=f(x)+0.1xV f(x) (Al)
f09x)~ f(x)+(09x —x)V f(x)
=f(x)—0.1xVf(x) (A2)

The sensitivity calculation presented in Eq. (3) can be
rewritten in the following form:

_(f®)+0IVFx) = (f () = 0.1Vf(x))
0.2

S

= w =xV () (A3)

Therefore, the first-order approximation of the DNN pre-
diction, when using the given sensitivity calculation, is
xV f(x) which represents the first-order Taylor expansion
term that describes how the output changes with respect to
both the gradient and the magnitude of x (i.e., directional
derivative).
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Appendix B: MINDS conversion factor validation

We validate the column conversion factors obtained from
the MINDS simulations against corresponding values de-
rived from aircraft spirals from several suborbital missions.
The concentrations of HCHO and NO; in both datasets
are collocated in time and space and are resampled onto
a common vertical grid, ranging from the near surface up
to 450hPa in 20 hPa increments. To determine the conver-
sion factors, these resampled concentrations are averaged
within the PBL and then divided by the vertically integrated
partial columns from the surface to 450 hPa. The PBLH is
based on the MINDS simulations. Figure B1 displays scat-
terplots of the paired conversion factor binned at 12:15 and
15:15LST (£45 min around the TROPOMI/OMI local re-
visit time) for NO, and HCHO, respectively. The unit for
these conversion factors is ppbv col ™!, where col represents
1 x 10" molec. cm~2. The comparison shows a good level
of agreement between the two datasets for both species
(R%? > 0.7). The MINDS simulations perform slightly bet-
ter for NO, than for HCHO. This performance difference
may arise from the fact that HCHO is mainly a secondary
product, meaning various uncertain VOC emissions, along
with uncertain chemical processes in the model, could pile up
leading to discrepancies in the vertical distribution of simu-
lated HCHO compared to observations. Furthermore, HCHO
vertical profiles can be easily affected by local circulation
patterns that are difficult to resolve in coarse models (Souri
et al., 2023b). We observe consistent model performance
across various campaigns, except for DISCOVER-AQ Col-
orado. This discrepancy may result from complex topogra-
phy and wind conditions in that region that the model might
not fully capture. The differences between the two datasets
can also be attributed to sources of error beyond the model
deficiencies. For instance, the MINDS simulations represent
a quarter-degree averaged concentration, which differs from
the localized air samples derived from aircraft, known as the
spatial representation error (Souri et al., 2022).

To account for the systematic errors resulting from the
MINDS simulation in our error budget, we assign econy-HCHO
and econy-NO, in Eq. (5) to RMSE values obtained from the
comparison. The choice of RMSE is based on the fact that
it contains information about the bias and the dispersion of
MINDS with respect to the observations. We assume these
errors to be invariant by time or location, mainly because of
limited aircraft spirals (N =57) we have from the suborbital
missions.
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