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Section S1.

LAl and NDVI are effective proxies for urban vegetation cover and photosynthetic biomass,
allowing for the monitoring of changes in vegetation structure and productivity over time
(Chen and Black, 1992; Forzieri et al., 2020). To provide a more comprehensive
representation of urban vegetation density and coverage, we introduced the metrics VI,
which was derived from NDVI and LAI using principal component analysis (PCA). The
NDVI was derived from corrected measurements of the Advanced Very High Resolution
Radiometer, with a spatial resolution of 0.0833<and global coverage from 1990 to 2022
(Pinzon and Tucker, 2014). The LAI data for 2000 — 2021 was obtained from the Global
Land Surface Satellite (GLASS) version 6 (LAl VV6) with a resolution of 0.05< while LAI
for 1990 — 1999 was sourced from GLASS version 5 (LAI VV5). Compared to the LAI V5,
the LAI V6 retrieved by the Bi-LSTM deep learning model was more resistant to the noises
or missing values and avoided the reconstruction of surface reflectance data (Ma and Liang,
2022). Therefore, in order to obtain more accurate LAI values, a random forest model was
employed to correct the values of LAI V5 during 1990 — 1999. LAI V5, NDVI, and time
variables (year and month) were used as independent variables to predict LAI V6. The RF
model was trained on data from 2005 to 2018 and tested on data from 2000 to 2004. With
the R? of 0.66 — 0.97, the good performance on the test datasets suggested that the model
was effective in correcting the values of LAI V5 and accurately capturing the historical
trend of LAI. Additionally, the NDVI and LAI were downscaled to a 0.25°>0.25<grid
resolution, with the sampling sites at the center, to assess vegetation cover changes at the
city scale. Through the PCA analysis, the principal component 1 with an explained variance
ratio of 0.98 across all the sites was assigned as V1.
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Section S2.

The study has the following limitations. First, although the machine learning model we
developed showed its data imputation capability at the data-sparse sites, this approach
requires site-specific observational data for optimal performance, limiting its immediate
global applicability. Future research should explore data-efficient strategies such as semi-
supervised learning to overcome this constraint.

Second, our study focuses on ambient isoprene concentrations rather than emissions.
Therefore, the results may not directly guide emission-based numerical simulations.
However, the predicted concentrations and their drivers, particularly temperature, radiation,
and vegetation indices, provide valuable insights into biogenic emission patterns. The
pronounced increase in isoprene concentrations observed at the suburban sites in both
London and Hong Kong after 2012 served as a compelling evidence of climate warming's
impact on biogenic emissions. In Hong Kong, the sustained upward trend in isoprene
concentrations over recent decades likely reflected enhanced emissions driven by urban
greenspace expansion. The contrasting importance of vegetation indices between these two
cities further underscored how regional differences in vegetation composition and emission
characteristics influence local air quality. These findings contribute to our understanding
of biogenic isoprene emissions under changing climatic and urban conditions, providing
crucial insights for sustainable city development in a warming world.

Third, chemical loss of isoprene was not considered with specific proxies in the model.
Isoprene is primarily consumed by reacting with hydroxyl radical (OH) in the daytime.
Since the availability of OH data is limited, Os is generally used as an OH proxy. We
attempted to use Oz as an input feature, but the model showed a positive isoprene-Os
relationship, due to the similar diurnal patterns between them, contributions of isoprene to
O3, and their common sensitivities to temperature. It is also difficult to obtain the data of
indicative oxidation products of isoprene, such as methyl vinyl ketone. In fact, OH
concentration is closely related to meteorological parameters, especially radiation and
temperature. By adopting these parameters as input features, we believe that the chemical
loss of isoprene was considered by the model. Despite this, the positive responses of

isoprene to radiation and temperature suggest that the effect of emissions overwhelmed
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that of chemical loss. Indeed, this was confirmed by the diurnal pattern of the observed
isoprene concentrations across various sites (Figure S7).

Fourth, we assume the concentrations and compositions of many air pollutants, except
isoprene and NOy, unchanged in the simulation of future Os. This probably led to an
overestimate of Os. However, the conclusions regarding the effects of temperature rise,

isoprene increase and NOx reduction should still hold true.
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Figure S1. Box plot and distribution of isoprene concentrations at each site. The upper and lower
edges of the box denote the third and first quartiles, respectively, while the solid line within the box

represents the median. The whiskers extend to 1.5 times the interquartile range.
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Figure S2. Diurnal variations of isoprene concentrations at the New Delhi site. The bands represent

95% confidence intervals.
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Figure S3. Comparisons of WRF-Chem simulated and measured isoprene concentrations.
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Figure S4. The SHAP dependence plot of temperature at the Chongging site.
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Figure S5. Correlation analysis of monthly isoprene concentrations with benzene and BCrasfic in
Hong Kong and London.
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Figure S6. Variations of average summer temperature at the London_B and London_T sites from
1990 to 2023.
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Figure S7. Diurnal variations in isoprene concentrations, temperature, and solar radiation across

different sites. The bands represent 95% confidence intervals.



Site Time coverage Latitude Longitude  Number of Temporal Site Instrument

valid hourly resolution category
data

Beijing May to September ~ 40.05° 116.42° 3464 hourly Urban GC-FID/MS
in 2021 and 2022 site

Chengdu July to September 30.66° 104.04= 4574 hourly Urban Synspec GC955-611/811
from 2019 to 2022 site

Chonggqing July to August in 29.62° 106.51° 1503 hourly Urban Synspec GC955-611/811
2021 and 2022 site

Guangzhou May to September  23.08° 113.37° 4111 hourly Urban AC-GCMS1000
in 2019 and 2021 site

Hong Kong_ TC May to September ~ 22.29° 113.94° 20775 hourly Suburban GC-PID
from 2005 to 2020 site

Hong Kong_HT May to September  22.22° 114.26° 9900 hourly Urban GC-PID
from 2013 to 2023 site

Nanjing June to Octoberin  32.12° 118.96° 4683 hourly Urban GC-MS/FID
2017, 2018, 2022, site
and 2023

Shanghai June to September  31.17° 121.43= 4692 hourly Urban GC-FID
from 2021 to 2023 site

Wuhan_U May to September ~ 30.53° 114.37° 5161 hourly Urban GC-FID/MS
from 2021 to 2023 site




Wuhan_S May to September  30.60° 114.28<° 4974 hourly Urban GC-FID/MS
from 2021 to 2023 site

London_ T May to 51.45° 0.07< 2061 daily Traffic Perkin EImer Ozone Precursor
September; 1994 site Analysers
to 2022

London_B May to 51.52° 0.16< 2063 daily Suburban  Perkin EImer Ozone Precursor
September; 1999 site Analysers
to 2022

Oklahoma April to 36.60° -97.49° 1064 hourly Rural PTR-MS
September; 2016 site

Manaus February to April; -3.10° -59.99< 1194 hourly Urban PTR-MS
2016 site

Oxfordshire June to 51.46° -1.20° 1025 hourly Forest GC-PID
September; 2018 site

New Delhi January to March;  28.45° 77.28° 968 hourly Suburban PTR-TOF-MS 8000

2018

site

Table S1. Detailed information of isoprene observational data at each site.



Predictor variables Abbreviations ~ Temporal ~ Temporal Spatial Spatial
coverage  resolution  coverage  resolution

Vegetation index VI 1990-2023 8 days global 0.25<

Traffic emissions of BCtraffic 1990-2023  monthly global 0.1

black carbon

2m Temperature T 1990-2023 hourly global 0.1°

Surface solar radiation SSRD 1990-2023 hourly global 0.25<

downwards

Soil moisture SWv 1990-2023 hourly global 0.1°

Relative humidity RH 1990-2023 hourly global 0.1

Surface pressure SP 1990-2023 hourly global 0.1<

10-meter Zonal wind ulo 1990-2023 hourly global 0.1°

component

10-meter Meridional v10 1990-2023 hourly global 0.1°

wind component

Evaporation from EVAVT 1990-2023 hourly global 0.1

vegetation

transpiration

Boundary layer height BLH 1990-2023 hourly global 0.25°

Total precipitation TP 1990-2023 hourly global 0.1°

Table S2. Detailed information of variables used for isoprene concentrations prediction.

10



Training

Site name Site type Pre-training dataset Fine-tuning/retraining dataset
strategy
T-training Data from pre-training sites except Chongging Training data from Chongging
] NT-training Pre- / Training data from Chongging
Chongging o
o training Data from pre-training sites except Chongqing +
MIX-training / o )
Training data from Chongging
T-training Data from pre-training sites except Chengdu Training data from Chengdu
NT-training Pre- / Training data from Chengdu
Chengdu . __
o training Data from pre-training sites except Chengdu +
MIX-training / -
Training data from Chengdu
T-training Data from pre-training sites except Wuhan_U Training data from Wuhan_U
NT-training Pre- / Training data from Wuhan_U
Wuhan_U o
o training Data from pre-training sites except Wuhan_U +
MIX-training / -
Training data from Wuhan_U
T-training Data from pre-training sites except Wuhan_S Training data from Wuhan_S
NT-training Pre- / Training data from Wuhan_S
Wuhan_S o
o training Data from pre-training sites except Wuhan_S +
MIX-training / o
Training data from Wuhan_S
Shanahai T-training Pre- Data from pre-training sites except Shanghai Training data from Shanghai
angnai - — -
NT-training training / Training data from Shanghai

11



Data from pre-training sites except Shanghai +

MIX-training / o )
Training data from Shanghai
T-training Data from pre-training sites except Nanjing Training data from Nanjing
B NT-training Pre- / Training data from Nanjing
Nanjing o
o training Data from pre-training sites except Nanjing +
MIX-training / o .
Training data from Nanjing
T-training Data from pre-training sites except Beijing Training data from Beijing
NT-training Pre- / Training data from Beijing
Beijing -
o training Data from pre-training sites except Beijing +
MIX-training / .
Training data from Beijing
T-training Data from pre-training sites except Hong Kong_TC Training data from Hong Kong_TC
Hong NT-training Pre- / Training data from Hong Kong_TC
Kong_TC o training Data from pre-training sites except Hong
MIX-training / -
Kong_TC + Training data from Hong Kong_TC
T-training Data from pre-training sites except Hong Kong_HT Training data from Hong Kong_HT
Hong NT-training Pre- / Training data from Hong Kong_HT
Kong_HT o training Data from pre-training sites except Hong
MIX-training / -
Kong_HT + Training data from Hong Kong_HT
T-training Pre- Data from pre-training sites except Guangzhou Training data from Guangzhou
Guangzhou o
NT-training training / Training data from Guangzhou

12



Data from pre-training sites except Guangzhou +

MIX-training / o
Training data from Guangzhou
PINN- o o
o All pre-training sites Training data from London_T
London_ T ResMLP+ Validation
other models / Training data from London_T
PINN- S .
All pre-training sites Training data from London_B
London_B ResMLP+ Validation
other models / Training data from London_B
PINN- o - .
] o All pre-training sites Training data from New Delhi
New Delhi ResMLP+ Validation
other models / Training data from New Delhi
PINN- S .
All pre-training sites Training data from Manaus
Manaus ResMLP+ Validation
other models / Training data from Manaus
PINN- S o
o All pre-training sites Training data from Oklahoma
Oklahoma ResMLP+ Validation
other models / Training data from Oklahoma
PINN- o - .
All pre-training sites Training data from Oxfordshire
Oxfordshire  ResMLP+ Validation

other models

Training data from Oxfordshire

Table S3. Pre-training and fine-tuning datasets for different training strategies at each site.
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Machine learning algorithm

Hyperparameters

Number of

models

Extreme gradient boosting (XGB)

n_estimators: 100, 200, 300
max_depth: 20, 30
learning_rate: 0.2,0.5,0.8, 1
colsample_bytree: 0.8, 1.0

48

Random forest (RF)

n_estimators: 100, 200, 300
min_samples_split: 5, 10, 15, 20
max_depth: 10, 20

24

Gradient boosting decision tree
(GBDT)

n_estimators: 100, 200, 300
learning_rate: 0.1, 0.3,0.6, 0.8, 1

15

Support vector machine (SVM)

C: 1,5, 10, 100, 1000

kernel: linear, poly, rbf

15

Linear regression (LR)

default

Table S4. Hyperparameters used for different machine learning algorithms.
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