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Abstract. Observation-based estimation of urban CO2 emissions can help cities track their pathway to net zero
emissions, a goal many cities worldwide have adopted. While mesoscale atmospheric transport models are an
effective component in inversion systems estimating country-level emissions, their use in urban-scale inversions
presents a significant challenge. Here, we present one-year flux inversion results with the mesoscale ICON-ART
atmospheric transport model for two cities with contrasting size and topographic complexity: Zurich and Paris.
Inversions were performed with an ensemble square root filter, assimilating observations from a dense rooftop
CO2 sensor network in Zurich and from a tall tower network in Paris. The inversion framework optimized grid-
ded anthropogenic and biospheric fluxes, along with background mole fractions from eight inflow regions. Prior
anthropogenic emissions were based on detailed inventories provided by local authorities. In Zurich, the inver-
sion resulted in a posterior annual anthropogenic emission of 1012.3± 38.8 ktyr−1, representing approximately
a 30 % reduction compared to the prior, with the most significant decreases during winter periods of elevated
ambient temperatures. In contrast, the posterior fluxes in Paris remained close to the prior, with an annual emis-
sion of 3580.0± 101.9 ktyr−1, which is 7 % higher than the prior. This comparison highlights the influence of
city-specific factors – such as topography, city size, and observational network – on the inversion system per-
formance. Furthermore, our findings demonstrate the potential of mesoscale models to refine urban emission
estimates, offering valuable insights for policymakers and researchers working to improve emission inventories
and advance urban climate strategies.
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1 Introduction

Inversion of CO2 fluxes using atmospheric transport models
is a well-established approach that was originally applied at
global scale to constrain the global carbon budget (Gurney
et al., 2002; Davis et al., 2021; Broquet et al., 2013; Monteil
et al., 2020; van der Woude et al., 2023). With the devel-
opment of regional measurement networks and advances in
high-resolution modeling, this approach has since been ex-
tended to continental and national scales. However, despite
growing interest, only a limited number of inverse modeling
studies have been performed at the urban scale, for example
(Lauvaux et al., 2016; Kunik et al., 2019; Sargent et al., 2018;
Nalini et al., 2022). Urban inversions are gaining increasing
attention, as cities are major contributors to anthropogenic
emissions (44 %, Seto et al., 2014), making accurate emis-
sion estimates at this scale essential for supporting climate
action plans and verifying reported emission reductions.

In this study, we present results from year-long CO2 flux
inversions conducted for two European cities, Zurich and
Paris. This work is part of the European ICOS Cities project,
which aimed to develop and evaluate different CO2 emission
monitoring systems in three pilot cities of contrasting size
and topographic complexity – Paris, Munich and Zurich. The
primary objective of our study is to generate robust estimates
of anthropogenic CO2 emissions in Zurich and Paris, using
high-resolution atmospheric transport simulations in combi-
nation with dense urban CO2 observation networks.

Previous studies estimating urban CO2 emissions have
highlighted several key challenges. One major difficulty is
to differentiate between CO2 enhancements caused by local
sources and those resulting from inflow from surrounding re-
gions (Lauvaux et al., 2016; Sargent et al., 2018; Broquet
et al., 2013). This is because the enhancements in CO2 mole
fractions due to biospheric and anthropogenic sources within
the domain are often of similar amplitude as the variations
in the background levels. As a result, it is crucial to include
observation sites located outside – and ideally upwind – of
the urban area to better constrain background conditions. In
this study, we address this issue by jointly optimizing back-
ground mole fractions along with anthropogenic and bio-
spheric fluxes. Without this simultaneous optimization, any
bias in the background would propagate directly into the es-
timated fluxes, compromising the accuracy of the inversion.

Another challenge is the separation of anthropogenic and
biospheric contributions (Lauvaux et al., 2016; Sargent et al.,
2018; Kunik et al., 2019; Wu et al., 2018), as their atmo-
spheric signals often overlap in both space and time. Dif-
ferent attempts have been made in previous studies to sepa-
rate biospheric fluxes from anthropogenic emissions. Addi-
tional challenges arise at the urban scale. For example, Lian
et al. (2023) showed for Paris that coarse land-use vegetation
data can underestimate urban biosphere activity consider-
ably. They also mention the lack of eddy covariance measure-
ments over urban vegetation to validate prior biospheric flux

estimates. Sargent et al. (2018) demonstrated for Boston that
the urban biosphere can take up more than half of the anthro-
pogenic CO2 signal during summer afternoons, demonstrat-
ing the importance of constraining biospheric fluxes along-
side anthropogenic emissions. Similarly, synthetic inversions
over Salt Lake City and Indianapolis emphasized that prior
assumptions on biospheric fluxes strongly affected posterior
emissions and that dense, strategically placed measurement
networks are crucial to disentangle overlapping signals (Ku-
nik et al., 2019; Lauvaux et al., 2016).

A final challenge relates to the prior information on fluxes
and their uncertainties (Broquet et al., 2013; Lauvaux et al.,
2016; Sargent et al., 2018; Kunik et al., 2019). In our case,
we could benefit from very detailed city inventories provided
by the authorities of Zurich and Paris.

The measurement networks used in the inversions differed
significantly between Zurich and Paris, reflecting their con-
trasting geographic and urban characteristics. In Paris, lo-
cated in the flat Île-de-France region, a tower-based network
of 9 sites with high-precision instruments was operated. The
network was designed to measure both upwind background
mole fractions and downwind increments due to urban emis-
sions. Depending on prevailing wind direction, several sites
alternated between upwind and downwind roles.

In contrast, Zurich’s complex topography – characterized
by intersecting valleys and surrounding ridges – makes it dif-
ficult to consistently define upwind and downwind locations.
To address this, a denser network of 13 mid-cost rooftop sen-
sors was installed within the city to monitor urban CO2 en-
hancements, complemented by three high-precision instru-
ments mounted on towers outside the urban area to provide
background measurements.

For the inversion, we used the mesoscale atmospheric
transport model ICON-ART (Zängl et al., 2015; Rieger
et al., 2015; Schröter et al., 2018) coupled with the Car-
bonTracker Data Assimilation Shell (CTDAS) (Peters et al.,
2005; van der Laan-Luijkx et al., 2017). This coupling of
ICON-ART and CTDAS, originally developed for methane
inversions at the European scale (Steiner et al., 2024b), was
extended in this study to run CO2 inversions over urban do-
mains and to modify biospheric fluxes “online” (i.e., during
the simulation, Jähn et al., 2020). The ICON-ART simula-
tions were performed at a spatial resolution fine enough to
resolve the main topographic features of the Zurich area, in-
cluding the Limmattal and Glattal valleys and the surround-
ing ridges, which rise 100–400 m above the valley floors.

In this study, we adress the aforementioned challenges by
applying a high-resolution inversion framework that jointly
optimizes anthropogenic emissions, biospheric CO2 fluxes,
and background concentrations for two cities with markedly
different characteristics. The comparison spans a relatively
straightforward case – Paris, a large, isolated city in flat ter-
rain – and a more complex scenario – Zurich, a mid-sized city
embedded in mountainous terrain and surrounded by other
urban agglomerations. By comparing results from Zurich and
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Paris, we explore how sensor network design, atmospheric
transport, and prior flux uncertainties influence inversion per-
formance.

2 Data and Methods

2.1 Observations

Atmospheric CO2 dry air mole fraction measurements for
both cities were obtained from ground-based station net-
works (see Fig. 1). For brevity, we will refer to dry air mole
fractions simply as mole fractions. The measurement data
were first aggregated to hourly values and then averaged over
afternoon hours (11:00–16:00 UTC, i.e., 12:00–17:00 local
time) before being used for model evaluation and flux in-
versions. It is common practice to consider only daytime or
afternoon measurements when comparing simulated and ob-
served mole fractions, as stable nocturnal boundary layers
are challenging to simulate and often lead to large model-
observation mismatches (Gerbig et al., 2003).

In Zurich, the observation network comprised 13 rooftop
measurement sites inside the city equipped with mid-cost
sensors. Here we use the term mid-cost sensors to distin-
guish them from high-precision analyzers (e.g., cavity ring-
down spectroscopy) and from low-cost sensors such as those
deployed in the Carbosense network (Müller et al., 2020).
As described in (Grange et al., 2025), three different models
of non-dispersive infrared (NDIR) sensors were deployed in
Zurich’s mid-cost sensor network called ZiCOS-M. Different
from the sensors in Zurich’s low-cost sensor network ZiCOS-
L, which was operated in parallel (Creman et al., 2025), the
mid-cost sensors had higher sensitivity, were mostly operated
in temperature-controlled rooms, and were calibrated daily
by supplying calibration gas from two reference gas cylin-
ders. Their accuracy was about 1 ppm (Grange et al., 2025),
which is one order of magnitude better than the accuracy of
the low-cost units. Three background sites were located out-
side the city. Two of the background sites were equipped with
high-precision instruments, one with a mid-cost sensor. An
overview of the sites is provided in Table 1. Hardau II (hard)
is a central site with a 20 m long mast mounted on top of a
95.3 m building. The sampling at this site occurs at a much
higher altitude compared to the other rooftops in the network
(Grange et al., 2025). This site, which features additional
monitoring activities including an eddy covariance system,
is highlighted in Fig. 1 as high-rise to indicate its elevated in-
let height. The mid-cost sensor network consisted of 19 sites
inside the city, but six of these were discarded because they
either measured at street-level or were influenced by local
sources. Both situations cannot be captured adequately by a
mesoscale atmospheric transport model. Data from the sta-
tions were subject to basic quality control before being used
in the inversion. A full description of the Zurich sensor net-
work, calibration strategy and data processing is provided in
Grange et al. (2025). The inversion period spanned a full year

from September 2022–August 2023, preceded by a two-week
spin-up in August 2022.

In Paris, all measurements used in this work were recorded
at nine tower sites equipped with high-precision instruments
(Doc et al., 2024). Most of the sites were located outside the
city, with three measuring upwind mole fractions and three
measuring downwind ones, while the remaining three were
located within the city. The sites are listed in Table 2. The
inversion for Paris also covered a full year, but for the pe-
riod between January–December 2023. A detailed descrip-
tion of the measurement network and data handling proce-
dures is available in (Doc et al., 2024). A mid-cost CO2 sen-
sor network was recently also established in Paris (Lian et al.,
2024). These sites were excluded from this study due to up-
grades and expansion under the ICOS Cities project, but they
will be available for future studies.

The dense rooftop sensor network in Zurich offers detailed
spatial coverage and high sensitivity to emission sources
within the city. In contrast, the tall tower network in Paris
is only sensitive to emissions integrated over larger portions
of the city.

2.2 ICON-ART model

ICON-ART (ICOsahedral Nonhydrostatic model with
Aerosols and Reactive Trace gases) is a mesoscale me-
teorology and atmospheric transport model that consists
of two components: the climate and weather prediction
model ICON (Zängl et al., 2015), developed by the German
Weather Service (DWD) and the Max Planck Institute for
Meteorology, and ART (Rieger et al., 2015; Schröter et al.,
2018; Hoshyaripour et al., 2025), mainly created by the
Karlsruhe Institute of Technology, for simulations of passive
and chemically reactive tracers. ICON is a versatile model
that can be run from global to regional and even to sub-
kilometer scale. It operates on a semi-structured grid with
triangular grid cells and offers options for online (through
regional grid refinement) and offline nesting. Here, we use
ICON in limited-area configurations with offline nesting.
ICON-ART is a fully coupled model jointly simulating
weather and atmospheric tracer transport in a consistent way
(Baklanov et al., 2014). ICON and ART have recently been
released under a permissive open source license and are
now maintained and developed by a broader consortium of
German and Swiss research partners and weather services.

Model setup

We ran separate CO2 simulations for the two cities, each
nested offline within a larger central European domain. The
central European domain was simulated at 6.5 km resolution
using grid R3B8 (see Fig. 2), while the inner domains were
run at a resolution of 0.5 km for Zurich (R19B9 grid) and
1 km for Paris (R5B10 grid). Zurich required a higher reso-
lution due to its complex topography and smaller size. The
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Figure 1. Locations of the measurement stations comprising the Zurich (a) and Paris (b) CO2 observation networks. Tower sites in both
cities are labeled with their acronyms. Photo of the Zurich Schule Milchbuck station by Pascal Rubli; photo of the Paris Saclay station by
Michel Ramonet. Basemap tiles for panels (a, b) © OpenStreetMap contributors 2025. Distributed under the Open Data Commons Open
Database License (ODbL) v1.0.

Table 1. ICOS Cities sites in Zurich with mid-cost sensors installed on rooftops and 2 background sites (Beromünster and Laegern–
Hochwacht) equipped with high-precision instruments. Elevation refers to height above sea level, and inlet height to height above ground
level.

Acronym Name Longitude Latitude Elevation (m) Inlet height (m) Instrument

zhab Albisgüetli 8.5128 47.3535 469.8 22.1 mid-cost
zbas Badenerstrasse Farbhof 8.4803 47.3904 399.6 22.5 mid-cost
zubv Bankenviertel Bleicherweg 8.5380 47.3689 408.7 26.5 mid-cost
ber Beromuenster 8.1755 47.1896 797.0 212.0 high-precision
brei Birchwil Turm 8.6492 47.4672 592.2 54.0 mid-cost
zgub Güterbahnhof 8.5176 47.3817 407.5 29.4 mid-cost
hard Hardau II 8.5102 47.3813 409.4 110.3 mid-cost
zhhm Hardturmstrasse Förrlibuck 8.5153 47.3920 401.2 40.6 mid-cost
zhhf Kantonales Labor Zürich 8.5585 47.3713 451.8 20.4 mid-cost
lgh Laegern–Hochwacht 8.3973 47.4822 840.0 32.0 high-precision
ztle Letzigraben Telefonzentrale 8.5005 47.3788 411.8 24.0 mid-cost
zhmi Schule Milchbuck 8.5378 47.3957 477.7 35.3 mid-cost
zhsf Stauffacherstrasse Werdplatz 8.5289 47.3724 411.4 48.0 mid-cost
ztie Tiefenbrunnen Wildbachstrasse 8.5589 47.3530 408.7 38.8 mid-cost
zhui Universität Zürich Irchel 8.5506 47.3987 491.7 29.0 mid-cost
zhwh Wollishofen 8.5333 47.3470 407.9 40.6 mid-cost

European simulation provided the initial and boundary con-
ditions for the two nested domains and was itself nested into
the Copernicus Atmospheric Monitoring Service (CAMS)
global inversion-optimized CO2 simulation v24r3, which
is based on assimilation of satellite observations (Cheval-
lier et al., 2010; Copernicus Atmosphere Monitoring Ser-
vice , CAMS). Meteorological initial and boundary condi-
tions for the European simulation were taken from the ERA5
global reanalysis of the European Centre for Medium Range
Weather Forecasts (ECWMF) (Hersbach et al., 2020). The
intermediate European simulation was necessary because

of the significant spatial resolution difference between the
CAMS and ERA5 global products and the high-resolution
simulations for the two cities. To keep the simulated mete-
orology close to the analyzed meteorology, the ICON-ART
meteorological fields were weakly nudged towards the ERA5
data as described in Steiner et al. (2024b).

The same parameters were also used in the study of Sta-
gakis et al. (2025), which compared four different biospheric
flux models applied over the city of Zurich with each other
and against observations of respiration fluxes, leaf area den-
sity and sap flow in urban parks. This limited and partially

Atmos. Chem. Phys., 26, 547–570, 2026 https://doi.org/10.5194/acp-26-547-2026



N. Ponomarev et al.: CO2 fluxes in Zurich and Paris with ICON-ART CTDAS 551

Table 2. Sites from the tower network in Paris. All sites are equipped with high-precision instruments. Elevation refers to height above sea
level, and inlet height to height above ground level.

Acronym Name Longitude Latitude Elevation (m) Inlet height (m) Instrument

and Andilly 2.3018 49.0126 175.0 60.0 high-precision
cds Cité des Sciences 2.3880 48.8956 43.0 34.0 high-precision
cou Coubron 2.5680 48.9242 126.0 30.0 high-precision
gns Gonesse 2.4205 49.0052 81.0 36.0 high-precision
jus Jussieu 2.3561 48.8464 38.0 30.0 high-precision
meu Meudon 2.2044 48.8025 173.0 90.0 high-precision
ovsq OVSQ 2.0486 48.7779 150.0 20.0 high-precision
rov Romainville 2.4225 48.8854 128.0 103.0 high-precision
sac Saclay 2.1420 48.7227 160.0 60.0 high-precision

Figure 2. Model domains used in this study. The outermost domain
covers Central Europe at 6.5 km resolution. The insets show the two
nested domains centered on the Zurich and Paris metropolitan areas
simulated at a resolution of 0.5 and 1 km, respectively. The topogra-
phy is shown as background shading. The black contour denotes the
limits of the city of Zurich. For Paris, the black contour corresponds
to the Île-de-France, a region covering the agglomerations of Paris.
The city limits are represented by the green contour.

indirect evaluation (e.g. sap flow used as a proxy of GPP)
showed VPRM to perform equally well as other, more com-
plex biospheric models. A more extensive evaluation of dif-
ferent variants of VPRM including urban VPRM (Hardiman
et al., 2017) against measurements in Zurich and Munich is
currently ongoing. It is clear that further developments are
needed to improve biospheric flux models for urban areas,
since they have mostly been developed for, and tuned to, nat-
ural environments.

All simulations were run with 60 vertical layers. The time
step was 50 s in the European domain, 10 s for Paris, and
5 s for Zurich. Model output was saved hourly. The Tiedtke–
Bechtold convection scheme (inwp_convection = 1)
was used throughout, but in the city domains, only shal-
low convection was enabled (shallowconv_only =

.TRUE.), while in the European domain both shallow and
deep convection were active. The configuration for the city
domains closely followed the setup of the Swiss weather ser-
vice for its operational forecasts at 1 km resolution.

Assimilation of CO2 observations was only performed in
the two nested domains, not in the European domain. Any
potential CO2 mole fraction biases in the European run,
which served as boundary conditions for the regional do-
mains, were corrected for by the inversion as described later.
To estimate the magnitude of these biases, the simulated
mole fractions were compared against measurements from
the European Integrated Carbon Observation System (ICOS)
(Yver-Kwok et al., 2021). The results will be presented in
Sect. 3.1.1.

Different gridded emission inventories were used depend-
ing on the simulation domain. For the European domain,
the TNO-GHGco inventory (Super et al., 2020) for the year
2021 at about 5 km resolution was used. This inventory relied
on the 2023 official reporting of 2021 emissions from the
AVENGERS project, except for shipping emissions, which
were sourced from the 2021 TNO-GHGco inventory used
in the CoCO2 project, reflecting an earlier reporting version
for that sector. For the Zurich domain, three inventories were
combined: the TNO-GHGco inventory was used for regions
outside Switzerland; within Switzerland, the 2020 Swiss na-
tional inventory at 100 m resolution was applied; and for the
city of Zurich specifically, this was replaced by a more de-
tailed 2020 inventory as described in Brunner et al. (2025).
The city inventory, originally provided as point, line, and
area sources, was rasterized onto the ICON model grid be-
fore merging with the other inventories (see Fig. 3a). The
three inventories were mapped to the ICON grid and merged
into a single dataset using the Python package emiproc (Li-
onel et al., 2025). For the Paris domain, the TNO-GHGco
inventory was merged with a 500 m resolution inventory for
the Île-de-France (see Fig. 3b) provided by the regional air
quality agency AIRPARIF for 2022.

The temporal emission profiles were not always available,
necessitating the use of generic time profiles in some cases.
To account for these limitations and avoid introducing bi-
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Figure 3. Annual mean anthropogenic CO2 emissions in the Zurich (a) and Paris (b) domains in ktyr−1. The Zurich data are based on the
Swiss national and Zurich inventories, along with TNO-GHGco inventory covering bordering regions of Germany. The Paris data are from
AIRPARIF inventory for Île-de-France region, with the remaining area covered by TNO-GHGco inventory. City borders are shown with
black lines, and lakes in the Zurich domain are outlined in white.

ases into the optimization, relatively large uncertainties were
prescribed for all anthropogenic and biospheric sources, al-
lowing the system to adjust the fluxes based on observations.
At the same time, spatial correlations were introduced in the
prior error covariance matrices to limit the degrees of free-
dom and prevent overfitting.

Biospheric fluxes were computed online using the Vege-
tation Photosynthesis and Respiration Model (VPRM, Ma-
hadevan et al., 2008) integrated into ICON-ART. As in-
put, it requires shortwave radiation and two-meter temper-
ature, which were provided by ICON, as well as satellite
measurements of two indices, the enhanced vegetation in-
dex (EVI) and the land surface water index (LSWI) ob-
tained from the MODIS instrument (Vermote, 2015). These
indices describe the influence of phenology and water stress
on photosynthetic uptake of CO2 by vegetation. VPRM inde-
pendently simulates gross photosynthetic production (GPP)
and ecosystem respiration (RE) for seven vegetation classes.
The net ecosystem exchange (NEE) is then the difference
RE–GPP. The vegetation class-specific parameters of VPRM
were taken from Table F1 of Glauch et al. (2025), obtained
through an optimization procedure that compared VPRM
simulated fluxes with Eddy covariance flux tower observa-
tions in Europe.

Another important input for calculating biospheric fluxes
is land cover, which provides information about the spatial
distribution and type of vegetation in the model domain. We
used the CORINE 2018 land cover dataset from the Euro-
pean Environment Agency’s Copernicus Land Monitoring
Service at 100 m resolution (European Environment Agency
(EEA), 2018). However, CORINE fails to resolve small veg-
etation patches or individual trees in urban areas; thus, a
high-resolution vegetation dataset was created for Zurich as
described in Brunner et al. (2025) and merged with CORINE
data outside the city. Since no such tailored high-resolution

product was developed for Paris, vegetation cover in Paris is
likely underestimated. A 10 m resolution version of the land
cover map for Zurich is presented in the Supplement.

Land cover in ICON-ART is represented using a tile ap-
proach, where multiple land cover types are included in a
grid cell proportional to their fractional area. We used the de-
fault setting of three tiles, i.e., only the three dominating land
cover types were represented. In metropolitan areas, these
typically consist of one urban land cover (non-vegetated) and
two of the seven vegetation classes considered by VPRM, of-
ten grassland and deciduous forest.

2.3 Inversion approach

2.3.1 CTDAS inversion framework

To estimate CO2 fluxes, we used the Carbon Tracker Data
Assimilation Shell (CTDAS), which is a flexible framework
that employs an Ensemble Square Root Filter (EnSRF) to
optimize a state vector of flux scaling factors and other
elements (Peters et al., 2005; van der Laan-Luijkx et al.,
2017). CTDAS has been coupled with various Eulerian and
Lagrangian atmospheric transport models, including ICON-
ART (Steiner et al., 2024b). The ensemble approach requires
the model to simulate a large ensemble of CO2 tracers, each
representing a different perturbation of the state vector ele-
ments being optimized.

Our setup closely followed that in Steiner et al. (2024b).
In short, we jointly optimized scaling factors for fluxes and
background CO2 mole fractions over individual 1 week as-
similation windows. Each week was optimized twice: first
with observations from the current week and a second time
with observations from the following week. This assumes
that CO2 emitted in the current week also influenced CO2
in the next week.
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Estimating the fluxes for a full year requires 52 individual
assimilation cycles, each cycle consisting of three week-long
simulations (except for the first cycle, which simulates only
two weeks). A schematic illustrating the workflow and infor-
mation transfer between weeks and assimilation cycles was
presented in Steiner et al. (2024b). Figure 4 presents an alter-
native view illustrating the ensemble of CO2 mole fractions
simulated by the system at an arbitrary observation location.

The first two weeks comprise a continuous simulation with
a restart after the first week to set different flux and boundary
condition scaling factors for the second week (see Fig. 4a).
ICON-ART provides a restart capability, enabling simula-
tions to be paused, checkpointed, and continued from the
same meteorological and tracer fields. Simulated mole frac-
tions are written out hourly and interpolated to station loca-
tions using inverse distance weighting, with vertical interpo-
lation based on the two nearest levels and horizontal interpo-
lation from the five closest ICON cells. Only daytime values
(11:00–16:00 UTC) are then averaged and used for assimila-
tion. Each week is optimized twice using observations from
two weeks, except for the first week of the first cycle (see
Fig. 4a) which is optimized only once using the observations
from the first two weeks.

The second cycle starts with another simulation for the
first week but now using the optimized scaling factors re-
turned by CTDAS to propagate the optimized boundary con-
ditions and fluxes forward in time to serve as optimized CO2
initial conditions for the next week. Only one single CO2
tracer is simulated in this case as seen in the left part of
Fig. 4b. The second week of the second cycle is then restarted
from these optimized initial conditions and a new ensemble
is generated based on the once optimized scaling factors for
week 2 from the previous cycle. Consequently, the spread
among ensemble members in week 2 is smaller in the sec-
ond cycle compared to the first (compare panels a and b).
The third week restarts from the checkpoint at the end of
the second week, generating a new ensemble with a larger
spread. Only observations from the third week are assimi-
lated in this cycle, ensuring no observations are assimilated
twice. Finally, panel (c) illustrates the third cycle, where the
first two weeks are now fully optimized. This process contin-
ues for all subsequent cycles, following the same procedure
as outlined for the second cycle.

One design choice for the inversion system involved trans-
ferring information between different assimilation cycles.
One option would be to use the optimized scaling factors
from the previous week as prior values for the next week.
Alternatively, one could revert to the original prior values,
all set to 1. In the first case, the scaling factors optimized
for the previous week are assumed to be a good first guess
for the present week. In the second case, the weekly scal-
ing factors are assumed to be independent of each other such
that each week should restart from the original prior values
(λ= 1). We followed the same approach as in (Steiner et al.,
2024b), which blends these two extremes: We computed the

new priors as a weighted mean with a weight of 1/3 for the
original prior and 2/3 for the posterior from the previous cy-
cle. This approach propagates information from the previous
cycle while ensuring that, in the absence of new observa-
tions, the fluxes gradually relax back to the prior within a
few weeks.

Another aspect that could be transferred between opti-
mization cycles is the state vector uncertainty or ensemble
spread. However, we decided to keep the uncertainty for a
given cycle unaffected by the optimized uncertainties of pre-
vious cycles. Transferring the optimized uncertainties to the
next week tends to excessively reduce the ensemble spread.
Keeping the value unchanged allows the system to remain
stable and adapt quickly to sudden changes in flux intensity
or background mole fraction errors.

2.3.2 State vector x

To estimate anthropogenic and biospheric CO2 fluxes sepa-
rately, the state vector included separate scaling factors for
anthropogenic fluxes, gross photosynthetic uptake (GPP),
and total ecosystem respiration (RE). Each factor applies to
the fluxes within a group of four neighboring grid cells. This
grouping reduces the spatial resolution of the inversion but
was necessary to save computation time and memory. In ad-
dition, eight scaling factors were included to adjust the back-
ground CO2 mole fractions in eight inflow regions follow-
ing the method outlined in Steiner et al. (2024b). Since an
assimilation cycle includes two time windows, each scaling
factor is required twice: once for each of the two weeks. For
Zurich, the state vector size s is 2× (2926×3+8)= 17572.
For Paris, which has a larger domain with 7680 regions, the
size was 2× (7680× 3+ 8)= 46126 elements.

The state vector elements are scaling factors x =

(λ1,λ2, . . .,λs), so the initial prior state vector xb simply con-
sisted of ones, xb = (1,1, . . .,1). As mentioned before, from
week 3 onwards (see Fig. 4), the prior values were defined by
a weighted mean between the initial prior and the posterior
λi values from the previous week.

Treating GPP and RE as separate components in the state
vector is a new approach to urban inverse modeling. Sepa-
rating these two components is generally difficult, and it is
particularly challenging when only daytime observations are
assimilated. Nevertheless, the study by Tolk et al. (2011) sug-
gested that optimizing scaling factors for GPP and RE sep-
arately performs better than optimizing scaling factors for
NEE only even when daytime observations are used. Their
conclusion was based on evaluating six different regional
CO2 flux inversion approaches in synthetic model experi-
ments. Similar conclusions were drawn also by White et al.
(2019). By estimating GPP and RE separately, we provide the
inversion more flexibility to adjust the biogenic fluxes. Op-
timizing only NEE would have required applying the same
scaling factors to GPP and RE, which would preserve any
prior errors in the relative magnitudes of the two components.
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Figure 4. Schematic representation of CTDAS assimilation cycles (a) 1, (b) 2 and (c) 3. Black dots indicate hourly daytime (11:00–
16:00 UTC) observations which were averaged daily and assimilated during each cycle, while gray dots show all other observations. Each
panel shows observations only for days assimilated in the corresponding cycle. λi denotes the state vector parameters (flux scaling factors)
for cycle i, λa1

i
and λa2

i
indicate once and twice optimized scaling factors, respectively, following the notations in Peters et al. (2005) and

Steiner et al. (2024b).

We will present separate results for GPP and RE, but we will
also discuss the degree to which they can be separated by
analyzing their correlations in the posterior covariances.

2.3.3 Ensemble Square Root Filter approach

In order to optimize fluxes of CO2, the following Bayesian
cost function J of observation-model residuals and differ-

ences between prior and posterior fluxes is minimized (Peters
et al., 2005):

J (x)=
1
2

(x− xb)TP−1(x− xb)

+
1
2

(Hx− yo)TR−1(Hx− yo), (1)

where yo denotes the observed mole fractions, H the ob-
servation operator (implemented via the ICON-ART model
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sampled at station locations), x the state vector (flux and
background scaling factors), xb the “background” (or prior)
state vector, Hx the simulated mole fraction, P the prior er-
ror covariance matrix, and R the observation error covariance
matrix. The optimal posterior solution is

xa
= xb

+PHT(HPHT
+R

)−1
(
yo
−Hxb

)
. (2)

CTDAS implements an Ensemble Square Root Filter (En-
SRF, Whitaker and Hamill, 2002), or an Ensemble Square
Root Smoother if more than one window per cycle is used, to
solve this problem. A detailed description of the theory and
implementation of EnSRFs for inverse modeling is provided
by Thanwerdas et al. (2025).

In the EnSRF approach, the matrix P of dimension [s× s]
is approximated using an ensemble of N state vectors. Let X
denote the ensemble of state vector anomalies of size [s×N ],
representing deviations from the ensemble mean (e.g., the
prior has as mean simply 1). Then P is estimated as

P= ZZT
≈

1
N − 1

ZG︸︷︷︸
X

GTZT︸ ︷︷ ︸
XT

, (3)

where Z is the lower Cholesky decomposition, i.e., one pos-
sible definition of the matrix square root, and G is a Gaussian
random matrix of reduced size [s×N ] drawn from a standard
normal distribution (and GGT/(N − 1)≈ I). This provides a
low-rank approximation of the full covariance matrix, such
that the problem becomes tractable for high-dimensional in-
verse problems, as we can now re-write Eq. (2) as

xa
≈ xb

+
XYT

N − 1

(
YYT

N − 1
+R

)−1(
yo
−Hxb

)
, (4)

where Y=HX, denotes the ensemble of N modeled mixing
ratio deviations from the ensemble mean sampled at the ob-
servation locations and times. All these mixing ratios were
simulated as separate CO2 tracers within the same forward
ICON-ART run. For our inversions, we chose N = 186, fol-
lowing Steiner et al. (2024b).

2.3.4 Observation error covariance matrix R

Uncertainties in the differences between modeled and ob-
served mole fractions are described by the observation er-
ror covariance matrix R. It accounts for measurement, trans-
port, and representation errors. Representation errors occur
when a model with limited spatial resolution cannot resolve
measurements at a single point. In most cases, this matrix is
considered to be diagonal, implying statistical independence
of model–observation differences. This assumption may be
less valid for dense urban networks where stations lie within
a few kilometers. While more complex formulations includ-
ing off-diagonal terms have been proposed (e.g., Ghosh et al.,
2021), short sensitivity experiments with such configurations

in our system showed only minor effects on flux estimates.
Therefore, due to the high computational cost of full EnSRF
inversions, we used a diagonal R matrix (see Eq. 5) and as-
similated observations serially.

To estimate the diagonal elements, we first calculated cen-
tered (i.e., bias-corrected) weekly average root mean square
errors (RMSEs) between modeled and observed mole frac-
tions at each station (Fig. 5) and then applied a centered
5 week moving average. The RMSEs were generally larger in
Zurich than in Paris because most of the stations were mid-
cost sites measuring above rooftop with high sensitivity to
surrounding emissions. The largest RMSEs occurred in the
period from November to March and the lowest in late sum-
mer. Additionally, elevated RMSEs were observed in the first
week of April 2023. In Paris, the highest RMSEs were found
for the sites gns, cds and jus. This was likely because cds
and jus were located within the city, while gns had a data gap
during the late summer months, when model-observation dif-
ferences are typically smaller.

The smoothed weekly uncertainties for each station served
as the model-data mismatch (MDM) thus generating the R
matrix as follows:

R=

MDM2
11 · · · 0

...
. . .

...

0 · · · MDM2
nn

 , (5)

where n is the number of observations assimilated in a given
cycle.

2.3.5 Prior error covariance matrix P

The prior error covariance matrix P describes uncertainties
related to prior flux and background scaling factors, as well
as their correlations. These correlations effectively reduce
the degrees of freedom, which is necessary to avoid over-
fitting. The observation networks often lack the density to
independently constrain all state vector elements. The cor-
relation length defines the spatial scale of independently re-
solvable structures and how uncertainties aggregate across
the domain.

The structure of P was standardized for both inversions to
a common block-diagonal format,

P=

fa · e
−D�La 0 0
0 fb · e

−D�Lb 0
0 0 Pbg

 , (6)

where e· is implied to be taken element-wise, and we use
definitions

– fa = 1, fb = 0.5: the prior uncertainty for the anthro-
pogenic and biospheric categories, respectively. Factors
between 0 and 1 correspond to standard deviations of
0 % and 100 % per flux region,
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Figure 5. Bias-corrected weekly RMSEs in parts per million (ppm) between modeled and observed CO2 mole fractions for each station in
(a) Zurich (September 2022–September 2023) and (b) Paris (January 2023–January 2024).Background sites in Zurich are indicated in red
on the y axis.

– D ∈ RNr×Nr : distance matrix with entries dij between
flux regions i and j ,

– La,Lb ∈ RNr×Nr : length scale matrices for the anthro-
pogenic and biospheric categories with entries Lij,a and
Lij,b,

– �: element-wise division,

– Pbg ∈ R8×8: block corresponding to background param-
eters. It has a banded structure with diagonal elements
set to 0.0052, corresponding to 0.5 % variance per back-
ground inflow region, and off-diagonal correlations be-
tween neighboring regions: ±1 and ±2 positions are
weighted by factors of 0.5 and 0.2, respectively. The to-
tal uncertainty is approximately 1 %.

For Paris, the spatial correlation between flux scaling fac-
tors was fixed to length scales of Lij,a = La = 20 km and
Lij,b = Lb = 50 km for anthropogenic and biospheric fluxes,
respectively. The greater length scale for biospheric fluxes
arises from the assumption that vegetation responds to envi-
ronmental drivers in a correlated manner across neighboring
regions in the model domain.

In Zurich, spatially varying correlation lengths were con-
sidered. Shorter correlation lengths were applied within the
city, as the dense observation network can resolve flux gra-
dients. Longer correlation lengths were utilized outside the

city. The spatial dependence of Lij was defined as a linear
function of the average distance between flux regions i and j
to the city center dc,ij :

Lij,a =

(
dc,ij

dmax

)
La+

(
1−

dc,ij

dmax

)
Lurban,a , (7)

(and analogously defined Lij,b) where La and Lurban,a are
the correlation length limits between which we would like
Lij,a to vary outside and inside the city, and dmax is the maxi-
mum distance between flux regions. Using the mean distance
dc,ij was important to preserve the symmetry of the P matrix.
As in Paris, we set La = 20 km for anthropogenic and Lb =

50 km for biospheric fluxes, while we used Lurban,a = 5 km
for anthropogenic and Lurban,b = 8 km for biospheric fluxes.

The prior and posterior flux uncertainties presented in the
Sect. 3 were computed from the full covariance matrices to
account for spatial covariances, similar to the approach de-
scribed in Steiner et al. (2024b). For each weekly inversion
cycle, we calculated:

U =

√
gTPg , (8)

where P is the prior or posterior error covariance matrix and
g is a vector of 0 and 1 (or a binary mask) corresponding
to the selected region of model grid (e.g., selected grid cells
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inside Zurich, Paris or Île-de-France region). For seasonal or
annual means, weekly uncertainties were aggregated using
standard error propagation.

3 Results

3.1 Evaluation of the forward simulations compared to
observations

3.1.1 European simulation

The main purpose of the European simulation was to provide
initial and boundary conditions for the two nested domains.
Comparisons with measurements in Europe thus provide in-
formation on the magnitude and temporal dynamics of errors
in these boundary conditions.

Overall, the mean daily afternoon CO2 mole fractions
from the European simulation showed very good agreement
with measurements from the ICOS network. The list of sites
included in this comparison is provided in Fig. S2 in the
Supplement. Figure 6 presents monthly mean mole fractions,
model biases, RMSEs, and correlation coefficients averaged
across all sites. The annual mean bias was about 1.24 ppm
and the RMSE about 4.19 ppm.

The high monthly correlation coefficients (mean value of
0.73) suggest that the model captured most of the day-to-day
variability in the observations. However, the error statistics
show significant variations between months. For instance, bi-
ases in simulated CO2 mole fractions exhibit a clear seasonal
pattern. The largest biases, reaching up to 3 ppm, occurred
in August and September. This overestimation is likely re-
lated to the challenge in accurately modeling biospheric CO2
fluxes, which dominate during the warm season. Photosyn-
thetic uptake and respiration processes introduce uncertain-
ties in the prior fluxes that are difficult to constrain at the
European scale.

RMSEs were quite stable over the year with a tendency of
higher values during the cold season (October–March). This
increase may be associated with uncertainties in residential
heating, which is one of the main anthropogenic sources. An-
other important factor that may lead to larger errors during
the cold season is stronger vertical stratification and shal-
lower boundary layers.

The lowest correlation of 0.5 occurred in April 2023. This
could be related to transition-season effects, where shifts in
both biospheric activity (onset of vegetation activity) and
heating demand (end of heating period) introduce additional
uncertainty. All correlations were calculated as Pearson cor-
relation coefficient r .

3.1.2 Nested simulations over Zurich and Paris

A similar comparison of the prior simulation against mea-
surements was conducted for the two nested simulations us-
ing instead the measurement networks in Zurich and Paris
(two stations of the Paris network are also ICOS stations).

Table 3. Bias, RMSE, and Pearson correlation coefficient for
station-averaged prior and posterior CO2 mixing ratio statistics in
the cities of Zurich and Paris.

City Statistic Prior Posterior Units

Bias 2.62 0.05 ppm
Zurich RMSE 11.83 7.10 ppm

Pearson r 0.73 0.83 –

Bias 1.36 −0.11 ppm
Paris RMSE 5.30 4.25 ppm

Pearson r 0.76 0.83 –

The results are presented in Fig. 7 (blue bars) in terms of
statistics per station rather than per month. To be comparable
with the results for the European domain, correlation coeffi-
cients were first averaged by month and then averaged over
all months. Otherwise, high correlation coefficients would be
obtained due to the strong seasonal cycle in CO2, which the
model is usually able to capture well. RMSEs and biases of
the prior simulation (blue bars) were generally much larger
for stations in Zurich than in Paris (see also Table 3). This is
due to the different network types with mostly rooftop mid-
cost sensors in Zurich as opposed to high-precision measure-
ments on tall towers in Paris. The sites in Zurich are mostly
located inside the city and at a much lower altitude above the
surface than in Paris. As a result, they are more sensitive to
emissions from the city and therefore also to errors in these
emissions. For the two background sites, Beromünster and
Lägern-Hochwacht in the Zurich domain, the model showed
very similar performance as for the sites in the Paris domain.

The biases and RMSEs in the Paris domain were of sim-
ilar magnitude to the values of the comparison with ICOS
sites in the European simulation. The correlation coefficients
were also comparable for both simulations, with Paris show-
ing only a slight improvement in the priors, indicating that
higher resolution did not substantially increase correlation in
this case.

3.2 Inversion results

The inversion significantly improved simulated CO2 mole
fractions compared to observations (orange bars in Fig. 7).
Daily RMSEs averaged across all stations decreased in both
cities, dropping from 11.83–7.1 ppm in Zurich, and from
5.33–4.25 ppm in Paris. The bias was reduced to near zero,
from 2.62–0.05 ppm in Zurich and from 1.36 to −0.11 ppm
in Paris. The reduction in the biases was mostly a result of
the adjustment of the background scaling factors rather than
the flux scaling factors. Finally, the correlation coefficients
increased from 0.73–0.83 in Zurich and from 0.76–0.83 in
Paris. Although the correlations were already high in the
prior simulation, the inversion further improved the temporal
agreement between the model and observations. After inver-
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Figure 6. Monthly statistics of mean modeled versus observed afternoon CO2 mole fractions at ICOS stations in the European model domain.
Panel (a) shows the contributions of the different components (background, anthropogenic and biospheric) to total CO2 mole fractions. Total
and background mole fractions are offset by−410 ppm. The remaining panels present (b) monthly mean biases, (c) RMSEs, and (d) Pearson
correlation coefficient (r).

sion, the distribution of errors across sites was more uniform,
suggesting an improvement in spatial CO2 gradients.

Figures 8 and 9 show timeseries of weekly prior and poste-
rior flux estimates averaged across Zurich and Paris, as well
as their surrounding agglomerations. For Zurich, the larger
region encompasses the entire area of the nested simulation.
In Paris, it corresponds to the Île-de-France (black contour in
Fig. 2).

In Zurich, most flux adjustments were concentrated within
the city, while domain-wide totals remained close to the prior
estimates (Fig. 8). Anthropogenic emissions, the dominant
source of CO2 in the urban area, were reduced in almost
all weeks, especially during the heating season. The reduc-
tions were particularly large in the last weeks of December
2022 and the first week of January 2023. This was a pe-
riod of comparatively warm temperatures and coincided with
the Christmas and New Year period when many residents
leave the city for holidays. Our prior estimates of emissions
from residential heating accounted for outdoor temperatures
by following a heating-degree-days approach (see Brunner

et al. (2025) for details). However, the strong reduction in
the posterior estimates during warm winter periods suggests
that this approach may not accurately capture the influence
of temperature. Another factor, which likely contributed to
the lower posterior emissions, was the energy crisis driven
by the Russo–Ukrainian War. This crisis led to strongly in-
creased prices for gas and electricity. Due to the shortage in
primary energy, the Swiss government formulated the goal
of a reduction of gas consumption by 15 %, a goal that was
exceeded during the heating period October 2022 to March
2023 (https://www.news.admin.ch/de/nsb?id=94439, last ac-
cess: 18 December 2025). Our prior emissions did not ac-
count for this factor. Despite these plausible factors, the re-
ductions in winter were likely too strong as discussed below
in Sect. 4. The prior emissions showed a maximum in win-
ter and a minimum in summer, which is expected given the
important contribution of heating to total CO2 emissions in
the city. The posterior fluxes showed a very different behav-
ior that does not seem to be realistic, as the posterior fluxes

Atmos. Chem. Phys., 26, 547–570, 2026 https://doi.org/10.5194/acp-26-547-2026

https://www.news.admin.ch/de/nsb?id=94439


N. Ponomarev et al.: CO2 fluxes in Zurich and Paris with ICON-ART CTDAS 559

Figure 7. Daytime (11:00–16:00 UTC) mean bias, RMSE, and Pearson correlation coefficient (r) values of CO2 mole fractions before
and after inversion between ICON-ART and the observations over Zurich (a–c) and Paris (d–f). Blue bars denote the results for the prior
simulation, orange bars for the posterior simulation after optimization.

showed excessively strong reductions in late December and
early January.

The inversion significantly increased the net uptake of
CO2 by the biosphere in late May/June 2023, suggesting
that prior estimates underestimated photosynthetic activity.
In other periods, the posterior NEE fluxes remained closer to
the prior. In most weeks, NEE was much smaller than the an-
thropogenic fluxes in the city of Zurich, but in summer, they
were of similar magnitude. The increase in posterior uptake
in June was partially offset by higher anthropogenic emis-
sions, indicating partial separability between anthropogenic
and biospheric fluxes.

Some studies, such as Lauvaux et al. (2016); Lian et al.
(2021), focused only on the dormant season to minimize
such interference from biospheric fluxes when estimating
anthropogenic emissions. Comparing uncertainty reductions
between summer and winter thus helps assess how biospheric
fluxes influence the inversion constraints. For Zurich, the
inversion resulted in notably larger reductions for anthro-
pogenic and total flux uncertainties in winter (both about
90 %) than in summer (about 45 % and 35 %, respectively).
This difference may partly result from the inversion attribut-
ing model transport errors to emissions during winter shal-
low boundary layer conditions, as discussed earlier. In sum-
mer, Zurich showed relatively higher uncertainty reduction
for respiration fluxes (about 33 %) compared to winter (about

20 %), while the uncertainty of photosynthetic uptake by the
plants (GPP) remained largely unchanged in both seasons.
The uptake uncertainties remaining high are likely due to the
lack of assimilated nighttime observations, which would help
separate RE and GPP. Detailed information about summer
and winter prior and posterior fluxes is provided in the Ta-
ble S3 in the Supplement.

In Paris, the inversion produced much smaller adjustments
compared to Zurich (Fig. 9). The total and anthropogenic
CO2 fluxes remained close to the prior estimates, not only
in the Île-de-France region, but also in the city. Biospheric
fluxes showed minimal changes in both regions, indicating
that the inversion system found little evidence to revise the
prior estimates. The posterior uncertainties were significantly
reduced for anthropogenic fluxes but remained almost un-
changed for biospheric fluxes, suggesting that the observa-
tion network was less sensitive to CO2 exchange with vege-
tation. This aligns with the fact that NEE fluxes were nearly
ten times smaller than anthropogenic fluxes. This may result
from the CORINE land cover dataset, which inadequately re-
solves vegetation in cities.

Overall, the relatively small updates in Paris might be
explained by a better initial agreement between the model
and observations, as well as by a lower signal-to-noise ratio,
with anthropogenic enhancements being less distinct against
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Figure 8. Time series of prior and posterior CO2 fluxes in Zurich in (a) the total domain and (b) the city. The remaining panels show the
anthropogenic (c) and biospheric (d) CO2 fluxes in Zurich. Biospheric fluxes are shown in terms of net ecosystem exchange (NEE). Vertical
bars denote the 1σ uncertainty in the domain-averaged fluxes computed from the prior and posterior error covariance matrices.

background variability at the tall towers in Paris compared to
the rooftop measurements in Zurich.

Consistent with this, the inversion barely adjusted bio-
genic flux uncertainties in Paris (e.g., GPP uncertainty reduc-
tion was −0.4 % in summer and −6.0 % in winter). This un-
derlines the importance of integrating high-resolution urban
vegetation data to better resolve biogenic fluxes within city
domains. In Paris, the reductions in total and anthropogenic
flux uncertainties were similar in both seasons (about 75 %–
78 %), with slightly lower reductions in summer, indicating
that anthropogenic emissions were effectively constrained
owing to the limited sensitivity to biogenic fluxes.

In both cities, the inversion optimized anthropogenic and
biospheric fluxes as well as background CO2 mole fractions
from eight inflow regions (Fig. 10). The Zurich case showed
larger changes in background levels and a wider spread be-
tween different wind directions. Scaling factors were ad-
justed by up to 2 %, which corresponds to about 8 ppm given
a background of about 400 ppm. Background mole fractions
were consistently scaled down when air was advected from
the southern sector (SSE and SSW) but scaled up when ad-
vected from the north (NNE and NNW). The eastern sec-

tors (ENE and ESE) showed upward corrections in winter
but mostly downward corrections in summer.

In contrast, the results for Paris exhibited smaller adjust-
ments, mostly within 1 %, and more consistent between the
different wind directions, indicating a systematic overestima-
tion in the prior. For both cities, the adjustments are expected
to correct for biases in the boundary conditions provided by
the European simulation, which itself is not corrected for
biases through data assimilation. The larger corrections for
Zurich might be due to the city being more strongly influ-
enced by the European continent due to its position further
east from the Atlantic compared to Paris.

Figure 11 summarizes the annual mean CO2 fluxes and
their relative changes for Zurich and Paris. The total fluxes
are substantially higher in Paris, reflecting not only its larger
area but also its greater population and correspondingly
stronger emissions. Net biospheric fluxes (NEE) are only sig-
nificant for the larger domains (with net uptake in both the
prior and posterior fluxes) but are negligible over the two
cities. The relative changes are thus driven almost entirely by
updates to anthropogenic emissions. In Paris, both domain-
wide and city-level fluxes remain close to the prior, though
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Figure 9. Time series of prior and posterior CO2 fluxes in Paris in (a) the Île-de-France region and (b) the city. The remaining panels show
the anthropogenic (c) and biospheric (d) CO2 fluxes in the city of Paris. Biospheric fluxes are shown in terms of net ecosystem exchange
(NEE). Vertical bars denote the 1σ uncertainty in the domain-averaged fluxes.

Figure 10. Optimized scaling factors for background CO2 mole fractions in (a) Zurich and (b) Paris. The different colors correspond to the
8 different inflow regions.
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Figure 11. Annual total, anthropogenic and biospheric CO2 fluxes
in Zurich and Paris (a). Relative changes in total and anthropogenic
fluxes (b). Uncertainties were propagated from weekly flux uncer-
tainties as described in the Data and Methods section.

total and anthropogenic fluxes increase by about 7 % in the
city. In contrast, more substantial adjustments are found for
Zurich: domain-wide fluxes are reduced by approximately
10 %, primarily due to large reductions within the city, where
annual anthropogenic emissions decrease by 27 %.

The spatial distribution of annual mean anthropogenic
CO2 flux updates for both areas is shown in Fig. 12. Larger
adjustments are evident in Zurich, particularly within and up-
stream of the city, reflecting the high sensitivity of the ob-
servation network to these regions. Emissions were reduced
in the eastern and western parts of Zurich, corresponding to
residential and vegetated areas, with the largest decrease oc-
curring near the western border, an area dominated by vege-
tation. In contrast, fluxes in Zurich’s center were scaled up.
In Paris, updates are generally smaller. The results for the

Île-de-France show a slight increase north of the city. This
is the region covered by the sites gns and cds, which showed
particularly large deviations from the ICON-ART model sim-
ulation (see Fig. 5). Vegetated zones to the east and west of
Paris show minimal changes in anthropogenic fluxes, as ex-
pected. Within the city, a minor redistribution of emissions is
visible with reductions in the northern districts and increases
in the south.

4 Discussion

Posterior anthropogenic emissions in Zurich were likely un-
derestimated (i.e., scaled down too much) in some periods.
This was especially evident in late December 2022 and early
January 2023. As shown in Fig. S7 in the Supplement for
one of the rooftop sites, the ICON-ART model tended to un-
derestimate wind speeds during periods of low winds. This
behavior is consistent with previous studies, which showed
that mesoscale transport models tend to underestimate wind
speed and mixing under stable, low-wind conditions, partic-
ularly in urban environments with enhanced surface rough-
ness (Bréon et al., 2015; Lauvaux et al., 2016; Wu et al.,
2018). The selected period, from 15 December–13 January,
coincides with the largest downward adjustments in emis-
sions. When modeled wind speeds exceeded 1 ms−1, the
model captured the observed day-to-day variability reason-
ably well. However, during calm episodes, the model often
simulated wind speeds below 1 ms−1 for several consecutive
days, whereas the observations remained higher. These pro-
longed calm periods result in excessive CO2 accumulation in
the model. The inversion system compensates for this overes-
timation by reducing the emissions. This highlights how er-
rors in representing the actual meteorology, particularly dur-
ing low-wind episodes, can introduce artifacts into the inver-
sion.

The network-wide statistics presented in Fig. 13 under-
score the systematic nature of these transport errors. The fig-
ure shows how prior CO2 biases and RMSEs vary with mod-
eled wind speed across all sites in Zurich and Paris. In Paris,
where sensors are installed on tall towers well above the sur-
face layer, modeled wind speeds fell below 1 ms−1 in less
than 2 % of observations. At the rooftop sites in Zurich, in
contrast, wind speeds below 1 ms−1 occurred during nearly
15 % of all measurement times. This wind speed threshold
marks a sharp transition in model performance. Biases in
simulated versus observed CO2 mole fractions increase to
around 9 ppm, and RMSEs exceed 25 ppm. These statistics
reflect a regime in which the model systematically underes-
timates wind speeds allowing CO2 to accumulate unrealis-
tically. Rather than being isolated events, calm conditions
were frequently observed at most sites. The problems of
ICON-ART in capturing these situations negatively impact
flux estimates during stagnant weather episodes in winter.
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Figure 12. Maps of annual mean anthropogenic CO2 scaling factor updates in (a) the Zurich model domain, (b) the Paris model domain,
(c) the city of Zurich and (d) the city of Paris.

Figure 13. Bias and RMSE of CO2 mole fractions between simulated and observed values as a function of wind speed in Paris and Zurich.
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The inversion results revealed significant differences in
background CO2 mole fraction corrections between Zurich
and Paris. The larger background CO2 mole fraction ad-
justments in Zurich compared to Paris are likely related to
the difference in their geographic position. Paris, located
closer to the Atlantic Ocean, is exposed to air masses less
affected by European anthropogenic emissions. In contrast,
Zurich lies further inland and is more influenced by continen-
tal sources, resulting in a more complex and variable back-
ground signal. This makes it more challenging to differenti-
ate between the influence of local emissions and background
changes. Especially in winter when anthropogenic emissions
increase not only in Zurich but also across Europe. This is
reflected in the background adjustments: during periods of
large reductions in anthropogenic fluxes in Zurich, the back-
ground CO2 was actually increased for the NNW, ENE, and
ESE wind sectors. This pattern is explained by all three back-
ground tower sites (Beromünster, Laegern–Hochwacht, and
Birchwil Turm). All of them were showing elevated levels
of CO2 mole fractions higher than those simulated by the
model, indicating a regional-scale increase in emissions that
was not fully captured in the prior model setup.

Another limitation of the model involves the VPRM
model. In our simulations, VPRM relied on satellite in-
dices derived from MODIS observations at a resolution of
250–500 m, which is insufficient for resolving urban vegeta-
tion. This poses a challenge when modeling photosynthetic
uptake in heterogeneous urban environments. For instance,
Ren et al. (2017) conducted a spatio-temporal analysis us-
ing Landsat data and field measurements and demonstrated
that mixed-pixel effects in urban settings severely compro-
mise estimates of tree density and structural vegetation at-
tributes, especially in areas with impervious surfaces such
as roads. Likewise, (Velasco et al., 2016) emphasize that ur-
ban greenery is often poorly captured in models, and argue
that no method currently exists to directly evaluate the CO2
uptake by urban vegetation. Together, these studies suggest
that current urban biosphere models, which are relying on
moderate-to-high-resolution satellite imagery, may system-
atically underestimate the contribution of small vegetation
patches and street trees to total CO2 fluxes, and misrepre-
sent the net carbon exchange in densely built-up areas. In
Paris, this issue was likely exacerbated by using the coarse
CORINE land cover dataset at 100 m resolution.

The impact of biospheric flux uncertainties on the estima-
tion of anthropogenic emissions becomes increasingly im-
portant during the summer months. In our VPRM simula-
tions for Zurich, prior net ecosystem exchange (NEE) was
mostly positive (net source) in the city center, even in sum-
mer, with a mean NEE of +0.29 µmolm−2 s−1. In contrast,
surrounding vegetated areas functioned as sinks, as expected
for the growing season (Fig. 14). The positive NEE in the city
center appears unrealistic, suggesting an underestimation of
photosynthetic uptake by urban vegetation, likely due to the
coarse resolution of satellite data. Respiration in VPRM only

depends on temperature but not on satellite indices. The dif-
ferent impacts of low resolution MODIS observations on
photosynthesis and respiration may thus explain the unreal-
istic net positive NEE values.

After optimization, the inversion reduced respiration and
enhanced uptake, particularly in surrounding green areas,
resulting in a mean NEE of −2.15 µmolm−2 s−1 averaged
across the city. This adjustment brings the posterior fluxes
into better agreement with local eddy covariance measure-
ments, which show that daytime photosynthetic uptake dur-
ing summer can exceed concurrent anthropogenic emissions,
leading to net negative fluxes in certain areas.

Finally, our inversions used only afternoon CO2 observa-
tions, which primarily constrain daytime fluxes. Assimilating
only observations when the boundary layer is fully developed
is conventional practice as it minimizes errors introduced
by a mismatch between simulated and real vertical mixing,
which are largest when the boundary layer is low. This ap-
proach is further justified by the fact that nighttime and early-
morning fluxes are lower than daytime although not negligi-
ble: in Zurich they account for roughly 30 % of the daytime
flux, and in Paris for about 30 %–35 % (see Fig. S10 in the
Supplement). At the same time, it complicates separation of
RE and GPP, as during the night only one of the biospheric
flux components is active. Posterior correlations between the
two components (0.61 in Zurich, 0.58 in Paris) indicate par-
tial coupling, reflecting that the inversion provides some flex-
ibility to adjust GPP and RE separately. However, these cor-
relations also show that GPP and RE are not fully indepen-
dent in the inversion. Part of the observational constraint af-
fects both components in a similar way. In this sense, sep-
arate optimization mainly prevents errors in the prior rela-
tive magnitudes from being preserved, but it does not imply
that the system can always distinguish their individual vari-
ations. The strength of this separability varies significantly
over the year and depends on the available observational in-
formation and atmospheric conditions. These limitations are
not captured by the analytical posterior uncertainties and will
require performing sensitivity tests.

A better separation between anthropogenic and biospheric
fluxes might be achieved through assimilation of additional
tracers such as NOx or CO co-emitted with CO2 or radio-
carbon. Radiocarbon and co-emitted species have been mea-
sured as part of the ICOS Cities project at the Hardau tower
but only for a few months and only using the Eddy covariance
technique, which doesn’t require very precise absolute cali-
bration. Even if measurements would have been available for
longer periods, the co-assimilation of CO2 with other species
comes with its own challenges, either because the species are
chemically reactive (like NOx), because emission ratios be-
tween these species and CO2 are uncertain, or because the
measurements are very challenging (as in the case of radio-
carbon).

Together, these results illustrate how inversion outcomes
are influenced by transport model biases and simplifications
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Figure 14. Net ecosystem exchange (NEE) fluxes in Zurich in summer (June/July/August) 2023. (a) Prior NEE, (b) posterior NEE, and
(c) posterior–prior difference.

in prior flux estimates, which vary by space, season, and flux
type. The observed corrections provide a quantitative view
of where and when the inversion deviates from the prior, re-
vealing limitations in current models and offering guidance
for improving urban CO2 flux estimation.

Table 4 summarizes the anthropogenic CO2 emission es-
timates from this study. It also includes information on the
inventory data used as a prior and literature values for Île-
de-France and Paris. The inversion reduced prior estimates
for Zurich city from 1388.9± 156.8–1012.3± 38.8 ktyr−1,
although no independent literature estimate exists for com-
parison. For Île-de-France, the prior and posterior values are
close to each other, and about 16 % lower than the earlier
estimate in (Staufer et al., 2016) between August 2010 and
July 2011. In Paris, the posterior estimate of 3580.0± 101.9
is slightly higher than the prior 3375± 172 ktyr−1 and in
good agreement with the estimate for the year of 2020 of
3650± 1830 described in (Nalini et al., 2022). Consistent
with Lian et al. (2023), the inversion provides more reli-
able constraints during the dormant period, when biogenic
fluxes are minimal. Even though our inversions did not as-
similate morning observations as in Lian et al. (2023), the
city-scale totals remain in good agreement with both the
prior inventory and previous studies, highlighting the robust-
ness of our anthropogenic emission estimates. Overall, the
inversion reduced posterior uncertainties compared to priors,
demonstrating the added value of atmospheric constraints
in emission estimates. We note, however, that the posterior
uncertainties in our work only reflect the analytical uncer-
tainty of a Bayesian inversion, which assumes that all er-
rors can be represented by Gaussian distributions with zero
mean, i.e. all prior assumptions are unbiased. They do not
include other sources of uncertainty such as transport model
errors or representation errors introduced by comparing sim-
ulations with a bulk land surface scheme, which represents
cities only through enhanced surface roughness but without a
vertical canopy structure, with observations above rooftops.
As a consequence, our reported posterior uncertainties are

too low, but without an extensive analysis of potential ad-
ditional errors, we do not know by how much. Our uncer-
tainties reported for Paris are lower than in previous studies
(e.g., Nalini et al., 2022; Lian et al., 2023), which also only
accounted for analytical uncertainties but used different in-
version approaches, prior uncertainties, and different spatial
resolutions.

5 Conclusions

In this study, we applied the ICON-ART-CTDAS inversion
framework at high spatial resolution to estimate urban CO2
fluxes in Zurich and Paris over a full annual cycle. Simula-
tions were conducted for a central European domain along
with nested domains centered on each city. To better capture
the influence of complex terrain on mesoscale flow dynam-
ics, the Zurich domain was simulated at a finer resolution
(500 m) compared to Paris (1 km).

Forward simulations were evaluated against CO2 observa-
tions in all three domains. Simulated mole fractions for the
European domain showed high (monthly mean) correlations
with observations from the ICOS network, indicating that the
model captures effectively day-to-day variability. Biases and
RMSEs were of the order of a few ppm. Additionally, the
model reproduced daily variations in wind speed and tem-
perature well (see Supplement).

In Zurich, the inversion reduced anthropogenic emissions
by 27 % relative to the prior inventory, resulting in a posterior
annual emission of 1012.3± 38.8 ktyr−1, whereas in Paris,
emissions increased by 7 %, yielding a posterior emission of
3580.0± 101.9 ktyr−1. Here we emphasize that the reported
posterior uncertainties only reflect the inversion statistics and
do not capture other sources of error. They should therefore
be considered as lower bounds of the total uncertainty.

The differences in posterior emissions between Zurich and
Paris highlight several important lessons for urban inver-
sions. First, inversion results are strongly city-specific: net-
work layout, terrain complexity, and city size lead to distinct
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Table 4. Prior and posterior anthropogenic CO2 emissions in Zurich, Île-de-France region and Paris based on the results from this study,
inventory data and other independent estimates.

Region/City Source Year Anthr. CO2 emissions (ktyr−1) Remarks

Zurich Mapluft 2020 1388.9± 156.8 Used as prior
This study Sep 2022–Aug 2023 1012.3± 38.8 Posterior

Île-de-France AIRPARIF 2022 34849.6± 2181.3 Used as prior
This study 2023 34553.8± 880.0 Posterior
Staufer et al. 2016 Aug 2010–Jul 2011 40 900
Lian et al. 2023 2021 34300± 2300

Paris AIRPARIF 2022 3375.1± 429.2 Used as prior
This study 2023 3580.0± 101.9 Posterior
Nalini et al. 2022 2019 6410± 2330
Nalini et al. 2022 2020 3650± 1830

flux corrections, background updates, and model–data mis-
matches. Second, observational network design critically af-
fects inversion sensitivity. Zurich’s dense rooftop network,
combined with complex terrain, amplifies transport-related
biases, particularly during stagnant winter conditions with
low wind speeds and shallow mixing layers, which can in-
flate simulated concentrations and misattribute accumulated
CO2 to local sources. In contrast, Paris tower network and
flatter terrain produce smoother regional constraints. These
conditions make the inversion less sensitive to both trans-
port errors and biogenic fluxes. Finally, background adjust-
ments also differ between the cities. Paris, located closer to
the Atlantic Ocean, is exposed to air masses less affected by
European anthropogenic emissions. In contrast, Zurich lies
further inland and is more influenced by continental sources,
resulting in a more complex signal and larger corrections.

Our results also underscore the importance of accurately
representing prior biospheric fluxes in urban areas, especially
in summer when vegetation uptake significantly influences
total CO2 fluxes. In Zurich, prior estimates of net ecosystem
exchange (NEE) indicated an unrealistic net carbon source in
the city center. The inversion corrected this by reducing res-
piration and enhancing uptake in vegetated areas, aligning
posterior fluxes more closely with local eddy covariance ob-
servations. This highlights the need for improved representa-
tion and parameterization of urban vegetation in biospheric
flux models to better capture seasonal and spatial variabil-
ity. Further studies should explore higher-resolution urban
vegetation datasets or urban-adapted models, such as urban
VPRM (Hardiman et al., 2017), to better constrain the bio-
genic contribution. Unfortunately, as pointed out by Stagakis
et al. (2025), in-situ observations of urban vegetation are still
too limited to thoroughly evaluate biospheric flux models in
cities.

In addition, the posterior correlations between GPP and
RE scaling factors (0.61 in Zurich, 0.58 in Paris) suggest that
these components can be at least partially disentangled with

the current inversion framework. Future work should include
nighttime CO2 observations during certain nights where at-
mospheric boundary layers are not very low to improve the
separability of the components. Furthermore, targeted sen-
sitivity tests with perturbed biospheric priors and with opti-
mizing only NEE versus separately optimizing GPP and RE
should be performed to further evaluate the robustness of the
biogenic flux estimates.

We did not perform meteorological data assimilation or
use a meteorological ensemble, limiting our ability to ex-
plicitly quantify transport-related uncertainties in the sim-
ulated CO2 mole fractions. To estimate model–data mis-
match (MDM), we used a pragmatic approach based on bias-
corrected RMSE values calculated for each station. Periods
of large model–observation discrepancies, especially under
low wind speeds, resulted in exaggerated emission correc-
tions, as the inversion system attempted to compensate for
transport biases through flux adjustments. We addressed this
issue by rejecting extreme outliers. Although this improved
the stability of the inversion, addressing transport related bi-
ases more fundamentally will require improved meteorolog-
ical input, potentially through the use of transport ensembles
(e.g., Steiner et al., 2024a; McNorton et al., 2020) or joint
optimization of fluxes and meteorology.

As urban CO2 flux estimation becomes central to net-zero
planning, improving transport and biospheric model fidelity
and expanding observational constraints will be essential.
Projects like ICOS Cities (Lan et al., 2024) have demon-
strated the importance of deploying tall-tower eddy covari-
ance, isotopic, and street-level sensors in urban environments
to validate emission inventories and improve model con-
straints on anthropogenic and biospheric fluxes. The CoCO2-
MOSAIC 1.0 dataset (Urraca et al., 2024) is complemen-
tary to these observational efforts and offers high-resolution
(0.1°) emission priors, which is in line with the crucial role
of detailed bottom-up information in urban inversion frame-
works.
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Overall, our study highlights the sensitivity of urban CO2
flux inversions to transport model biases, observational net-
work design, and uncertainties in prior flux estimates. Ad-
dressing these challenges requires integrated approaches that
combine high-resolution meteorology, improved biospheric
flux modeling, and expanded observational networks tailored
to urban complexity. Future research should explore joint in-
version frameworks that incorporate both meteorology and
flux uncertainties and leverage transport ensembles to bet-
ter constrain emissions. These advances will be critical for
reliable urban carbon monitoring and for supporting policy
efforts aimed at reducing emissions in complex city environ-
ments.
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