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Abstract. The relationship between cloud droplet number concentration (Ng) and liquid water path (LWP) is
highly uncertain yet crucial for determining the impact of aerosol-cloud interactions (ACI) on Earth’s radiation
budget. The Ny3-LWP relationship is examined using a machine learning (ML) random forest model applied to
five years of satellite data at grid resolutions ranging from 10° to 0.05° in 12 distinct regions. In the subtrop-
ics, the shape of the Nq-LWP relationship switches from an inverted-V at 1° grid-resolution to an “M” shape
at 0.1° resolution with decreased d(}?lfmp sensitivity. Tropical and midlatitude regions generally show a more
positive sensitivity. Cloud sampling and filtering also influence this slope, wherein the exclusion of thin clouds,
as commonly performed to reduce retrieval uncertainty, leads to strongly negative sensitivity across all regions.
Precipitation is primarily responsible for driving the strength of the sensitivity, with strong positive slopes in
raining clouds and negative and/or neutral responses found in non-raining clouds. A new method to compute
radiative forcing from the ML model shows a robust Twomey radiative forcing across all regions and grid reso-
lutions. However, LWP and cloud fraction adjustments to the radiative forcing, which are ~ 50 % or smaller than
the Twomey effect, decrease to negligible values with higher spatial resolution data. As Earth system models
move toward higher spatial resolutions in the future, evaluating the LWP and CF adjustment contributions to the

radiative forcing budget at these finer resolutions will be essential for evaluation and model development.

1 Introduction

Clouds are highly reflective and significantly cool the Earth,
helping to keep the planet habitable. The more abundant
they are, and the more water they contain, the greater the
amount of solar radiation they reflect (Stephens, 1978). In-
creased aerosol concentrations can elevate planetary albedo
by enhancing cloud reflectance through an increase in cloud
droplet number concentration (Ng), cloud liquid water path
(LWP), and cloud fraction (CF). However, if LWP and CF
decrease as aerosol loading increases, more sunlight will be
absorbed by the Earth, leading to a warming radiative ef-
fect. While the effective radiative forcing from aerosol-cloud
interactions (ACI) (ERF,; Gryspeerdt et al., 2019) has a
net cooling effect globally, estimates remain highly uncertain
(Bellouin et al., 2020) due to limited understanding, large re-
trieval uncertainties, and challenges quantifying and attribut-

ing causality from the non-linear relationship between Ny
and LWP.

The Ng—LWP relationship is non-linear and typically ap-
pears as an inverted-V shape when displayed as a column-
normalized 2D histogram representing the conditional dis-
tribution P(LWP|Ny) (Gryspeerdt et al., 2019). This shape
manifests from a rise in LWP as Ny increases below a thresh-
old of approximately 30 cm™3, followed by a decrease for
higher Ny. Examples of this relationship can be seen in satel-
lite observations (Gryspeerdt et al., 2019), large eddy simula-
tions (LES; Hoffmann et al., 2020), and in the Energy Exas-
cale Earth System Model (E3SM; Christensen et al., 2023).
The prevailing hypothesis governing this relationship pro-
vides separate physical explanations for the behavior in both
the high and low Ny regimes. The ascending branch (at low
Ny) results from the suppression of precipitation caused by
more, but smaller, cloud droplets allowing LWP to increase
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(Albrecht, 1989). In the descending branch, entrainment of
dry air into non-raining clouds tends to decrease LWP (Ack-
erman et al., 2004) by increasing Nq further. Dry air entrain-
ment affects both branches, but when the clouds are non-
precipitating, the LWP is subject to larger decreases (Chen
etal., 2014).

Although this relationship has been used to infer causality
in ACI, several factors complicate a direct causal interpre-
tation. Aerosol effects can make the link between aerosol
concentration and Ny nonlinear due to processes such as
precipitation suppression and evaporation-entrainment feed-
backs (Albrecht, 1989; Ackerman et al., 2004). Satellite re-
trieval errors and sampling limitations — such as the exclu-
sion of thin clouds due to uncertainties or biases introduced
by retrieval inaccuracies — further affect analyses (Grosvenor
et al., 2018). Feedbacks, including wet scavenging and en-
trainment, impact Ny retrievals, while meteorological con-
founders, such as dry air intrusion coinciding with elevated
aerosol levels, can reduce cloud water paths; each of these
factors are detailed further in (Gryspeerdt et al., 2019). Re-
cent assessments show that the propagation of spatial vari-
ability and errors in satellite retrievals can lead to the mis-
interpretation of positive LWP adjustments as negative in
subtropical clouds, thereby leading to an underestimate of
ERF,; (Arola et al., 2022). The extent to which this relation-
ship is controlled by these or a combination of these factors
and whether similar biases or drivers are applicable outside
of the subtropics remains largely unknown.

Current understanding of the Ng—LWP relationship de-
rived from satellite observations at global scales is largely
based on coarse spatial resolution data (e.g., 4° x 4° or
1° x 1° grids). While Arola et al. (2022) examined finer spa-
tial resolutions (0.25° x 0.25°) of the Ng—LWP relationship it
was over a limited area of the North Pacific, leaving an open
question as to whether the results hold outside of the subtrop-
ics and over larger spatial extents. General circulation mod-
els (GCMs) with regionally refined meshes, such as the Sim-
ple Cloud-Resolving E3SM Atmosphere Model (SCREAM),
have started generating ACI statistics at increasingly finer
resolutions, down to 3 km (Caldwell et al., 2021). This raises
pertinent questions about how the statistics of ACI change
with varying spatial-scale resolutions, and whether meteo-
rological regimes influence the 2D histograms of the Ng-
LWP relationship. We generated a series of collocated global
datasets at progressively higher grid-scale spatial resolutions
(10, 5, 1, 0.5, 0.1, and 0.05°) and applied a machine learning
(ML) model to extract non-linear behavior in the Ng—LWP
relationship. From these new datasets and tools, we are able
to answer the following questions:

— How does the structure of the Ng—LWP relationship
change as the spatial grid resolution increases to finer
scales?

— How do subtropical, tropical, and midlatitude regions
differ in their Ng—LWP relationships?
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— How does satellite filtering and sampling clouds with
different characteristics influence the Ng—LWP relation-
ship?

— What are the primary meteorological drivers shaping the
Ngq—-LWP relationship?

— What is the impact of changing spatial resolution on the
estimated radiative effects of ACI?

In this study, we aim to address these questions by examin-
ing how grid-scale resolution, regional differences, and me-
teorological factors influence the Ng—LWP relationship, and
by applying a random forest ML model to our data set to
enhance our understanding and prediction of these complex
interactions and changes in radiative forcing. The data sets
are described in Sect. 2, methods involving statistical sam-
pling and ML methods are described in Sect. 3, results are
described in Sects. 4 and 5, with Sect. 5 highlighting the ML
analysis and conclusions in Sect. 6.

2 Data

2.1 Satellite Observations

The MODIS Collection 6.1 cloud product is derived from
the observations acquired from the Aqua satellite, which
follows a polar orbit crossing the equator at approximately
01:30 p.m. local time. This product includes retrievals of
cloud optical properties such as effective droplet radius (R.)
and optical thickness (z.) at multiple wavelengths (1.6, 2.1,
and 3.7 um) and cloud thermodynamic phase, as well as in-
frared retrievals of the cloud top temperature (CTT), pres-
sure (CTP), and height (CTH) (Nakajima and King, 1990;
Platnick et al., 2017). These products are retrieved at a nom-
inal spatial resolution of 1 km at the surface at nadir. Due to
oblique viewing angles and projection effects onto Earth’s
curved surface, MODIS pixel size increases from 1km at
nadir to nearly 4 km at the swath edges. MODIS data are pro-
vided as 1354 x 2030-pixel granules. This dataset includes
three filters applied to the MODIS retrievals for liquid warm
clouds:

1. All. Includes retrieved cloud properties where phase = 2
(liquid) and CTT > 268 K.

2. Q06. Includes all filters from the All composite plus
7. >4 and R, > 4 pum. This filter is called “Q06” be-
cause it uses the same set of constraints as those used in
Quaas et al. (2006).

3. GI18. Includes all properties from the Q06 composite
plus Skm CF > 0.9, solar zenith angle (Os1ar) < 65°,
satellite zenith angle (Osaeelite) < 55°, and sunglint pixel
index (SPI) < 30°. This filter is called “GI8 because
it uses the same set of constraints as those used in
Grosvenor et al. (2018).
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Following the same approach (and terminology for the filter
names) as Gryspeerdt et al. (2022), Nq4 is computed for each
composite using the equation Ngq=yf (CTT)‘L’Cl / zRe_ >/ 2,
where y is the adiabatic condensation growth rate taking a
value of 1.37 x 107> m~%3, and f(CTT) = 0.01927 —4.293
is the temperature-dependent condensation rate determined
from the CTT retrieval.

AMSR-E, onboard NASA’s Aqua satellite, operates at
multiple microwave frequencies, allowing it to retrieve cloud
water path and surface precipitation rate. It has a swath width
of about 1445km with a footprint of approximately 13 km?
at the surface. Version 2 of the AMSR-E AE_Ocean(Rain)
product provides retrievals of columnar cloud and rain water
path as well as surface precipitation over each footprint using
the 36.5 GHz channel (Wentz and Meissner, 2004).

The CERES instrument measures top of atmosphere ra-
diances in the shortwave (0.3-5um), window (8—12 um),
and total (0.3 to 200 um) spectral channels, with a spatial
resolution of approximately 20km at nadir. Operating in
cross-track, along-track, and rotating azimuth plane modes
aboard the Aqua satellite, CERES scans from limb-to-limb
to achieve daily global coverage. It provides retrievals of in-
stantaneous shortwave (SW) top-of-atmosphere (TOA) ra-
diative fluxes by incorporating MODIS cloud properties,
aerosol retrievals, and meteorological parameters from the
Global Modeling and Assimilation Office (GMAO) in An-
gular Distribution Models (ADMs) to retrieve all-sky ocean
TOA fluxes to an accuracy of 6 % (Loeb et al., 2009) in the
Single Scanner Footprint TOA/Surface Fluxes and Clouds
(SSF).

2.2 Meteorological Quantities

MERRA-2 (Modern-Era Retrospective analysis for Research
and Applications, Version 2) is a reanalysis product devel-
oped by GMAQO. It provides meteorological data spanning
from 1980 to the present, assimilating observations from var-
ious satellites and ground-based stations. MERRA-2 offers
a spatial resolution of approximately 0.625° (about 50 km)
and includes 72 vertical levels spanning the atmosphere. The
temporal resolution is 1 h for all surface meteorological vari-
ables and 3h for 3D fields. We utilize vertical profiles of
temperature and specific humidity to compute estimated in-
version strength (Wood and Bretherton, 2006) and humid-
ity above the boundary layer, near-surface meteorological
variables to compute the near surface temperature advection
and various other cloud controlling factors based on the 3D
winds. MERRA-2 computes planetary boundary layer height
(PBLH) as the the lowest level at which the heat diffusivity
drops below a threshold value (for more details see McGrath-
Spangler et al., 2015). These meteorological quantities have
been shown to strongly influence ACI relationships (Wall
et al., 2023). The MERRA-2 products are temporally inter-
polated to match the instantaneous time of the MODIS satel-
lite overpass and spatially resampled using a KDTree ap-

https://doi.org/10.5194/acp-26-59-2026

61

proach (Bentley, 1975) and bilinear interpolation to match
the MERRA-2 products to the pixel-scale resolution of the
MODIS instrument for each individual L2 granule.

European Centre for Medium-Range Weather Forecast-
ing (ECMWEF) Reanalysis v5 (ERAS) is a reanalysis dataset
that provides global meteorological data from 1950 to the
present with ~ 31 km spatial and hourly temporal resolution
(Hersbach et al., 2020). It assimilates satellite and ground-
based observations, including atmospheric motion vectors
from cloud tops, offering strong wind constraints. We also
match this reanalysis product to the instantaneous footprint
from MODIS and use it to train our ML model.

3 Methods

3.1 Data Product and Aggregation

MODIS cloud retrievals at 1 km spatial resolution are grid-
ded globally into daily files from 2007-2011 by 10, 5, 1,
0.5, 0.1, and 0.05° regions. MODIS data is aggregated within
each grid-box (at these different resolutions yielding, on av-
erage, 1E6, 2.5ES, 1E4, 2.5E3, 1E3, and 25 number of daily
samples over the grid-box for each grid-resolution, respec-
tively). All products are aggregated in the grid resolutions
down to 0.5°. At 0.1 and 0.05° resolutions the data products
at coarser spatial resolutions than the grid (i.e. AMSR-E of
13 km, CERES of 25 km) are bilinearly interpolated in space
between the locations of the level-2 satellite footprints to the
grid box of the gridded product in question. All of the cloud
product averages are composed of warm liquid clouds only
and if any ice clouds are detected within a grid-cell it is not
used in the analysis.

3.2 Random Forest Model

A random forest model is an ensemble learning technique
that combines multiple decision trees to improve predictive
accuracy and robustness. It works by aggregating predic-
tions from each tree, trained on random subsets of the data
with replacement, and is effective in handling complex re-
lationships and high-dimensional datasets (Breiman, 2001).
Chen et al. (2022) employs a random forest algorithm to in-
vestigate the impacts of volcanic aerosols and meteorology
on clouds surrounding Iceland. This approach enables the
comparison of cloud responses of volcanic aerosol pertur-
bations, isolating ACI signals. We adopt a similar approach
by constructing a regression forest consisting of 100 trees
independently trained to predict LWP, N;, and CTH based
on the following 13 predictor variables: PBLH, isentropic
lifted condensation level based on the surface air tempera-
ture, pressure, and dew point (LCL), relative humidity above
the height level of the PBLH (rhAbovePBL), estimated inver-
sion strength (EIS), horizontal temperature advection at the
surface (Tadv), surface latent heat flux (LH), total column
water vapor (tqv), 10 m surface wind speed (ws10), surface
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precipitation (AMSRE-E), CTH (MODIS), CF (MODIS),
cloud albedo (Acg; CERES), and Ng (MODIS). A compre-
hensive list of predictors and their respective data sources is
provided in Table S1.

The random forest is constructed from 100 trees with a
minimal leaf size of 7 and no leaf merging. The full dataset
was randomly partitioned into three independent subsets:
65 % for training, 25 % for testing, and 10 % for validation.
Randomized sampling partitions, as opposed to sequential
(e.g., yearly) splits, did not have a significant impact on the
model’s outcomes. Within the training set, each decision tree
in the random forest is trained on approximately 60 % of the
training data (sampled with replacement), while the remain-
ing 40 % serves as out-of-bag data for internal performance
evaluation. The validation set was used for tuning model hy-
perparameters described in Table S2. After hyperparameter
tuning, the model was retrained using both the training and
validation data (75 % total) to optimize performance, ensur-
ing that the test set remained unseen and provided an unbi-
ased assessment of model accuracy. Cloud controlling vari-
ables were primarily chosen from the selection used in the
studies of Andersen et al. (2023) and Wall et al. (2023).
Model performance is further evaluated using different hy-
perparameter values, such as the number of trees and the
minimum number of samples per leaf, which are discussed
below. Choosing predictors that have significant influence on
cloud properties helps in effectively capturing their variabil-
ity to best ensure that the model can discern meaningful pat-
terns and relationships crucial for understanding complex at-
mospheric processes.

4 Results

4.1 Regions

Twelve oceanic regions are used in this study (Fig. 1a), en-
compassing the subtropics (California; CAL, Peruvian; PER,
Namibian; NAM, and Australian; AUS, similar to Klein and
Hartmann, 1993), tropics (Central East Pacific; CEP, Cen-
tral Atlantic; CEA, and Western Indian; WEI), mid-latitudes
(Central North Pacific; CNP, Eastern South Atlantic; ESA,
and Eastern South Indian; ESI), and mixed regions (East-
ern North Atlantic; ENA and Western North Pacific; WNP),
with tropical and mid-latitude regions selected to ensure rep-
resentation in both hemispheres and alignment within sim-
ilar latitude belts. The subtropical locations contain a large
abundance (greater than 60 %) of warm low-level (below
3km) marine stratocumulus cloud (Fig. S1). Tropical and
Mid-latitude locations also contain substantial amounts of
warm boundary layer clouds, but these regions have signif-
icant differences in sea surface temperature (Fig. 1b) with
much higher amounts of mid and high-level clouds (Fig. 1c).
On average, planetary boundary layer depths are significantly
lower in the mid-latitude regions but have the heaviest pre-
cipitation rates (Fig. le) where a long tail (positive skew-
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ness) is apparent indicating a higher propensity for heavier
rainfall by frequent large-scale storm-track systems. Precipi-
tation rates are also large in the tropics (compared to the sub-
tropics). The diversity in meteorological conditions across
regions provides essential test-beds to isolate and study the
impact of different cloud states and environmental controls
on ACIL.

4.2 Impact of grid-spacing

Six spatial resolutions with grid spacing from 10 to 0.05° are
used to examine how the shape of the Ng—LWP relationship
changes within each region. The total number of grid-cells
over the 5 year period in the region increase roughly an or-
der of magnitude for each grid resolution (numbers used in
each grid-resolution 7.3 x 10%,2.9x 10*, 6.9x 10°,2.6 x 10°,
5.2x107,1.9x 108, respectively). Using the A/l warm-cloud
filter at 1° grid resolution reveals a pronounced inverted-V
distribution with distinct ascending and descending branches
for the California region (Fig. 2c). This result agrees with
Gryspeerdt et al. (2019). As the spatial resolution increases
and becomes finer, the inverted-V shape morphs into multiple
modes more closely resembling an “M” shape (Fig. 2e and
f). The inverted-V shape of the Ng—LWP relationship can be
modeled using a piecewise linear function in log—log space,
following a similar approach to Gryspeerdt et al. (2019). The
function is defined with a single turning point corresponding
to the median in the probability distribution function (PDF)
of LWP as a function of Ny:

if Ng < Na,p

InL InNg —InNy ,),
L — p+mi1(InNg d,p) ! 0
if Nda,p > Nap

InLy, +m2(InNg —In Ny p),

Here, Ng,p denotes the turning point — defined as the mode
in LWP for a given Ny — with slope coefficients m; and
my representing the log—log gradients to the left and right
of Ng,p, respectively, and L, the corresponding LWP value
at the turning point. At 1° resolution, the Ng—LWP distribu-
tions exhibit a well-defined inverted-V structure. However, as
spatial resolution increases (e.g., 0.1 and 0.05°), the median
of the PDF deviates from this structure and reveals a more
prominent “M” shape relative to the piecewise linear fit, re-
flecting increased subgrid variability. We focus on results at
0.1° resolution in the main analysis to balance computational
cost with spatial fidelity, unless otherwise noted.

To explain why the “M” shape emerges at the 0.1 and
0.05° resolutions, a detailed analysis of 7. and R, is con-
ducted. Since LWP is proportional to the product of t. and
R (i.e., LWP =2/3py 1. Re, where py, is the density of wa-
ter), the localized decrease in LWP in the bottom of the “M”
trough (Fig. 2e and f), which does not appear in the classic
inverted-V shape (Fig. 2c), occurs due to a higher occurrence
of clouds with smaller 7, (Fig. 3b). This change in LWP is
primarily driven by variations in t., as the changes in R be-
tween grid resolutions are similar (Fig. 3c). The statistical
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Figure 1. Oceanic regions 20° x 20° in domain size (a) are displayed. The combined subtropical (ST) regions include California (CAL),
Peruvian (PER), Namibian (NAM), and Australia (AUS); the tropical (TR) regions include Central East Pacific (CEP), Central Atlantic
(CEA), and Western Indian (WEI); and the mid-latitude (MD) regions include Central North Pacific (CNP), Eastern South Atlantic (ESA),
and Eastern South Indian (ESI). Mixed regions — Eastern North Atlantic (ENA) and Western North Pacific (WNP) — are not included in
the histograms. MERRA-2 Sea Surface Temperature (b), MODIS retrieved Cloud Top Height (c), MERRA-2 Planetary Boundary Layer
Depth (d), and MERRA-2 Precipitation Rate (e) are determined from 1-year (2010) data. Means and standard deviations of each distribution

are provided.

differences between these datasets indicate that finer reso-
lutions capture more variability in cloud optical properties,
leading to a wider spread in LWP values. This results in a
lower median LWP at finer scales due to the increased detec-
tion of smaller optical depth clouds.

4.3 Regional Differences

The Ng-LWP relationship varies significantly across sub-
tropical, tropical, and midlatitude regions (Fig. 4). In sub-
tropical regions, a distinct inverted-V distribution with clear
ascending and descending branches is evident at a 1° grid
resolution (Fig. S2). At higher resolutions, this pattern tran-
sitions to an “M” shape, that is robust across all dominant
subtropical stratocumulus locations (Figs. 4d and S3). Con-
sistent with Gryspeerdt et al. (2019), the linear-fit slope of
N4-LWP (over the whole range in Ng) is negative in the sub-
tropics at 1° grid resolution. It is also negative at 0.1° grid

https://doi.org/10.5194/acp-26-59-2026

resolution albeit the slope is significantly less negative at
higher spatial resolution. In the tropics, the shapes of these
distributions are less pronounced, and LWP exhibits a more
neutral/positive trend with Ng4. In midlatitudes, the relation-
ship sometimes resembles an inverted-V, but with a signif-
icant increase in LWP at high Ny4. Linear-fit slopes in mid-
latitudes tend to be more positive than in the subtropics and
tropical regions especially at higher spatial resolution. While
the relationships remain broadly consistent within subtropi-
cal, tropical, and midlatitude regions, variations in dominant
cloud types (which respond differently to aerosols, e.g. see,
Christensen et al., 2016), as well as differences in large-scale
meteorology and zonal gradients across these domains, can
also play a role in shaping the Ng—LWP relationship, a topic
we will further explore using ML.
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Figure 3. Median LWP (a), cloud optical thickness (z¢) (b), and droplet effective radius (Re) from 50 bins increasing by the log in Nq for 5
years of data across the Peruvian region averaged into 1° (blue) and 0.1° (orange) grids.

4.4 Impact of sampling and filtering these errors is to require 7. to be greater than 4. This more
stringent filtering is applied in the Q06 and G I8 composites.
Howeyver, thinner clouds, which are removed in these com-
posites, are generally more sensitive to aerosol perturbations
(Platnick and Twomey, 1994).

Figure 5 illustrates the impact of removing thin
cloud retrievals from the calculation of the slope in
AInLWP/AInNg across the globe using the 1° gridded
product. When All clouds are included (Fig. 5a), the slope

The accuracy of 7. and R. retrievals, which are used to
compute LWP and Ny, is generally improved by removing
thin and/or broken cloud fields. Thicker overcast cloud fields
have less noise from shortwave radiation scattering off a ho-
mogenous cloud-scene and more closely adhere to the scat-
tering assumptions inherent in the plane-parallel approxima-
tion (McGarragh et al., 2018). A common approach to reduce
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retrievals aggregated at 1° (a—c) and 0.1° resolutions for combined subtropical (ST), tropical (TR), and midlatitude (MID) locations in Fig. 1.
Red lines indicate the piecewise slopes in the ascending and descending branches of the distribution, dashed lines represent the linear least
squares fit line for each region.
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Figure 6. Linear least squares fit between the log of LWP and log
of Nq using 5 years of 1° gridded data at the ENA site as a function
of increasing the threshold of t.. Slope means (circle) for the All
(blue), Q06 (red), and G18 (orange) composites are displayed along
with the 7 threshold of 4 used ubiquitously in Q06 and G18.

is predominantly positive, except in the subtropics. However,
using 0.1° data results in less negative slopes in these regions
(Fig. S4), consistent with the observed differences between
1 and 0.1° resolutions in Fig. 4. When thin clouds are re-
moved using the Q06 and GI8 composites (Fig. 5b—c), the
global distribution of slopes becomes predominantly nega-
tive, except in the Southern Hemisphere mid-latitude storm
track, Polynesia, and various continental regions. Negative
slopes are reported in the literature when applying similar
7. thresholds (e.g., Fig. 2 in Gryspeerdt et al., 2019, which
used the thicker cloud composite of GI8). Removing thin
clouds reduces the number of cloud retrieval samples by
54 % (Fig. 5d), highlighting the trade-off between reducing
retrieval uncertainties and altering the sign of the LWP ad-
justment.

Figure 6 illustrates the effect of increasing the t. thresh-
old on the slope of the Nyg-LWP relationship. Beyond an
optical thickness of approximately 1.25, the inclusion of
thicker clouds with lower susceptibility results in a progres-
sively more negative slope, converging with other compos-
ites around an optical thickness of 10. The reliability of
cloud property retrievals for thin clouds depends on sev-
eral factors, including sea state roughness, CF, satellite view-
ing and zenith angles, and particle size. McGarragh et al.
(2018) highlight the challenges of retrieving accurate opti-
cal thickness values below 0.1, as subvisible cirrus (opti-
cal depth > 0.03) can impact the retrieval when they exist
(as determined by spaceborne lidar; Reverdy et al., 2012).
However, they demonstrate that retrievals are generally reli-
able for optical depths greater than 1.0, particularly over the
ocean, where surface reflectance is well constrained. Given
the strong influence of cloud filtering on slope estimates and
the significant uncertainties in LWP adjustments, improved
constraints on thin clouds are essential for refining radiative
forcing estimates. The Q06 and GI8 datasets may thus be
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too conservative and result in overly strong negative slopes.
Therefore, to maximize sample size in Ng-LWP relationship,
while recognizing the retrieval uncertainties that are intrin-
sic to thin and broken clouds, we will use the All dataset to
assess meteorological impacts in our ML analysis.

5 Machine Learning the N4-LWP Relationship

The random forest model is particularly useful for assess-
ing feature importance because it accounts for non-linear in-
teractions between variables, a critical capability given the
inherently non-linear nature of the ACI problem. To isolate
the impact of meteorology on ACI, a random forest model
is used to predict LWP based on 13 cloud-controlling fac-
tors (Table S1) in all twelve regions of our study. Figure S5
shows histograms of these factors for the California region,
where over 60 million samples from the 0.05° gridded prod-
uct were used to train the model. It’s noteworthy that initially,
~ 180 million warm cloud retrievals were available, but re-
quiring joint AMSR-E and CERES observations reduced this
to ~ 100 million, with additional filtering for ice-free grid
boxes further narrowing the sample to 60 million. Figure 7a
shows that the model performs very well in predicting LWP
when compared to the test dataset achieving a Pearson cor-
relation coefficient squared (rz) of over 0.72. The relative
uncertainty in the predicted LWP is ~ 25 % compared to the
test data. Figure 7b highlights the predictors with the highest
correlation values, indicating their importance. In the random
forest model, importance is determined by evaluating each
feature’s contribution to the reduction in impurity (e.g., Gini
impurity or entropy) across all trees in the forest, with higher
importance scores indicating greater influence on the model’s
predictions (Breiman, 2001).

Random forest models with identical hyperparameter set-
tings were trained separately for each grid resolution and
each region in this study. Figure S6 and Table 1 shows the
accuracy tends to improve with coarser spatial resolution
data, however, these coarser grid-resolution have greatly re-
duced numbers of samples and lack “M” shaped LWP-Nq4
relationships. The importance of each factor predicted by the
ML model are also consistent across regions (Fig. S7). The
model also shows robust and stable performance in terms of
r2, mean percentage error, and the ranking of variable im-
portance across all 12 regions in our study (Table S3). In all
spatial resolution datasets (excluding the coarsest), precipita-
tion ranks as the most significant cloud controlling factor for
predicting LWP (Table 1). Furthermore, Acq, Ng, CTH and
LCL rank towards the top of the list of “important” variables
predicting LWP.

As noted earlier, our selection of hyperparameters and
cloud-controlling factors was guided by Chen et al. (2022),
Andersen et al. (2023), and Wall et al. (2023). To assess the
impact of these choices, we trained the model 100 different
times at 0.5° resolution (instead of a higher resolution as this
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Figure 7. Random forest model predictions of LWP compared to observed LWP using a 25 % holdout testing dataset for the California region
at 0.05° grid resolution, with listed values of the Root Mean Square Error (RMSE), Mean Percentage Error (MPE), and Pearson’s R-squared
correlation coefficient (R2) (a). The relative importance described by Breiman (2001) for each cloud-controlling factor is displayed in (b).

Table 1. Performance of the random forest model for predicting LWP over the California region, evaluated using the Pearson’s coefficient
(R?), mean percentage error (MPE), and the top six variables ranked by importance from highest to lowest.

Importance Order

Resolution R2  MPE (%)
5° 0.84 49
1° 0.89 7.4
0.5° 0.88 9.9
0.1° 0.75 21.9
0.05° 0.72 23.5

Acld> Ng, Pr, RH, LCL, TQV
Pr, Acig, Ng, TQV, CTH, C¢
PI‘, Acld9 Nda CTH, TQV, Cf
Pr, A¢q, Ng. CTH, Cf, LCL
Pr, Aclg, Ng, CTH, LCL, TQV

would have been too computationally expensive), varying
hyperparameters and predictor combinations and evaluating
the model against our validation dataset. Using all predictor
variables simultaneously in the training yields the highest r>
values (Fig. S8a), while removing single individual predic-
tors has modest effects unless key variables like precipita-
tion, Ny, or A¢q are excluded. Including cloud albedo along-
side precipitation significantly improves > when using only
two predictors which is not surprising given the high “impor-
tance” of these variables. A minimum of seven samples per
leaf node was selected based on how r2 responded to increas-
ing this value (Fig. S8b); larger values force the tree to group
more data in each decision, resulting in shallower trees with
fewer splits, which helps prevent overfitting but may reduce
predictive accuracy. Sample fraction, which controls the pro-
portion of training data used to grow each tree, showed little
effect on 12, so we adopted the default value of 0.6, which in-
troduces some randomness and improves generalization. In-
creasing the number of trees tends to decrease RMSE and
increase rZ; we selected 100 trees, where RMSE plateaued
and 2 approached its maximum value (Fig. S8c), while bal-
ancing computational cost, for example, training with 100
trees requires ~ 300 % more CPU time than with two trees.
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Finally, the risk of overfitting, fitting the model too closely to
noise or idiosyncrasies in the training data rather than learn-
ing generalizable patterns, is likely minimal in our case. The
random forest models are small relative to the size and di-
versity of the dataset, and model skill does not improve at
coarser spatial resolutions where overfitting would be most
likely (i.e. see Table 1). In fact, performance slightly de-
grades at the coarsest resolution (5°), supporting the conclu-
sion that the models are not simply memorizing the data.
The random forest model successfully predicts the shape
of the Nyg-LWP relationship (Fig. 8) thereby enabling
detailed examination of the non-linear impact of cloud-
controlling factors on LWP. LWP is predicted by the ML
model while holding each cloud-controlling variable at a
fixed value. When all predictor variables except Ny are held
constant (set to either their median values, shown by the
green line, or their average values, shown by the blue line in
Fig. 8), the resulting LWP distribution exhibits an inverted-V
shape as a function of N4 but not an “M” shape. However,
allowing the cloud controlling variables to vary with Ng4, by
using the median value of each cloud-controlling variable
for each binned Ny value from 4 to 1000 cm™3 reveals the
“M” shape (black line in Fig. 8). This suggests that the co-
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Figure 8. The Ng-LWP relationship displayed as a 2D histogram
normalized by the maximum number of retrievals in each Ny bin,
using 5 years of MODIS cloud retrievals aggregated at 0.05° reso-
lution for California. The light green line represents the median of
the actual data distribution, while the dark green, blue, and black
lines correspond to random forest (rForest) model predictions of
LWP based on single median values, single mean values, and vary-
ing the median of all cloud-controlling factors within each Ny bin,
respectively .Linear least squares fit (gray dashed line) and associ-
ated slope value is provided.

variability of Ng with other cloud-controlling factors plays a
crucial role in shaping the LWP response. While Goren et al.
(2025) recently highlighted the importance of LWP covari-
ability with other cloud controlling factors, they identified
PBLH as a primary driver shaping LWP, whereas our results
suggest it plays a lesser role in this relationship with precip-
itation and cloud albedo being much stronger contributing
factors.

5.1 Impact of Precipitation

Precipitation is identified by the ML model as the most influ-
ential cloud-controlling factor in predicting LWP. It signifi-
cantly impacts the Ng-LWP relationship, generally leading to
increasingly positive slopes of dcll?g“,v\,zp as precipitation rates
increase. The average slope is estimated using both an ordi-
nary least squares (OLS) fit in log—log space and a numerical
differentiation approach based on finite differences that com-
putes the mean of local slopes between adjacent points along
the random forest predictions as a function of Ng. While
the OLS fit captures the overall trend, the finite-difference
approach reflects the average instantaneous rate of change,
which can differ in shape-sensitive cases such as inverted-V
functions. The OLS fitted slope is consistent across all re-
gions (Fig. S9). Furthermore, the random forest ML model
accurately captures the shape of LWP as a function of Ny
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with increasing slopes using finite-differences as precipita-
tion increases across composites (Fig. S10).

Precipitation (probability and intensity) and Ny are closely
associated with LWP, typically increasing as LWP increases
in warm clouds. While LWP and precipitation generally in-
crease together as clouds deepen, in more developed or heav-
ily drizzling systems, efficient rainout processes can deplete
cloud liquid water, leading to a reduction in LWP and a bidi-
rectional response in % (e.g., in CloudSat observations
of L’Ecuyer et al., 2009; Lebsock et al., 2008; Chen et al.,
2014). The ML model supports this effect, showing little
variation in LWP with respect to Ny for non-precipitating
clouds, likely because increased aerosol concentrations can-
not further suppress drizzle in clouds that are already non-
raining — yielding a flat or slightly negative response consis-
tent with A-Train observations (Chen et al., 2014). In pre-
cipitating clouds, by contrast, higher Ny tends to suppress
precipitation by reducing droplet size and limiting collision—
coalescence. As shown in Fig. S10c, LWP rises sharply with
N before increasing more gradually beyond about 20 cm ™.
The random forest model performs consistently well across
all 12 regions, exhibiting a similar pattern of small slightly
positive or negative dé?r{“)\’,‘gp sensitivities for non-precipitating
clouds and larger positive sensitivities for raining clouds (Ta-

ble S3).

5.2 Impact of Cloud Albedo

Cloud albedo plays the next most significant role in mod-
ulating the Ny-LWP relationship. Under all-sky conditions,
we observe an “M” pattern (Fig. 8), but when stratifying
the data into low cloud albedo (0 < Aclg < 0.25), average
cloud albedo (0.25 < Aclg < 0.4), and high cloud albedo
(0.4 < Agq < 1), the relationship shifts to solely an inverted-
V shape (Fig. S11), even at the highest 0.05° grid-resolution.
For dimmer clouds, the peak of the inverted-V occurs at a rel-
atively lower Ng4 (around 10 cm_3), while for brighter clouds,
the peak is broader and spans a wider range of concentrations
(20-80 cm—?), with the LWP shifted to larger values. The lin-
ear least squares fit is negative in each composite, while the
finite-difference method applied to the random forest predic-
tions yields a weaker average slope due to the pronounced
positive increase at low Ng, which is not well captured by the
OLS fit. Nevertheless, the consistency of slopes across com-
posites suggests that the influence of precipitation — which
tends to steepen the slope — is similar across Aclg groupings.

To test whether the positive LWP response to precipita-
tion is still observed even after compositing the data by Acyq,
which drives an overall negative OLS linear regression fit of
the Ng-LWP relationship, the data is further composited by
precipitation. Figure S12 shows negative slopes of the rela-
tionship for the non-raining composites. The slope is espe-
cially negative for low-albedo clouds. As precipitation be-
comes heavier in the drizzle and raining regimes the slopes
become more positive and larger in both the OLS and fi-
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nite differences slopes. This suggests that while the observed
negative slope may be shaped by cloud albedo binning, the
emergence of a more positive slope is more directly tied
to the presence of precipitation. However, it is important to
note that cloud albedo itself is not an independent driver of
cloud microphysics but rather an outcome of variables such
as LWP and Ny, among others. Therefore, interpreting slope
changes as being “controlled” by cloud albedo may misrep-
resent causal relationships and itself serves as a means for
binning clouds of varying microphysical quantities.

5.3 Impact of Free Troposphere Humidity

Free tropospheric humidity has often been proposed as a key
factor driving negative LWP adjustments (Ackerman et al.,
2004; Chen et al., 2014; Gryspeerdt et al., 2019). However,
Fig. S13 does not support this expectation, that higher rela-
tive humidity leads to a more positive LWP slope as droplet
concentrations increase. Based on this first-level binned anal-
ysis, LWP appears largely unaffected by relative humidity.

To verify this, we further decompose the response us-
ing the most influential variables identified by the random
forest method: first by precipitation, then by cloud albedo,
and finally by relative humidity. Figure 9 shows that the
Ng-LWP OLS slope remains negative for non-precipitating
clouds under all cloud controlling factor groupings. For dim-
mer clouds, A.(low), higher relative humidity (moist) is actu-
ally associated with stronger LWP decreases (not increases)
with Ng. Only in drizzling, high-albedo clouds does the LWP
OLS slope become positive under an increased RH. If any-
thing, higher free-tropospheric relative humidity decreases
LWP. Despite a seeming consensus in the literature (Acker-
man et al., 2004; Chen et al., 2014; Gryspeerdt et al., 2019),
our findings suggest that relative humidity above the PBL
plays a relatively minor role in ACI compared to other fac-
tors like precipitation state and cloud macroscopic proper-
ties such as albedo in subtropical stratocumulus clouds. This
analysis is included to explicitly demonstrate that, contrary to
prior expectations, free-tropospheric humidity exerts only a
weak influence on LWP. Detailed measurements and/or mod-
eling of cloud top entrainment or divergence may be needed
to close this research gap instead of relying on inferred rela-
tionships to above PBL relative humidity.

5.4 Radiative Effect

We introduce a new method using ML random forest model
predictions for computing aerosol indirect radiative forcing.
This approach captures nonlinear relationships between vari-
ables, simplifies the computation of partial derivatives while
holding other variables constant (e.g. LWP), and eliminates
the need for data stratification methods such as binning. The
ML model can therefore directly predict the Twomey, LWP,
and cloud fraction radiative effects, provided it has been
trained with the necessary variables. The shortwave radia-
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tive forcing due to a change in anthropogenic aerosols can be
expressed as

AF = —AaF¢um 2)

where the negative sign denotes that an increase in plane-
tary albedo reduces the net downward (absorbed) shortwave
flux, consistent with the convention that positive A F denotes
a warming (increase in absorbed energy). Here, F is the
annual mean incoming solar radiative flux at the top of the
atmosphere (global mean value of 340.2 W m~2), enabling
comparison of relative changes in the outgoing flux between
regions, and ¢am 1s a transfer function accounting for the av-
erage atmospheric attenuation above the surface and clouds,
typically taken as 0.7. The change in planetary albedo due to
observed variations in N4 and aerosol index (Al) is given by:

de dInNg—
o= AlnAl, 3)
dIn Ng dIn Al

d]I‘lNd LCI .
where 3¢ represents the aerosol-cloud sensitivity, which

relates changes in cloud droplet concentration to changes
in Al. Al is the product of aerosol optical depth (AOD re-
trieved at 550 nm) and the Angstrom exponent computed us-
ing the AOD at 550 and 865 nm wavelength pairs derived
from MODIS, which is found to be a better proxy for column
cloud condensation nuclei than AOD alone (Quaas et al.,
2006). The relationship is positive across our regions with
an average value of approximately 0.31+0.16 (Fig. S14).
Stronger slopes are typically retrieved in stratocumulus-
dominated regions, while weaker slopes tend to occur under
more unstable atmospheric conditions with lower cloud frac-
tion. Weaker slopes under these conditions may be partially
caused by larger error contributions stemming from satel-
lite retrieval artifacts related to aerosol humidification and
3D scattering effects between clouds with lower cloud frac-
tions (Gryspeerdt and Stier, 2012; Christensen et al., 2017).
Higher precipitation rates in tropical regions is also associ-
ated with smaller Ny, complicating the causal direction of
aerosols and their role on clouds or potentially in this case,
the precipitation impact on aerosols as shown in Christensen
et al. (2023).

The AlInAl =1n (%‘;?) term represents the average log-

change in aerosol optical depth due to the influence of an-
thropogenic aerosols (i.e., based on present-day, AI'P, and
pre-industrial levels, AI’Y). An Earth system model is needed
to estimate this quantity. The average value of AlnAl is esti-
mated from 1° spatial resolution E3SM simulations of 5-year
average present-day and pre-industrial aerosol emissions, the
global results of which are displayed in Fig. S15, and over
our regions, AIn Al =0.41 +£0.27.

The derivative of planetary albedo, defined as o = (1 —
CF)agir + CFaclq, where «; is clear-sky albedo, with respect
to Ny is carried out using the chain rule expansion described
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Figure 9. The Nyg-LWP relationship is composited by precipitation rate into non-raining clouds (0 < Pr < 0.05 mm h~!;a,b,c,d), drizzle (e,
f, g, h), and raining clouds (0.05 < Pr < 0.2 mm e J, k, 1) for the California region. Within these composites, the data is further divided
by low cloud albedo (0 < A¢ < 0.25) and higher cloud albedo (0.25 < A¢ < 1.0), and finally by low relative humidity above the boundary
layer (dry, red labels) and high relative humidity (moist, blue labels). An OLS fit to the observational data (dashed gray line) and to the

random forest prediction (solid blue line), along with the average s
differences, are displayed.

in Bellouin et al. (2020):

lope estimated by numerical differentiation of the prediction using finite

can be written as

=T dacld
AF = —FgunCF |
do . daeld daclg dLWP 0 Nd | wp.cr
din Ng = 3ln Ny LWP.CF ALWP dln N4 daclg dLWP  dacg dCF dlnNdm )
JLWP dInNg = 9CF dInNg | dInAl '
dagyq dCF
) (4) . :
dCF dInNg To implement this framework, three separate random forest

where the clear-sky contribution to the planetary albedo is
not included because it is part of the direct radiative effect
(i.e. (acld — aclr)d‘lif—gd term). All three terms in Eq. (4) repre-
sent radiative sensitivities, with the first and second terms re-
stricted to cloudy regions. When combined with Egs. (2) and
(3), these terms correspond to the Twomey radiative effect
(where LWP and CF are held constant), LWP adjustment,
and CF adjustments. For completeness, the full expression
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models are trained to predict Acq, LWP, and CF based on
the same set of cloud-controlling variables. However, when
training the model to predict A¢q, we exclude Agq as a pre-
dictor and replace it with LWP, applying a similar replace-
ment strategy when predicting CF. This approach ensures
consistency in the input variables across all models. The per-
formance of the ML models using Acq and CF predictors
(instead of LWP) is summarized in Tables S4 and S5. These
models achieve 2 values that are comparable to those ob-
tained when predicting LWP. Across most grid resolutions,
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CF, LWP, and N4 are identified as the most “important” terms
influencing Acq. Similarly, cloud top height, Ngq , and the
LCL play significant roles in predicting CF.

The three terms in parentheses correspond to the Twomey,
liquid water path, and cloud fraction radiative effects, re-
spectively. These are multiplied by a radiative scaling fac-
tor defined as (—1.)-CF- F¥ - ?jllr;%} Aln Al where the neg-
ative sign indicates that an increase in albedo (from higher

Ng) reduces the net downward shortwave flux. The first

dcld
> 9IlnNyg ’
. . - . [LWP,CF
is evaluated using a radiative kernel approach, similar to

that described in Wall et al. (2023). First, the frequency
of occurrence from cloud retrievals within logarithmic bins
of LWP and linear bins of CF is estimated from the full
dataset (Fig. 10a). Second, the sensitivity of Acg to Ny is
computed within each joint LWP-CF bin, where the ran-
dom forest model uses fixed values based on the median
for each predictor variable corresponding to the midpoints
of the bin. Predictions of A.q are generated across the
full range of N4 within each bin and are fit using a lin-
ear least squares method (Fig. 10b). To compute uncer-
tainty, the slope within each bin is computed three times us-
ing the median values of other cloud-controlling variables
and twice more using the median +1 standard deviation.
Finally, the resulting Twomey radiative kernel (Fig. 10c)
is calculated from the product of the normalized PDF
with the sensitivity summed over all LWP and CF bins

_ N Niwpbins §~ NcFbins o 9Aud
=2 i dif,z,1< Ny ). )
~lLwp.cF . Ly
Uncertainties are propagated using the same approach. For

the California region, this results in a Twomey radiative ef-

=0.067 £ 0.0085.

LWP,CF
The next two terms, the LWP and CF adjustment terms, are

computed without the need for a radiative kernel since LWP
and CF vary with Ngy. Figure 11a shows a logarithmic in-
crease in Acq as LWP increases. (Note, the small scale vari-
ability is an artifact of random forest regressors, where av-
eraging outputs from multiple decision trees creates a piece-
wise constant function that appears smooth, but specific trees
cause changes in output nodes as input variables vary, and
predictions were made using one RF output per Ny bin with
median values of the other inputs for that bin.) This rela-
tionship is expected given the analytic two-stream approxi-
mation Acq >~ —<, where ¥ depends on the degree of for-

A . .
ward scattering but for water clouds is approximately 13.33,

with 7, = (%) %CP (Stephens, 1978). Figure 11b shows the

familiar inverted-V relationship (at 1° spatial resolution) with
a strong increase at low Ny followed by a peak and de-
cline to larger LWP. The product of gf\i}% Sﬁ]\val: represents
the sensitivity for the LWP adjustment which for Califor-
nia is —0.016 £ 0.007—negative and about 5 times smaller

than the Twomey effect. Thus, clouds lose LWP as Ny in-

term (Twomey effect) inside the parenthesis

: dacld
(e, 3m Ng

docid
alnNg

fect slope of
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creases causing Agq to decrease. Negative LWP adjustments
have been identified in natural experiments like ship and vol-
cano tracks (Christensen et al., 2022) as well as in general
for warm boundary layer stratocumulus clouds (Gryspeerdt
et al., 2019) generally assumed to be caused by enhanced
cloud top entrainment and dessication drying of the clouds
as they become more polluted (Ackerman et al., 2004).

The CF adjustment is generally associated with much
more uncertainty. Observed positive correlations are typi-
cally found between cloud cover fraction and aerosol opti-
cal thickness. However, these correlations are influenced by
physical processes as well as uncertainties caused by arti-
facts, such as cloud contamination of satellite-retrieved Ny
under low cloud fraction conditions, co-variation of cloud
fraction with relative humidity/wind speed, and cloud pro-
cessing of aerosols, which may bias the magnitude of the
CF adjustment (Quaas et al., 2010; Grandey et al., 2013).
Figure 11c shows that Agqg increases as a function of CF
until approximately 0.8, where a sharp increase suddenly
occurs as the cloud scene becomes fully overcast. A simi-
lar conclusion, albeit replacing Acq with 7. (which, using
the 2-stream approximation, is a good proxy for Acyg), was
also found in Coakley et al. (2005). The rapid rise towards
overcast conditions may be a retrieval artifact caused by
three-dimensional radiative transfer effects. As the separa-
tion between the clouds becomes comparable to the cloud
thickness, radiation escaping through the sides of clouds
has a high probability of being scattered upward by nearby
clouds, thereby contributing significantly to the reflected ra-
diances (Welch and Wielicki, 1985). Figure 11d shows that
CF rapidly rises with Ny to about 85cm™ then flattens out
for larger values of N4. The mechanism behind the increase
in CF with Ny has been hypothesized to be due to the re-
duction in precipitation efficiency, leading to more persistent
clouds (Albrecht, 1989) and possibly due to concurrent in-
creases in evaporation and cloud breakup. Gryspeerdt et al.
(2016) suggests that the observed correlation may be due to
meteorological covariations and artifacts in cloud properties.
The product of %z and - = 0.011+0.01 for the Cali-
fornia region. It is positive, suggesting that increased aerosol
levels enhance cloud fraction and cloud albedo causing fur-
ther radiative cooling.

The radiative adjustments are affected by spatial resolu-
tion. Figure 11e-h shows that the strength of all the adjust-
ment slopes tend to decrease when using the 0.1° gridded
product compared to 1°. The shift from inverted-V to “M”
shapes (comparing Fig. 11b with f) is associated with weaker
slopes (more positive values). Additionally, the cloud albedo
sensitivity to cloud fraction and liquid water path decreases
at higher spatial resolutions. These results suggest that data
aggregation has a profound influence on the strength of the
estimated ACI relationship. Similar conclusions about the
grid-scale dependence of ACI have been noted in previous
studies (McComiskey and Feingold, 2012; Feingold et al.,
2016), but those did not explicitly examine the Ng—LWP re-
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Figure 10. Radiative kernel for computing the Twomey effect using predictions of A.jq from the random forest model for the California
region using 1° grid-spacing data. Number of retrievals falling into log-bins of LWP and CF are normalized by the total (a), sensitivity
of changes in Ag)q for each bin determined using finite differences of the random forest predictions (b), and resulting Twomey radiative

kernel (c¢) given by the product of (a) and (b).
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Figure 11. ACI relationships over the California region used to compute liquid water path and cloud fraction adjustments using 1° (a—d)
and 0.1° (e-h) grid-resolutions for the relationship between LWP-A1q, Ng-LWP, CF-A 14, and Nq-CF predicted using the random forest
model. Three different curves represent the relationship using predictions from the median of the cloud controlling factors (black), median
+0.5 standard deviation (red), and median —0.5 standard deviation (blue) of the cloud controlling variables. Average and standard deviation
of the three slopes estimated by numerical differentiation of the prediction using finite differences are provided.

lationship, apply machine learning, decompose the radiative
forcing into components, or analyze a broad range of satel-
lite grid resolutions at the global scale — further supporting
the significance of our findings.

All three terms are now combined using Eq. (5) to esti-
mate the total radiative forcing. Table 2 lists radiative forcing
estimates for the combined subtropical regions. Aside from
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the coarsest resolution, the Twomey effect remains relatively
unchanged as a function of grid resolution, with values of
approximately —1 4-0.2 W m~2. The LWP adjustment con-
tributes very little to the net radiative forcing. At 1° reso-
lution, the CF adjustment makes up over a half of the re-
sponse, but at finer resolutions, the adjustment terms become
negligible. While CF increases on average as a function of
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Table 2. List of cloud and radiative effects from aerosol perturbations at increasing grid-resolution for subtropical regions (California,

Peruvian, Namibian, and Australian). Radiative scaling is defined as (—1.) - CF- Fl.

dInNg
dn Al AlnAl

Grid Resolution

5° 1° 0.5° 0.1°
Twomey [W m™2] —0.56£0.24 —0.96£0.28 —~1.09+0.20 —0.90+0.16
LWP Adjustment [W m™—2] 0.14£0.09 —0.01£0.01 —0.05+0.02 —0.03+£0.02
CF Adjustment [W m—2] —0.5140.13 —0.49 +0.09 —0.3640.05 —0.1140.05
RF Forcing [Wm™2] —0.934+0.43 —1.464+0.35 —1.5040.23 —1.0440.19
Cloud Fraction 0.59 +0.04 0.58 £0.04 0.62 +0.04 0.76 +0.03
Radiative Scaling [W m_2] —18.29+1.10 —17.81+1.32 —19.17 +1.31 —23.434+1.07
dAgq/dLWP [m2 g~ 1] 0.001£2.14x107% 948 x 1074 +£1.15x 1074  6.64 x 1074 +4.66 x 107> 1.55x 1074 £1.67 x 10~
dLWP/dIn Ny [gm™2] —5.83+3.34 0.89 4 1.00 3.79 4 1.47 7.43+6.42
dpy/dCF 0.17 £0.03 0.15+0.02 0.10 £0.007 0.03£0.01
dCF/dIn Ng 0.1740.03 0.1940.02 0.1940.003 0.1440.009

grid-resolution (from 0.6 to 0.75), this contribution leads to a
slightly larger radiative scaling (since the forcing is propor-
tional to the cloud fraction). However, the primary reason for
the reduction in the adjustment terms is the weakened LWP
and CF sensitivities to Ny at higher spatial resolutions. While
the sensitivities are slightly different between regions (radia-
tive forcing being largest in the mid-latitudes and weakest
in the tropics; Tables S6 and S7), these ACI relationships to
spatial resolution are similar across regions despite having
different meteorological and cloud regimes.

6 Conclusions

We have developed a comprehensive satellite and reanalysis
dataset gridded from coarse (10°) to fine (0.05°) spatial res-
olutions using 3 different commonly used warm-cloud filters
(Gryspeerdt et al., 2022) over a 5 year time period. Using this
data, a series of outstanding questions that give rise to signif-
icant uncertainty in the quantification of ERF,; and the Ny-
LWP relationship have been addressed with the use of ML.

How does the structure of the Ng—LWP relationship
change as the spatial grid resolution increases to finer
scales?

The structure of the Ng—LWP relationship changes signifi-
cantly with increasing grid resolution. At coarser resolutions,
the relationships found within the subtropics exhibits a clas-
sic inverted-V shape. As the resolution becomes finer, the re-
lationship becomes more detailed, revealing multiple modes,
including an “M” shape at scales approaching 0.1°. This in-
crease in resolution captures more variability and impact of
optically thinner clouds, resulting in a wider spread of LWP
values when stratifying by primary cloud controlling vari-
ables (like precipitation and cloud albedo) identified using a
random forest ML model.

https://doi.org/10.5194/acp-26-59-2026

How do subtropical, tropical, and midlatitude regions
differ in their Ng—LWP relationships?

The Ng—LWP relationship varies significantly between tropi-
cal, subtropical, and midlatitude regions. In subtropical re-
gions, the relationship typically exhibits an inverted-V or
“M” shape, with negative linear slopes, which become less
negative at increasing spatial resolution. In tropical regions,
the relationship does not show these distinct shapes and the
linear sensitivity is roughly flat. In midlatitude regions, the
relationship is generally positive with less coherent inverted-
V or “M” structures, indicating that regional meteorological
conditions significantly influence the Ng—LWP relationship.

How does satellite filtering and sampling clouds with
different characteristics influence the Ng—LWP
relationship?

Satellite filtering and sampling of clouds with different prop-
erties have a substantial impact on the Ng—LWP relationship.
Including A/l retrieved warm clouds, which importantly in-
clude thin clouds, results in a predominantly positive slope,
while more stringent filtering (e.g., removing thinner clouds)
leads to mostly negative slopes. Thicker, opaque clouds im-
prove the accuracy of cloud property retrievals but are less
sensitive to aerosol perturbations. This indicates that the
choice of cloud sampling and filtering criteria can signif-
icantly alter the interpretation of the Ng—LWP relationship
and its associated radiative effects.

What are the primary meteorological drivers shaping the
Nyq—LWP relationship?

A random forest model identified precipitation and cloud
albedo as critical factors shaping the relationship. Precip-
itation strongly influences the Nyg-LWP relationship, with
steeper positive slopes as precipitation rate increases. In non-
precipitating clouds, LWP remains flat due to the absence of
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drizzle suppression, while in precipitating clouds, increasing
Nq suppresses rainfall, which increases LWP before leveling
off. Binning the relationship by cloud albedo leads to nega-
tive slopes of the inverted-V distribution, while precipitation
controls the positive slopes. Relative humidity above the PBL
has a minor influence on ACI compared to precipitation state
and cloud macroscopic properties like albedo.

What is the impact of changing spatial resolution on the
radiative effects of ACI?

The Twomey radiative effect is the dominant term, with LWP
adjustments being small by comparison; this is consistent
with a breadth of observed natural laboratory results by Toll
et al. (2019). The radiative forcing is robust across all grid
resolutions. On the other hand, the LWP and CF radiative
adjustments are strongly affected by spatial grid resolution,
wherein the CF adjustment makes up a 1/2 of the response at
1° resolution. Part of the sensitivity decrease is due to shift-
ing from an inverted-V to “M” in subtropical regions, but a
larger part of the response is due to a weaker Acjq relation-
ship with LWP and CF as spatial resolution increases.

Estimates of ACI relationships are sensitive to spatial
resolution, regional variations, and satellite sampling meth-
ods. Associated radiative forcing is impacted by these fac-
tors, which underscores the need to evaluate high-resolution,
region-specific Earth system model representations of these
processes. ML models can enhance our understanding by
capturing non-linear effects, identifying key predictors like
precipitation and cloud albedo, and offering new capabilities
for quantifying aerosol radiative forcing. As Earth system
models increase spatial resolution, these data and analyses
will be useful for evaluating ACI in warm clouds, which is
necessary for identifying model deficiencies and will be ad-
dressed in a follow on companion paper.
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