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Supplement information

S1. Multivariate imputation by chained equations (MICE)

Multivariate imputation by chained equations (MICE) is a flexible algorithm that could be combined with other
statistical techniques for estimating missing values by using observed data (by performing the linear, multilinear
regression or calculation of the mean/median to fill the missing) (Azur et al., 2011). The MICE algorithm employs
multiple regression models, where each missing value is conditionally modeled based on the observed (non-
missing) values. This imputation process provides a more complete database for PMF analysis, contributing to a
reduction in recommendation errors in the results (Ocepek et al., 2015).

Here, the data preparation and imputation processes were implemented through 4 main steps. First, all missing
values of each metal are replaced by the mean of its concentration, these replaced values are marked as "place-
holders". Second step, the metal that has the fewest missing values was chosen, and the "place-holder" is put back
to missing (called Px). In the third step, a multiple linear regression is applied, with the chosen metal set as a
criterion and the other variables are predictors. Fourth step, the missing value Px is calculated by using the slope
and intercepts of multiple linear regression in the third step. The processes between the second and the fourth steps
are repeated until all "place-holders" are replaced by the regression prediction value; this repeated run is called the
"cycle” of imputation. The imputation cycle is iterative implemented until the difference between the 2 last cycles
is minimized. MICE was implemented in Python 3.9 using the package "scikit-learn 1.2.0" (Pedregosa et al., 2011).
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Figure S1. Workflow of the MICE algorithm
Table S 1. R? between imputed and measured metals
2013 2017-2018 2020-2021
As 0.43 0.6 0.2
Cd 0.41 0.55 0.1
Cr 0.32 0.34 0.38
Cu 0.63 0.4 0.42
Mn 0.33 0.35 0.5
Ni 0.14 0.33 0.14
Pb 0.33 0.31 0.15
Sb 0.37 0.50 0.2
V 0.41 0.27 0.52
Zn 0.26 0.35 0.20
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Figure S2. Distribution (upper) and temporal evolution (lower) of measured and imputed metals



S2. Some equations

PMF equation:

P
Xij = Z Gix * Fj + Eij (Eq.(S1))
k=1
Gy =0, Fj, = 0(Eq.(52))
Where Xis a (i % j) matrix of j chemical species in measured period i (daily) into p factors with a matrix (i x k)
representing the source contribution (G) and a matrix (k x j) representing the factor composition (F). E is the

residuals for each species. All the factor matrices G and F elements are constrained to be non-negative.

Variance Inflation Factor (VIF) represent the collinearity between the PM sources, which is calculated:

VIF, =

i =10 — 1(Eq.(53)

4

Chemical Mass Closure:
PM10 = EC + OM + [sea salt] + [nss-SO4%] +[dust] + [non dust]
with:
[OM] =[OC]*1.8 (Favez et al., 2010)
[sea salt] = [Na*]*1.47 + [CI-] (Putaud et al., 2010)
[nss-SO42-] = [SO4*] — [Na*]*0.252 (Alexander et al., 2005)
[dust] = 5.6 * ([Ca?*] — [Na*]/26) (Putaud et al., 2004)
[non dust] = [Cu] + [Pb] + [V] + [Zn] (Salameh et al., 2015)

S3. PMF input matrices

The basic chemical species to be included in the input matrices are key components for the mass balance of the
PM: organic carbon (OC), element carbon (EC), major ions (nitrate, sulfate, ammonium), sea salt species (Na, Cl,
Mg), and mineral dust (Al, Fe, Ti). Then the input matrices should include a set of chemical tracers that allows the
discrimination of their sources. This list is very variable according to the analytical capabilities used in the research

program.

In other to avoid double counting of carbon mass in OC and in organic tracers added to the input data (ie
levoglucosan, mannosan, MSA, polyols in the classic PMF at IGE), we calculate a variable OC* by:
[OC*] = [OC] — [total mass C of organic tracers in PMF]

Uncertainties of measured data
A table of the uncertainties of each daily data for each chemical species should be constructed. Several ways for

their calculations exist. Here, we are using the formula described in the table below, resulting from all the work
developed in the SOURCE program and the post-doc work of D Salameh (published in Weber et al., 2019).

Table S 2. Formula to calculate uncertainties

Specie Calculation by Formula
OC*, EC, PM10 Fixed percentage 10%




Specie which has Ratio of QL 5x QL
concentration < QL Polissar et al. (1998) 6
Imputed metals Gianini et al., 2012

2
Oij = 2*\/QL§ +(CV] Xxij)z + (a X xij)

The others Gianini etal., 2012

2
O-ij = \/QL? + (CVJ X Xij)z + (a X xi]-)

With:
e QL : Quantification limit.
e CV: Coefficient of variation.
e a: Additional coefficient of variation
e  X: Species concentration.

S4. PMF criteria for validation and applied constraint

According to the European guide on air pollution source apportionment with receptor models (Belis et al., 2014),
the validation criteria of a PMF solution include:
(1) Evolution of Quue/Qrobust < 1.5: Indicate that the good result should not have more than 30% data outliers.
Generally, the final solution presents a much lower ratio.
(2) The chemical profile is clear: the concentration and percentage of trace species in the profile and the temporal
variability should be clear enough to identify a source.
(3) All factors should have a contribution > 1% to the total variable (PM10): to avoid a case where there is a source,
but it has almost no impact on the study area.
(4) The distribution of residuals: the distribution of residuals (differences between input data and reconstructed
data) is from -3 to 3, if there is any value is out of this range, that means that the reconstruction is not valid or that
there are outliers.
(5) Evaluate the species reconstruction: The correlation coefficient between measured and predicted concentrations
must be greater than 0.5.
(6) Bootstrap test: it indicates the stability of the solution: at least 70 runs per 100 runs for all factors where the
correlation between the base run and boot runs is greater than 0.6.

Table S 3. The constraints applied for PMF

Factor Element Type Value
Industrial Levoglucosan Set to Zero 0
Industrial Mannosan Set to Zero 0
Industrial PM10 Define Limits 0.1/0.4
MSA rich MSA Pull Up Maximally NA
MSA rich Polyols Set to Zero 0

Biomass burning Levoglucosan Pull Up Maximally NA
Biomass burning Mannosan Pull Up Maximally NA
Primary biogenic Polyols Pull Up Maximally NA

Primary traffic Ba Pull Up Maximally NA




Primary traffic Cu Pull Up Maximally NA

Primary traffic OC*/EC Ratio 0.44

Primary traffic Cu/Sb Ratio 12.6

Primary traffic Cu/Mn Ratio 5.7

S5. PMF results
Table S 4. Qtrue/Qrobust Values
10 yeas 2013-2016 2017-2020 2021-2023

Base run 1.07 1.05 1.05 11
Constraint run 1.07 1.06 1.05 11




Table S 5. Bootstrap value before and after constraint

10 yeas 2013-2016 2017-2020 2021-2023

Base Constraint | Base | Constraint | Base | Constraint | Base | Constraint
Aged sea salt 100 100 100 100 100 | 100 100 | 100
Biomass burning 100 100 100 100 100 | 100 100 | 100
Industrial 100 100 100 100 100 | 100 100 | 100
MSA rich 100 100 97 100 100 | 100 93 100
Mineral dust 100 100 93 100 98 100 85 100
Nitrate rich 100 100 100 100 100 | 100 100 | 100
Primary biogenic 100 100 100 100 100 | 100 100 | 100
Primary traffic 80 98 82 96 93 100 70 88
Chloride rich 98 100 99 100 92 100 99 100
Sulfate rich 100 100 87 99 98 100 96 95

Table S 6. R2 between observed and predicted by PMF of PM concentration
10 yeas 2013-2016 2017-2020 2021-2023

Base run 0.97 0.98 0.97 0.98
Constraint run 0.97 0.98 0.97 0.98

Displacement run: No warning for unstable or un-useable solution for PMF performed on 10-years dataset and

every 3 years datasets.
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Figure S4. Temporal evolution of PM sources, solution 11 years
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S6. Tendency of PM1o and NOXx
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Figure S6. STL decomposition of PM1io
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S7. Thermal inversion analysis

This analysis is conducted for the period Nov 2017 to May 2023, when the measurements on the mountain slopes
are available. A good correlation is obtained between the PM1o and bulk temperature at the city level (r reaching
0.6, p<<0.001) for the winter months and it is even better when considering only the persistent inversion periods
(r reaching 0.7, p<<0.001) for individual years (Table S7). Interestingly, the bivariate distribution between the
daily PMyo concentration and daily average AT/Azin winter months revealed that the majority of PMyo
concentration peaks (exceedances above 40 pug m) are from persistent inversion (Figure S8). The distribution of
the day without and with persistent inversion (Figure S9) also shows that a few high PM1o concentration could be
found in the days without persistent inversion, meanwhile a day with persistent inversion is not always associated
to a high PM1o concentration. This result is not surprising, since the concentration of PM3 also depend on other
meteorological conditions (precipitation, heat deficit) as well as variations in pollutant emissions (Carbone et al.,

2010; Largeron and Staquet, 2016).
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Figure S8. Bivariate distribution between PM10 and bulk temperature in winter (blue contour, for the month of Dec,
Jan, Feb), summer (green contour for the month of Jun, Jul, Aug) and transition season (orange contour for the
remaining months).



Table S 7. Correlation between PM and bulk temperature in winter and in persistent inversion period. The star
repressing the p-value. (*** : <0.001, **: <0.01, * < 0.05, “ns”: non-significant)

R? in winter R? in persistent inversion period
2017 0.60** 0.50**
2018 0.19* 0.47**
2019 0.50*** 0.33**
2020 0.57*** 0.47***
2021 0.50*** 0.67**
2022 0.30*** 0.22*
2023 0.05ns 0.05ns
2017-2023
601 R2=032 ° Persistent inversion
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Figure S9. Daily PM1o concentration and daily average AT /Az in winter months (from November to March) for the
period of 2017 to 2023. The red points represent the winter days when the persistent inversion is detected, and the
blue points represent the other winter days.
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Thermal inversion events were used to evaluate the relationship between biomass burning influence onPMyo
concentration and meteorological conditions. As shown in Figure S9, more than half of the high PMaio
concentration event is related to persistent inversion. Especially for biomass burning, which is emitted principally
in winter, could be highly enlarged under the influence of inversion. Figure 7 presents the contribution of biomass
burning and the bulk temperature in winter, reveals that 41% of the biomass burning contribution is explained by
the temperature gradient (AT /Az) between 2017 and 2023. better than considering PM1o (R? = 0.3). In particular,
the high contribution of biomass burning (>10 pug m) is always found in the episodes of persistent inversion. This
demonstrates that the occurrence of persistent inversion systematically decreasing the temperature in the city
enhances the use of heating as well as traps the aerosol and enlarges the contribution of biomass burning. Although
the relationship between persistent inversion events and biomass burning emissions is affirmed, the reduction trend
of biomass burning does not completely depend on the persistent inversion events. As shown in Figure 5, the
number of persistent inversions per year is nearly similar, while the contribution of biomass burning steadily
decreases over the years. The average annual biomass burning sources PMF-derived is compared to the local PMg
emission inventory by residential heating (tonnes), provided by the Central air quality monitoring laboratory
(Atmo AuRA) to confirm the trend of biomass burning. The annual average of biomass burning is agreed with the
emission inventory, demonstrating the consistency between the sources observed by the PMF model and the local
inventory emission data. Since 2015, the Grenoble Metropolis has set up an air-wood bonus to encourage
households to renew their individual wood-burning appliance (fireplace or stove), and aim to replace all open
fireplaces with closed appliances in October 2024. The downward trend of biomass burning demonstrates the

effectiveness of the region's policy in changing residential heating equipment, to improve the city's air quality.
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Figure S11. Comparison of the traffic contribution and PM10 emission by the transport sector in France.



S8. OP PM10 SA result

Table S 8. The appropriate model of OP SA

OPaa OPorr
Heteroscedasticity Yes Yes
Collinearity No No
The suitable model wPLS, WLS WPLS, WLS
Table S 9. The R?, RMSE and MAE of the suitable models
OPaa OPorr
WPLR WLS wWPLR WLS
R? 0.69 0.70 0.61 0.61
RMSE 0.88 0.85 0.89 0.86
MAE 0.49 0.47 0.63 0.62
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Figure S13. The comparison between observed OPprt and predicted OPprr




Table S 10. Accuracy metric of the testing and training dataset of Multiple layer perceptron (MLP) and Random

Forest (RF)
MLP RF
Training Testing Training Testing

R? 0.75 0.75 0.90 0.72

RMSE 0.67 0.74 0.32 0.79

MAE 0.36 0.39 0.17 0.41

Table S 11. Intrinsic OPaa and intrinsic OPprt description

OPtype Source count  mean @ std min  25%  50% 75% max IQR
Aged sea salt 500 -0.02 0.07 -023 -0.06 -0.03 0.00 019 0.06
Biomass burning 500 076 013 048 067 074 082 122 015
Chloride rich 500 -0.07 0.09 -032 -0.09 -0.05 -0.02 018 0.07
Industrial 500 048 014 -004 044 052 057 074 012
MSA rich 500 020 0.04 003 018 020 023 030 0.05
AA Mineral dust 500 -0.03 0.06 -0.17 -0.07 -0.04 0.01 019 0.07
Nitrate rich 500 0.09 016 -043 000 013 020 051 0.20
Primary biogenic 500 0.00 004 -011 -0.02 0.00 0.03 0.10 0.05
Primary traffic 500 038 010 002 032 038 046 067 0.14
Sulfate rich 500 -0.01 0.08 -0.22 -0.05 -0.02 0.04 023 0.09
Aged sea salt 500 0.03 002 000 002 003 005 013 0.02
Biomass burning 500 014 009 000 008 013 017 045 0.09
Chloride rich 500 0.01 002 000 000 0.00 0.00 012 0.00
Industrial 500 052 008 031 047 051 055 086 0.08
MSA rich 500 0.01 002 000 000 0.00 002 013 0.02
ot Mineral dust 500 0.01 002 000 000 0.00 0.00 017 0.00
Nitrate rich 500 011 012 000 002 0.07 012 050 0.10
Primary biogenic 500 0.02 003 000 000 001 002 012 0.02
Primary traffic 500 024 007 006 020 024 028 048 0.08
Sulfate rich 500 0.09 004 000 006 0.08 011 022 0.05
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