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S1. FNR is oblivious to impact of photolysis rates and water vapor content on PO3 

The primary objective of using the formaldehyde-to-nitrogen dioxide ratio (FNR) is to reduce 

high-dimensional, non-linear ozone production rates into a two-dimensional framework based on 

volatile organic compound reactivity (VOCR) and reactive nitrogen. However, beyond the fact 

that HCHO and NO2 incompletely represent VOCR and reactive nitrogen, it is crucial to 

recognize that ozone production rate sensitivities and magnitudes depend on other geophysical 

variables independent of FNR. Among these variables, photolysis rates and water vapor are 

major drivers of atmospheric oxidation capacity, modulating numerous reactions related to ozone 

production (Kleinman et al., 2002). 

To demonstrate photolysis rate effects on both PO3 magnitudes and sensitivities, we conducted 

F0AM box model simulations constrained by geophysical variables during June 6-9 of the 

KORUS-AQ campaign (Souri et al., 2025). We perturbed NOx, VOCs, and photolysis rates to 

generate three sets of isopleths (Figure S1). The results clearly show larger ozone production 

rates under more intense light conditions. More importantly, the contours corresponding to 

identical PO3 intervals (3 ppbv/hr) become more compact under brighter conditions, indicating 

that PO3 becomes more sensitive to both NOX and VOCs with increased light intensity. This 

pattern suggests that identical FNR values under different photolysis rates can have 

fundamentally different implications for ozone production rate sensitivities. 

To confirm that FNR contains no photolysis rate information, we analyze paired FNR and jNO2 

photolysis rate measurements from over 47,000 data points during the KORUS-AQ campaign, 

revealing no correlation between these variables (Figure S2). This demonstrates the need for 

additional dimensions in ozone sensitivity analysis, necessitating more sophisticated algorithms 

(like our approach) over traditional threshold-based methods. 

 

Figure S1. The PO3 isopleths generated using F0AM box models derived from observations 

taken during the KORUS-AQ campaign under three different photolysis rates scenarios: (left) 

multiplied by 0.5, (middle) default, (right) multiplied by 2.0. Each contour represents 3 ppbv/hr. 
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Figure S2. The comparison of measured FNR and measured jNO2 frequencies taken from 

aircraft observations during the KORUS-AQ campaigns. All measured points are used to make 

this plot. 

Figure S3 illustrates the incomplete representation of ozone sensitivities by mapping five 

variables derived from TROPOMI and our PO3DNN parameterization across two seasons over 

Los Angeles. FNR values are low during colder months due to abundant NO2 relative to HCHO, 

qualitatively suggesting the LA region should be predominantly VOC-sensitive. However, the 

derivatives and sensitivities of PO3 to both HCHO and NO2 remain muted due to limited 

photochemical activity, making PO3 unresponsive to NOX and VOC concentrations. Conversely, 

summer conditions yield larger derivatives, showing much stronger PO3 responses to both 

species. This example extends to different times of day, such as FNR values from geostationary 

satellites or morning versus afternoon measurements from low Earth orbit satellites. 
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Figure S3. Five variables derived from our PO3DNN product based on TROPOMI dataset. The 

first row focuses on the December-January-February (DJF), while the second shows those 

variables for June-July-August 2023. The calculation of the sensitivities and derivatives are 

based on perturbation of the DNN algorithm described in the main paper. 

The absence of PO3-relevant geophysical information in FNR also applies to water vapor. F0AM 

box simulations over polluted regions show that increasing humidity enhances PO3 through the 

generation of two OH molecules via H2O+O1D reactions (Figure S4). However, FNR contains no 

water vapor information, as humidity is driven by hydrological and meteorological factors 

decoupled from the processes determining FNR (Figure S5). This further necessitates adding 

water vapor as an additional dimension in ozone sensitivity analysis. 
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Figure S4. The effect of H2O(v) on PO3 during KORUS-AQ campaigns. Only highly polluted 

regions (HCHO×NO2 > 10) are selected for this experiment. 

 

Figure S5. The comparison of measured FNR and measured water vapor density taken from 

aircraft observations during the KORUS-AQ campaigns. All measured points are used to make 

this plot. 
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S2. A Tale of Two Cities: Long-term trends of PO3 in Los Angeles vs. Tehran in 2005-2019 

Using a linear trend calculation method outlined by Souri et al. (2024), we evaluate the 

long-term linear trends of PO3 maps in two cities: Los Angeles (USA) and Tehran (Iran). Figure 

S6 clearly demonstrates a complete reversal in the linear trends of PO3, revealing an increase in 

Los Angeles and a decrease in Tehran. Moreover, we observe similar contrasting trends in the 

surrounding areas, with PO3 levels rising near Tehran while declining near LA (Los Angeles). 

This tendency is a clear demonstration of non-linear ozone chemistry. While we do not identify 

any statistically significant trends in HCHO mixing ratios within the PBL for these two major 

cities, we do observe a significant downward trend in NO2 mixing ratios in Los Angeles and a 

substantial upward trend in Tehran, as illustrated in Figure S7. Since both cities are primarily in 

VOC-sensitive conditions at their cores (Souri et al., 2025), it is intuitively clear a reduction 

(enhancement) in NO2 should lead to positive (negative) trends in PO3 because of the impact of 

the loss of NOX on PO3. Conversely, in their suburbs where the negative effect of the loss of 

NOX on PO3 diminishes, we see a close association of the sign of PO3 trends and those of NO2.   

 

 

Figure S6. The statistically significant linear trends of PO3 over LA (left) and Tehran (right) 

based on the PO3DNN product in 2005-2019.  
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Figure S7. The statistically significant linear trends of PBL NO2 mixing ratios over LA (left) and 

Tehran (right) based on the bias-corrected OMI and MINDS product in 2005-2019. 
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S3. Can rapid heatwaves accelerate PO3 in the northeast U.S.? 

Heatwaves are known to worsen ozone pollution in many regions because of several 

factors. Increased temperatures can elevate both anthropogenic and biogenic VOCs (Guenther et 

al., 2012; Wu et al., 2024). Additionally, higher temperatures can accelerate some key reaction 

rates, particularly NO+RO2 (Pusede et al., 2015). Longer periods of active photochemistry can 

occur because of fewer clouds, and the dispersion of ozone and its precursors may be hindered 

by a dominant high-pressure system (Pyrgou et al., 2018). However, some of these effects may 

be offset if heatwaves last for an extended period, as drought conditions can suppress biogenic 

VOCs (Duncan et al., 2009; Demetillo et al., 2019). In this study, we focus on a severe heatwave 

that affected the eastern U.S. in August 2007. To contrast the atmospheric conditions during this 

month with those of a typical condition, we use August 2008 as a baseline. 

Our PO3DNN product shown in Figure S8 exhibits a 21% increase in PO3 rates with 

respect to the baseline throughout the northeast U.S., suggesting that rapid heatwaves can 

accelerate the production of chemically-generated ozone molecules. It is important to 

acknowledge that both maps represent conditions with minimal cloud cover imposed by the 

cloud-screening flags from the satellite retrievals. However, the frequency of clear-sky 

conditions is usually higher during heatwaves compared to normal conditions. This distinction is 

critical because clouds play a significant role in reducing photochemical activity close to the 

surface by limiting incoming solar radiation. Consequently, even if PO3 values appeared similar 

between these two episodes, the more frequent occurrence of clear-sky conditions in August 

2007 would result in a greater cumulative contribution of PO3 to the region. This highlights the 

impact of persistent sunshine in enhancing ozone, reinforcing the need to account for 

meteorological variability when analyzing photochemical processes. 

 

Figure S8. The maps of PO3 within PBL in August 2007 (left), August 2008 (middle), and their 

absolute difference (right).  

To study the reasons behind the accelerated PO3 during this episode, we explore the 

respective changes in ozone precursors and the sensitivities by the heatwave. Figure S9 contrasts 

the differences in NO2 and HCHO levels within the PBL region for two episodes. These maps 

are derived from the bias-corrected OMI VCDs scaled to the PBL region using MINDS 

simulations. Different wind patterns are most likely the cause of the differences in NO2 patterns 

over cities; we see different shapes of NO2 plumes over NYC, Toronto, and Boston. Additionally, 

we see some uniform enhancements of NO2 in several inland regions, such as Washington DC, 

Philadelphia, North Carolina, Tennessee, and Ohio. While we cannot definitively locate the cause 
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of these enhancements without additional measurements and models, we can speculate that rising 

temperature can increase both nitrification and denitrification microbial activities under optimal 

soil moisture causing soil NOX emissions to rise. Another possible explanation could be that 

NOX reservoirs (such as PAN and alkyl nitrate) can rapidly be converted back to NO2 because of 

higher temperature and more sunshine. HCHO levels are markedly high during the heatwave 

event in comparison to the baseline (>2 ppbv). The enhanced biogenic emissions and 

photochemistry are the causes. 

 

Figure S9. The maps of NO2 (top) and HCHO (bottom) concentrations within PBL averaged in 

month of August in 2007 (heatwave) and 2008 (a normal condition), and their absolute 

differences. The abundance of HCHO and NO2 are informed by bias-corrected OMI retrievals.  

Using the spatially-varying sensitivity of PO3 to NO2 and HCHO provided by our 

product, we find that in rural and suburban areas, the derivative of PO3 to NOX tends to be high 

(NOX-sensitive regimes) (Figure S10), indicating that even a small increase in NO2 in several 

inland regions can boost the sensitivity of PO3 to NO2 greatly. This observation is consistent with 

findings from Geddes et al. (2022), who reported a similar trend of increasing ozone sensitivity 

to soil NOX emissions across various remote regions in the U.S. 

We observe that higher levels of HCHO significantly increase the sensitivity of PO3 to 

HCHO in several high-NOX areas, including Toronto, Boston, Washington DC, Philadelphia, and 

Buffalo, as illustrated in Figure S10. As noted before, the sensitivity maps are influenced by both 

the magnitude of a precursor and the derivative of PO3 with respect to a precursor. In high-NOX 

regions, the derivative of PO3 to HCHO is typically large (i.e., VOC-sensitive). Consequently, 

elevated HCHO concentrations lead to a greater sensitivity of PO3 to HCHO levels. Conversely, 

in remote regions where the derivative of PO3 to HCHO is small, increases in HCHO cannot 

induce noticeable effect on PO3. An exception to the general increase in PO3 sensitivity to 
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HCHO occurs over NYC. This anomaly can be attributed to the different shape of the NO2 plume 

in August 2008 as compared to 2007. In August 2007, as shown in Figure S9, NO2 

concentrations in NYC were dispersed over the ocean, resulting in less VOC-sensitive conditions 

(lower derivative of PO3 to HCHO) within the city. As a result, PO3 sensitivity values to HCHO 

decrease because the first-order derivative decreases.  

 

Figure S10. A similar layout as shown in Figure 8, but with the sensitivity outputs derived from 

the PO3DNN algorithm.  

These results suggest that the rapid calculation capabilities of our product can aid in 

identifying the causes behind unusual ozone exceedances triggered by weather events, without 

requiring substantial expertise or computational resources for fine-tuning chemical transport 

models. However, it is important to note that those models are essential for comprehensively 

understanding all physiochemical processes responsible for ozone formation and loss, as they 

provide explicit and process-based details.  
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Additional Figures: 

 

Figure S11. The learning curve shows the evolution of training and validation MSEs as a 

function of epochs.  

 

 

Figure S12. Scatterplots comparing observationally-constrained F0AM model PO3 and the 

predictions based on the DNN for the whole data (test+validation+training) from each air quality 

campaign. “All” denotes all test data. 
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Figure S13. Scatterplots comparing observationally-constrained F0AM model PO3 and the 

predictions based on dropping each campaign from the training data and using them as 

benchmarks. 

 

 

 



16 
 

 

Figure S14. Absolute values of HCHO, NO2, and jNO2 for several regions shown in Figure 6 in 

the main manuscript. These data are based on 2005-2007 time period. HCHO and NO2 units are 

ppbv. jNO2 is in 1×10-3/s unit.  
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Figure S15. Linear trends of HCHO mixing ratios within the PBL derived from OMI+MINDS in 

2005-2019. Dots indicate a statistically significant trend.  

 

Figure S16. Linear trends of NO2 mixing ratios within the PBL derived from OMI+MINDS in 

2005-2019. Dots indicate a statistically significant trend.  
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Figure S17. Recalculation of AMFs using MINDS vertical shape factors contrasted with the 

default profiles coming from TM5. The differences are within 20% in polluted regions with 

active photochemistry.   

 

Figure S18. The impact of AMFs recalculation of TROPOMI NO2 on relative PO3 over regions 

undergoing PO3>0.5 ppbv/hr.   
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Figure S19. Same as Figure S17 but for HCHO.   

 

 

Figure S20. Same as Figure S18 but for HCHO.   


