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Section S1. 1 

LAI and NDVI are effective proxies for urban vegetation cover and photosynthetic biomass, 2 

allowing for the monitoring of changes in vegetation structure and productivity over time 3 

(Chen and Black, 1992; Forzieri et al., 2020). To provide a more comprehensive 4 

representation of urban vegetation density and coverage, we introduced the metrics VI, 5 

which was derived from NDVI and LAI using principal component analysis (PCA). The 6 

NDVI was derived from corrected measurements of the Advanced Very High Resolution 7 

Radiometer, with a spatial resolution of 0.0833° and global coverage from 1990 to 2022 8 

(Pinzon and Tucker, 2014). The LAI data for 2000 – 2021 was obtained from the Global 9 

Land Surface Satellite (GLASS) version 6 (LAI V6) with a resolution of 0.05°, while LAI 10 

for 1990 – 1999 was sourced from GLASS version 5 (LAI V5). Compared to the LAI V5, 11 

the LAI V6 retrieved by the Bi-LSTM deep learning model was more resistant to the noises 12 

or missing values and avoided the reconstruction of surface reflectance data (Ma and Liang, 13 

2022). Therefore, in order to obtain more accurate LAI values, a random forest model was 14 

employed to correct the values of LAI V5 during 1990 – 1999. LAI V5, NDVI, and time 15 

variables (year and month) were used as independent variables to predict LAI V6. The RF 16 

model was trained on data from 2005 to 2018 and tested on data from 2000 to 2004. With 17 

the R2 of 0.66 – 0.97, the good performance on the test datasets suggested that the model 18 

was effective in correcting the values of LAI V5 and accurately capturing the historical 19 

trend of LAI. Additionally, the NDVI and LAI were downscaled to a 0.25° × 0.25° grid 20 

resolution, with the sampling sites at the center, to assess vegetation cover changes at the 21 

city scale. Through the PCA analysis, the principal component 1 with an explained variance 22 

ratio of 0.98 across all the sites was assigned as VI. 23 

  24 
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Section S2. 25 

The study has the following limitations. First, although the machine learning model we 26 

developed showed its data imputation capability at the data-sparse sites, this approach 27 

requires site-specific observational data for optimal performance, limiting its immediate 28 

global applicability. Future research should explore data-efficient strategies such as semi-29 

supervised learning to overcome this constraint. 30 

Second, our study focuses on ambient isoprene concentrations rather than emissions. 31 

Therefore, the results may not directly guide emission-based numerical simulations. 32 

However, the predicted concentrations and their drivers, particularly temperature, radiation, 33 

and vegetation indices, provide valuable insights into biogenic emission patterns. The 34 

pronounced increase in isoprene concentrations observed at the suburban sites in both 35 

London and Hong Kong after 2012 served as a compelling evidence of climate warming's 36 

impact on biogenic emissions. In Hong Kong, the sustained upward trend in isoprene 37 

concentrations over recent decades likely reflected enhanced emissions driven by urban 38 

greenspace expansion. The contrasting importance of vegetation indices between these two 39 

cities further underscored how regional differences in vegetation composition and emission 40 

characteristics influence local air quality. These findings contribute to our understanding 41 

of biogenic isoprene emissions under changing climatic and urban conditions, providing 42 

crucial insights for sustainable city development in a warming world. 43 

Third, chemical loss of isoprene was not considered with specific proxies in the model. 44 

Isoprene is primarily consumed by reacting with hydroxyl radical (OH) in the daytime. 45 

Since the availability of OH data is limited, O3 is generally used as an OH proxy. We 46 

attempted to use O3 as an input feature, but the model showed a positive isoprene-O3 47 

relationship, due to the similar diurnal patterns between them, contributions of isoprene to 48 

O3, and their common sensitivities to temperature. It is also difficult to obtain the data of 49 

indicative oxidation products of isoprene, such as methyl vinyl ketone. In fact, OH 50 

concentration is closely related to meteorological parameters, especially radiation and 51 

temperature. By adopting these parameters as input features, we believe that the chemical 52 

loss of isoprene was considered by the model. Despite this, the positive responses of 53 

isoprene to radiation and temperature suggest that the effect of emissions overwhelmed 54 
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that of chemical loss. Indeed, this was confirmed by the diurnal pattern of the observed 55 

isoprene concentrations across various sites (Figure S7).  56 

Fourth, we assume the concentrations and compositions of many air pollutants, except 57 

isoprene and NOx, unchanged in the simulation of future O3. This probably led to an 58 

overestimate of O3. However, the conclusions regarding the effects of temperature rise, 59 

isoprene increase and NOx reduction should still hold true.60 



 

 

4 

 

 

Figure S1. Box plot and distribution of isoprene concentrations at each site. The upper and lower 

edges of the box denote the third and first quartiles, respectively, while the solid line within the box 

represents the median. The whiskers extend to 1.5 times the interquartile range. 

 

 

 

Figure S2. Diurnal variations of isoprene concentrations at the New Delhi site. The bands represent 

95% confidence intervals. 
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Figure S3. Comparisons of WRF-Chem simulated and measured isoprene concentrations. 

 

 

 

Figure S4. The SHAP dependence plot of temperature at the Chongqing site. 
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Figure S5. Correlation analysis of monthly isoprene concentrations with benzene and BCtraffic in 

Hong Kong and London. 
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Figure S6. Variations of average summer temperature at the London_B and London_T sites from 

1990 to 2023. 

 

 

 

 

Figure S7. Diurnal variations in isoprene concentrations, temperature, and solar radiation across 

different sites. The bands represent 95% confidence intervals.
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Site Time coverage Latitude Longitude Number of 

valid hourly 

data 

Temporal 

resolution 

Site 

category 

Instrument  

Beijing May to September 

in 2021 and 2022 

40.05° 116.42° 3464 hourly Urban 

site 

GC–FID/MS 

Chengdu July to September 

from 2019 to 2022 

30.66° 104.04° 4574 hourly Urban 

site 

Synspec GC955-611/811 

Chongqing July to August in 

2021 and 2022 

29.62° 106.51° 1503 hourly Urban 

site 

Synspec GC955-611/811 

Guangzhou May to September 

in 2019 and 2021 

23.08° 113.37° 4111 hourly Urban 

site 

AC-GCMS1000 

Hong Kong_TC May to September 

from 2005 to 2020 

22.29° 113.94° 20775 hourly Suburban 

site 

GC-PID 

Hong Kong_HT  May to September 

from 2013 to 2023 

22.22° 114.26° 9900 hourly Urban 

site 

GC-PID 

Nanjing June to October in 

2017, 2018, 2022, 

and 2023 

32.12° 118.96° 4683 hourly Urban 

site 

GC-MS/FID 

Shanghai  June to September 

from 2021 to 2023 

31.17° 121.43° 4692 hourly Urban 

site 

GC-FID 

Wuhan_U May to September 

from 2021 to 2023 

30.53° 114.37° 5161 hourly Urban 

site 

GC-FID/MS 
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Wuhan_S May to September 

from 2021 to 2023 

30.60° 114.28° 4974 hourly Urban 

site 

GC-FID/MS 

London_T May to 

September; 1994 

to 2022 

51.45° 0.07° 2061 daily Traffic 

site 

Perkin Elmer Ozone Precursor 

Analysers 

London_B May to 

September; 1999 

to 2022 

51.52° 0.16° 2063 daily Suburban 

site 

Perkin Elmer Ozone Precursor 

Analysers 

Oklahoma April to 

September; 2016 

36.60° -97.49° 1064 hourly Rural 

site 

PTR-MS 

Manaus February to April; 

2016 

-3.10° -59.99° 1194 hourly Urban 

site 

PTR-MS 

Oxfordshire June to 

September; 2018 

51.46° -1.20° 1025 hourly Forest 

site 

GC‐PID 

New Delhi January to March; 

2018 

28.45° 77.28° 968 hourly Suburban 

site 

PTR-TOF-MS 8000 

Table S1. Detailed information of isoprene observational data at each site. 
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Predictor variables Abbreviations Temporal 

coverage 

Temporal 

resolution 

Spatial 

coverage 

Spatial 

resolution 

Vegetation index VI 1990-2023 8 days global 0.25° 

Traffic emissions of 

black carbon  

BCtraffic 1990-2023 monthly global 0.1° 

2m Temperature T 1990-2023 hourly global 0.1° 

Surface solar radiation 

downwards 

SSRD 1990-2023 hourly global 0.25° 

Soil moisture SWV 1990-2023 hourly global 0.1° 

Relative humidity RH 1990-2023 hourly global 0.1° 

Surface pressure SP 1990-2023 hourly global 0.1° 

10-meter Zonal wind 

component 

u10 1990-2023 hourly global 0.1° 

10-meter Meridional 

wind component 

v10 1990-2023 hourly global 0.1° 

Evaporation from 

vegetation 

transpiration 

EVAVT 1990-2023 hourly global 0.1° 

Boundary layer height BLH 1990-2023 hourly global 0.25° 

Total precipitation TP 1990-2023 hourly global 0.1° 

Table S2. Detailed information of variables used for isoprene concentrations prediction. 
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Site name 
Training 

strategy 
Site type Pre-training dataset Fine-tuning/retraining dataset 

Chongqing 

T-training 

Pre-

training 

Data from pre-training sites except Chongqing Training data from Chongqing 

NT-training / Training data from Chongqing 

MIX-training / 
Data from pre-training sites except Chongqing + 

Training data from Chongqing 

Chengdu 

T-training 

Pre-

training 

Data from pre-training sites except Chengdu Training data from Chengdu 

NT-training / Training data from Chengdu 

MIX-training / 
Data from pre-training sites except Chengdu + 

Training data from Chengdu 

Wuhan_U 

T-training 

Pre-

training 

Data from pre-training sites except Wuhan_U Training data from Wuhan_U 

NT-training / Training data from Wuhan_U 

MIX-training / 
Data from pre-training sites except Wuhan_U + 

Training data from Wuhan_U 

Wuhan_S 

T-training 

Pre-

training 

Data from pre-training sites except Wuhan_S Training data from Wuhan_S 

NT-training / Training data from Wuhan_S 

MIX-training / 
Data from pre-training sites except Wuhan_S + 

Training data from Wuhan_S 

Shanghai 
T-training Pre-

training 

Data from pre-training sites except Shanghai Training data from Shanghai 

NT-training / Training data from Shanghai 
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MIX-training / 
Data from pre-training sites except Shanghai + 

Training data from Shanghai 

Nanjing 

T-training 

Pre-

training 

Data from pre-training sites except Nanjing Training data from Nanjing 

NT-training / Training data from Nanjing 

MIX-training / 
Data from pre-training sites except Nanjing + 

Training data from Nanjing 

Beijing 

T-training 

Pre-

training 

Data from pre-training sites except Beijing Training data from Beijing 

NT-training / Training data from Beijing 

MIX-training / 
Data from pre-training sites except Beijing + 

Training data from Beijing 

Hong 

Kong_TC 

T-training 

Pre-

training 

Data from pre-training sites except Hong Kong_TC Training data from Hong Kong_TC 

NT-training / Training data from Hong Kong_TC 

MIX-training / 
Data from pre-training sites except Hong 

Kong_TC + Training data from Hong Kong_TC 

Hong 

Kong_HT 

T-training 

Pre-

training 

Data from pre-training sites except Hong Kong_HT Training data from Hong Kong_HT 

NT-training / Training data from Hong Kong_HT 

MIX-training / 
Data from pre-training sites except Hong 

Kong_HT + Training data from Hong Kong_HT 

Guangzhou 
T-training Pre-

training 

Data from pre-training sites except Guangzhou Training data from Guangzhou 

NT-training / Training data from Guangzhou 
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MIX-training / 
Data from pre-training sites except Guangzhou + 

Training data from Guangzhou 

London_T 

PINN-

ResMLPT Validation 
All pre-training sites Training data from London_T 

other models / Training data from London_T 

London_B 

PINN-

ResMLPT Validation 
All pre-training sites Training data from London_B 

other models / Training data from London_B 

New Delhi 

PINN-

ResMLPT Validation 
All pre-training sites Training data from New Delhi 

other models / Training data from New Delhi 

Manaus 

PINN-

ResMLPT Validation 
All pre-training sites Training data from Manaus 

other models / Training data from Manaus 

Oklahoma 

PINN-

ResMLPT Validation 
All pre-training sites Training data from Oklahoma 

other models / Training data from Oklahoma 

Oxfordshire 

PINN-

ResMLPT Validation 
All pre-training sites Training data from Oxfordshire 

other models / Training data from Oxfordshire 

Table S3. Pre-training and fine-tuning datasets for different training strategies at each site.
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Machine learning algorithm Hyperparameters Number of 

models 

Extreme gradient boosting (XGB) n_estimators: 100, 200, 300 

max_depth: 20, 30 

learning_rate: 0.2, 0.5, 0.8, 1 

colsample_bytree: 0.8, 1.0 

48 

Random forest (RF) n_estimators: 100, 200, 300 

min_samples_split: 5, 10, 15, 20 

max_depth: 10, 20 

24 

Gradient boosting decision tree 

(GBDT) 

n_estimators: 100, 200, 300 

learning_rate: 0.1, 0.3, 0.6, 0.8, 1 

15 

Support vector machine (SVM) C: 1, 5, 10, 100, 1000 

kernel: linear, poly, rbf 

15 

Linear regression (LR) default 1 

Table S4. Hyperparameters used for different machine learning algorithms. 
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