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Figure S1. Eight regions (outlined in red) used for the calculation of the bottom-up and top-down emissions of Table 4 in the main text.
North America: 13-75◦N, 40-170◦W, South America: 60◦S-13◦N, 30-90◦W, Northern Hemisphere Africa: 0-37◦N, 20◦W-65◦E, Southern
Hemisphere Africa: 0-40◦S, 20◦W-65◦E, North Asia: 37-75◦N, 50-179◦E, South Asia: 10◦S-37◦N, 65-170◦E, Oceania: 10-50◦S, 110-
179◦E and Europe: 37-75◦N, 15◦W-50◦E (in red overlayed with blue). Blue boxes corespond to regions for the time series in main text
Fig. 4: Southeast US: 26-36◦N, 75-100◦W, Amazonia: 20◦S-5◦N, 40-75◦W, Equatorial Africa: 25◦S-12◦N, 18◦W-43◦E, Southeast Asia:
5-45◦N, 67-125◦E and Europe: 37-75◦N, 15◦W-50◦E.
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Figure S2. Distribution of a priori glyoxal precursor emission fluxes of anthropogenic origin based on the CAMS-GLOB-ANT inventory,
averaged over 2021.
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c. Aromatic emission flux, Guangzhou

Figure S3. Time series for 2021 of anthropogenic aromatic emission flux from CAMS-GLOB-ANT (a priori) and from the OPTHCHOGLY
inversion which is constrained by TROPOMI HCHO and CHOCHO data (a posteriori) for a. the Jing-Jin-Ji area around Beijing (115–
117.5°E, 38–40°N); b. the Yangtze River Delta around Shanghai (120–122.5°E, 30–32°N); and c. the Pearl River Delta around Guangzhou
(112.5–115°E, 22–24°N).
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Table S1. Observed CHOCHO mixing ratios (pptv) from in situ measurement campaigns at 17 rural sites (between 1988 and 2018), and
simulated values from a priori and optimized (OPTHCHOGLY) model (2021). Ind.: Index in main text Fig. 11. Country: ISO country code.
Lat.: latitude. Long.: longitude. Month: start and end month. Time: start and end local time of measurement. Obs.: Observed. A priori:
a priori model. Optimized: Optimized model. Different rows for the Sierra Nevada Mountains campaign correspond to different years. At
Tomakomai, measurements were performed at 22 and 38 m above ground level. Some subsets of the observations are listed for different
times of the month: 1late October, 2early October, 3mid-October.

Ind. Site Country Lat. Long. Month Time Obs. A priori Optimized Reference
1 Sierra Nevada Mts USA 38.90 239.37 8-9 00-24 50 32 63 Huisman et al. (2011)
2 Sierra Nevada Mts USA 38.90 239.37 9 00-24 30 26 48 Huisman et al. (2011)
3 Sierra Nevada Mts USA 38.90 239.37 8-9 06-21 27 32 63 Spaulding et al. (2003)
4 Sierra Nevada Mts USA 38.90 239.37 6-7 00-24 56 32 57 DiGangi et al. (2012)
5 San Nicolas Isl. USA 33.25 240.48 9 00-24 100 20 35 Grosjean et al. (1996)
6 Central Rocky Mts USA 39.10 254.90 8 00-24 30 14 37 DiGangi et al. (2012)
7 Georgia USA 32.53 277.87 7-8 14-17 18 52 65 Lee et al. (1995)
8 Georgia USA 32.53 277.87 6 14-17 83 40 51 Lee et al. (1995)
9 Pinnacles USA 38.62 281.65 9 00-24 44 30 48 Munger et al. (1995)

10 Manacapuru BRA -3.30 299.40 9 00-24 17 47 57 Thayer et al. (2015)
11 Manacapuru BRA -3.30 299.40 10 00-24 8 46 55 Thayer et al. (2015)
12 Anadia PRT 40.42 351.60 8 00-24 40 23 39 Cerqueira et al. (2003)
13 Tabua PRT 40.32 351.95 8 00-24 150 24 40 Cerqueira et al. (2003)
14 Goldlauter1 DEU 50.64 10.76 10 23-13 20 10 12 Müller et al. (2005)
15 Goldlauter2 DEU 50.64 10.76 10 19-11 10 10 12 Müller et al. (2005)
16 Goldlauter3 DEU 50.64 10.76 10 22-04 5 10 11 Müller et al. (2005)
17 Pabstthum DEU 52.85 12.94 7 00-24 38 28 41 Moortgat et al. (2002)
18 Wangdu CHN 38.70 115.14 6 00-24 50 45 56 Min et al. (2016)
19 Borneo Rainforest MYS 4.98 117.84 4-5 00-24 385 40 111 MacDonald et al. (2012)
20 Borneo Rainforest MYS 4.98 117.84 6-7 00-24 328 39 111 MacDonald et al. (2012)
21 Yangtze River Delta CHN 32.56 119.99 5-6 00-24 100 51 57 Liu et al. (2020)
22 Tomakomai (22 m) JPN 42.73 141.52 9 09-22 25 12 21 Ieda et al. (2006)
23 Tomakomai (38 m) JPN 42.73 141.52 9 09-22 28 13 22 Ieda et al. (2006)
24 Moshiri JPN 44.30 142.20 8 00-24 18 14 25 Matsunaga et al. (2004)
25 Cape Grim AUS -40.68 144.69 8-9 00-24 7 2 4 Lawson et al. (2015)
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Table S2. Observed CHOCHO mixing ratios (pptv) during in situ measurement campaigns at 20 urban sites, and calculated values from the
a priori and optimized (OPTHCHOGLY) model. Ind.: Index in main text Fig. 11. Country: country code. Lat.: latitude. Long.: longitude.
Month: start and end month. Time: start and end local time of measurement. Obs.: Observed. A priori: A priori model. Optimized: Optimized
model. Different rows for the PKU campaigns correspond to different years. Some subsets of the observations are listed for different times
of the day or month: 1Jun 29, midday, and 2evening; 3Jun 30, midday, and 4evening; 5Jul 20, morning, 6midday, 7afternoon, and 8evening;
9Jul 6, morning, 10midday, 11afternoon, and 12evening; 13Sep 22, early morning, and 14 late morning. MIT = Massachusetts Institute of
Technology, USP = Universidade de São Paulo, CETESB = Companhia Ambiental do Estado de São Paulo, HKUST = Hong Kong University
of Science and Technology, PKU = Peking University, CRAES = Chinese Research Academy of Environmental Sciences.

Ind. Site Country Lat. Long. Month Time Obs. A priori Optimized Reference
26 Los Angeles USA 34.07 241.77 9 00-24 725 26 46 Grosjean et al. (1996)
27 Los Angeles USA 34.14 241.88 5-6 15-16 190 21 38 Washenfelder et al. (2011)
28 Long Beach USA 33.82 241.81 9 00-24 250 25 45 Grosjean et al. (1996)
29 Azusa USA 34.14 242.08 9 00-24 950 24 44 Grosjean et al. (1996)
30 Claremont USA 34.11 242.29 9 00-24 1175 23 43 Grosjean et al. (1996)
31 Las Vegas USA 36.11 244.86 7-8 00-24 210 15 33 Jing et al. (2001)
32 Las Vegas USA 36.11 244.86 11-2 00-24 140 8 13 Jing et al. (2001)
33 Mexico City MEX 19.36 260.93 4 00-24 300 34 60 Volkamer et al. (2005)
34 Elizabeth USA 40.66 285.78 3-5 00-24 780 20 25 Liu et al. (2006)
35 Elizabeth USA 40.66 285.78 6-8 00-24 770 49 67 Liu et al. (2006)
36 Elizabeth USA 40.66 285.78 9-11 00-24 550 25 34 Liu et al. (2006)
37 Elizabeth USA 40.66 285.78 12-2 00-24 490 10 12 Liu et al. (2006)
38 MIT, Cambridge USA 42.36 288.91 7 05-20 81 30 45 Sinreich et al. (2007)
39 USP, Sao Paulo1 BRA -23.57 313.27 6 11-15 800 37 59 Grosjean et al. (1990)
40 USP, Sao Paulo2 BRA -23.57 313.27 6 15-19 900 29 47 Grosjean et al. (1990)
41 USP, Sao Paulo3 BRA -23.57 313.27 6 11-15 600 37 59 Grosjean et al. (1990)
42 USP, Sao Paulo4 BRA -23.57 313.27 6 15-19 600 29 47 Grosjean et al. (1990)
43 USP, Sao Paulo5 BRA -23.57 313.27 7 10-12 1300 31 52 Grosjean et al. (1990)
44 USP, Sao Paulo6 BRA -23.57 313.27 7 12-14 1000 35 59 Grosjean et al. (1990)
45 USP, Sao Paulo7 BRA -23.57 313.27 7 14-16 200 29 48 Grosjean et al. (1990)
46 USP, Sao Paulo8 BRA -23.57 313.27 7 16-18 600 25 42 Grosjean et al. (1990)
47 CETESB, Sao Paulo9 BRA -23.56 313.30 7 10-12 1100 32 52 Grosjean et al. (1990)
48 CETESB, Sao Paulo10 BRA -23.56 313.30 7 12-14 700 36 59 Grosjean et al. (1990)
49 CETESB, Sao Paulo11 BRA -23.56 313.30 7 13-15 700 32 53 Grosjean et al. (1990)
50 CETESB, Sao Paulo12 BRA -23.56 313.30 7 15-17 200 26 43 Grosjean et al. (1990)
51 Rio de Janeiro BRA -22.90 316.80 5-11 08-11 152 21 33 Grosjean et al. (2002)
52 Salvador13 BRA -12.99 321.47 9 08-10 150 16 23 Grosjean et al. (1990)
53 Salvador14 BRA -12.99 321.47 9 09-11 1700 15 22 Grosjean et al. (1990)
54 Giesta PRT 40.55 351.49 7-8 00-24 1540 21 35 Borrego et al. (2000)
55 Montelibretti ITA 42.11 12.63 7 08-16 790 20 33 Possanzini et al. (2007)
56 Montelibretti ITA 42.11 12.63 8 08-16 403 20 34 Possanzini et al. (2007)
57 Montelibretti ITA 42.11 12.63 9 08-16 235 17 28 Possanzini et al. (2007)
58 Montelibretti ITA 42.11 12.63 2 08-16 155 8 12 Possanzini et al. (2007)
59 Xi’an CHN 34.22 109.01 6 00-24 70 55 82 Dai et al. (2012)
60 Xi’an CHN 34.22 109.01 1 00-24 190 13 14 Dai et al. (2012)
61 Guangdong CHN 22.73 112.93 1 00-24 100 31 32 Chang et al. (2019)
62 HKUST HKG 22.33 114.26 12 00-24 1516 36 39 Ho et al. (2002)
63 PKU, Bejing CHN 39.99 116.30 11 00-24 100 9 12 Shen et al. (2018)
64 PKU, Bejing CHN 39.99 116.30 8 00-24 280 56 79 Qian et al. (2019)
65 PKU, Bejing CHN 39.99 116.30 7-8 00-24 50 61 85 Qian et al. (2019)
66 PKU, Bejing CHN 39.99 116.30 11 00-24 300 9 12 Qian et al. (2019)
67 PKU, Bejing CHN 39.99 116.30 7 00-24 280 66 91 Rao et al. (2016)
68 PKU, Bejing CHN 39.99 116.30 1-3 00-24 170 9 11 Rao et al. (2016)
69 CRAES, Bejing CHN 40.04 116.41 7-8 07-19 680 80 111 Yang et al. (2018)
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Figure S4. Observed CHOCHO concentrations during in-situ measurement campaigns at 20 urban sites, and CHOCHO concentrations from
the a priori and optimized model for 2021. Numbering corresponds to the detailed entries in Table S2 and the locations on the map in main
text Fig. 11. G.M.: geometric mean. Different bars for the PKU, Beijing campaign correspond to measurements in different years. Some
subsets of the observations are listed for different times of the day or month: 1Jun 29, midday, and 2evening; 3Jun 30, midday, and 4evening;
5Jul 20, morning, 6midday, 7afternoon, and 8evening; 9Jul 6, morning, 10midday, 11afternoon, and 12evening; 13Sep 22, early morning, and
14 late morning. MIT = Massachusetts Institute of Technology, USP = Universidade de São Paulo, CETESB = Companhia Ambiental do
Estado de São Paulo, HKUST = Hong Kong University of Science and Technology, PKU = Peking University, CRAES = Chinese Research
Academy of Environmental Sciences.
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