

Supplement of

Divergent drivers of aerosol acidity: evidence for shifting regulatory regimes in a coastal region

Jinghao Zhai et al.

Correspondence to: Xin Yang (yangx@sustech.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

1 **S1. Multiphase buffer theory derivation.** In aerosol systems, buffering capacity arises not only
2 from classical acid-base dissociation in the aqueous phase but also from gas-liquid partitioning of
3 volatile conjugate pairs (e.g., $\text{NH}_4^+/\text{NH}_3$, $\text{HNO}_3/\text{NO}_3^-$). The redistribution of the neutral form
4 between gas and liquid phases introduces additional pathways to mitigate pH perturbations
5 compared to bulk aqueous solutions (Zheng et al., 2020; Gao et al., 2025).

6 For a volatile weak base (BOH) and its conjugate cation (B^+), the equilibria are:

7 Gas-liquid partitioning:

8
$$[\text{BOH}(\text{g})] = K_g \cdot [\text{BOH}(\text{aq})] \quad (\text{S1})$$

9
$$K_g = \frac{\rho_w}{H_{\text{BOH}} \cdot R \cdot T \cdot \text{AWC}} \quad (\text{S2})$$

10 Acid-base dissociation:

11
$$[\text{BOH}(\text{aq})] = K_{\text{a,BOH}} \cdot \frac{[\text{B}^+]}{[\text{H}^+]} \quad (\text{S3})$$

12 Mass balance:

13
$$[\text{BOH}]_{\text{tot}}^* = [\text{B}^+] + [\text{BOH}(\text{aq})] + [\text{BOH}(\text{g})] \quad (\text{S4})$$

14 where $[\text{BOH}(\text{g})]$ denotes the equivalent molality, defined as the number of moles of gaseous
15 BOH normalized by the mass of aerosol water. K_g is the dimensionless gas-liquid partitioning
16 constant, H_{BOH} is the Henry's law constant of BOH ($\text{mol kg}^{-1} \text{ atm}^{-1}$), and $K_{\text{a,BOH}}$ is its aqueous-
17 phase acid dissociation constant. $[\text{BOH}]_{\text{tot}}^*$ represents the total equivalent molality of BOH (mol
18 kg^{-1}), including aqueous B^+ as well as BOH present in both liquid and gas phases.

19 These relations lead to an effective dissociation constant that incorporates gas-liquid coupling:

20
$$K_{\text{a,BOH}}^* = K_{\text{a,BOH}} \cdot (1 + K_g) \quad (\text{S5})$$

21
$$K_{\text{a,HA}}^* = \frac{K_{\text{a,HA}}}{1 + K_g} \quad (\text{S6})$$

22 where $K_{a,HA}$ is the acid dissociation constant of HA in aqueous solutions.

23 The ionic concentration can be written as:

24
$$[B^+] = \frac{[H^+] \cdot [BOH]_{tot}^*}{[H^+] + K_{a,BOH}^*} \quad (S7)$$

25 When a strong base is added (n_{base} , mol kg⁻¹), the liquid-phase charge balance is:

26
$$n_{base} + [H^+] + [B^+] = [OH^-] + [As^-] = \frac{K_w}{[H^+]} + [As^-] \quad (S8)$$

27 where K_w is the water dissociation constant and $[As^-]$ represents counter-anions from the
28 accompanying salt.

29 Substituting Eq. (7) yields:

30
$$n_{base} = \frac{K_w}{[H^+]} - [H^+] - \frac{[H^+] \cdot [BOH]_{tot}^*}{[H^+] + K_{a,BOH}^*} + [As^-] \quad (S9)$$

31 The buffering capacity is defined as:

32
$$\beta = \frac{dn_{base}}{dpH} \quad (S10)$$

33 Differentiating Eq. (9) with respect to $[H^+]$ and applying $\frac{d[H^+]}{dpH} = -2.303[H^+]$ gives:

34
$$\beta = 2.303 \left(\frac{K_w}{[H^+]} + [H^+] + \frac{[H^+] \cdot K_{a,BOH}^*}{([H^+] + K_{a,BOH}^*)^2} \cdot [BOH]_{tot}^* \right) \quad (S11)$$

35 The first two terms correspond to the intrinsic self-buffering of water under strongly acidic or
36 alkaline conditions, while the third term reflects the contribution of the volatile buffer pair,
37 maximized when $[H^+] \approx K_{a,BOH}^*$.

38 For a system containing multiple volatile and non-volatile acid-base pairs, the total buffering
39 capacity is additive:

40
$$\beta = 2.303 \left(\frac{K_w}{[H^+]} + [H^+] + \sum_k \frac{[H^+] \cdot K_{a,k}^*}{([H^+] + K_{a,k}^*)^2} \cdot [X_k]_{tot}^* \right) \quad (S12)$$

41 where X_k denotes the reservoir of species k (gas + aqueous neutral + ionized), and $K_{a,k}^*$ is its

42 effective dissociation constant. This formulation shows that each buffer contributes maximally
43 near $\text{pH} \approx \text{p}K_{a,k}^*$, with the height of the peak proportional to the species abundance.

44 At high ionic strength, activity coefficients modify the effective dissociation constants. The non-
45 ideal form is written as:

46
$$K_{a,k}^{*,\text{ni}} = K_{a,k}^* \cdot \frac{\gamma_{\text{H}^+} \cdot \gamma_{X_{k,\text{tot}}}}{\gamma_{\text{ion},k}} \quad (\text{S13})$$

47 and Eq. (12) is updated by substituting $K_{a,k}^*$ with $K_{a,k}^{*,\text{ni}}$. For volatile bases such as $\text{NH}_4^+/\text{NH}_3$,
48 the gas phase can be treated as ideal ($\gamma \approx 1$), so deviations mainly arise from the ratio $\gamma_{\text{H}^+}/\gamma_{\text{ion}}$.

49

50 **S2. Aerosol pH variation drivers.** In this study, the changes in aerosol pH (ΔpH) induced by an
51 individual driver were defined as the differences between typhoon and non-typhoon scenarios used
52 as constraints. The constraint ranges were selected to represent the variability observed during the
53 campaign, thereby ensuring that the perturbations remained within realistic atmospheric
54 conditions. The drivers considered included nonvolatile cations (NVCs), total ammonia (TNH_3),
55 total nitric acid (THNO_3), relative humidity (RH), and temperature (T).

56 Aerosol pH was determined using the ISORROPIA II (<http://isorropia.epfl.ch>) model based on
57 datasets from both typhoon and non-typhoon conditions. Taking the typhoon case as an example,
58 the model was constrained by the chemical and meteorological parameters specific to the typhoon
59 period, while the driver of interest was varied between the typhoon and non-typhoon datasets. The
60 difference between the two simulated pH values was then attributed to the ΔpH caused by that
61 driver under typhoon conditions.

62 Each driver was evaluated over distinct fixed ranges along the x-axis in Figure 3. Specifically,
63 for chemical composition, we followed the analytical approach of previous study (Zheng et al.,
64 2020), in which the composition profile is normalized by the total equivalent anions. The major
65 influencing factors in the chemical profiles are total HNO_3 , non-volatile cations (NVCs), and total
66 NH_3 . The difference in our study is that aerosol water content (AWC) was not treated as an
67 independent driver in this part. Instead, all drivers, whether chemical or meteorological, may lead
68 to changes in AWC. Nevertheless, we adopted Zheng et al.'s method for evaluating the chemical
69 drivers to facilitate subsequent comparison of results.

70 For meteorological factors (RH and T), ΔpH was similarly calculated using the ISORROPIA
71 model by constraining the simulations with typhoon and non-typhoon datasets. Accordingly, the
72 ΔpH contributions of different drivers within the same scenario are not strictly comparable, as the
73 constraint criteria for ΔpH differ among drivers; that is, each driver was assessed over distinct
74 fixed ranges on the x-axis. However, the ΔpH contributions of a given driver between typhoon and

75 non-typhoon scenarios were derived under the same constraint framework and can therefore be
76 meaningfully compared.

77 **Table S1.** Equilibrium constants on a molality basis for calculating aerosol buffering capacity.

Gas-aqueous equilibrium						
Equilibrium	Constant definition	Constant value (mol kg ⁻¹ atm ⁻¹) ^a			Ref.	
		$K(T_0)$	$-\frac{\Delta H_{298}}{R \cdot T_0}$	$-\Delta C_{p0}/R$		
$\text{NH}_3(\text{g}) \leftrightarrow \text{NH}_3(\text{aq})$	$H_{\text{NH}_3} = \frac{\gamma_{\text{NH}_3(\text{aq})} \cdot [\text{NH}_3(\text{aq})]}{p_{\text{NH}_3}}$	57.64	13.79	-5.39	(Kim et al., 1993)	
$\text{HNO}_3(\text{g}) \leftrightarrow \text{HNO}_3(\text{aq})$	$H_{\text{HNO}_3} = \frac{\gamma_{\text{HNO}_3(\text{aq})} \cdot [\text{HNO}_3(\text{aq})]}{p_{\text{HNO}_3}}$	2.1×10^5	n/a ^b	n/a	(Kim et al., 1993)	
Aqueous ionization equilibrium						
Equilibrium	Constant definition	Constant value (mol ² kg ⁻² for K_w , mol kg ⁻¹ for all others)			Ref.	
		$K(T_0)$	$-\frac{\Delta H_{298}}{R \cdot T_0}$	$-\Delta C_{p0}/R$		
$\text{H}_2\text{O} \leftrightarrow \text{H}^+ + \text{OH}^-$	$K_w = \frac{[\text{H}^+] \cdot [\text{OH}^-] \cdot \gamma_{\text{H}^+} \cdot \gamma_{\text{OH}^-}}{a_w}$	1.01×10^{-14}	-22.52	26.92	(Kim et al., 1993)	
$\text{NH}_3 + \text{H}_2\text{O} \leftrightarrow \text{NH}_4^+ + \text{OH}^-$	$K_{\text{b},\text{NH}_3} = \frac{[\text{NH}_4^+] \cdot [\text{OH}^-] \cdot \gamma_{\text{NH}_4^+} \cdot \gamma_{\text{OH}^-}}{[\text{NH}_3] \cdot \gamma_{\text{NH}_3} \cdot a_w}$ $K_{\text{a},\text{NH}_3} = \frac{K_w}{K_{\text{b},\text{NH}_3}}$	1.81×10^{-5}	-1.5	26.92	(Kim et al., 1993)	
$\text{HSO}_4^- \leftrightarrow \text{H}^+ + \text{SO}_4^{2-}$	$K_{\text{a},\text{HSO}_4} = \frac{[\text{H}^+] \cdot [\text{SO}_4^{2-}] \cdot \gamma_{\text{H}^+} \cdot \gamma_{\text{SO}_4^{2-}}}{[\text{HSO}_4^-] \cdot \gamma_{\text{HSO}_4^-}}$	1.02×10^{-2}	8.85	25.14	(Seinfeld and Pandis, 2006)	
$\text{HNO}_3 \leftrightarrow \text{H}^+ + \text{NO}_3^-$	$K_{\text{a},\text{HNO}_3} = \frac{[\text{H}^+] \cdot [\text{NO}_3^-] \cdot \gamma_{\text{H}^+} \cdot \gamma_{\text{NO}_3^-}}{[\text{HNO}_3] \cdot \gamma_{\text{HNO}_3}}$	15.4	29.17	16.83	(Haynes, 2014)	

78 ^aThe equilibrium constant at a specific temperature T is:

79
$$K(T) = K(T_0) \cdot \exp \left[-\frac{\Delta H_{298}}{R \cdot T_0} \cdot \left(\frac{T_0}{T} - 1 \right) - \frac{\Delta C_{p0}}{R} \cdot \left(1 + \ln \left(\frac{T_0}{T} \right) - \frac{T_0}{T} \right) \right], \text{ where } T_0 = 298.15 \text{ K.}$$

80 ^bNot found and are set to zero.

82 **Table S2.** Configuration of typhoon and non-typhoon scenarios in this study^a.

Scenario	Na ⁺	SO ₄ ²⁻	TNH ₃	THNO ₃	THCl	Ca ²⁺	K ⁺	Mg ²⁺	RH	T
Typhoon	0.22	0.54	0.86	0.41	1.84	0.05	0.02	0.04	0.92	298.72
Non-typhoon	0.07	6.13	4.37	1.82	0.46	0.04	0.06	0.01	0.70	301.74

83 ^a All aerosol compositions are reported in units of $\mu\text{g m}^{-3}$, relative humidity (RH) is represented on a 0–1 scale,
84 and temperature (T) is given in Kelvin (K).

85

86 **References:**

87 Gao, J., Wei, Y. T., Wang, H. Q., Song, S. J., Xu, H., Feng, Y. C., Shi, G. L., and Russell, A. G.:
88 Multiphase Buffering: A Mechanistic Regulator of Aerosol Sulfate Formation and Its Dominant
89 Pathways, *Environ. Sci. Technol.*, 59, 8073-8084, 10.1021/acs.est.4c13744, 2025.

90 Haynes, W. M.: CRC Handbook of Chemistry and Physics, CRC press, 2014.

91 Kim, Y. P., Seinfeld, J. H., and Saxena, P.: Atmospheric gas aerosol equilibrium. 1.
92 Thermodynamic model, *Aerosol Sci. Technol.*, 19, 157-181, 10.1080/02786829308959628,
93 1993.

94 Seinfeld, J., and Pandis, S.: *Atmospheric Chemistry and Physics : From Air Pollution to Climate
95 Change*, John Wiley & Sons, New York, 2006.

96 Zheng, G. J., Su, H., Wang, S. W., Andreae, M. O., Pöschl, U., and Cheng, Y. F.: Multiphase buffer
97 theory explains contrasts in atmospheric aerosol acidity, *Science*, 369, 1374-+,
98 10.1126/science.aba3719, 2020.