

Supplement of

Direct observation of core-shell structure and water uptake of individual submicron urban aerosol particles

Ruiqi Man et al.

Correspondence to: Zhijun Wu (zhijunwu@pku.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

25 **1. Calculations of optical density and its uncertainty**

26 As mentioned in the manuscript, I is the intensity of photons transmitted through a
 27 sample region, and I_0 is the intensity of photons transmitted through a sample-free region. As
 28 shown in the following equations, the actual intensity was obtained by deducting the intensity
 29 without X-ray penetration (I_{dark}) from the measured value:

$$I = I_{meas} - I_{dark} \quad \text{Eq. S1}$$

$$I_0 = I_{0,meas} - I_{dark} \quad \text{Eq. S2}$$

$$I_{dark} = C_{dark} * t_d \quad \text{Eq. S3}$$

30 where I_{meas} and $I_{0,meas}$ represent the intensity measured with or without sample grids.
 31 C_{dark} represents the dark counts with a unit of counts per second (cps), and t_d represents the
 32 dwell time (s). Dark counts are exactly due to noise from the detector and directly measured
 33 as the photon count rate when the X-ray beam is blocked.

34 Based on rules of error propagation, the uncertainty of intensity (σ_I , σ_{I0}) and optical
 35 density (OD) (σ_{OD}) were calculated as follows,

$$\sigma_I = \sqrt{I_{meas} + I_{dark}} \quad \text{Eq. S4}$$

$$\sigma_{I0} = \sqrt{I_{0,meas} + I_{dark}} \quad \text{Eq. S5}$$

$$\sigma_{OD} = \sqrt{\frac{I_{meas} + I_{dark}}{(I_{meas} - I_{dark})^2} + \frac{I_{0,meas} + I_{dark}}{(I_{0,meas} - I_{dark})^2}} \quad \text{Eq. S6}$$

37 **2. Collection and measurement of ambient particles in the environmental cell**

38 Using ambient samples in the environmental cell had many technical challenges that we
39 had to overcome to make this study possible. Firstly, sealing the sample and the back SiNit
40 window requires Crystalbond 509 mounting adhesive that is applied as a fluid at 150°C and
41 cooled to ambient temperature to form a solid vacuum tight seal. This can result in a major
42 drawback if ambient particles are collected on the windows using field-deployed impactors
43 and later sealed to the sample clip, subjecting them to high temperature. This may have a
44 significant influence on chemical composition, morphology, and properties of particles¹. A
45 previous STXM/NEXAFS study investigated ambient particles in a humidified environmental
46 cell tracking their water uptake, although the particles were exposed to high temperature for
47 sealing². We aimed to avoid exposing particles to high temperature, which requires presealed
48 SiNit windows. In our attempts, we aimed to impact particles onto presealed SiNit windows
49 in sample clips, however, the dimensions of the sample clip are quite bulky to be used in most
50 impactor instrumentation, often making it impossible to utilize. Overall, there is a final risk to
51 shatter the membranes that make up the SiNit windows due to physically handling samples
52 from impactor mounting, transporting, sample sealing in clips, and mounting clips in the
53 environmental cell and in the STXM/NEXAFS vacuum chamber.

54 This study has uniquely improved the original in-situ cell with a simple solution, by
55 using continuous carbon coated copper grids to collect ambient particles and avoiding
56 exposure to high temperature during the sealing of windows. Ambient particles are first
57 impacted onto the grids, which are then tapped directly onto the presealed SiNit window
58 using Kapton tape and a high vacuum silicon-based adhesive. This procedure ensured that the
59 copper grid substrates with ambient particles were held firmly inside the environmental cell.
60 The rest of the environmental cell, including the gas connections and operations, were
61 identical to the original design.

62 **3. Oxygen K-edge NEXAFS spectra of sodium chloride**

63 Oxygen K-edge NEXAFS spectra of the sodium chloride (NaCl) standard sample
64 obtained from six times of line scan at high RH were shown in Fig. S3. For panels (A) – (C),
65 the RH was $75.6 \pm 1.1\%$. For panels (D) – (F), the RH was $79.4 \pm 0.8\%$. According to
66 reference, the NaCl spectra generally exhibited three main features of oxygen K-edge, that is,
67 pre-edge (~ 535 eV), main-edge (~ 537.5 eV), and post-edge (~ 540 eV)³⁻⁶, clearly indicating
68 the presence of liquid water. In our study, the main peak of NaCl spectra appeared at about
69 536.3 eV, and the pre-edge and post-edge were 533.8 and 538.7 eV, respectively. Compared
70 with peaks measured in the publications, the offset of the NEXAFS spectra at the oxygen
71 K-edge was around +1.2 eV. A small peak was observed at around 531.3 eV (532.5 eV after
72 energy calibration), which may refer to the $1s \rightarrow \pi^*$ (e.g. from carboxyl or ketone) transitions⁷,
73 likely due to minor contamination of organic matter.

74 **4. Calculations of the circular equivalent diameter**

75 The circular equivalent diameter (D_{equiv}) of an individual particle was calculated as
76 follows,

$$D_{equiv} = 2 \sqrt{\frac{A_{ROI}}{\pi}} \quad \text{Eq. S7}$$

77 where A_{ROI} is the area of the region of interest (ROI) of a particle calculated by multiplying
78 the area of a single pixel by the total number of pixels of the ROI.

79 **5. Estimations of oxygen-to-carbon ratio based on the STXM data**

80 The atomic photoabsorption cross section (μ_a) with a unit of $\text{m}^2 \text{ atom}^{-1}$ can be obtained
 81 from the following relation,

$$\mu_a = 2r_0\lambda f_2 \quad \text{Eq. S8}$$

82 in which r_0 is the classical electron radius in meters, λ is the wavelength of incident light in
 83 meters, f_2 is the atomic scattering factor, and it can be obtained from Henke et al. (1993)⁸.

84 The specific values are shown in Table S1.

$$\text{OD} = \mu\rho d = \mu_a n d \quad \text{Eq. S9}$$

85 where ρ is the density of samples, n is the atomic density with a unit of atoms per cubic
 86 meter, and d is the thickness of samples. Therefore, we can get oxygen-to-carbon ratio (O:C,
 87 x_0/x_C) from the following equations,

$$\Delta\text{OD}_C = \text{OD}_{320\text{eV}} - \text{OD}_{278\text{eV}} = \mu_{C,320\text{eV}} n_C d - \mu_{C,278\text{eV}} n_C d \quad \text{Eq. S10}$$

$$\Delta\text{OD}_O = \text{OD}_{550\text{eV}} - \text{OD}_{525\text{eV}} = \mu_{O,550\text{eV}} n_O d - \mu_{O,525\text{eV}} n_O d \quad \text{Eq. S11}$$

$$\frac{\Delta\text{OD}_C}{\Delta\text{OD}_O} = \frac{n_C}{n_O} \cdot \frac{\mu_{C,320\text{eV}} - \mu_{C,278\text{eV}}}{\mu_{O,550\text{eV}} - \mu_{O,525\text{eV}}} \quad \text{Eq. S12}$$

$$\frac{x_0}{x_C} = \frac{n_O}{n_C} = \frac{(\mu_{C,320\text{eV}} - \mu_{C,278\text{eV}})}{(\mu_{O,550\text{eV}} - \mu_{O,525\text{eV}})} \cdot \frac{\Delta\text{OD}_O}{\Delta\text{OD}_C} \quad \text{Eq. S13}$$

88
 89 Table S1. The atomic scattering factor (f_2) and corresponding atomic photoabsorption cross
 90 section (μ_a) of certain element at the pre-edge or post-edge.

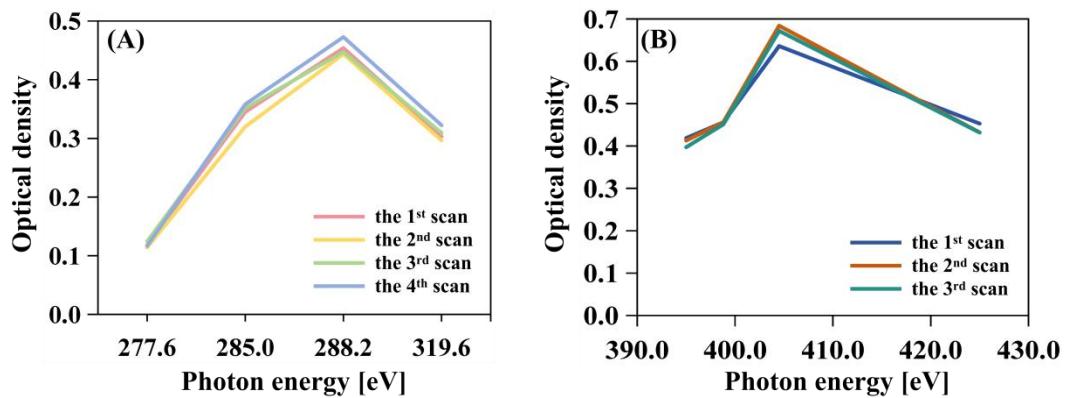
Atom	Photo Energy (eV)	f_2	μ_a ($\text{m}^2 \text{ atom}^{-1}$)
Carbon (C)	278	0.1538	3.8442×10^{-24}
	320	3.626	7.8735×10^{-23}
Oxygen (O)	525	0.2394	3.1685×10^{-24}
	550	4.331	5.4716×10^{-23}

92 Table S 2 The data set of the oxygen-to-carbon (O:C) ratio based on AMS data using
93 “Improved-Ambient” Methods⁹ during the individual particle collection period.
94

Date and Time	O:C
2019/10/1 17:05	0.61
2019/10/1 17:06	0.61
2019/10/1 17:07	0.60
2019/10/1 17:08	0.59
2019/10/1 17:09	0.58

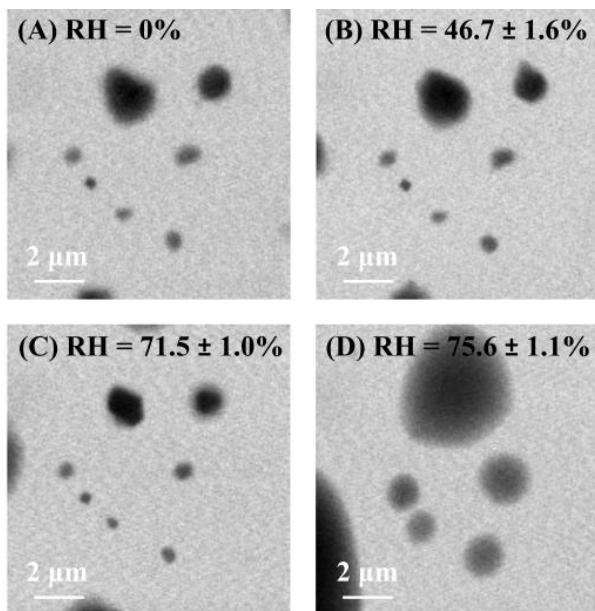
95 **6. Calculations of the margin of error of proportions of particle mixing state types**

96 We calculated the margin of error (ME) corresponding to the number of the total
97 particles measured at a 99% confidence interval. The equation is as follows,

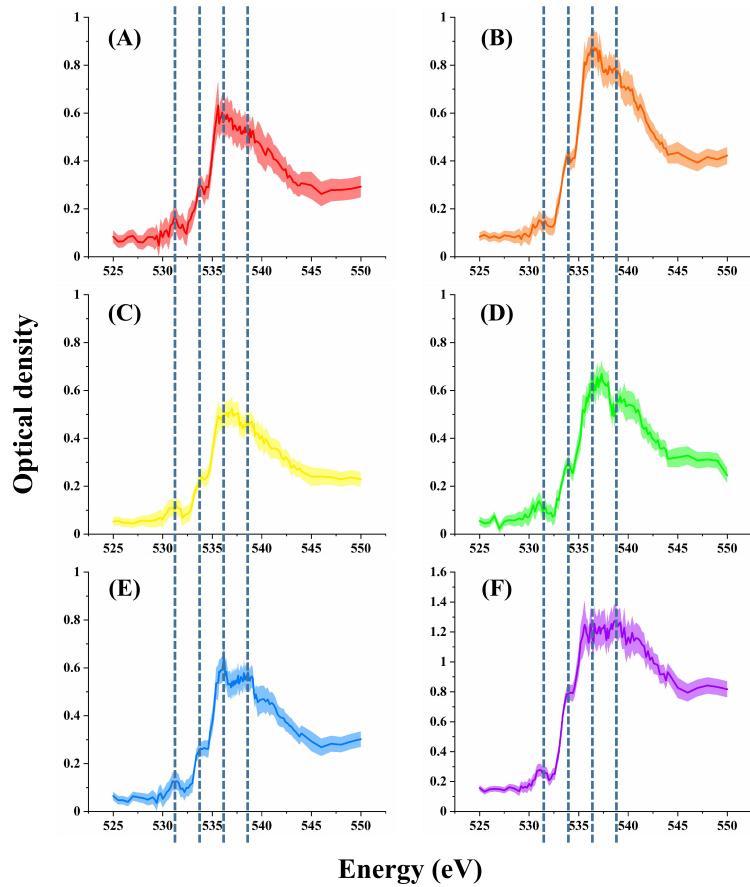

$$N = \frac{Z^2 \times p \times (1 - p)}{ME^2} \quad \text{Eq. S14}$$

98 where N is the number of the total particles (N = 197 in this study); Z is the z-value for a
99 normal distribution (the corresponding Z value at a 99% confidence interval is 2.33); p is the
100 proportion of each particle mixing state type.

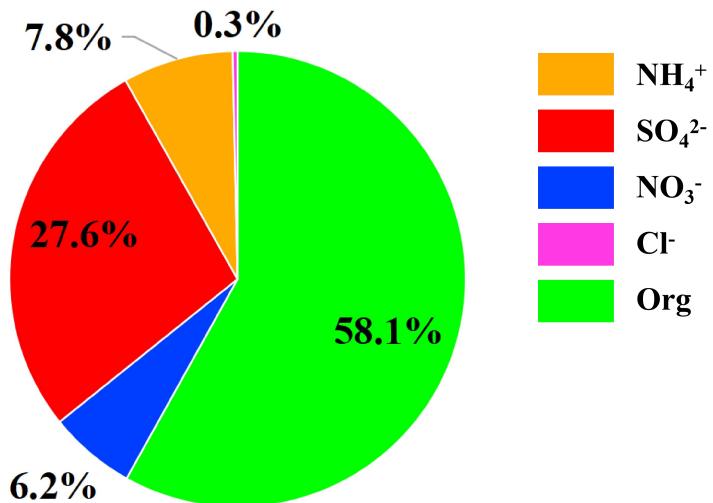
101 Statistically, the proportion of individual particles with different mixing state types,
102 namely, organic internally mixed with inorganic (OCIn), organic internally mixed with
103 inorganic and soot (OCInEC), organic internally mixed with soot (OCEC), and pure organic
104 (OC) was 73.1%, 20.8%, 4.1%, and 2.0%, respectively. Therefore, the corresponding ME is
105 7.4%, 6.7%, 3.3%, and 2.3%, respectively.


106 **Figures**

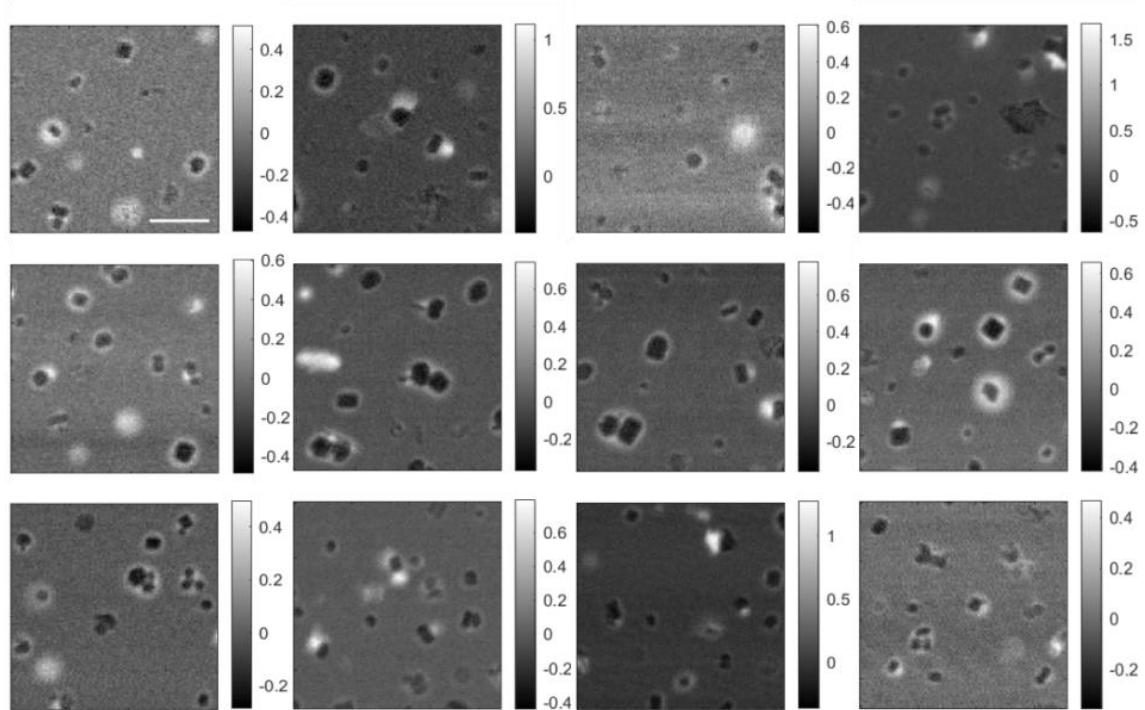
107


108 Figure S 1: Spectra collected over the same spot at different photon energies at the (A) carbon
109 and (B) nitrogen K-edges.

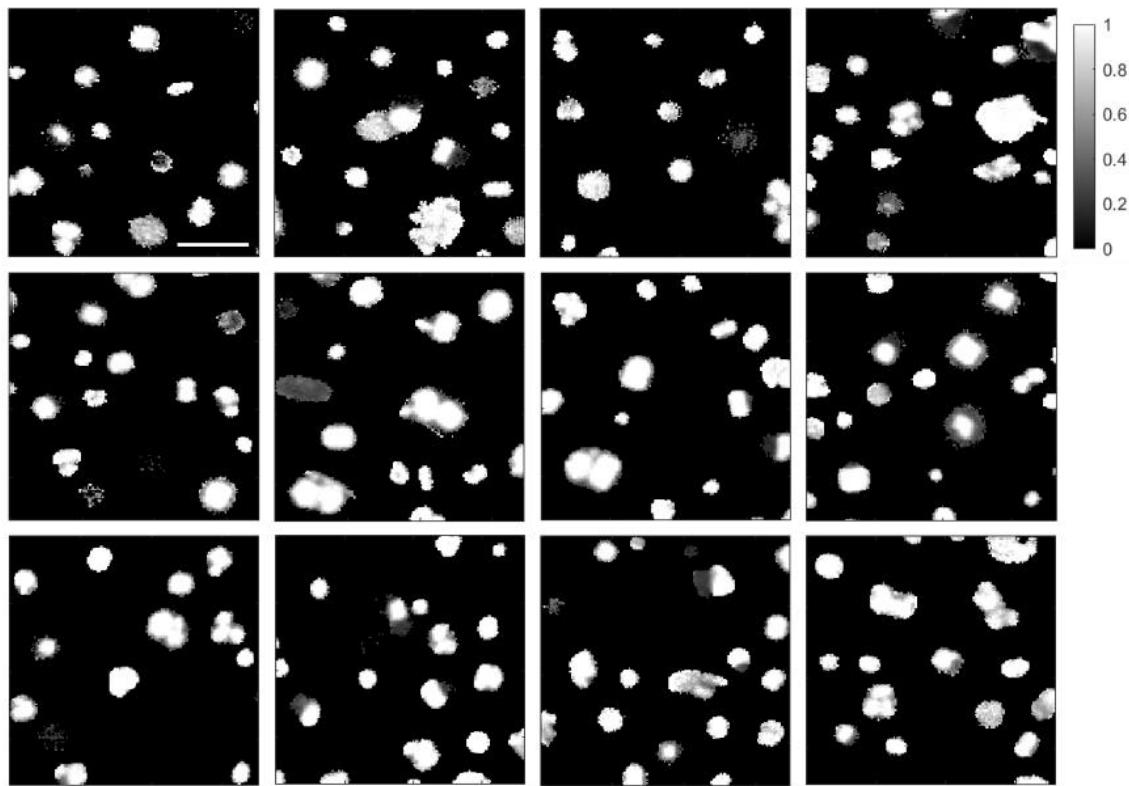
110 As displayed in Fig. S1, optical density at different photon energies of several scans
111 resembles each other at both the carbon and nitrogen K-edges, which indicates no obvious
112 beam damage occurred.


113

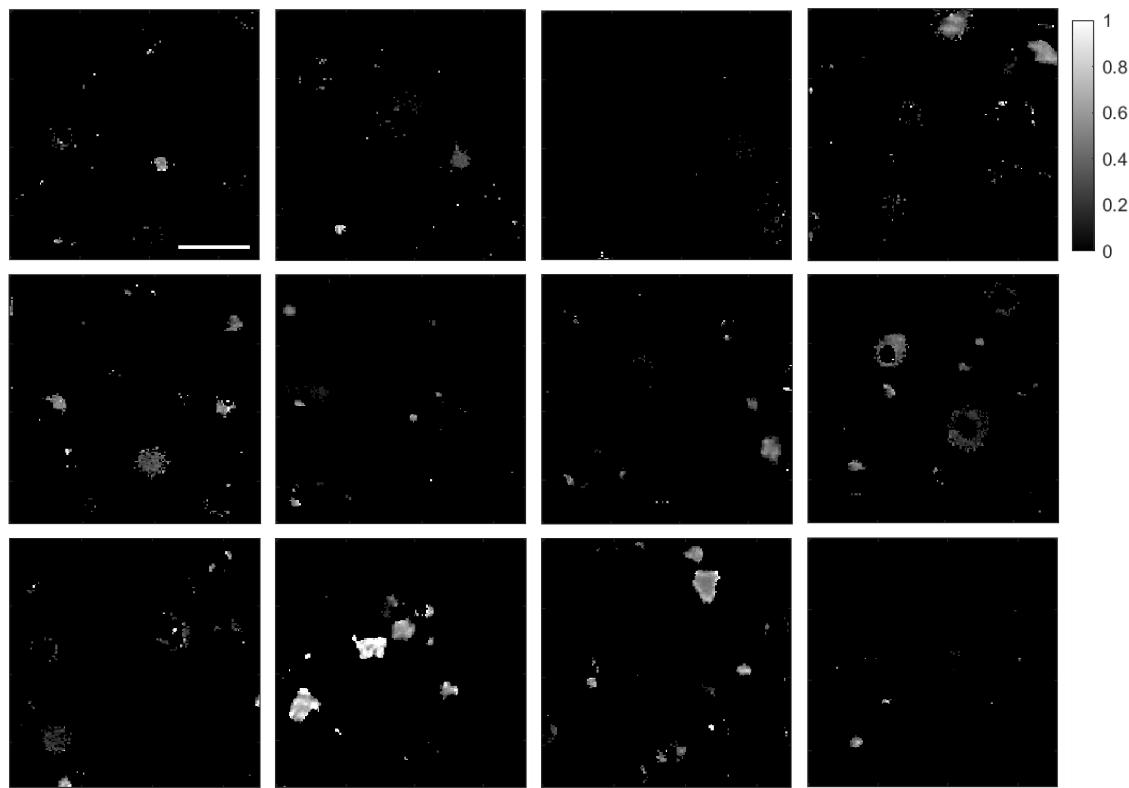
114 Figure S 2: Images of a sodium chloride (NaCl) standard sample at different relative humidity
115 (RH): (A) RH = 0%, (B) RH = 46.7 ± 1.6%, (C) RH = 71.5 ± 1.0%, and (D) RH = 75.6 ±
116 1.1%. The images were gained at a photon energy of 550.0 eV. Uncertainty was estimated
117 from the RH stability and sensor accuracy over hours.


118

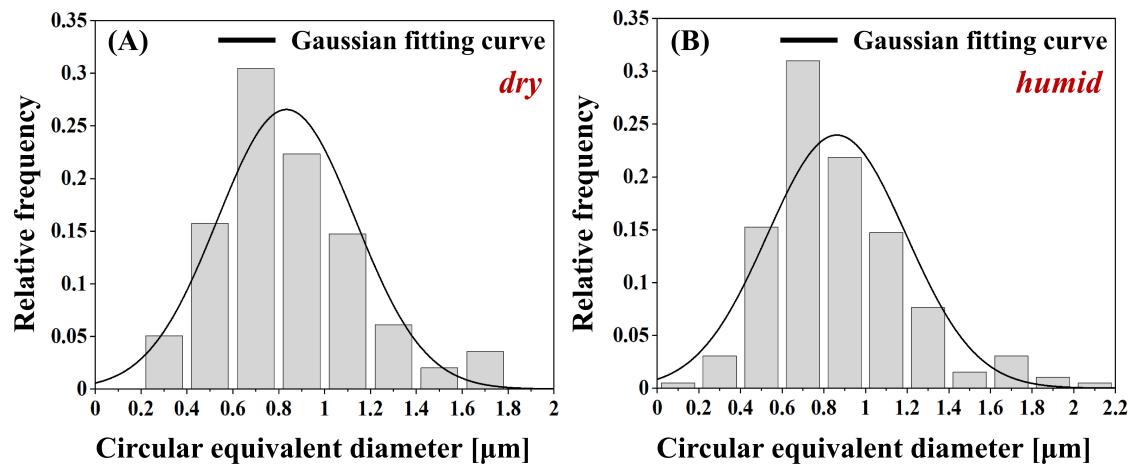
119 Figure S 3: Oxygen K-edge NEXAFS spectra of a NaCl standard sample at high RH. For
 120 panels (A) – (C), the RH was $75.6 \pm 1.1\%$. For panels (D) – (F), the RH was $79.4 \pm 0.8\%$.
 121 The upper and lower limits of shaded areas represent the optical density plus / minus one time
 122 of the standard deviation.


123

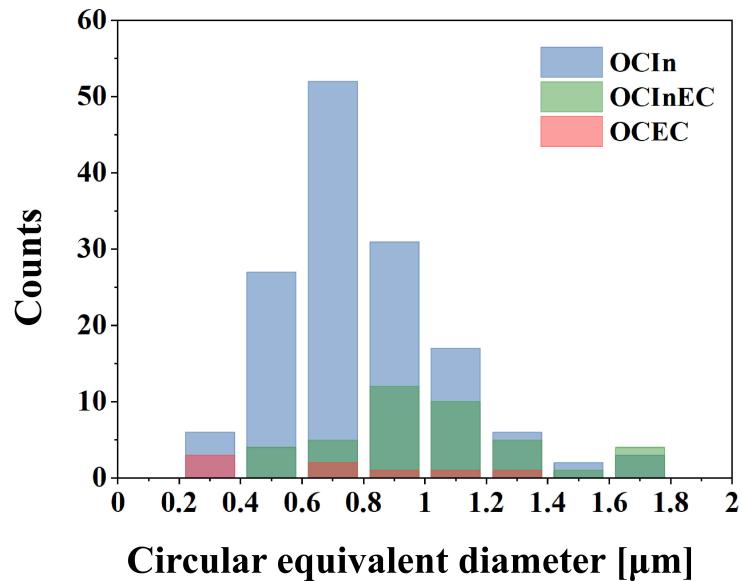
124 Figure S 4: Pie chart showing the average mass fractions of chemical composition of
125 non-refractory submicron particles (NR-PM₁) during the sampling period of individual
126 particles.


127

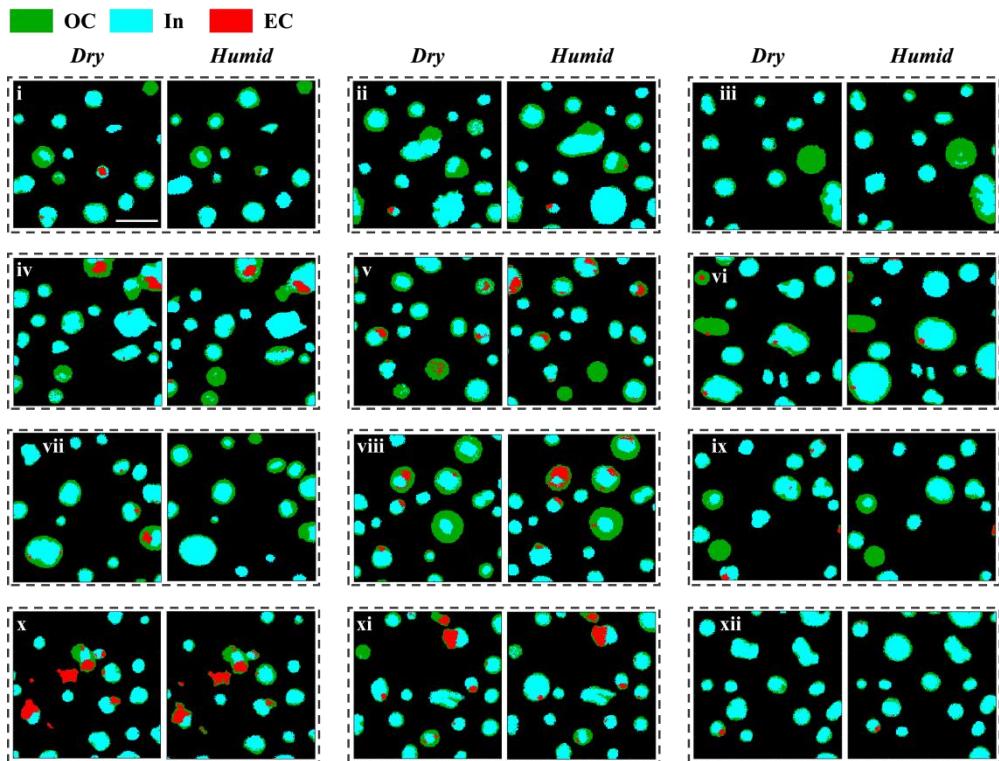
128 Figure S 5: Total carbon maps of particles under dry conditions, produced by subtracting the
 129 image at the pre-edge from that at the post-edge ($OD_{320eV} - OD_{278eV}$). The scale bar in white in
 130 the upper left image represents $2 \mu m$ and applies to all the images.


131

132 Figure S 6: Inorganic maps of particles under dry conditions, produced by taking the ratio of
133 the image at the pre-edge to that at the post-edge (OD_{278eV} / OD_{320eV}). Scale bar in white in the
134 upper left image represents $2 \mu m$ and applies to all the images.


135

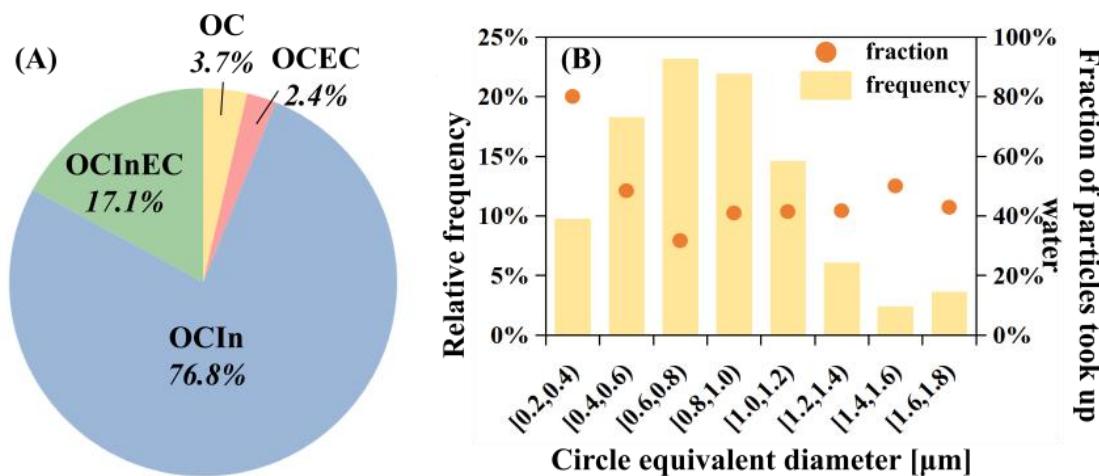
136 Figure S 7: sp^2 hybridized carbon maps of particles under dry conditions, calculated by the
137 absorbance contribution of doubly bonded carbon to total carbon (% sp^2) in the highly
138 oriented polycrystalline graphite. The scale bar in white in the upper left image represents 2
139 μm and applies to all the images.



140

141 Figure S 8: The particle size distribution of the particle population under (A) dry and (B)
 142 humid conditions (RH = 86%). The black line represents the Gaussian fitting curve.

145 Figure S 9: Particle size distributions of three main mixing state types: organic internally
 146 mixed with inorganic (OCIn, displayed in blue), organic internally mixed with inorganic and
 147 elemental carbon (OCInEC, displayed in green), and organic internally mixed with soot
 148 (OCEC, displayed in red). Diameters here are the circular equivalent diameter in μm .



149

150 Figure S 10: Chemical maps of individual particles in 12 regions of interest under dry and
 151 humid conditions. Green, cyan, and red color represent dominant components of organic
 152 carbon (OC), inorganic matter (In), and elemental carbon (EC), respectively. The scale bar in
 153 the upper left image represents 2 μm and applies to all the images.

154 As shown in Fig. S11B, the main diameter range of particles that took up water (0.4 –
 155 1.2 μm) was consistent with that of the overall particles. For submicron particles with
 156 diameters in the range of 0.2 – 0.8 μm , the fraction of hygroscopic particles decreased as size
 157 increased. Conversely, for particles with diameters in the range of 0.8 – 1.8 μm , the number
 158 fraction increased with size. Notably, the highest proportion of particles taking up water was
 159 observed in the smallest size range (0.2 – 0.4 μm , 80%), likely due to their chemical
 160 composition.

161

162

163 Figure S 11: (A) Proportions of the mixing state types of individual particles that took up
 164 water. Blue, green, yellow, and red represent particle mixing state types: OCIn, OCInEC, OC,
 165 and OCEC, respectively. (B) Relative frequency distribution of the particle size of particles
 166 taking up water (represented by light yellow columns), and the fraction of particles taking up
 167 water in each diameter range (represented by orange dots).

168 **References**

169 (1) Donahue, N. M.; Robinson, A. L.; Trump, E. R.; Riipinen, I.; Kroll, J. H. Volatility and
170 aging of atmospheric organic aerosol. *Atmospheric and Aerosol Chemistry*; Springer
171 Berlin Heidelberg, **2014**, pp 97-143. DOI: 10.1007/128_2012_355.

172 (2) Piens, D. S.; Kelly, S. T.; Harder, T. H.; Petters, M. D.; O'Brien, R. E.; Wang, B. B.;
173 Teske, K.; Dowell, P.; Laskin, A.; Gilles, M. K. Measuring Mass-Based Hygroscopicity
174 of Atmospheric Particles through in Situ Imaging. *Environmental Science & Technology*.
175 **2016**, *50* (10), 5172-5180, Article. DOI: 10.1021/acs.est.6b00793.

176 (3) Cappa, C. D.; Smith, J. D.; Messer, B. M.; Cohen, R. C.; Saykally, R. J. The electronic
177 structure of the hydrated proton: A comparative X-ray absorption study of aqueous HCl
178 and NaCl solutions. *Journal of Physical Chemistry B*. **2006**, *110* (3), 1166-1171. DOI:
179 10.1021/jp0534582.

180 (4) Cappa, C. D.; Smith, J. D.; Wilson, K. R.; Messer, B. M.; Gilles, M. K.; Cohen, R. C.;
181 Saykally, R. J. Effects of alkali metal halide salts on the hydrogen bond network of
182 liquid water. *Journal of Physical Chemistry B*. **2005**, *109* (15), 7046-7052. DOI:
183 10.1021/jp0445324.

184 (5) Krepelová, A.; Huthwelker, T.; Bluhm, H.; Ammann, M. Surface Chemical Properties of
185 Eutectic and Frozen NaCl Solutions Probed by XPS and NEXAFS. *Chemphyschem*.
186 **2010**, *11* (18), 3859-3866. DOI: 10.1002/cphc.201000461.

187 (6) Sahle, C. J.; Gallerande, E. D.; Niskanen, J.; Longo, A.; Elbers, M.; Schroer, M. A.;
188 Sternemann, C.; Jahn, S. Hydration in aqueous NaCl. *Physical Chemistry Chemical
189 Physics*. **2022**, *24* (26), 16075-16084. DOI: 10.1039/d2cp00162d.

190 (7) Zelenay, V.; Huthwelker, T.; Krepelová, A.; Rudich, Y.; Ammann, M. Humidity driven
191 nanoscale chemical separation in complex organic matter. *Environmental Chemistry*.
192 **2011**, *8* (4), 450-460. DOI: 10.1071/en11047.

193 (8) Henke, B. L.; Gullikson, E. M.; Davis, J. C. X-ray interactions: photoabsorption,
194 scattering, transmission, and reflection at E=50-30000 eV, Z=1-92. *Atomic Data and
195 Nuclear Data Tables*. **1993**, *54* (2), 181-342.

196 (9) Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.;
197 Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R. Elemental ratio
198 measurements of organic compounds using aerosol mass spectrometry: characterization,
199 improved calibration, and implications. *Atmosphere Chemistry and Physics*. **2015**, *15*,
200 253-272. DOI: 10.5194/acp-15-253-2015.