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Abstract. Non-methane volatile organic compounds (NMVOCs) are key precursors of ozone and secondary
organic aerosols. As one of the world’s largest NMVOC emitters, accurate emission inventories are essential
for understanding and mitigating air pollution in China. Commonly-used inventories (e.g., MEIC) are largely
based on bottom-up methods, which often fail to capture the spatiotemporal variability of NMVOC emissions,
resulting in significant model-observation mismatches. This study evaluates the shape factor, filtered data vol-
ume, and monthly mean biases of OMI, OMPS, and TROPOMI formaldehyde products, with the latest OMPS
and TROPOMI retrievals offering substantially higher effective spatiotemporal coverage. Monthly NMVOC
emissions over China in 2020 are then optimized by independently assimilating formaldehyde retrievals either
from OMPS or from TROPOMI, using a self-developed 4DEnVar assimilation emission inversion system. The
OMPS- and TROPOMI-driven assimilation yields consistent seasonal and regional increments in NMVOC emis-
sions in general, but distinctions are also notable. A consistency analysis is introduced to assess the reliability of
these two posterior emissions. Highly consistent increments are obtained in the North China Plain (May—June),
the Yangtze River Delta and Pearl River Delta (January—March, October—December), and the Sichuan Basin
(January, June—December). These adjustments significantly improve surface ozone simulations, with 81.25 % of
consistent cases demonstrating reduced biases and an average RMSE reduction of 24.7 %. These findings high-
light the effectiveness of OMPS and TROPOMI formaldehyde assimilation, coupled with consistency analysis,
in refining NMVOC emission estimates and enhancing ozone simulation accuracy. Similar promising results are
achieved in the OMPS/TROPOMI-based NMVOC emission inversion in 2019.

1 Introduction

Non-methane volatile organic compounds (NMVOCs) are
significant components of the atmosphere, serving as key
precursors to ozone (O3) and secondary organic aerosols
(SOA) (Liu et al., 2017). They engage in numerous pho-
tochemical reactions, exerting a considerable influence on

atmospheric oxidative capacity and air quality (Zhu et al.,
2021). Moreover, NMVOC:s such as benzene, trichloroethy-
lene, and chloroform are recognized for their toxicity (Bil-
lionnet et al., 2011; Lerner et al., 2012), and prolonged ex-
posure to elevated concentrations can pose significant health
risks (He et al., 2015). China has seen a rapid anthropogenic
NMVOC emissions increase over the last three decades,
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gradually becoming one of the important contributors to
global NMVOC emissions (Li et al., 2019). Investigating
NMVOC dynamics and their emission distributions is crit-
ical for addressing air pollution challenges in China (Yuan
et al., 2013; Hao and Xie, 2018).

NMVOCs are primarily released through anthropogenic
activities, biogenic emissions, and biomass burning pro-
cesses. Huge efforts have been devoted to constructing in-
ventories recording these emissions in a bottom-up way, such
as the global Community Emission Data System (CEDS)
(Hoesly et al., 2018), the regional Multi-resolution Emis-
sion Inventory for China (MEIC) (Li et al., 2019), and the
Model of Emissions of Gases and Aerosols from Nature v2.1
(MEGAN) (Guenther et al., 2012). For biomass burning,
widely used inventories include the Global Fire Emissions
Database (GFED) (van der Werf et al., 2017) and the Fire
INventory from NCAR (FINN) (Wiedinmyer et al., 2011).
Coupled with chemical transport models like GEOS-Chem
(Ito et al., 2007) and WRF-Chem (Azmi et al., 2022), these
inventories are widely used to simulate transport, deposition,
and chemical transformations of NMVOCs, supporting air
quality assessments and emission control strategies. How-
ever, bottom-up estimates remain highly uncertain because
both emission factors and activity data vary greatly in space
and time and are often poorly constrained (Bo et al., 2008;
Sharma et al., 2015). For anthropogenic sources, nationwide
uncertainties of £68 %—78 % have been reported due to vari-
able activity data and emission factors under rapid structural
transitions in industry, solvent use, and transportation (Li
etal., 2017, 2019). Biogenic emissions are even more uncer-
tain, highly sensitive to land-cover, meteorology, and param-
eterizations, with Chinese BVOC estimates varying from 10
t058.9TgC yr’1 (Lietal., 2020; Wang et al., 2021; Pei et al.,
2025). Biomass burning emissions also show large discrep-
ancies across inventories (e.g., GFED, FINN, GFAS) (Kaiser
et al., 2012), largely driven by uncertainties in burned area,
fuel loading, and emission factors (He et al., 2011; Hua et al.,
2024). In addition, strict air pollution controls implemented
in recent years targeting industry, residential use, and trans-
portation have significantly altered emission patterns (Wu
et al.,, 2016; Li et al., 2017; Zheng et al., 2018). Conse-
quently, bottom-up inventories carry substantial uncertainties
(Li et al., 2014; Qiu et al., 2014). For example, estimates of
China’s total NMVOC emissions for 2012 range between 18
and 27 Tg depending on the inventory used (Kurokawa et al.,
2013; Wu et al., 2016; Stavrakou et al., 2017), posing major
challenges for accurately assessing the role of NMVOCs in
air quality and climate (Han et al., 2013; Wang et al., 2014).

There are numerous well-established techniques for mea-
suring the concentrations of various volatile organic com-
pounds in the atmosphere. These include gas chromatog-
raphy, mass spectrometry, Fourier transform infrared spec-
troscopy, and non-dispersive infrared analysis. While these
methods are highly effective for meeting the requirements
of experimental studies and real-time monitoring, their com-
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plexity and the associated high labor costs pose signifi-
cant challenges for long-term measurements or assessments
across large spatial scales (Sakdapipanich and Insom, 2006;
Cheng et al., 2017; Xing et al., 2022). Among the various
NMVOCs, the optical properties of formaldehyde and gly-
oxal make them particularly suitable for detection via remote
sensing technologies. These properties enable formaldehyde
and glyoxal to be among the few NMVOCs that can be
monitored from satellites. Remote sensing observations of
these compounds typically rely on spectral channels in the
ultraviolet-visible (UV-Vis) range, with their primary ab-
sorption features occurring between 330 and 460 nm (Platt,
1979; Lerot et al., 2010; De Smedt et al., 2012).

Satellite remote sensing of formaldehyde has made sub-
stantial progress since the atmospheric formaldehyde abun-
dance was first retrieved in 1997 (Burrows et al., 1999).
The earliest retrievals of formaldehyde vertical column den-
sities were based on the Global Ozone Monitoring Experi-
ment (GOME) (Thomas et al., 1998; Chance et al., 2000).
Subsequently, the Scanning Imaging Absorption Spectrom-
eter for Atmospheric Chartography (SCIAMACHY) served
as an important transitional instrument between GOME and
GOME-2, offering significantly improved spatial resolution
compared to GOME (De Smedt et al., 2008). In 2004,
the launch of NASA’s Aura satellite carrying the Ozone
Monitoring Instrument (OMI) provided high signal-to-noise-
ratio ultraviolet—visible (UV-Vis) spectra that greatly ad-
vanced trace-gas retrieval studies (De Smedt et al., 2015;
Gonzdlez Abad et al.,, 2015). Approximately four years
after GOME effectively ceased operational observations,
its successor, GOME-2, began routine operations in 2007
and started delivering formaldehyde data (De Smedt et al.,
2012). In recent years, high-resolution formaldehyde ob-
servations have continued to emerge, including those from
the Ozone Mapping and Profiler Suite (OMPS) onboard
the Suomi National Polar-orbiting Partnership (Suomi NPP)
and NOAA-20 satellites (Li et al., 2015; Gonzalez Abad
et al., 2015, 2016; Nowlan et al., 2023), as well as from the
Tropospheric Monitoring Instrument (TROPOMI) aboard
the Sentinel-5 Precursor (Sentinel-5P) launched in 2017.
TROPOMTI'’s exceptional spatial resolution and near-daily
global coverage have marked a new era in satellite formalde-
hyde monitoring (De Smedt et al., 2018, 2021). Furthermore,
geostationary satellites now provide formaldehyde observa-
tions with high temporal resolution, including the Geosta-
tionary Environment Monitoring Spectrometer (GEMS) over
East Asia (Kwon et al., 2019; Kim et al., 2020), the Tropo-
spheric Emissions: Monitoring of Pollution (TEMPO) instru-
ment over North America (Chance et al., 2019), and Sentinel-
4, successfully launched on 1 July 2025, which is conduct-
ing geostationary formaldehyde observations over Europe
(Gulde et al., 2017).

Glyoxal retrieval product from satellite platform began rel-
atively late, with the first global differential optical absorp-
tion spectroscopy (DOAS) retrievals reported by Wittrock
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et al. (2006) using SCTAMACHY, followed by their appli-
cation to constrain NMVOC emissions by Stavrakou et al.
(2009a). Because glyoxal is retrieved in a longer wavelength
range (~435-460 nm) than formaldehyde (~ 330-360 nm),
it exhibits markedly lower sensitivity to molecular scattering,
which in turn increases the sensitivity of the measurement
to the lower troposphere (Palmer et al., 2001; Chan Miller
et al., 2014). Glyoxal optical depths are very weak (order
of 1074=1073), rendering the retrieval highly susceptible to
fitting residuals from stronger absorbers, uncertainties in ab-
solute radiometric calibration, and spectral features in sur-
face reflectivity (Sinreich et al., 2013; Alvarado et al., 2014).
For instruments with comparatively modest spectral resolu-
tion and signal-to-noise ratios, such as OMI, these interfer-
ence effects are further amplified, leading to larger retrieval
uncertainties for glyoxal columns than for formaldehyde
(Chan Miller et al., 2014; Cao et al., 2018). Consequently,
glyoxal satellite observations remain considerably less suit-
able than formaldehyde for high-spatiotemporal-resolution
assimilation studies. Beyond glyoxal and formaldehyde, re-
trievals of other VOCs are also progressing, as exemplified
by Fu et al. (2019) and Wells et al. (2020, 2022), who de-
rived isoprene columns from Cross-track Infrared Sounder
(CrIS) observations, representing an important step toward
next-generation satellite constraints on volatile organic com-
pounds.

Top-down approaches, mainly assimilation techniques,
with satellite formaldehyde columns have become the pri-
mary method for constraining NMVOC emissions. Palmer
et al. (2003) pioneered applying a Bayesian inversion frame-
work with GOME formaldehyde observations for constrain-
ing isoprene emissions over North America. The approach
was subsequently extended to global and European domains
by Shim et al. (2005) and Dufour et al. (2009), respec-
tively. With the availability of OMI and GOME-2 formalde-
hyde products, inversion algorithms were further refined.
Stavrakou et al. (2009b) first introduced an adjoint-based in-
version to optimize biogenic emissions and, in a compan-
ion study the same year, revealed substantial underestima-
tion of continental glyoxal sources worldwide (Stavrakou
et al., 2009a). Concurrently, Millet et al. (2008) used OMI
formaldehyde and identified an underestimation of isoprene
emissions over the north-central United States, while Zhu
et al. (2014) reported that anthropogenic emissions of highly
reactive VOCs (HRVOCs) in the Houston area were underes-
timated by a factor of 4.8 £ 2.7 compared to the US Environ-
mental Protection Agency inventory. Formaldehyde product
with much higher spatial resolution were then available since
the launch of TROPOMI and OMPS, and made the city-scale
emission optimizations possible (Gonzalez Abad et al., 2016;
De Smedt et al., 2018, 2021). In recent years, studies lever-
aging these new-generation instruments have proliferated.
Choi et al. (2022) assimilated OMPS and OMI observations
into an updated 4DVar system for East Asia during May—
June 2016. Their inversion revealed a 47 % increase in VOC
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emissions across Northeast Asia relative to the prior inven-
tory, indicating that isoprene emissions over South Korea and
anthropogenic NMVOC emissions over eastern China were
underestimated in the bottom-up inventory. Oomen et al.
(2024) used weekly-averaged TROPOMI formaldehyde ob-
servations from 2018-2021 with the MAGRITTEvI.1 ad-
joint model to derive top-down biogenic, pyrogenic, and
anthropogenic VOC fluxes over Europe, substantially cor-
recting previous underestimates of isoprene emissions. Feng
et al. (2024) applied an Ensemble Kalman Filter (EnKF) ap-
proach to optimize August 2022 NMVOC emissions over
China, revealing overestimation of biogenic emissions dur-
ing an extreme heatwave and demonstrating consequential
impacts on summertime ozone simulations. The advent of
geostationary satellites (e.g., GEMS, TEMPO) with high-
frequency observations has enabled the incorporation of di-
urnal cycle information into algorithm frameworks, making
daily-scale top-down emission optimization feasible (Kwon
et al., 2019, 2021). Meanwhile, multi-species constraint is
gaining traction; Opacka et al. (2025) developed a novel in-
version technique that simultaneously optimizes monthly-
mean VOCs and NO, emissions from 2019 TROPOMI ob-
servations, uncovering severe underestimation of both NO,
and VOC:s in prior inventories over Africa.

Although substantial progress has been made globally
in satellite-based top-down constraints on NMVOC emis-
sions, high-resolution top-down emission optimization stud-
ies specifically over China remain scarce. Shim et al. (2005)
first used GOME formaldehyde observations in a global
Bayesian inversion framework to constrain isoprene emis-
sions. While their domain encompassed East Asia including
China, the study lacked a dedicated focus on China and was
limited by coarse model resolution (4° x 5°). Stavrakou et al.
(2016) performed a regional inversion over eastern China us-
ing multi-year GOME and OMI formaldehyde columns, re-
vealing that post-harvest agricultural burning in June con-
tributed more than twice the VOC emissions of all other an-
thropogenic sources combined over the North China Plain
during 2005-2012. Cao et al. (2018) conducted one of the
most systematic satellite-constrained inversions for China to
date, applying a 4DVar assimilation of OMI and GOME-2A
formaldehyde products to estimate monthly NMVOC emis-
sions in 2007, yet the analysis was still constrained by the
same coarse 4° x 5° resolution. Choi et al. (2022) assimi-
lated OMPS and OMI formaldehyde columns into a regional
4DVar system over East Asia but only for May—June; simi-
larly, the top-down optimization of Chinese NMVOC emis-
sions by Feng et al. (2024) was limited to a single month
(August 2022). Given the increasingly stringent air pollu-
tion control policies in China (Wu et al., 2024), there is an
urgent need for high spatial- and temporal-resolution top-
down NMVOC emission optimization to support more ac-
curate air quality forecasting and effective regulatory strate-
gies. In terms of the observation sources for assimilation,
the OMI formaldehyde product remains one of the most
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widely used datasets in related studies to date. However, it
has been affected globally by the persistent row anomaly
since 2007 Kroon et al. (2011); Zhu et al. (2017), which de-
grades data quality in certain across-track positions and may
reduce assimilation accuracy, particularly in high-resolution
configurations. Although rigorous quality filtering and row
anomaly flagging can mitigate this problem, the number
of valid grid cells remaining after such screening is often
severely limited, rendering OMI data insufficient for nation-
wide high-resolution emission inversion. In contrast, newer-
generation instruments such as TROPOMI and OMPS pro-
vide formaldehyde products that are unaffected by the row
anomaly, offer significantly higher spatial resolution and bet-
ter data coverage (Sect. 2.3.3), and are therefore considerably
more suitable for high-resolution top-down optimization of
NMVOC emissions over China.

In this study, we conduct monthly optimization of an-
thropogenic NMVOC emissions over China at 0.5° Ilati-
tude x 0.625° longitude horizontal resolution. It is achieved
based on an emission inversion system that couples the four-
dimensional ensemble variational (4DEnVar) data assimila-
tion algorithm with the nested version of the GEOS-Chem
model. The effectiveness of this emission inversion system
has been evaluated in our recent studies of ammonia (Jin
et al., 2023; Xia et al., 2025). Two independent assimilation
experiments are performed: one assimilating OMPS total
formaldehyde columns and the other assimilating TROPOMI
tropospheric formaldehyde columns. In both cases, the satel-
lite retrievals have been harmonized with the model by re-
placing the original shape profiles with GEOS-Chem profiles
before assimilation. We focus on the year 2020 for the main
analysis, while results for 2019 are also presented in the Sup-
plement to provide additional context and support. This pa-
per is organized as follows: Sect. 2 describes the dataset and
methodology, focusing on GEOS-Chem model, input emis-
sion sources (anthropogenic, biogenic, and biomass burn-
ing), and the satellite and ground-based observations utilized.
Sect. 3 provides an analysis of the assimilation results, in-
cluding the estimation of posterior NMVOC emissions and
the validation of both formaldehyde columns and ground-
level ozone simulations. Sect. 4 summarizes the key findings
and concludes the study.

2 Data and methods

This section begins by introducing the GEOS-Chem model
utilized for simulations in Sect. 2.1. Section 2.2 presents an
overview of the emissions used as the prior NMVOC invento-
ries, including anthropogenic, biogenic, and biomass burning
inventories. Section 2.3 introduces the three satellite observa-
tions employed in the analysis in this study. In Sect. 2.4, the
ground observations used for ozone validation are presented.
Section 2.5 introduces the 4DEnVar algorithm used for data
assimilation.

Atmos. Chem. Phys., 26, 33-58, 2026

2.1  Model simulation

GEOS-Chem is a chemical transport model driven by me-
teorological data from the Goddard Earth Observing Sys-
tem (GEOS) of NASA’s Global Modeling and Assimilation
Office (GMAO) (Bey et al., 2001). In this study, we use
GEOS-Chem Classic (GCC) v14.1.1 to simulate formalde-
hyde columns to constrain NMVOC emissions over China.
The global simulation is run at 2° x 2.5° resolution and pro-
vides lateral chemical boundary conditions to the nested
Asia domain updated every 3h. The nested region (72—
136°E, 17.5-54° N) has a horizontal resolution of 0.5° lat-
itude x 0.625° longitude and 47 vertical layers. Modern-
Era Retrospective analysis for Research and Applications,
Version 2 (MERRA-2) meteorological fields (Gelaro et al.,
2017) are used to drive GEOS-Chem. Each simulation in-
cludes a 6-month spin-up period.

This model version incorporates detailed O3-HO,-NO,
photochemistry and fully coupled aerosol-O3-NO,-VOCs
chemistry representation (Park et al., 2004), coupled with
a scheme for primary carbonaceous aerosols, dust, sea salt,
and secondary inorganic species (sulfates, nitrates, and am-
monium) and their distribution. To better simulate oxidant-
aerosol reactions in the troposphere, GEOS-Chem v14.1.1
includes state-of-the-science tropospheric chemistry with re-
cent updates to the oxidation mechanisms of isoprene (Bates
and Jacob, 2019), aromatics (Bates et al., 2021), ethylene,
and acetylene (Kwon et al., 2021). Since the satellite over-
passes China mainly between 12:00 and 14:00 local time,
the model outputs within this time window are sampled to
calculate the formaldehyde columns for fair comparison with
the satellite observations. After this temporal collocation and
post-processing, samples of the formaldehyde tropospheric
column simulation are presented in Fig. la.

2.2 Prior NMVOC emission inventories

The anthropogenic NMVOC emission input into the model
mainly comes from the Multi-resolution Emission Inventory
for China (MEIC; Zheng et al., 2018). Since the MEIC in-
ventory tailored for the existing chemical species in GEOS-
Chem only extends to 2017, the MEIC inventory used in this
study is the 2017 emission inventory. This inventory has a
spatial resolution of 0.25° latitude x 0.25° longitude and in-
cludes industrial, transportation, power generation, and resi-
dential emissions. For chemical species used in GEOS-Chem
but not included in MEIC and anthropogenic NMVOC emis-
sions outside China, we use the 2019 CEDS global inventory
as a supplement. The prior estimates of biogenic NMVOC
emissions in this study are obtained from the MEGAN 2.1
model (Guenther et al., 2012). Field straw burning is consid-
ered a major seasonal source of NMVOCs in China (Huang
et al., 2012; Liu et al., 2015; Stavrakou et al., 2016). In
this study, the biomass burning emissions are taken from
the GFED version 4 (GFED4) global inventory for 2020
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Figure 1. Spatial distributions of formaldehyde columns from GEOS-Chem model-simulated prior tropospheric columns (a) and posterior
tropospheric columns constrained by OMPS assimilation (b), satellite observations of OMPS total columns (c), and satellite observations of
TROPOMI tropospheric columns (d), both reprocessed to be consistent with the GEOS-Chem shape profile. Panels (a.1)—(d.1), (a.2)-(d.2),
(a.3)-(d.3), and (a.4)—(d.4) show February, May, August, and November of 2020, respectively.

(van der Werf et al., 2017). Before these prior emissions are
used to drive GEOS-Chem simulations, the spatial resolution
is coarsened to an average value on a 0.5° x 0.625° grid res-
olution consistent with the model configuration as used in
Sect. 2.1.

Figure 2a presents the prior NMVOC emission invento-
ries for 2020, which primarily relies on the anthropogenic
emission inventory from MEIC, supplemented by the CEDS
inventory for species not included in MEIC. Additionally,
biogenic emissions are provided by MEGAN (offline calcu-
lation) for the year 2020 with an hourly temporal resolution,
directly through the HEMCO emission component of GEOS-
Chem; in this study, we did not run the MEGAN model sep-
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arately. Biomass burning emissions are taken from GFED4.
The combination of these three sources is treated as the prior
emission inventory used in the following NMVOC emission
optimization.

2.3 Formaldehyde Satellite measurements

2.3.1 NOAA-20 OMPS

Ozone Mapping and Profiler Suite (OMPS) was launched on
Suomi National Polar-orbiting Partnership (SNPP) satellite
on 28 October 2011, and on the JPSS-1 satellite (now known
as NOAA-20) on 18 November 2017. OMPS/SNPP con-
sists of three instruments: the nadir mapper (OMPS-NM), the
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Figure 2. Spatial distributions of the total NMVOC emissions from the prior (a) and posterior (b) results in February (a.1, b.1), May (a.2,
b.2), August (a.3, b.3), November (a.4, b.4) 2020. Panels (d.1)-(d.4) and (e.1)—(e.4) show the corresponding emission increments (posterior
minus prior) derived from OMPS and TROPOMI assimilation.
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profile mapper (OMPS-NP), and the limb profiler (OMPS-
LP), while OMPS/NOAA-20 includes only the nadir pack-
age (OMPS-NM and OMPS-NP). This study uses OMPS-
N20 Level 2 NM formaldehyde Total Column swath orbital
Version 1 product (Abad, 2022). OMPS-NM is a hyperspec-
tral nadir viewing spectrometer that measures backscattered
light with a spectral resolution of approximately 1 nm. The
NOAA-20 spectral measurement range is 300-420 nm. The
instrument employs a 2-D CCD array detector in a pushb-
room geometry, observing the two-dimensional field below
the satellite’s orbit over a swath width of about 2800 km.
With 14 or 15 orbits per day, OMPS-NM provides daily
global coverage of trace gas columns in the early after-
noon local time, with an equatorial crossing time of approx-
imately 13:30. The spatial resolution of OMPS/NOAA-20
was 17km x 17km until 13 February 2019, when it was
changed to 12km x 17km (Flynn et al., 2014; Pan et al.,
2017; Seftor et al., 2014).

In this study, the quality control scheme recom-
mended in OMPS product documentation was applied. Data
points with formaldehyde column densities exceeding 2 x
10'7 molec. cm~2 were excluded to minimize the impact of
outliers. After removing outliers, we further excluded data
points where the sum of formaldehyde column and twice the
observation uncertainty was less than zero. Furthermore, the
geometric air mass factors (AMFg) were defined as follows:

AMFG = sec(SZA) + sec(VZA) N

Here, SZA represents the solar zenith angle and VZA denotes
the viewing zenith angle. Additional data screening was ap-
plied by excluding observations with SZA greater than 70°,
an air mass factor less than 0.1, a geometric air mass fac-
tor greater than 4, a cloud fraction exceeding 0.4, or with
positive snow and ice fractions. All screened data were then
averaged to a spatial resolution of 0.5° latitude x 0.625° lon-
gitude on a monthly basis, consistent with the GEOS-Chem
model configuration. To make a fair comparison between the
observed and simulation formaldehyde column in the assim-
ilation, we further imposed constraints on the number of ob-
servations within each grid cell. Specifically, two filtering
schemes were tested, in which grid cells with fewer than 10
or fewer than 50 original observations were excluded. The
OMPS formaldehyde columns after applying the threshold
of 50 are shown in Fig. 1c, while the results with the thresh-
old of 10 are provided in the Supplement. The differences be-
tween the two filtering schemes are minor, particularly across
the four study regions considered in this work.
Formaldehyde vertical column densities (VCDs) retrieved
from satellite observations are derived using air mass factors
(AMF), which strongly depend on the a priori vertical pro-
files of formaldehyde. Direct comparisons between satellite
products and model simulations may be biased if the a priori
profiles used in the retrieval differ from the simulated ones.
To ensure consistency between the satellite observations and
GEOS-Chem simulation, we applied an AMF correction by
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recalculating the AMF with model-simulated profiles follow-
ing the method used in Palmer et al. (2001):

0

AMF:fw(p)S(p)dp 2
pS

The right-hand side of the equation represents the verti-
cally integrated product of the scattering weight w(p) and the
shape factor S(p) as a function of pressure p, where w(p)
characterizes the sensitivity of the satellite measurement to
a given atmospheric layer and S(p) describes the normal-
ized vertical profiles of the a priori profiles. The scattering
weights w(p) are primarily determined by satellite observa-
tional geometry (e.g., solar and viewing zenith angles), sur-
face albedo, and cloud fraction, while the shape factor S(p)
depends on the vertical profiles of formaldehyde. The inte-
gration is performed over the pressure coordinate from the
surface (ps) to the top of the atmosphere. Figure 3 illustrates
the vertical distribution of the shape profile, highlighting the
relative contributions of different layers. The vertical column
density (VCD) is obtained from the ratio of the slant column
density (SCD) to the AMF:

vep = 5P 3)
AMF
In the OMPS formaldehyde product, the SCD is derived
as the sum of three components: the fitted differential slant
column amount (ASCD), the reference sector correction
(SCDgef), and the bias correction (SCDg):

SCD = ASCD + SCDget + SCDg “4)

Here, ASCD represents the differential slant column amount
retrieved from the DOAS spectral fitting, SCDRges is the ref-
erence sector correction that accounts for background con-
tributions and instrumental offsets by using clean reference
regions, and SCDpg denotes an additional bias correction to
mitigate systematic errors.

The OMPS observations were assimilated as total columns
after re-calculation of the air mass factor using GEOS-Chem
shape profiles for consistency with the model vertical profile.
These reprocessed total columns are shown in Fig. 1c.1-c.4.
The original a priori shape factors used in the official satellite
products (before reprocessing) are displayed as red lines in
Fig. 3.

2.3.2 Sentinel-5P TROPOMI

Sentinel-5 Precursor (Sentinel-5P) is a member of the Eu-
ropean Space Agency’s (ESA) Sentinel satellite series. It
is in a low-Earth afternoon polar orbit with a swath of
2600 km, allowing for daily global coverage (Veetkind et al.,
2012). Its sole payload is Tropospheric Monitoring Instru-
ment (TROPOMI), a nadir-viewing, 108° field-of-view push-
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Figure 3. Shape factors of regional-mean formaldehyde columns, as derived from the a priori profiles, followed by normalization, from
GEOS-Chem model-simulated prior (black) and satellite observations by OMPS (blue), TROPOMI (red), and OMI (green). Panels (a)—(d)
correspond to the North China Plain, Yangtze River Delta, Pearl River Delta, and Northeast China, respectively. Sub-panels (a.1)—(d.1),
(a.2)-(d.2), (a.3)—(d.3), and (a.4)—(d.4) represent February, May, August, and November 2020, respectively. Values in parentheses indicate
the biases of satellite observations relative to the prior simulation. Shaded areas denote the observational uncertainties.

broom grating hyperspectral spectrometer. TROPOMI cov-
ers the ultraviolet-visible (UV-VIS, 270 to 495 nm), near-
infrared (NIR, 675 to 775nm), and shortwave infrared
(SWIR, 2305 to 2385 nm) spectral ranges. Its Level 2 prod-
ucts include vertical columns of ozone, sulfur dioxide, nitro-
gen dioxide, formaldehyde, carbon monoxide, and methane,
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as well as ozone profiles, aerosol layer height, cloud infor-
mation, and aerosol index. The initial spatial resolution was
3.5km x 7km, which was improved to 3.5km x 5.5 km on 6
August 2019.

The retrieval algorithm for TROPOMI formaldehyde is
based on the DOAS method and is directly inherited from the
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OMI QA4ECYV product retrieval algorithm (De Smedt et al.,
2017). This study uses the Sentinel-5SP TROPOMI Level 2
Tropospheric formaldehyde Version 2 product (Copernicus
Sentinel data processed by ESA and DLR, 2020). Vigouroux
et al. (2020) evaluated this TROPOMI formaldehyde prod-
uct using ground-based solar-absorption FTIR (Fourier-
transform infrared) measurements, demonstrating its good
quality. De Smedt et al. (2021) further assessed TROPOMI
formaldehyde using OMI observations and MAX-DOAS net-
work column measurements, also showing favorable results.
When using Level 2 TROPOMI formaldehyde data for the
validation in this study, we applied the recommended qual-
ity assurance filtering by retaining only pixels with a ga
value greater than 0.5. This criterion ensures the exclusion
of error flags and requires that the cloud radiance fraction at
340 nm is below 0.5, the solar zenith angle (SZA) does not
exceed 70°, the surface albedo is below 0.2, no snow or ice
warning is present, and the air mass factor (AMF) is larger
than 0.1. The operational TROPOMI HCHO Level-2 prod-
uct provides tropospheric vertical columns together with av-
eraging kernels and a priori profiles defined on 34 vertical
layers (from the surface to ~ 0.1 hPa). Because stratospheric
formaldehyde is negligible (De Smedt et al., 2018, 2021),
we directly use the reported tropospheric columns in this
study without reconstructing total columns. After filtering,
the TROPOMI observations were aggregated to monthly
means on a 0.5° x 0.625° grid, ensuring consistency with the
resolution used in the GEOS-Chem simulations. In addition,
we further constrained the number of observations per grid
cell: Fig. 1d shows the results after excluding grid cells with
fewer than 50 observations, while the results with a thresh-
old of 10 are also provided in the Supplement. The differ-
ences between the two filtering schemes are minor, particu-
larly over the study regions.

Beyond the recommended quality filtering, a critical con-
sideration when comparing TROPOMI formaldehyde re-
trievals with model simulations is the sensitivity of the re-
trieved columns to the a priori vertical profile assumed in the
retrieval algorithm. In this study, OMPS and OMI formalde-
hyde products are harmonized with the model by recalcu-
lating the AMF using GEOS-Chem shape factors, follow-
ing the conventional approach. For TROPOMLI, the officially
provided averaging kernels (AVK) are applied instead. Im-
portantly, these two correction strategies are mathematically
equivalent. The averaging kernel represents the ratio of the
altitude-resolved sensitivity to the total AMF used in the op-
erational retrieval. Consequently, convolving the model pro-
file with the AVK and adding the same background column
yields identical results to recalculating the total AMF with
the model profile and applying it to the slant column, pro-
vided that the background correction and a priori profile re-
placement are handled consistently (Palmer et al., 2001; Es-
kes and Boersma, 2003; Boersma et al., 2004; De Smedt
et al., 2021). Both approaches achieve the same objective:
removing the influence of the satellite’s a priori profile and
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replacing it with the GEOS-Chem profile, thereby ensuring
observational-model consistency prior to assimilation. The
AVK application for TROPOMI employed here follows the
methodology established for the IASI NH3 version 4 product
(Clarisse et al., 2023; Xia et al., 2025). The corrected column
is calculated as:
xm_ Xd—_B +B 5)
Z P A%mp
where X™ denotes the formaldehyde column adjusted with
the model profile, X is the retrieved column based on the
a priori profile, and B is the background concentration. The
term A9 represents the AVK at pressure level p, and m, is
the normalized model shape factor at the same level, defined
as:
_ M} — B,
~ M™-B
The TROPOMI tropospheric columns were assimilated af-
ter application of GEOS-Chem shape profiles. These repro-
cessed tropospheric columns are shown in Fig. 1d.1-d.4,
with their vertical shape factors shown in Fig. 3 (green line)
to illustrate the normalized contribution of each pressure
layer to the tropospheric columns. We adopted tropospheric
rather than total columns because the retrieval product itself
provides tropospheric columns.

(6)

mp

2.3.3 Aura OMI

The Ozone Monitoring Instrument (OMI) is an important
satellite instrument onboard the Aura satellite, launched on
15 July 2004, with the objective of monitoring atmospheric
gases, aerosols, and clouds to improve our understanding of
atmospheric chemistry and climate change. OMI provides
daily global coverage with a wide swath of 2600 km and a
spatial resolution of approximately 13 x 24 km at nadir, with
an equator crossing time of about 13:45 LT. The sensor con-
tains three spectral channels (UV-1, UV-2, and VIS), cover-
ing the wavelength ranges of 264-311, 307-383, and 349-
504 nm, respectively, which enable the retrieval of key trace
gases including O3, NO»,, SO,, and formaldehyde (Levelt
et al., 2006, 2018).

In this study, we use the OMI/Aura formaldehyde Total
Column Daily L2 Global Version 3 product (Chance, 2014).
In order to minimize the influence of poor-quality data, we
applied strict quality filtering. Only pixels with cloud frac-
tion £ 0.3, solar zenith angle £70°, and a main data qual-
ity flag=0 were retained. To avoid poor-quality measure-
ments at large pixel sizes, the five marginal pixels on each
side of the swath were discarded, and only pixels within
rows 6-55 were used (Zhu et al., 2017; Xue et al., 2020).
Because OMI has experienced a row anomaly since 2007,
pixels with Xtrack quality flags =0 were further selected to
eliminate its impact. Additionally, given the large uncertain-
ties in formaldehyde retrievals, pixels with a fitting root mean
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square (RMS) £ 0.003 were retained to remove most outliers
(Souri et al., 2017).

The OMI observations are then aggregated to monthly
means on a 0.5° x 0.625° grid, consistent with the GEOS-
Chem model resolution. To ensure sufficient sampling per
grid cell, we also applied two filtering schemes based on
the number of observations, excluding grid cells with fewer
than 10 or fewer than 50 valid pixels. Unlike OMPS and
TROPOMI, however, OMI shows a strong reduction in data
coverage under these constraints, and the product becomes
sparse after applying the threshold of 50 observations. This
indicates that OMI suffers from insufficient sampling density
in China for high-resolution assimilation. The vertical profile
correction of OMI formaldehyde was conducted using the
same approach as applied to OMPS, by recalculating AMF
with model-simulated vertical profiles. The resulting OMI
columns after profile correction and the two data-volume fil-
ters are shown in Fig. S3.

2.4 Ozone ground station observation

This study aims to constrain the NMVOC emissions in China
by assimilating multiple formaldehyde satellite products. As
aforementioned, formaldehyde is an important precursor to
ozone, the optimization of the NMVOC emission inventories
and concentrations are supposed to improve the ozone simu-
lation simultaneously. To evaluate the magnitude and quality
of this impact, the ground level ozone concentrations from
the National Urban Air Quality Real-time Publishing Plat-
form of the China National Environmental Monitoring Cen-
ter (CNEMC, last access: 15 May 2024) are used in the val-
idation. The ozone measurements utilized in this study are
from 1602 sites across China. The MDAS values of surface
ozone observations are calculated based on the hourly data
before they are compared against the model simulation. Re-
sults of the comparison will be described in Sect. 3.4.

2.5 Assimilation algorithm

This study employs the four-dimensional ensemble varia-
tional (4DEnVar) methodology to optimize NMVOC emis-
sions with satellite formaldehyde observations. The goal of
the assimilation is to find the most likely estimate of the
state vector, which is the monthly NMVOC emission inven-
tories f over the entire model domain. Note that f represents
the vector of total NMVOC emissions, rather than separately
gridded anthropogenic, biogenic, or biomass burning VOC
emissions. To optimize emissions from these three sectors,
additional observations or a well-defined spatial correlation
structure are required, which are not available in this study.
The prior estimate f} is from the inventories described in
Sect. 2.2, and the formaldehyde observations y are described
in Sect. 2.3. Mathematically, assimilation is performed via
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minimizing the cost function J as follows:

1
T =5 - FO'BNSf = fu)

1
+5ly —HM N0 {y —HM(f) %

The cost function 7 is the sum of two parts: background and
observation penal term. The background term quantifies the
difference between the optimal f and the prior emission in-
ventories f,, while the observation term calculates the dif-
ference between the simulation driven by f and the satellite
observations y. In addition to the f, that represents the prior
NMVOC emission vector calculated from the anthropogenic,
biogenic, and biomass burning sources as been illustrated in
Sect. 2.2. The uncertainty in the NMVOCs simulation is as-
sumed to be attributed to errors in the emission inventories,
and can be compensated using a spatially varying tuning fac-
tor o:

F@ = foli)-a) ®)

in here f;, (i) denotes the NMVOC emission rate in the given
grid cell i. The « values are defined to be random variables
with a mean of 1.0, a minimum of 0.1 and a standard devi-
ation of 0.4, corresponding to a uniform 120 % uncertainty
applied to the total NMVOC emissions rather than sector-
specific settings as adopted in previous studies (Choi et al.,
2022; Jung et al., 2022; Souri et al., 2020). The rationale
for this choice is provided in the Supplement. This empiri-
cal value was found to provide sufficient spaces for resolving
the observation-minus-simulation errors. A background co-
variance B, is formulated as a product of the constant stan-
dard deviation and a spatial correlation matrix C:

By (i, j)=04-C(, )) )

where C(i, j) represents a distance-based spatial correlation
between two «as in the grid cell i and j, and is defined as:

Ci. j)=e /U2 (10)

where d; ; represents the distance between two grid cells
i and j. ! here denotes the correlation length scale which
controls the spatially variability freedom of the «s. A small
value of / indicates that the tuning factors as are less spa-
tially correlated, thereby enabling emission optimization at
a finer spatial scale. However, this also necessitates a larger
number of ensemble runs to adequately represent the model
realization from emission to simulation. An empirical param-
eter / = 300 km which is used in Jin et al. (2023) to nudge
the ammonia emission that has a rapid spatially variability is
also taken in this study. With the covariance matrix By, the
NMVOC emission background covariance B is obtained via
a Schur Product:

B=B,oC (11)
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In the observation term, y is the observation vector, repre-
senting satellite observations, M is the GEOS-Chem model
driven by emissions f, H is the observation operator that
transfers the three-dimensional concentration into the obser-
vational space, and O is the observation covariance matrix.
In this study, the assimilated observations include the OMPS
total columns and TROPOMI tropospheric columns. A dis-
tinct observation operator H is configured to enable a fair
comparison of the observation-minus-simulation mismatch.
The satellite formaldehyde observations are assumed to be
independent, therefore O is a diagonal matrix. The diagonal
value here is calculated as:

— 2 2
Ototal = \/ Onstrument T Orepresent 12)

In Eq. (12), ototal is defined as the total uncertainty, which is
the square root of the sum of the squares of the instrument un-
certainty Ojpsyrument from the formaldehyde observations and
the representative uncertainty Oyepresent introduced when pro-
cessing the data into monthly averages. The representative
uncertainty Orepresent 18 represented by the standard deviation
of the data. The spatial distribution of the total uncertainty is
provided in Fig. S2 in the Supplement.

The assimilation methodology used in this paper is the
four-dimensional ensemble variational (4DEnVar). Differ-
ent from the classic 4DVar that requires adjoint in the cost
function minimization, 4DEnVar emulates the GEOS-Chem
formaldehyde simulating model using an ensemble-based
linear approximation and hence is adjoint-free. The method
is first proposed by Liu et al. (2008) and successfully imple-
mented in our recent dust aerosol (Jin et al., 2021) and am-
monia emission inversion (Jin et al., 2023; Xia et al., 2025).
The detailed procedures for minimizing the cost function
Eq. (7) are illustrated in section “Minimization of the Cost
Function in 4DEnVar” in the Supplement.

3 Results and discussion

This section first presents the three satellite observations
evaluation in terms of the vertical profile structure, qualified-
data volume and monthly mean biases. Independent assimila-
tions are then performed by either assimilating the OMPS or
assimilating the TROPOMI retrievals independently. Poste-
rior of the NMVOC emission, formaldehyde column results
and the impact on ozone simulation are discussed. A con-
sistency analysis is introduced to assess the reliability of the
two posterior emission.

3.1 Satellite data evaluation

Figure 3 shows the vertical profiles of formaldehyde shape
factors used to compute the reported satellite vertical
columns before any model-based profile correction is ap-
plied. Both the OMI and OMPS retrievals use GEOS-Chem
model outputs as their a priori profiles (Gonzédlez Abad
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et al., 2015, 2016; Nowlan et al., 2023). Consequently, their
shape factors are highly similar. formaldehyde shape fac-
tors generally decrease with altitude but exhibit character-
istic peaks and troughs: a minimum at 750-850 hPa, a first
peak ~30hPa above it, a second prominent peak at 600-
700 hPa, and a third peak near 350 hPa that is strongest in
April and August and weaker in January and November.
Above 350 hPa, shape factor decay toward zero. These fea-
tures agree well with previously reported formaldehyde pro-
file shapes over China (Zhu et al., 2016, 2020). Overall, the
OMPS profile most closely matches GEOS-Chem, whereas
OMI shows slight peak shifts or spurious upper-level en-
hancements in some regions, particularly during May and
August.

In contrast, the operational TROPOMI retrieval uses the a
priori profiles from the TM5-MP model (De Smedt et al.,
2018, 2021), which places substantially more mass near
the surface. This results in a markedly different verti-
cal structure: an approximately logarithmic monotonic de-
crease with altitude, with only minor perturbations over
SCB (~300hPa) and PRD (~ 800 hPa) and very high near-
surface shape factor. These differences in a priori profile
shape are the primary reason why profile correction is essen-
tial for meaningful satellite—model comparisons (Eskes and
Boersma, 2003).

Additionally, Fig. 3 clearly shows that stratospheric
formaldehyde (>~ 200 hPa) can be largely neglected in both
the GEOS-Chem simulation and the OMPS and TROPOMI
retrievals (Gonzalez Abad et al., 2015; De Smedt et al.,
2018). Because the stratospheric contribution is negligible
and no explicit stratospheric correction is applied in ei-
ther retrieval, we hereafter use the term “formaldehyde col-
umn” without distinguishing between total and tropospheric
columns in subsequent discussion.

Uncertainty is a key component in the assimilation pro-
cess and serves as a crucial indicator of satellite data qual-
ity. Fig. 3 illustrates the vertical distribution of retrieval un-
certainties. In the mid- to upper troposphere (200-600 hPa),
OMPS and OMI show comparable levels of uncertainty.
However, below 600 hPa, OMPS uncertainties become sub-
stantially larger, likely due to cloud contamination and re-
trieval algorithm approximations (Gonzdlez Abad et al.,
2016; Nowlan et al., 2023). As shown in Supplement Fig. S2,
the overall uncertainty of OMPS is significantly higher than
that of the other two satellite datasets. At first glance, OMI
data may appear superior, but this advantage largely results
from strict filtering, which excludes a substantial fraction of
problematic data. As illustrated in Supplement Fig. S3a, b,
applying a threshold of 50 observations per grid cell dras-
tically reduces spatial coverage, rendering OMI unsuitable
for national-scale assimilation. Previous studies that assim-
ilated OMI over China have typically interpolated the data
to coarser resolutions to ensure applicability (Cao et al.,
2018; Miyazaki et al., 2020). Therefore, only OMPS and
TROPOMI formaldehyde columns are assimilated in this
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study, while OMI is excluded for our high-resolution emis-
sion inversion due to the poor data coverage.

Figure 3 also presents satellite retrieval deviations from
the prior model estimates. When all three satellite datasets
exhibit the same sign of deviation (positive or negative) rel-
ative to the model, they are considered consistent. Such con-
sistency is observed, for example, in February, May, and
November over NCP and in February over PRD and SCB,
where all three datasets show positive deviations; and in
February and November over YRD and in August over
SCB, where all show negative deviations. These cases in-
dicate stronger reliability. In other situations, when OMPS
and TROPOMI exhibit the same bias direction, they are also
considered consistent, as in November over PRD and SCB.
Overall, 10 out of 16 cases (62.5 %) exhibit consistency, with
higher coherence primarily occurring in the cold season and
during spring and autumn months over NCP and SCB. Sub-
sequent analyses will explicitly consider this consistency to
enhance the robustness of the conclusions.

3.2 NMVOC emissions

The spatial characteristics of the NMVOC emissions in 2020
are clearly shown in Fig. 2 which presents the spatial dis-
tribution of four monthly average emissions from the prior
simulation (a.1-a.4) and the posterior estimates constrained
by OMPS (b.1-b.4) and TROPOMI (c.1-c.4) formaldehyde
observations. Significant emission increments relative to the
prior estimates are mainly concentrated in eastern and south-
ern China. In most regions, the posterior results constrained
by OMPS (d.1-d.4) and TROPOMI (e.1-e.4) exhibit broadly
consistent adjustment patterns. However, notable differences
between the two posterior estimates can still be observed,
particularly over eastern China in August and southern China
in May. The results reveal pronounced seasonal variability
and regional heterogeneity in emission intensity, with the
NCP, YRD, PRD, and SCB identified as major emission
hotspots throughout the year.

Although the major high-emission regions can be clearly
identified, the complexity of emission source types and the
wide range of emission magnitudes render the maps visu-
ally dense, making it difficult to directly interpret regional
characteristics and seasonal changes. Therefore, subsequent
analyses are focused on these four representative regions to
enable a more detailed investigation. Figure 4 further dis-
plays the monthly and annual totals of NMVOC emissions
across China in 2020. In general, the two posterior esti-
mates exhibit good agreement for most months. Specifically,
both show consistent decreases during January, February, and
October to December, while simultaneous increases are ob-
served from March to May. But notable discrepancies are ob-
served during the June—September period, which account for
approximately 83 % of the total annual difference between
the two posterior datasets — with July and August alone con-
tributing around 56 %. This leads to different estimates of
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annual emissions: the annual total constrained by OMPS as-
similation is estimated at 40.82 Tg, while that constrained by
TROPOMI is 34.83 Tg, both differing from the prior estimate
of 39.26 Tg. To more accurately assess the regional emission
responses under different observational constraints, the con-
sistent and inconsistent months are discussed separately in
the following sections.

In months with high consistency, January—February, dur-
ing the transition from winter to spring, both assimilation
results show a reduction in emissions, with anthropogenic
emissions exhibiting a particularly significant decline. This
may be because the emission inventory includes winter heat-
ing emissions, while the actual heating demand has been re-
duced due to global warming, resulting in an overestimation
(Lu et al., 2025; Xu et al., 2025). In spring, March-May,
emissions gradually increase, likely driven by enhanced bio-
genic emissions due to rising temperatures and vigorous veg-
etation growth (Guenther et al., 1995; Monson et al., 2012).
After November, as the season shifts from autumn to win-
ter, emissions decline again, with notable fluctuations in bio-
genic emissions in October, though anthropogenic emissions
remain the primary contributor to the overall trend. In the in-
consistent months (June—September, corresponding to sum-
mer and autumn), discrepancies arise between OMPS and
TROPOMI results. These differences may arise from vari-
ations in emission characterization during summer, marked
by strong convection, high humidity, and elevated cloud and
aerosol content, which differentially impact the retrieval of
optical depth and columns by OMPS and TROPOMI.

A clear regional divergence in NMVOC emission incre-
ments after assimilation is revealed in Fig. 5, with fur-
ther analysis highlighting the sources of these discrepancies.
In the NCP, OMPS assimilation results for July indicate a
significant emission increase of 62.04 %, while TROPOMI
shows a smaller increase. In August and September, the two
datasets exhibit opposing trends. In contrast, increment dif-
ferences are relatively minor in March—April, with OMPS
assimilation results showing an increase of approximately
14 %, while TROPOMI remains largely unchanged. During
January—February and November-December, both datasets
display minimal changes. Overall, the prior inventory for the
NCP appears underestimated in May—June. In the YRD, ex-
cept for May and July, other months (e.g., June, August, and
September) show opposing trends. In the PRD, nearly all
months from March to September are classified as inconsis-
tent. However, both regions demonstrate consistent emission
reductions during the cold season, suggesting an overestima-
tion in the a priori emission inventory for winter. In the SCB,
negative emission increments during the warm season are
particularly pronounced, generally exceeding 20 %, with re-
ductions in June—July surpassing 35 %. During the cold sea-
son (January and October—December), both datasets show
consistent declines with comparable values. Months with
lower consistency are primarily concentrated in February-
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Figure 4. Monthly NMVOC emissions in 2020 from the prior simulation (blue) and the posterior simulations constrained by assimilating
OMPS (red) and TROPOMI (green) formaldehyde observations. Panels show anthropogenic emissions (a), biogenic emissions (b), biomass
burning emissions (c), and total emissions (d). The annual totals for each category are indicated in the legends.

May, indicating a likely overestimation in the a priori emis-
sion inventory for this region.

In 2020, anthropogenic emissions in China were influ-
enced by the COVID-19 pandemic, leading to observable
changes. To better evaluate the general applicability of the
proposed method, it is also necessary to conduct a compara-
tive analysis for the pre-pandemic year of 2019. Fig. S5 in the
Supplement presents the total NMVOC emission increments
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for the four major regions in 2019, based on data assimilation
of OMPS and TROPOMI observations. In the NCP region,
strong consistency is again observed in June, with posterior
emissions increasing by 57.71 % and 30.09 % from OMPS
and TROPOMI assimilation, respectively, further confirm-
ing the underestimation of prior emissions in this period. In
the YRD, February, October, and November are identified
as consistent months, aligning with the consistent periods in
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2020 Total NMVOC Emissions Increments by Assimilating Different Satellites
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g -4.23% -11.56% -29.26% 27.17% 26.21% 48.39% 97% -18.64%

Figure 5. Monthly increments in total NMVOC emissions between the posterior and prior simulations derived from the assimilation of
OMPS and TROPOMI formaldehyde observations over four key regions of China: the North China Plain, Yangtze River Delta, Pearl River
Delta, and Sichuan Basin in 2020. Positive values indicate an increase in posterior emissions relative to the prior, while negative values

indicate a decrease.

2020, suggesting a likely overestimation in the prior inven-
tory during these months. In the PRD region, consistency is
found in January, February, June, July, November, and De-
cember, while in the SCB region, it occurs in January and
from April to December. These consistent months largely
overlap with those in 2020, though some differences are ev-
ident. For example, June and July emerge as new consistent
months in PRD, while October and November remain consis-
tent but exhibit notably smaller emission decreases compared
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to 2020. In SCB, April and May appear as additional con-
sistent months, while the remaining consistent periods con-
tinue to exhibit decreases in emissions. Notably, from June
to November, the two posterior datasets show an average de-
crease of 42.26 % compared to the prior emissions, indicating
a high probability of overestimation in the prior inventory for
this region during that period.
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3.3 Formaldehyde columns evaluation

The spatial distributions of formaldehyde columns in Febru-
ary, May, August, and November 2020 are shown in Fig. 1.
Panels (a.1)—(a.4) display the prior simulations of formalde-
hyde columns, (b.1)—(b.4) present the posterior simulations
of formaldehyde columns assimilated by OMPS, (c.1)-
(c.4) show the OMPS satellite observations of formaldehyde
columns, and (d.1)-(d.4) illustrate the TROPOMI satellite
observations of formaldehyde columns. In addition, the prior
and posterior simulations of formaldehyde columns for 2020
are also provided in the Supplement Fig. S7. Regarding the
spatial patterns, high formaldehyde columns in February are
concentrated in the NCP, YRD, and PRD regions, with the
posterior results showing an expanded high-value area in
the NCP but a reduced coverage in the YRD. In May, over-
all formaldehyde columns increase nationwide, with partic-
ularly pronounced growth in the NCP and PRD. In August,
formaldehyde columns increase in the NCP, YRD, and PRD,
while they decrease in the SCB. In November, the changes
are modest, but all four regions exhibit reduced formalde-
hyde columns.

The prior and OMPS-driven posterior simulations of
formaldehyde columns were compared with the TROPOMI
formaldehyde columns to evaluate the changes in formalde-
hyde. Scatter plots together with statistical metrics (R?, R,
MAE, and RMSE) for the whole country and four subre-
gions in 2020 are presented in Fig. 6. The prior simulation al-
ready shows reasonably good performance (a.1)—(e.1), with
most points distributed close to the 1 : 1 line and exhibiting
strong correlations with observations. Nevertheless, further
improvements are still possible. After assimilating OMPS
data, the posterior results compared with TROPOMI show
higher R? values across all regions, indicating strengthened
correlations. For China and NCP, the improvements are com-
parable, with R? increasing by about 0.027 (from 0.870 to
0.897 for China, and from 0.774 to 0.812 for NCP). In the
YRD, the improvement is more pronounced, with R? ris-
ing from 0.882 to 0.918, and the scatter around the regres-
sion line substantially reduced, with many outliers corrected.
The most significant improvements occur in PRD and SCB,
where R? increases by approximately 0.05. In these regions,
the overestimations present in the prior simulations are effec-
tively mitigated, particularly for high-value cases. In terms
of RMSE and MAE, decreases are observed in all regions
except NCP. A comparison between Figures (b.1) and (b.2)
indicates improvements in the low- and mid-value ranges,
whereas substantial overestimations appear in the high-value
range. This issue is likely related to the instrumental errors
of OMPS observations, as discussed in Sects. 2.3.1 and 3.2,
which introduce considerable uncertainties.

The monthly mean formaldehyde columns for 2020, de-
rived from the prior simulation, posterior simulations con-
strained by the OMPS and TROPOMI observations, and
satellite observations from OMPS and TROPOMI, are pre-
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sented for China (a), NCP (b), YRD (c), PRD (d), and SCB
(e) in Fig. 7. At the national scale, the overall changes result-
ing from assimilation are relatively modest, with the main
adjustments occurring in summer and early autumn. The
OMPS-driven posterior results show increases relative to the
prior in June—July, whereas the TROPOMI-assimilated re-
sults exhibit decreases in July—August compared to the prior.
These discrepancies may be attributed to differences between
the satellite products in their responses to biogenic emissions
and photochemical processes under high-temperature and
high-radiation conditions (De Smedt et al., 2018; Vigouroux
et al., 2020).

Figure 8a presents the increments between the posterior
and prior simulations over the four regions when assimilat-
ing OMPS or TROPOMI observations, respectively. In the
NCP, the posterior results constrained by both OMPS and
TROPOMI show consistent increases in May—June, suggest-
ing that the prior inventory may have underestimated the con-
tributions from active photochemical production and anthro-
pogenic emissions during summer (Wells et al., 2020). In the
YRD and PRD, stronger consistency is observed in the cold
season (January—March and October-December), with both
posterior results showing decreases, which is consistent with
reduced anthropogenic activity and lower formaldehyde pro-
duction rates under wintertime conditions. The SCB exhibits
more distinct characteristics, with OMPS and TROPOMI as-
similation results consistently showing decreases in the sec-
ond half of the year, particularly pronounced in June, July,
and October. This pattern suggests that the prior emissions in
this region were overestimated. Previous studies have high-
lighted that the large uncertainties in biogenic emissions
in the SCB are critical factors influencing the accuracy of
NMVOC emissions and simulations (Ma et al., 2019).

3.4 Impact of formaldehyde assimilation on ozone
surface concentration

The spatial distributions of observed MDAS ozone at ground
stations (a.1-a.4), together with the prior (b.1-b.4) and pos-
terior simulations based on OMPS and TROPOMI assimi-
lation (c.1-c.4, d.1-d.4), are shown in Fig. 9. As shown in
panels (b.1-b.4), pronounced ozone hotspots are observed in
NCP (February, May, and August), YRD (May and August),
PRD (May, August, and November), and SCB (May and Au-
gust). This is very similar to the observations shown in pan-
els (a.1-a.4). It indicates that the prior simulation captures
the general patterns of ozone hotspots reasonably well, but
notable biases remain. For example, ozone is clearly over-
estimated in PRD during February, May, and August, while
underestimated in SCB during May and August. After assim-
ilation with OMPS or TROPOMI, the posterior MDAS ozone
simulations retain the overall hotspot distribution, but the di-
rection and magnitude of changes vary by region. For in-
stance, in August, ozone concentrations increase in NCP and
PRD with OMPS assimilation but decrease with TROPOMI
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Figure 6. Scatter density plots comparing GEOS-Chem simulated formaldehyde columns with TROPOMI observations in 2020. Panels
(a.1)—(e.1) show comparisons between prior simulations and TROPOMI, while panels (a.2)—(e.2) show comparisons between posterior
simulations constrained by assimilating OMPS observations and TROPOMI. The regions considered are China (a), the North China Plain
(b), the Yangtze River Delta (c), the Pearl River Delta (d), and the Sichuan Basin (e). The probability density of the data points is indicated
by the color scale. The correlation coefficient (R), coefficient of determination (R2), mean absolute error (MAE), root mean square error

(RMSE), regression slope, and intercept are reported in each panel.

assimilation. In February, both assimilation results decrease
in YRD, although the decrease is more pronounced in the
TROPOMI-based results. Moreover, many regional changes
are difficult to discern visually from the spatial maps alone,
highlighting the necessity of using statistical metrics to quan-
titatively assess ozone variations.

The RMSE values between the simulated MDAS8 ozone
and the ground-based observations are calculated. To better
visualize the assimilation benefits, the RMSE variation ei-
ther assimilating the TROPOMI or assimilating the OMPS
in the four key regions are also shown in Fig. 8b. Larger de-
creases in RMSE (darker blue) indicate more significant im-
provements, with the posterior ozone being closer to ground-
based observations; conversely, larger increases in RMSE
(darker red) indicate degraded performance, with the poste-
rior ozone diverging further from the observations. In those
inconsistent cases where the OMPS and TROPOMI posterior
increments exhibit opposite signs (i.e., one increases while
the other decreases), ozone simulation improvement is not
guaranteed. For instance, in NCP during January-April and
July, in YRD during June and September, and in PRD during
April, May, August, and September, one assimilation leads to
improvement while the other indicates deterioration. More-
over, in several additional months both posteriors even show
degradation, making it difficult to effectively evaluate the im-
provement in posterior ozone simulations. By contrast, ozone
simulation improvements are clearly observed in consistent
cases where the OMPS- and TROPOMI-constrained posteri-
ors exhibit the same sign (i.e., both reductions in ARMSE).
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In NCP, substantial improvements are observed in May and
June, with the largest RMSE decrease in June, in agreement
with the high-consistency pattern shown in Fig. 8a. In YRD
and PRD, RMSE decreases by more than 30 % in December,
representing the most significant improvement; in addition,
PRD also shows clear improvements in January and October.
These improvement months all correspond to periods of high
consistency. In SCB, RMSE also decreases markedly during
high-consistency months, including January, June, July, and
September—December.

To further quantify ozone simulation improvements
in consistent regions, statistics were performed for the
months classified as consistent. Considering the similarity in
monthly behavior between YRD and PRD, the two regions
were combined in the analysis. The results indicate that the
consistent regions include NCP in May—June, YRD/PRD in
January—March and October-December, and SCB in January
and June—-December. Within these regions, except for March
and November in YRD/PRD and August in SCB, all other
months show ozone simulation improvements. Overall, 13
out of the 16 consistent months exhibit improvements, ac-
counting for 81.25 %, with an average RMSE reduction of
24.7 %. This result suggests that constraining NMVOC emis-
sions through formaldehyde assimilation not only substan-
tially improves formaldehyde simulations, but also exerts a
positive impact on ozone simulations, with particularly sig-
nificant improvements in regions and months characterized
by high consistency.
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Figure 8. Monthly increments in (a) formaldehyde columns between posterior and prior simulations and (b) the relative changes in MDAS
ozone RMSE (ARMSE) after assimilating OMPS and TROPOMI observations in 2020. Results are shown for the North China Plain, Yangtze
River Delta, Pearl River Delta, and Sichuan Basin. Positive values indicate an increase relative to the prior, while negative values indicate a

decrease.
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Figure 9. Spatial distributions of surface ozone concentrations in February, May, August, and November 2020. Panels (a.1)—(a.4) show
ground-based observations, panels (b.1)—(b.4) show prior simulations, panels (c.1)—(c.4) show posterior simulations constrained by as-
similating OMPS formaldehyde observations, and panels (d.1)—-(d.4) show posterior simulations constrained by assimilating TROPOMI

formaldehyde observations.

To more robustly substantiate this conclusion, it is neces-
sary to examine whether similar features can also be iden-
tified in 2019. In that year, OMPS and TROPOMI satel-
lite observations were assimilated independently to constrain
NMVOC emissions. The posterior-prior increments from
the OMPS- and TROPOMI-driven assimilations, together
with the changes in MDAS8 ozone ARMSE, are presented
in Fig. S6 of the Supplement. In NCP, March, May, and
June are identified as consistent months, during which the
ozone RMSE values decrease, with the most pronounced im-
provement occurring in June. In YRD, the consistent months
are February, October, and November, where the ozone
improvements are relatively limited but nevertheless show

https://doi.org/10.5194/acp-26-33-2026

better agreement with ground-based observations. In PRD,
the consistent months include January, February, and June—
December; with the exception of August, September, and
November, the ozone RMSE decreases in the other months,
with notable improvements in June and July. In SCB, the two
posterior datasets exhibit the highest level of consistency in
2019, with synchronous increases and decreases throughout
the year. Ozone simulations in this region show better per-
formance in all months except March and April, with par-
ticularly large improvements in June, July, and September—
November, when the RMSE decreases by an average of
25.74 %.
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Across the four regions, 27 months are classified as con-
sistent in 2019. Of these, 22 months exhibit improved ozone
simulations, which corresponds to 81.48 % of all consistent
months, with both assimilations producing MDAS ozone val-
ues closer to ground-based observations. This proportion dif-
fers from that of 2020 by only 0.23 %, providing further ev-
idence that ozone improvements are particularly significant
in the months defined as consistent across the four regions.

4 Summary and conclusion

In this study, satellite-based formaldehyde retrievals from
OMPS and TROPOMI were assimilated to constrain
NMVOC emissions over China in 2020. The results
demonstrate that assimilation corrects systematic biases in
prior emission inventories and improves the simulation of
formaldehyde columns and surface ozone in general. More
importantly, by analyzing the consistency of posterior results
via assimilating different formaldehyde products across re-
gions and months, this work establishes a methodological
framework to further assess the reliability of emission esti-
mates with multiple satellite constraints.

At the national scale, the OMPS- and TROPOMI-
constrained posterior NMVOC emissions are broadly consis-
tent across most months, with decreases in January—February
and October—December and increases in March-May. The
winter—spring decreases likely reflect overestimation of heat-
ing emissions in the prior inventory under reduced heat-
ing demand, whereas the spring increases are attributable
to enhanced biogenic activity with rising temperatures. By
contrast, notable discrepancies emerge in June—September
— dominated by July—August — likely linked to strong con-
vection, high humidity, and elevated cloud/aerosol load-
ing that differentially affect retrievals. These discrepancies
result in annual totals of 40.82Tg (OMPS) and 34.83Tg
(TROPOMI), compared with 39.26 Tg in the prior. Region-
ally, NCP indicates prior underestimation in May—June con-
sistently but pronounced divergences in July—September;
YRD and PRD show warm-season inconsistencies but con-
sistent cold-season decreases, suggesting wintertime over-
estimation in the prior inventory; SCB features substantial
summer decreases (exceeding 20 %, particularly in June—
July) alongside consistent winter decreases, while several
spring months also point to possible prior overestimation.

Both the prior and the posterior simulations capture the
spatial distribution of the formaldehyde columns well. When
comparing the prior simulation and the posterior simulation
constrained by OMPS with TROPOMI satellite observations,
the prior already shows strong correlations, but further im-
provements are achieved after OMPS assimilation. The R?
increases from 0.870 to 0.897 at the national scale and from
0.774 to 0.812 in NCP; in YRD, the increase is larger, from
0.882 to 0.918; while the largest improvements are observed
in PRD and SCB, with increases of about 0.05. Meanwhile,
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RMSE and MAE decrease in all regions except NCP. In NCP,
the simulations improve in the low-to-middle value ranges,
but overestimations remain in the high-value range, likely
due to the large uncertainties introduced by OMPS instru-
mental errors.

For ozone, comparison with surface MDAS observations
highlights significant improvements in high-consistency re-
gions. In NCP, RMSE reductions are most pronounced in
June, consistent with the strong emission and formaldehyde
adjustments in this period. In YRD and PRD, December
RMSE reductions exceed 30 %, while additional improve-
ments are found in PRD during January and October. In SCB,
assimilation leads to persistent improvements from January
through December, with notable reductions in June—July and
the late autumn months. Overall, ozone improvements are
observed in 13 of the 16 consistent months, which repre-
sent 81.25 % of the total, with an average RMSE reduction
of 24.7 %.

To further test the robustness of our approach, OMPS and
TROPOMI satellite observations were independently assim-
ilated to constrain NMVOC emissions for 2019 (Fig. S4).
The spatial distribution of formaldehyde hotspots is similar
to 2020 but with overall higher formaldehyde columns. At
the regional scale, most consistent months between OMPS-
and TROPOMI-constrained results indicate that the prior in-
ventory underestimates emissions in NCP and overestimates
them in YRD, PRD, and SCB. Importantly, 22 of the 27 con-
sistent months (81.48 %) show reduced ozone RMSE, with
the largest improvements in SCB, confirming that consis-
tent cases are strongly associated with enhanced ozone sim-
ulation performance. These findings also lend greater confi-
dence to the optimized NMVOC emissions during the con-
sistent months in these regions.

Future efforts should reassess assimilation performance
with updated emission inventories and incorporate source-
specific uncertainties, assigning different uncertainties to an-
thropogenic, biogenic, and biomass burning sectors, in or-
der to better constrain their respective emissions. Moreover,
because no independent validation data such as aircraft or
FTIR measurements were available over China in 2020, fu-
ture studies could further evaluate the assimilation results
once such observational datasets become accessible.

Code and data availability. The 4DEnVar emission inversion
system is in the Python environment and is archived on Zen-
odo. (https://doi.org/10.5281/zenodo.14633919; Xu and Jin, 2024).
OMPS-N20 Level 2 NM formaldehyde Total Column swath orbital
Version 1 product (https://doi.org/10.5067/CIYXT9A4I2F4, Abad,
2022). Sentinel-SP TROPOMI Level 2 Tropospheric formaldehyde
Version 2 product (https://doi.org/10.5270/S5P-vg1i7t0, Coperni-
cus Sentinel data processed by ESA and DLR, 2020). OMI/Aura
formaldehyde Total Column Daily L2 Global Version 3 prod-
uct (https://doi.org/10.5067/Aura/OMI/DATA2016, Chance, 2014).
National Urban Air Quality Real-time Publishing Platform of the
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