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Abstract. Aerosol radiative forcing remains a major source of climate model uncertainty, limiting climate
model projection skill and slowing global action on addressing climate risks. Observations only modestly con-
strain the magnitude of aerosol radiative forcing despite advances in model fidelity, resolution and availability
of observations. Our goals are to understand where aerosol-cloud forcing uncertainty resists efforts to reduce (or
constrain) it and to identify the processes that cause the remaining uncertainty, to guide future observation cam-
paigns and model constraint efforts. We map the aerosol forcing uncertainty in a global climate model perturbed
parameter ensemble before and after constraint to satellite observations of several cloud, aerosol and radiative
properties. Original uncertainty falls by more than 80 % in Northern Hemisphere marine regions and by 70 %
for globally averaged aerosol forcing. However, the uncertainty remains large (more than 70 % of the original
uncertainty) in Southern Hemisphere marine environments where stratocumulus clouds transition to cumulus, as
well as in some highly populated industrialized areas. Regional clusters of shared causes of model uncertainty
highlight common processes as targets for future observational constraint. Our findings highlight the value in
re-evaluating the remaining causes of 1Faci uncertainty during the constraint process and provide actionable
information for prioritizing existing observations that should be included as constraints. Additionally, our results
highlight targeted observations in persistent uncertainty hotspots where novel and process-specific data could
further constrain aerosol forcing. This work provides a framework for model evaluation and development that
prioritises aerosol forcing constraint to improve model skill at making climate projections.

1 Introduction

Aerosol effective radiative forcing (1Faer) is one of the
largest causes of uncertainty in anthropogenic climate
change over the past century (Forster et al., 2021). Whilst the
cooling effect of anthropogenic aerosol substantially offsets
the warming effect of greenhouse gases, the magnitude of
1Faer over historical periods is uncertain. Despite decades of
improvements to model fidelity, increasing model resolution,
and a huge increase in observational data availability, large
1Faer uncertainty persists (Forster et al., 2021). Model pro-
cesses that cause uncertainty in historical 1Faer also cause

uncertainty in future climate change (Gettelman et al., 2024),
suggesting that narrowing the model process uncertainty in
1Faer over the historical period could significantly improve
confidence in climate projections. Uncertainty in model pro-
cesses accounts for more than 50 % of the uncertainty caused
by highly uncertain future shared socioeconomic pathways
(Peace et al., 2020), which translates to around 0.5 °C ad-
ditional uncertainty in long-term warming projections from
anthropogenic CO2 emissions (Watson-Parris and Smith,
2022). Reduction in 1Faer uncertainty would also help to
understand aerosol influence on clouds and atmospheric cir-
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culation patterns (Mülmenstädt and Wilcox, 2021; Peace et
al., 2022), and to reduce some of the risks associated with
mitigating the impacts of future climate change.

Climate models are imperfect partly because they rep-
resent physical processes using parametrizations – mathe-
matical approximations to real-world processes that are de-
signed to balance fidelity with computational efficiency. Dif-
ferences in the magnitude of 1Faer across climate mod-
els stem from choices about how to parameterize physical
processes (Bellouin et al., 2020). The approximate nature
of these parametrizations introduces inherent discrepancies
between models and observations that cannot be overcome
through parameter retuning (Sexton et al., 2012). For aerosol-
cloud interactions, governing processes are microphysical, so
the fundamental mismatch in scale with global climate sim-
ulations ensures model-observation discrepancies will likely
persist even in simulations where resolution is increased to
feasible computational limits (e.g. Hoffmann et al., 2023).
As a result, no climate model can be fully constrained by ob-
servations and will always be partly limited by observational
error, spatial and temporal representation errors (Schutgens
et al., 2017), and inherent model biases (e.g. Liu et al., 2024;
Price et al., 2025).

Closer collaboration between climate modelers, lab-based
experimentalists, in-situ observation teams, and satellite in-
strument scientists has been viewed as essential for improv-
ing our ability to constrain 1Faer (Kahn et al., 2023). How-
ever, despite observational programs sharing common goals
with modelers to either reduce 1Faer uncertainty or improve
process understanding, modeling centres have yet to provide
clear guidance on how new observations can be effectively
integrated to reduce model uncertainty, or how priorities for
future observational campaigns might evolve in response to
better use of existing data.

Meaningful progress with understanding the causes of
model uncertainty can be achieved by evaluating (against ob-
servations) a wide range of model “variants” that compre-
hensively sample important causes of uncertainty in 1Faer
(Johnson et al., 2020; Mikkelsen et al., 2025; Regayre et
al., 2020, 2023; Rostron et al., 2020; Zhong et al., 2023).
These variants can be generated from perturbed parameter
ensembles (PPEs) that systematically vary multiple uncertain
model parameters to explore the breadth of model behaviour
(e.g., Carslaw et al., 2013; Eidhammer et al., 2024; Elsaesser
et al., 2025; Qian et al., 2018; Yoshioka et al., 2019). PPE
studies, coupled with statistical analyses, have identified key
causes of climate model1Faer uncertainty. For instance, nat-
ural aerosols contribute more to 1Faer uncertainty over the
industrial period than other aerosol sources because of their
disproportionate influence on baseline aerosol concentrations
(Carslaw et al., 2013), while atmospheric process parameters
account for nearly half of the1Faer uncertainty through their
effect on cloud properties (Regayre et al., 2018).

Narrowing of the uncertainty in1Faer (or “constraint”) re-
mains a challenge, in part because the causes of 1Faer un-

certainty vary spatially and temporally due to differences in
atmospheric conditions and variations in aerosol emissions,
dominant processes and evolving climate impacts of aerosol
as they age (Regayre et al., 2014). For example, Regayre
et al. (2018) showed uncertainty in the radiative properties
of black carbon aerosol cause less than 5 % of the global
mean 1Faer uncertainty in most months but accounts for
around 50 % of the annual mean1Faer uncertainty near high-
emission sources, where black carbon influences boundary
layer stability, cloudiness and the susceptibility of clouds
to aerosol changes (Bond et al., 2013). Parameters may be
overlooked not only when their effects are regionally iso-
lated but also when causes of regional1Faer uncertainty can-
cel out in global mean calculations due to opposing forcing
sensitivities across different regions (Regayre et al., 2015).
For example, an increase in uncertain natural aerosol emis-
sions can suppress 1Faer (make it less negative) in relatively
clean regions (Carslaw et al., 2013) whilst enhancing 1Faer
(more negative) in polluted regions, where natural and an-
thropogenic sources combine to increase cloud lifetime (Al-
brecht, 1989; Regayre et al., 2015). Overcoming these chal-
lenges requires leveraging combinations of observations that
target specific processes (e.g. Sprintall et al., 2020), or col-
lectively account for uncertainties in aerosol emissions, de-
position, size, and composition, as well as microphysical in-
teractions between aerosol and clouds.

Observational constraints on 1Faer uncertainty are lim-
ited by three interlinked issues. First, only observations that
share causes of uncertainty with 1Faer can provide mean-
ingful constraint. Second, compensating model errors allow
multiple equally-plausible model variants (or equifinal vari-
ants; Beven and Freer, 2001) to agree with observations with-
out any narrowing of the credible 1Faer range. Third, struc-
turally imperfect models are susceptible to contrasting con-
straints, where two or more observations constrain a model
towards non-overlapping sets of parameter combinations.
When combined, these contrasting constraints force a com-
promise in model skill at simulating associated variables,
leaving us with models that on average only perform toler-
ably (Regayre et al., 2023).

These three issues must be considered collectively to
identify useful 1Faer constraints. For example, concentra-
tions of cloud condensation nuclei directly affect the mag-
nitude of 1Faer and so share causes of uncertainty, but as-
sociated observations only weakly constrain 1Faer because
of compensating errors in model microphysics (Lee et al.,
2016). Similarly, top-of-the-atmosphere radiative flux mea-
surements suffer from equifinality related to aerosol emis-
sion, processing and deposition process uncertainties, so only
weakly constrain 1Faer despite being a key quantity used to
calculate 1Faer (Regayre et al., 2018). Multi-season, multi-
location observational data constraints may partially over-
come the equifinality issue by introducing some orthogonal-
ity into the overall constraint. However, large observational
datasets typically contain a high degree of complementary
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information, as many observable variables share causes of
uncertainty and are therefore somewhat redundant (Regayre
et al., 2023). A broad set of observations can actually limit
the constraint effectiveness (e.g. Johnson et al., 2020) be-
cause using large data sets increases the likelihood of expos-
ing structural model deficiencies (Regayre et al., 2023).

Observations specifically designed (or collated) to isolate
differences between present-day and early-industrial envi-
ronments – such as hemispheric difference in cloud droplet
concentrations – more directly map onto1Faer (share causes
of uncertainty). These observations can bypass much of
the error compensation issue by leveraging the large, well-
characterized contrast between polluted and pristine environ-
ments, so do partially constrain 1Faer (McCoy et al., 2020).
Similarly, aerosol observations from targeted campaigns in
pristine environments (e.g. the Antarctic Circumnavigation
Expedition – Study of Preindustrial-like Aerosol Climate Ef-
fects; ACE-SPACE; Schmale et al., 2019) largely avoid the
effects of compensating errors and can uniquely constrain
natural aerosol concentrations and their precursors (Regayre
et al., 2020), which are critical for reducing 1Faer uncer-
tainty (Carslaw et al., 2013). However, constraining a model
to match a single observation type or environment risks over-
fitting – yielding a good match for one variable or set of con-
ditions, but with no guarantee of increasing climate projec-
tion skill.

To overcome all three limitations, models need to be con-
strained against a suite of observations that (1) share1Faer’s
causes of uncertainty, (2) collectively minimize the effect of
compensating errors, and (3) expose and avoid the effects
of structural model errors. Crucially, the dominant sources
of 1Faer uncertainty will likely shift once any observational
constraint is applied. This means the criteria for a “good”
constraint may evolve as observational constraints are ap-
plied, to better align with changing causes of uncertainty and
to address any newly revealed compensating errors or model
structural deficiencies.

This paper builds on the work of Regayre et al. (2023;
hereafter referred to as “R23”) to address the challenges out-
lined above. R23 constrained global, annual mean aerosol-
cloud interaction forcing (1Faci; the larger component
of 1Faer) in version 1 of the UK Earth System Model
(UKESM1; Sellar et al., 2019) by nearly 70 % (reduction
in 90 % credible interval width). This “optimal” constraint
reduced 1Faci uncertainty to the maximum limit with their
chosen observations and structurally imperfect model within
the explored parameter space, noting that total uncertainty
could be larger in free-running simulations or if additional
parameters were included. Yet over 30 % of the1Faci uncer-
tainty remains, with observationally plausible 1Faci values
ranging from −0.9 to −0.1 W m−2 (90 % credible interval)
and regional uncertainties up to around 20 W m−2.

To further constrain 1Faci towards the limits imposed by
observational uncertainties, several key challenges must be
addressed. First, we must distinguish between regions where

1Faci uncertainty has been constrained and regions where
the chosen observations had a weaker effect. Second, we
need to identify the model parameters that cause remain-
ing 1Faci uncertainty and how their contributions vary re-
gionally. Third, we must determine which existing or future
observations would best constrain these remaining causes
of 1Faci uncertainty. Tackling these challenges would opti-
mize the use of available observations and guide future cam-
paigns, creating a feedback cycle between model evaluation
and refinement, and observational design, as exemplified by
Carslaw et al. (2013), Hamilton et al. (2014), Schmale et al.
(2019) and Regayre et al. (2020).

Section 3.1 examines how each observation added to the
R23 optimal constraint reduces 1Faci uncertainty by elim-
inating specific parameter combinations. Section 3.2 maps
the remaining uncertainty, revealing significant heterogene-
ity in constraint efficacy. Section 3.3 identifies the causes of
remaining regional and global mean 1Faci uncertainty, and
Sect. 3.4 clusters regions according to shared causes of un-
certainty and identifies priorities for model development and
future observation campaigns. Finally, Sect. 4 discusses the
potential for further 1Faer constraint across the current gen-
eration of climate models, and ways the scientific community
might collaborate to achieve this elusive goal.

2 Methods

Regayre et al. (2023) used version 1 of the UK Earth Sys-
tem Model (UKESM1; Sellar et al., 2019) to create a 221-
member PPE that spans model responses to changes in 37
uncertain aerosol, cloud, and physical atmosphere model pa-
rameters (Appendix A, Table A1). Statistical emulators of
multiple variables were used to scale up from 221 ensem-
ble members to 1 million model variants (parameter com-
binations) which is sufficiently large to allow for robust
observational constraint using more than 450 observations
(Sect. 2.3), to identify localized model behaviour linked to
specific parameters (Sect. 2.4) and variance-based sensitivity
analyses (Sect. 2.5).

Regayre et al. (2023) identified the observation type that
provided the strongest 1Faci constraint, then progressively
added the next strongest observation, eventually reducing
1Faci uncertainty by nearly 70 % using a combination of
just 13 observation values. In this study, we build on the R23
foundation by analyzing the causes of the remaining 30 % of
1Faci uncertainty after optimal constraint. We quantify pa-
rameter contributions to remaining 1Faci uncertainty at the
model grid box level and within clusters of shared causes of
uncertainty (Sect. 2.5).

2.1 Experimental design

Regayre et al. (2023) used the atmosphere-only configura-
tion of UKESM1 to create their PPE. UKESM1 is based
on the HADGEM3-GC3.1 physical climate model (Williams
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et al., 2018) with additional coupling to key Earth sys-
tem processes, including the United Kingdom Chemistry
and Aerosol (UKCA) model (Archibald et al., 2020). The
atmosphere-only configuration (UKESM1-A) consists of the
GA7.1 atmosphere (Walters et al., 2019), with additional
aerosol, cloud, and physical atmosphere structural updates as
implemented in Mulcahy et al. (2020). R23 used UKESM1-
A at N96 horizontal resolution, which is 1.875° × 1.25°
(208 km × 139 km at the Equator), with 85 vertical levels
unevenly distributed between the surface and 85 km in al-
titude, matching the model version submitted to the 6th Cou-
pled Model Intercomparison Project (CMIP6; Eyring et al.,
2016). They nudged horizontal wind fields above around
2 km (model vertical level 17) towards ERA-Interim values
for the period December 2016 to November 2017 and pre-
scribed sea ice and sea surface temperatures for the same pe-
riod.

The model PPE members were forced using anthropogenic
SO2 emissions for the years 2014 and 1850, as prescribed
in CMIP6 simulations. Differences in top-of-the-atmosphere
radiative fluxes between the two anthropogenic emission
periods were used to calculate 1Faer values. The com-
ponents of 1Faer from aerosol-cloud interactions, 1Faci,
and aerosol-radiation interactions (1Fari) account for above-
cloud aerosol radiative effects (Ghan et al., 2016) and mul-
tiple cloud adjustments (Forster et al., 2021; Grosvenor and
Carslaw, 2020). Carbonaceous aerosol emissions were pre-
scribed using CMIP6 (1850) and Copernicus Atmospheric
Monitoring Service (CAMS; 2016-17) data, whilst ocean
surface concentrations of dimethylsulfide (DMS) and chloro-
phyll, as well as atmospheric concentrations of gas species
(including oxidants OH and O3, which R23 perturbed be-
tween 70 % to 130 % of baseline values) were prescribed us-
ing monthly mean output from a fully coupled version of the
UKESM model averaged over the 1979 to 2014 period. Ad-
ditionally, R23 prescribed volcanic SO2 emissions for con-
tinuously emitting and sporadically erupting volcanoes (An-
dres and Kasgnoc, 1998) and for explosive volcanic erup-
tions (Halmer et al., 2002).

Regayre et al. (2023) made structural changes to
UKESM1-A to better sample the breadth of 1Faci uncer-
tainty. Following Yoshioka et al. (2019), an ice mass fraction
threshold was defined, above which no nucleation scaveng-
ing occurs, to allow sufficient aerosol to be transported to the
Arctic (Browse et al., 2012). They also included an organi-
cally mediated aerosol nucleation parameterisation (Metzger
et al., 2010) to represent remote marine and early industrial
aerosol concentrations more accurately in the model. Addi-
tionally, R23 used high-resolution lookup tables for aerosol
optical properties (Bellouin et al., 2013) that include proper-
ties for mineral dust (Balkanski et al., 2007) and better re-
solve aerosol absorption.

2.2 Perturbed parameter ensembles and emulation

The Regayre et al. (2023) PPE was created in two stages us-
ing a history-matching style approach (Craig et al., 1997;
Williamson et al., 2013) to ensure that the 221 ensem-
ble members (parameter combinations) spanned the 37-
dimensional parameter space whilst achieving acceptable
agreement with large-scale climate metrics including the
global mean outgoing shortwave radiative flux. Following
Lee et al. (2012), Regayre et al. (2014), Sexton et al. (2021)
and Yoshioka et al. (2019), ranges for the 37 uncertain pa-
rameters were determined by formal expert elicitation using
the Sheffield Elicitation Framework (SHELF) approach de-
scribed in Gosling (2018).

Statistical Gaussian Process emulators (O’Hagan, 2006)
were used to extend the 221 climate model simulations to 1
million model variants. Emulators can very efficiently pre-
dict output for new model variants (parameter combinations)
compared to the time and computational resource required
to create climate model ensemble members. Furthermore, as
opposed to other machine-learning approaches, emulator un-
certainty can be quantified for any parameter combination, to
validate emulator skill and avoid over-constraint when com-
paring model variant output to observations (e.g. Johnson et
al., 2020).

Regayre et al. (2023) created statistical emulators of (a)
global mean 1Faer and its components 1Faci and 1Fari,
(b) regional mean cloud and radiative properties, and (c)
values from transects spanning stratocumulus- to cumulus-
dominated regions (Sect. 2.3). In total, they created and eval-
uated around 450 statistical emulators. Here, we create em-
ulators of annual mean 1Faci at the model grid box level.
Thus, we densely sample model 1Faci uncertainty, at more
than 27 000 geographical locations, using the same set of 1
million model variants (parameter combinations).

2.3 Observational constraint

Regayre et al. (2023) constrained 1Faci using multiple
satellite-derived cloud and radiation properties. Observations
used for constraint included liquid water path (LWP), liq-
uid cloud fraction (fc), cloud optical depth (τc), and cloud
droplet effective radius (re) from the MODIS instruments
(King et al., 2003). τc and re values were used to calcu-
late cloud droplet number concentration (Nd) values. Ob-
servational constraints also included outgoing top-of-the-
atmosphere shortwave radiative flux (FSW) measurements
from the Clouds and the Earth’s Radiant Energy System ex-
periment (CERES; Loeb et al., 2018). Regional mean obser-
vations were derived for regions of persistent stratocumulus
cloud in the North and South Atlantic, North, and South Pa-
cific and Southern Ocean. R23 also used hemispheric differ-
ences in marine Nd for constraint (Hd). For each observa-
tion type, monthly means, annual means and seasonal am-
plitudes were treated as distinct observations. R23 addition-
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ally made use of multiple observed relationships between
aerosol, cloud, and radiation properties along transects from
stratocumulus- to cumulus-dominated regions during hemi-
spheric summer months.

In total, R23 evaluated the 1Faci constraint potential of
more than 450 observations (more than 66 variables in 5
regions at multiple times). Nearly half of these observa-
tions were removed from the R23 constraint method because
they were identified as being associated with model struc-
tural deficiencies, revealed through pair-wise analysis of con-
straints using the original 1 million model variants. Struc-
tural model deficiencies lead to inconsistencies in pairs of
model variables, where they constrain the model towards
non-overlapping sets of parameter combinations (referred to
as the history-matching “terminal case”; Salter et al., 2019).
Thus, constraint to one observable variable greatly decreases
model skill at simulating the other, and constraint using both
variables forces a compromise towards a set of model vari-
ants with low skill at simulating either. R23 removed vari-
ables associated with structural deficiencies and used the re-
maining around 225 observations they considered pairwise
consistent with Nd, to search of an optimal constraint on
1Faci.

The optimal constraint on1Faci achieved in R23 made use
of just 13 observable variables. The R23 approach started
with the observation that most strongly constrained 1Faci.
They then identified the most compatible observation that, in
combination with the first, provided the strongest constraint
on 1Faci. This process continued by progressively adding
the observation that most tightly constrained 1Faci uncer-
tainty in combination with the existing set of observations. At
each stage of the constraint process, R23 compared emula-
tor mean and observed values, whilst accounting for statisti-
cal emulator uncertainty to retain a minimum of 5000 model
variants and avoid over-constraint. Including additional ob-
servable variables beyond the optimal set weakened the con-
straint. Hence, R23 described the optimal constraint as the
tightest constraint achievable with the chosen set of observa-
tions and structurally imperfect model.

2.4 Filtering implausible parameter values

In this article we explore how progressively adding obser-
vational constraints in the R23 optimal set affect the plau-
sible ranges of uncertain parameters and the credible range
of 1Faci. We evaluate 1Faci uncertainty in the “original”
set of 1 million model variants and in the “unconstrained”
set which excludes implausible parameter values that would
otherwise dominate analysis of the effects of observational
constraints on other parameters.

For most parameters, the R23 1Faci constraint affects the
likelihood of some parameter values, as seen in the marginal
distributions which are no longer uniform (Figs. S12 and S13
of Regayre et al., 2023). That is, in the set of model variants
that agree with observations, a given parameter value is more

likely to have a higher or lower value (as per the marginal
distribution) than in the release version of the model. How-
ever, for the parameters related to cloud droplet activation
(cloud updraft speed; sig_w) and the diameter of primary sul-
fate particles (prim_so4_diam), the constraint is stronger and
ruled out part of the parameter range as observationally im-
plausible – i.e., there is no way of combining these ruled out
parameter values with the other 36 model parameters to bring
them into agreement with observations (See R23 Figs. S12
and S13).

In the original set of 1 million model variants, 1Faci is
only sensitive to prim_so4_diam parameter values in a very
narrow part of the parameter range (Appendix A, Fig. A1).
For prim_so4_diam values lower than 10 nm, extremely high
aerosol number concentrations lead to unrealistically large
total surface area and smaller cloud condensation nuclei that
results in an implausible suppression of cloud formation in
the simulated present-day atmosphere, hence these values
were ruled out by the R23 constraint. The dominance of im-
plausibly low primary sulfate diameter effects inflated the
relative importance of this parameter in the original sensi-
tivity analysis – a known issue with high-dimensional sen-
sitivity analyses (Saltelli et al., 2019). Thus, our analysis of
the remaining1Faci uncertainty and the path to achieving the
optimal constraint, evaluates 1Faci uncertainty in the origi-
nal set of 1 million model variants and in the unconstrained
set of around 900 000 model variants associated with primary
sulfate diameters larger than 10 nm.

2.5 Causes of remaining variance

To quantify the sensitivity of 1Faci to each of the 37 uncer-
tain model parameters (and more generally, the dependence
of1Faci on parameters), we fit non-linear Generalized Addi-
tive Models (GAMs) to the emulated climate model output,
implemented using the “pygam” python package (Servén et
al., 2018). GAMs are particularly well-suited for analyz-
ing high-dimensional parameter spaces with heterogeneously
distributed data, which suits our needs since observational
constraints can remove parts of parameter space and even re-
duce the range of some parameter values (R23; Sect. 2.4).
We quantify the relative importance of parameters as causes
of 1Faci variance (referred to throughout as “causes of un-
certainty”), using variance-based sensitivity analyses (Strong
et al., 2014). Following R23, we quantify the sum of param-
eter effects on 1Faci variance then calculate the proportion
of this total that is caused by each parameter. However, the
relative importance values here differ from R23 because the
GAM method accounts for non-linearities in 1Faci depen-
dence on changing parameter values, whereas R23 used par-
tial correlations which primarily capture the strength of linear
relationships.

Here, marginal variances are calculated by setting all other
parameters to the median of the original or constrained sam-
ple, then evaluating output from the GAM function. Al-
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though the GAM fit is multi-dimensional, this approach al-
lows us to derive 1Faci variances that are only affected by
changes in the target parameter. Using the GAM approach,
we can robustly quantify causes of remaining uncertainty
after each observational constraint, or combination of con-
straints, is applied, by calculating marginal sensitivities over
the partially reduced parameter space. Thus, this approach
can provide insight into how the relative importance of model
parameters as causes of1Faci uncertainty evolve as observa-
tional constraints are progressively added to achieve the R23
optimal set.

2.6 Regional clusters of model behaviour

We use K-means clustering (Pedregosa et al., 2011) to iden-
tify distinct sets of model behaviour. K-means clustering is
an unsupervised machine-learning technique, that partitions
data into clusters of similar behaviour, based on similarity to
cluster means. In our case, K-means clusters are defined us-
ing proportional contributions to 1Faci uncertainty from 37
model parameters, across more than 27 000 geographical lo-
cations. Using this approach, we identify regions of shared
causes of 1Faci uncertainty in model variants from (a) the
original set of 1 million, (b) the unconstrained set of around
900 000, and (c) in the optimally constrained set of 5000.

3 Results

We frame our evaluation of the processes that cause remain-
ing 1Faci uncertainty in three stages:

1. Evaluate how causes of global mean 1Faci uncertainty
change as each observational constraint was added in
R23 (Sect. 3.1). This approach will be used to isolate
the effect of each observation on processes-level uncer-
tainties and to highlight how observational constraints
combine to form an overall optimal constraint.

2. Quantify causes of remaining 1Faci uncertainty at the
model grid box level (Sect. 3.2). By doing so, we aim
to identify any parameters with spatially coherent influ-
ence on remaining 1Faci uncertainty (Sect. 3.3).

3. Group the causes of model1Faci uncertainty at the grid
box level into clusters with similar causes of parametric
uncertainty (Sect. 3.4). We evaluate these spatial pat-
terns to understand where the R23 constraint was strong
and where it was weak, and to identify existing and
novel observations that could further constrain 1Faci.

3.1 The effect on the causes of ∆Faci uncertainty of
progressively adding observations

Regayre et al. (2023) analyzed one-at-a-time perturbation ex-
periments and evaluated shared causes of uncertainty (be-
tween1Faci and observable variables) to provide hypotheses

about which of the 13 observations in the optimal set most
likely contributed to constraining model parameters. Here,
we use GAM analyses (Sect. 2.5) to examine the changes in
parametric causes of 1Faci uncertainty more closely as each
constraint is applied.

Figure 1 shows the most important parametric causes of
global mean 1Faci uncertainty for the original set of 1 mil-
lion model variants and for the uncertainty that remains af-
ter progressively applying constraints until the R23 optimal
constraint is reached. The parameter controlling the emission
diameter of primary sulfate aerosol (prim_so4_diam) is the
dominant cause of 1Faci uncertainty (around 55 % of uncer-
tainty) in the original set of model variants (See Sect. 2.4; Ta-
ble A2). The cloud updraft velocity parameter (sig_w), which
affects droplet activation, causes around 14 % of the 1Faci
uncertainty and several other parameters related to natural
aerosol emission fluxes and removal processes each cause
around 5 % to 10 % of the 1Faci uncertainty (Table A2).
The small number of model parameters affecting the original
1Faci uncertainty suggests that an informed choice of ob-
servations could achieve strong constraint. However, we find
that the relative importance of uncertainty sources changes
as constraints are progressively applied. Parameters that ini-
tially seem unimportant contribute more than a few percent to
the remaining uncertainty after constraint, which suggests in-
depth analysis of spatial variation in the process-level drivers
of remaining uncertainty, before and after optimal constraint,
may reveal observations with potential to further constrain
1Faci.

The first of the 13 observational constraints used to
achieve the R23 optimal constraint is Hd in August. Ob-
served Hd provides a contrast between marine Nd in the
polluted Northern Hemisphere (NH) and the relatively pris-
tine Southern Hemisphere (SH), which can act as a proxy
for the difference in Nd between the present-day and early-
industrial atmospheres (McCoy et al., 2020). Constraint to
match observed Hd in August reduces the proportion of un-
certainty caused by primary sulfate (prim_so4_diam) from
around 55 % to only around 25 % and the proportion caused
by cloud droplet activation (sig_w) from around 14 % to
around 11 % (Fig. 1 and Table A2). The sig_w parameter
is constrained towards lower values (Supplement Fig. S12
in R23), consistent with lower Nd concentrations in updraft-
limited (mostly polluted NH) regions (Reutter et al., 2009),
lower Hd (see Supplement Fig. S16 in R23) and thus weaker
(less negative)1Faci (Fig. 1; below the zero line indicates in-
creasing the sig_w parameter value strengthens 1Faci). The
prim_so4_diam parameter is constrained towards higher val-
ues which is also consistent with lower NH Nd and lower
Hd values (Supplement Fig. S16 in R23; Cao et al., 2023).
However, increasing primary sulfate diameters is associated
with stronger (more negative) 1Faci (Fig. 1) due to the dom-
inant influence of the smallest particle diameter values on the
1Faci dependence on this parameter (Sect. 2.4 and Fig. A1).
Thus, the August Hd observation rules out the strongest and
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Figure 1. Causes of uncertainty in 1Faci for the original set of 1
million model variants, and after observational constraint to Au-
gust Hd (Aug. Hd), then progressively adding North Pacific Nd
in September (Sept. Nd N. Pacific), March Hd (Mar. Hd), North
Pacific fc in August (Aug. fc N. Pacific) and finally, for the R23
optimal constraint. Only parameters that cause at least 2 % of the
uncertainty are shown. See Table A2 for contributions from all pa-
rameters. Parameter contributions to uncertainty are multiplied by
the sign of linear 1Faci sensitivity to increasing parameter values,
thus for parameters below the zero line, increasing the parameter
value reduces 1Faci, making it more negative.

weakest 1Faci values (tails of the 1Faci distribution) reduc-
ing the 90 % credible range from (−1.6 to 1.0 W m−2) to
(−1.2 to 0.2 W m−2). This significant reduction in impor-
tance of model parameters that dominate the original uncer-
tainty, using just one observational constraint, highlights the
importance of re-evaluating the remaining causes of 1Faci
uncertainty during the constraint process.

Other parameters cause a larger proportion of the remain-
ing 1Faci uncertainty after August Hd constraint (Fig. 1; Ta-
ble A2). The most prominent increases in importance are in
the turbulent cloud top entrainment parameter (a_ent_1_rp,
a physical atmosphere parameter), natural aerosol emission
parameters (dms and sea_salt) and the aerosol accumula-
tion mode dry deposition velocity (dry_dep_acc), for which
the contributions to uncertainty approximately double to be-
tween 5 % and around 14 %. Several physical atmosphere pa-
rameters (bparam, two_d_fsd_factor, autoconv_exp_nd and
ai), which caused less than a few percent of the original
1Faci uncertainty, emerge as important causes of remain-
ing uncertainty after the Hd constraint. These results suggest
over-reliance on selecting observational constraints based on
original causes of 1Faci uncertainty can be misleading, as
these causes of uncertainty are likely to be amongst the easi-
est to constrain. In our case, implausibly low primary sulfate

emission diameters and too-high droplet activation mask the
influence of other causes of uncertainty, such as (a) those that
affect the early-industrial background aerosol concentration
(Carslaw et al., 2013) and (b) physical atmosphere parame-
ters that affect 1Faci by altering the atmospheric state (Re-
gayre et al., 2018).

The relative importance of model parameters as causes
of remaining 1Faci uncertainty continues to evolve as ad-
ditional observational constraints are applied, although the
first few constraints cause the largest changes (Fig. 1 and
Table A2). The prim_so4_diam and sig_w parameters con-
tribute less to the remaining 1Faci uncertainty with each
additional constraint, to the point where after optimal con-
straint, these parameters together contribute only 8 % of the
remaining 1Faci uncertainty compared with nearly 70 % in
the original set of model variants.

A different set of parameters cause the remaining global
mean 1Faci uncertainty, after optimal constraint, than those
causing 1Faci uncertainty in the original set of model vari-
ants (Fig. 1 and Table A2). Several parameters, mostly natu-
ral emission flux and physical atmosphere parameters, are ef-
fectively unconstrained by the optimal set of observations, so
their contributions to remaining 1Faci uncertainty increase
with each new observational constraint. Parameters that af-
fect background aerosol concentrations together cause nearly
half of the remaining 1Faci uncertainty after optimal con-
straint (sea_salt 17 %, dry_dep_acc 14 % and dms 12 %).
This suggests there is potential for additional observational
constraint of 1Faci beyond the R23 optimal constraint us-
ing, for example, observations in remote marine regions (Re-
gayre et al., 2020; Schmale et al., 2019). Additionally, sev-
eral physical atmosphere parameters together cause around
32 % of the remaining 1Faci uncertainty (a_ent_1_rp: 9 %,
two_d_fsd_factor: 6 %, autoconv_exp_nd: 4 %, bparam and
ai: 3 % each, and 1 % to 2 % from other parameters), which
highlights the need to identify and use observations that will
constrain physical atmosphere processes that cause 1Faci
uncertainty by altering the cloud properties and thus sensi-
tivity to aerosol (Mülmenstädt et al., 2024).

3.2 Regional constraint and remaining ∆Faci uncertainty

In this section we explore where the R23 optimal con-
straint has the strongest and weakest effect on 1Faci un-
certainty. Figure 2a shows that in the original set of 1 mil-
lion model variants, 1Faci uncertainty (90 % credible inter-
val) is concentrated in regions of persistent stratocumulus
cloud as expected, since the radiative properties of clouds
in these regions are highly susceptible to aerosol. How-
ever, 1Faci is also highly uncertain (90 % credible interval
range greater than 5 W m−2) over continental regions near
to anthropogenic emission sources, particularly over cen-
tral China, and South American coastal regions. Over most
ocean regions, even those regions far from persistent stra-
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tocumulus cloud, the unconstrained 1Faci uncertainty ex-
ceeds 2 W m−2.

Figure 2b shows the effect of removing the 10 % of model
variants associated with implausibly low primary sulfate di-
ameters (Sect. 2.4 and Fig. A1). Uncertainty in 1Faci is re-
duced to less than 10 W m−2 in most regions where it was
originally between 10 to 20 W m−2 (Fig. 2a). This suggests
a significant proportion of 1Faci uncertainty near anthro-
pogenic emission sources in the original set of model vari-
ants was caused by the over-wide perturbed range of the
prim_so4_diam parameter in R23.

After the optimal constraint, uncertainty in 1Faci is re-
duced by between 60 % to 80 % across NH marine regions,
most continental regions, in the tropical Atlantic and very
prominently along the South-East Atlantic shipping corri-
dor to the west of Africa (Fig. 2c, d) – note the clear ship-
ping lane in Fig. 2d where primary sulfate will have dom-
inated the uncertainty in the original set of model variants.
However, there are some regions where 1Faci uncertainty is
largely unaffected by the R23 optimal constraint. For exam-
ple, over parts of the South Pacific, North-East Pacific and
outside the South Atlantic shipping corridor, 1Faci uncer-
tainty is reduced by less than 30 %, so remains between 4 to
10 W m−2. Additionally, over much of inland China the con-
straint is less than around 10 % and the remaining uncertainty
is more than 10 W m−2. These results suggest there is poten-
tial to further constrain 1Faci using observations that target
whichever processes cause remaining uncertainty in these re-
gions.

3.3 Causes of remaining ∆Faci uncertainty at the
regional level

In this section we quantify parametric contributions to re-
maining 1Faci uncertainty after optimal constraint at the
model grid box level. It is essential to constrain sub-global
1Faci because anthropogenic aerosol can produce regional
climate responses that contribute to projection uncertainty
(e.g. Chemke and Dagan, 2018; Peace et al., 2022; Shindell,
2014; Williams et al., 2022). Regional variations in the rela-
tive importance of parameters as causes of1Faci uncertainty
can be overlooked by global mean analyses (Regayre et al.,
2015). Evaluating uncertainty at the model grid box level
can reveal (a) cancellation of regional effects in the global
mean, where the1Faci dependence on model parameters has
opposing signs in different regions, (b) large but geographi-
cally isolated causes of 1Faci uncertainty that do not stand
out in global mean analyses, and (c) widespread small con-
tributions to uncertainty that compound to elevate parameter
importance in the global mean analysis. Each of these cases
demands a different strategy for further constraint of 1Faci
uncertainty.

Regional patterns of parameter influences on remaining
1Faci uncertainty reveal a more complex picture than is ap-
parent from an analysis of the global mean (Sect. 3.1). Fig-

ure 3 shows maps of parametric contributions to 1Faci un-
certainty after optimal constraint, weighted by the remaining
uncertainty (Fig. 2c) and the sign of 1Faci dependence on
each parameter (as with Fig. 1). These composite maps high-
light the parameters that cause remaining uncertainty and the
regions where contributions are most pronounced. Although
calculations were performed at the model grid box level,
Fig. 3 reveals spatially coherent patterns of parameter influ-
ences on 1Faci uncertainty. At the global mean scale, only
6 of the 37 parameters cause 5 % or more of the remaining
1Faci uncertainty (Fig. 1 and Table A2) but at the regional
scale at least 15 parameters significantly affect 1Faci uncer-
tainty in multiple regions (Fig. 3) and almost all parameters
contribute to remaining 1Faci uncertainty in at least one re-
gion (Figs. A2, A3).

The parameters controlling primary sulfate emission diam-
eter (prim_so4_diam) and cloud droplet activation (sig_w)
were tightly constrained by R23 (Fig. 1), but together they
still contribute more than 50 % of the remaining 1Faci un-
certainty in some regions, notably over China and the South
American coast where more than 50 % of the original un-
certainty remains (Fig. 2d). If 1Faci dependence on these
parameters were similar across all regions, the 1Faci uncer-
tainty would be constrained everywhere. However, the un-
certainty caused by these parameters is reduced in some re-
gions but not others, which suggests 1Faci dependence on
prim_so4_diam and sig_w (in conjunction with other param-
eter effects) over China and the South Pacific is not the same
as the 1Faci dependence in regions where 1Faci was more
strongly constrained (Fig. 2d).

Several parameters make large-scale, spatially coherent
contributions to remaining 1Faci uncertainty. For example,
the sea_salt and dms parameters are important over most
marine environments, contributing 17 % and around 12 %
of the remaining global mean 1Faci uncertainty respectively
(Fig. 1). An increase in the magnitude of these natural aerosol
emission parameters weakens 1Faci (less negative) every-
where. However, sea_salt has a strong influence on global
mean1Faci uncertainty due to its influence in the NH, whilst
dms is most important in the south-eastern Pacific coastal re-
gion. The dms parameter affects secondary aerosol formation
and particle growth, so causes more remaining 1Faci uncer-
tainty in this relatively polluted region with high present-
day aerosol concentrations. The aerosol removal parame-
ter dry_dep_acc also causes around 14 % of the remaining
1Faci uncertainty. This parameter is most important in re-
gions of outflow from anthropogenic pollution sources. In-
creasing aerosol removal rates in these regions strengthens
annual mean 1Faci (more negative) by reducing baseline
aerosol concentrations which makes clouds more susceptible
to aerosol changes (Carslaw et al., 2013), though the sign of
this effect varies across seasons (Regayre et al., 2015). Ad-
ditionally, the parameter controlling turbulent entrainment,
a_ent_1_rp, causes around 9 % of the remaining 1Faci un-
certainty, with the largest contributions in marine regions as-
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Figure 2. Annual mean 1Faci uncertainty (90 % credible interval ranges) in model grid boxes from (a) the original set of 1 million model
variants, (b) the unconstrained subset with the lowest prim_so4_diam values filtered out and (c) the R23 optimally constrained set of model
variants, as well as (d) the proportion of original uncertainty remaining after optimal constraint, in locations where original forcing was
greater than 3 W m−2.

sociated with stratocumulus to cumulus transition. Increasing
the entrainment rate weakens 1Faci (less negative) in these
regions by reducing cloud amount and thus susceptibility to
aerosol changes.

The sign of 1Faci dependence on parameter perturbations
can vary between regions. This indicates that changing a pa-
rameter value strengthens1Faci in some regions but weakens
it in others. For example, there is a clear boundary between
Eastern and Western China, where the dependence of 1Faci
on several physical atmosphere parameters changes sign
(bparam, two_d_fsd_factor, c_r_correl, autoconv_exp_lwp,
dbsdtbs_turb_0, a_ent_1_rp). These sign changes are also
evident within some ocean basins (e.g. dbsdtbd_turb_0 and
m_ci in the South Pacific; two_d_fsd_factor in the North At-
lantic). Furthermore, the change in sign of1Faci dependence
on physical atmosphere parameters aligns spatially with the
influence of the parameter controlling black carbon radiative
properties (bc_ri). For example, this parameter is the domi-
nant cause of 1Faci uncertainty in central China (more than
30 %) yet contributes relatively little to 1Faci uncertainty in
neighbouring Chinese regions (around 10 %). We hypothe-
sise the sign of 1Faci dependence on physical atmosphere
parameters is determined by the effect of the bc_ri parame-
ter, which determines the importance of physical atmosphere
parameters by affecting boundary layer stability and cloud
properties including cloud depth (Bond et al., 2013; Zhuang
et al., 2010).

Non-uniform regional variation in the parameters causing
1Faci uncertainty means that global mean 1Faci is resistant
to the type of broad regional mean observational constraints
applied by R23. That is, comparing regional mean model
output to observations sub-optimally combines smaller-scale
variations in 1Faci dependence on uncertain model param-
eters. Thus, this analysis of remaining 1Faci uncertainty at
the model grid box scale provides new insight into how ob-
servational constraints can be calculated and applied. In the
following section, we take this analysis further by clustering
the data according to shared causes of remaining 1Faci un-
certainty rather than by geographical region. Theoretically,
further1Faci constraint could be achieved using targeted ob-
servations within these clusters of shared causes of uncer-
tainty (Lee et al., 2016).

3.4 Regional clusters of remaining ∆Faci uncertainty
and observations to constrain them

In this section, we explore how clustering regions according
to their shared causes of remaining1Faci uncertainty can in-
form future strategies for further observational constraint.

In Fig. 4 we cluster the combinations of parameters that
cause unconstrained and remaining 1Faci uncertainty (see
also Fig. A4 – a similar map for the original 1Faci uncer-
tainty). Each cluster is concentrated in regions determined by
the importance of locally dominant processes. Neighbouring
clusters typically share one or more important parameters,
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Figure 3. Maps of key parametric causes of remaining 1Faci uncertainty after R23 optimal constraint. Shading indicates the proportion of
1Faci uncertainty caused by individual parameters, multiplied by the 90 % credible interval range in that grid box and by the sign of the
1Faci sensitivity to increasing the parameter value. Negative values indicate increasing the parameter value is associated with stronger (more
negative) 1Faci values. Regions where the 1Faci 90 % CI is less than 3 W m−2 are masked.

which suggest causes of 1Faci uncertainty vary systemati-
cally across regions defined by these clusters. Spatial cov-
erage of some clusters is reduced by the optimal constraint.
Coverage is reduced by at least 75 % for the 2nd (orange) and
8th (grey) clusters and by around 50 % for the 3rd (green)
cluster after optimal constraint. Reduced spatial coverage of
these clusters (across continental Europe and North Amer-
ica, and high latitude marine regions) suggests combinations
of parameters associated with them are constrained by R23
in certain areas. However, the persistence of these clusters
in other regions suggests 1Faci dependence on model pa-

rameters is not uniform within clusters. This may be due to
interactions with other uncertain parameters or regional dif-
ferences in how parameters affect 1Faci.

Figure 5 shows how progressively adding observations to
the optimal constraint affects causes of 1Faci uncertainty in
each cluster (Fig. 4). The cloud droplet activation parameter
(sig_w) and primary sulfate parameter (prim_so4_diam) are
constrained by more than 50 % in most clusters. However,
other parameters are not strongly constrained and therefore
cause a similar or higher proportion of remaining 1Faci un-
certainty after constraint. The persistence of key causes of
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Figure 4. Maps of shared causes of remaining 1Faci uncertainty, (a) in the unconstrained set of model variants (the 90 % of the original 1
million with prim_so4_diam parameter values larger than 10 nm; Sect. 2.4), and (b) after R23 optimal constraint. Model grid boxes where
remaining1Faci uncertainty is less than 0.5 W m−2 are masked. The legend shows the 4 most important causes of uncertainty in each cluster
and counter-clockwise shading in the pie charts shows the corresponding proportions of uncertainty caused by these parameters, out of 100 %
total, with the white region representing contributions from the other 33 parameters.

1Faci uncertainty in each region, even as the overall uncer-
tainty is reduced, suggests that the R23 constraint only par-
tially constrains the governing processes. A deeper under-
standing of how these parameters interact with other causes
of1Faci uncertainty at the regional level is needed to inform
further constraint efforts.

Our analysis of remaining 1Faci uncertainty focusses
on clusters where 1Faci is resistant to the R23 constraint
(Fig. 2), beginning with Asia, where 1Faci uncertainty is
weakly constrained (less than 30 %) so remains greater than
10 W m−2. Asia is partitioned into three clusters of remaining
uncertainty (2: orange, 6: brown and 8: grey). In Sect. 3.3, we
described how the parameter controlling the refractive index
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Figure 5. Proportion of 1Faci variance caused by the 37 parameters in the first 10 unconstrained (left) and all 10 optimally constrained
(right) clusters. Cluster indices and colors on the x-axis match Fig. 4. Parameter contributions to 1Faci variance are shown in consistent
order for each bar, though near-zero contributions are not always visible.

of carbonaceous aerosol (bc_ri) can affect the atmospheric
state and thus the sign of 1Faci dependence on some phys-
ical atmosphere parameters (Fig. 3). The bc_ri parameter is
particularly important in Cluster 6 (brown) where in com-
bination with the dry deposition parameter (dry_dep_acc) it
causes nearly 50 % of the remaining 1Faci uncertainty. This
cluster extends into the Indian Ocean, East China Sea and
western Pacific. The two main causes of remaining1Faci un-
certainty in this cluster (deposition processes and aerosol op-
tical properties) also represent major sources of multi-model
diversity in aerosol optical depth over biomass burning re-
gions (Petrenko et al., 2025). In theory, available measure-
ments of carbonaceous aerosol optical properties within this
cluster over Asia (e.g. Budhavant et al., 2024; Sun et al.,
2024) should further reduce regional1Faci uncertainty by up
to 35 %. However, observed variability in optical properties,
driven by differences in aerosol mixing state (Bond et al.,
2013; Fierce et al., 2016; Lack and Cappa, 2010), is not well
represented in climate models. It is difficult to attribute ra-
diative effects to individual species using climate models be-
cause aerosol species are typically treated as internally mixed
(mixing state assumptions; e.g. Sand et al., 2021). As a result,
observational constraints based on in-situ data may not be
representative of the entire cluster, particularly across multi-
ple regions. In such cases, region-specific observational con-
straints may be needed to constrain the cluster contribution
to global mean 1Faci uncertainty.

Over densely populated and industrialized regions of Asia
(Cluster 2, orange; spanning India, China’s coast, Indone-
sia, Japan and Korea) the remaining uncertainty in 1Faci is
dominated by dry deposition (dry_dep_acc), cloud droplet
activation (sig_w) and primary sulfate emission properties
(prim_so4_diam). Cloud droplet activation in these regions
is strongly controlled by updraft velocity, consistent with an
updraft-limited regime at high aerosol concentrations (Reut-
ter et al., 2009). It is essential to constrain 1Faci uncer-
tainty in updraft-limited regimes because the sensitivity of

cloud properties to aerosol under these conditions shapes our
understanding of future climate responses (Andersen et al.,
2023; Jia and Quaas, 2023).

Cluster 2 (orange), most dominant over Asia, spans sev-
eral other industrial zones, including the coasts of North and
South America, Africa, and the Mediterranean, so constraint
of the combined parameter effects on 1Faci in any of these
regions could reduce uncertainty more widely unless these
three parameters have regionally specific values (currently
not assumed in the model). Opportunities for widespread
constraint of uncertainty in Cluster 2 may be found through
existing observations. For example, additional 1Faci con-
straint beyond R23 might be achieved using in-situ sulfate
concentration and aerosol deposition measurements from
Japanese EANET (Acid Deposition Monitoring Network in
East Asia) stations (Endo et al., 2011) in combination with
extensive in-situ concentration and size distribution observa-
tions collected as part of the Aerosol Characterization Ex-
periments (ACE) Asia (Huebert et al., 2003). Over Peru
and Ecuador, where remaining uncertainty exceeds 5 W m−2

(Fig. 2c), the relevant observations are currently lacking so
far as we are aware. While the VOCALS campaign (Wood et
al., 2011) measured atmospheric properties within our Clus-
ter 2, aerosol data were only collected further south. Other
campaigns in our target region measure deposition fluxes
(e.g. Baker et al., 2016) but focus on metal deposition as a
source of marine biogenic activity, so are not suitable for
broader climate model constraint. The lack of suitable ob-
servations in this region highlights a specific opportunity:
novel measurements using, for example, condensation par-
ticle counters (for aerosol concentration data), mobility par-
ticle size spectrometers (for aerosol size distributions) and
deposition collectors (removal rates) at specific coastal sites
aligned to prevailing wind direction could play a critical role
in reducing 1Faci uncertainty.

Remaining uncertainty over the North Pacific and North
Atlantic Oceans share four main clusters: in the west near-
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est to outflowing anthropogenic pollution it is Cluster 2
(orange), immediately downwind it is Cluster 10 (cyan),
which transitions into Cluster 3 (green) and ultimately Clus-
ter 4 (red) on the eastern side of each NH ocean basin.
Although R23 constrained 1Faci uncertainty by more than
70 % in NH marine regions (Fig. 2d), the uncertainty re-
mains greater than 3 W m−2 (Fig. 2c). The aerosol deposition
parameter (dry_dep_acc) causes nearly 25 % of the remain-
ing 1Faci uncertainty in Cluster 10 (cyan), with more than
10 % each from natural aerosol emission parameters (dms
and sea_salt) and around 10 % from the parameter control-
ling turbulent cloud top entrainment (a_ent_1_rp). The im-
portance of aerosol removal (dry_dep_acc) decreases to less
than 10 % in Cluster 3 (green) and less than 5 % in Clus-
ter 4 (red). In contrast, the cloud top entrainment parameter
(a_ent_1_rp) increases in importance further from anthro-
pogenic emission sources, causing around 10 % of the re-
maining 1Faci uncertainty in Cluster 3 (green) and around
35 % in Cluster 4 (red) where remaining uncertainty is great-
est (larger than 5 W m−2). In the central Cluster 3 (green)
which covers most of the NH mid-Atlantic and mid-Pacific
regions, sea salt emissions (sea_salt) and dimethylsulfide
emissions (dms) combine to cause more than 25 % of the re-
maining uncertainty.

These results suggest 1Faci could be further constrained
over NH ocean regions using existing observations that tar-
get each cluster. For example, extensive aerosol, cloud and
radiation measurements from the Department of Energy At-
mospheric Radiation Measurement (ARM) site on Graciosa
Island (Mather and Voyles, 2013; Zheng et al., 2018) and as-
sociated Eastern North Atlantic flight campaign (ACE-ENA;
Wang et al., 2022; Yeom et al., 2021) may help reduce1Faci
uncertainty associated with cloud top entrainment (param-
eter a_ent_1_rp) and natural aerosol emissions (dms and
sea_salt) in Cluster 4 (red). These measurements could be
complemented by sea salt mass concentration measurements
from Atmospheric Tomography (ATom) missions (Brock et
al., 2022), which span Clusters 3 (green) and 4 (red) across
both the North Pacific and North Atlantic (e.g. Murphy et
al., 2019), and aerosol concentration and size distribution
measurements from the North Atlantic Aerosols and Marine
Ecosystems Study (NAAMES) in Cluster 10 (cyan) within
the western North Atlantic (Gallo et al., 2023).

There is a contrast between clusters of 1Faci uncertainty
in NH and SH marine regions. Cluster 3 (green) is less
prominent in the SH, where Cluster 5 (purple) features in
each ocean basin, accompanied by Cluster 9 (yellow) and,
except in the South Pacific, Cluster 4 (red). 1Faci uncer-
tainty is only weakly constrained (by 40 % or less) in these
regions (Fig. 2d). In each of these clusters, the dominant
parameter is the one controlling how the spatial distribu-
tion of clouds affects radiation within model grid boxes
(two_d_fsd_factor), causing around 20 % of the remaining
1Faci uncertainty in Cluster 5 and around 10 % in other
clusters. Additional contributors to remaining uncertainty in-

clude the cloud-precipitation overlap parameter (c_r_correl;
around 15 % in Cluster 5) and an autoconversion sensitivity
parameter (autoconv_exp_lwp; more than 5 % in Cluster 9).
The importance of these physical atmosphere model param-
eters suggests a need to constrain the transition from stra-
tocumulus to cumulus clouds, which might be achieved us-
ing process-based observations, such as co-varying aerosol
and cloud properties (e.g. Gryspeerdt et al., 2016), subject to
addressing discrepancies between models and satellite data
(Kokkola et al., 2025; Quaas et al., 2020). However, model
structural deficiencies have thus far prevented observed cloud
properties associated with these physical atmosphere param-
eters being used as constraints (Regayre et al., 2023). In prac-
tice, model developments informed by large eddy simulation
analyses (e.g. Sansom et al., 2024) may be needed to im-
prove cloud transitions in global climate models and further
constrain 1Faci uncertainty in SH marine regions.

4 Conclusions

The Regayre et al. (2023) optimal constraint reduced global
annual mean 1Faci uncertainty by nearly 70 % (90 % cred-
ible interval spanning −0.9 to −0.1 W m−2). However, our
results here show that the observational constraint did not
affect all regions (Fig. 2d) or causes of uncertainty (Fig. 5)
equally. Although the uncertainty caused by the two main
drivers of original 1Faci uncertainty, parameters controlling
the diameter of primary sulfate particles (prim_so4_diam)
and cloud droplet activation (cloud updraft speed; sig_w),
is greatly reduced, all other parameters cause a similar or
greater proportion of remaining uncertainty (Fig. 5 and Ta-
ble A2). Remaining 1Faci uncertainty is greatest in conti-
nental Asia (90 % credible interval greater than 10 W m−2)
and SH regions of persistent stratocumulus cloud (5 to
10 W m−2; Fig. 2c).

By analyzing clusters of shared causes of remaining1Faci
uncertainty (Fig. 4), we identify specific existing observa-
tional data likely to further constrain1Faci in our model (Ta-
ble 1). However, observations related to key causes of uncer-
tainty are not available across all regions and clusters. For ex-
ample, novel observations of aerosol species concentrations,
size distributions and deposition fluxes at multiple sites along
the coasts of Peru and Ecuador would be highly valued for
their potential to further constrain1Faci in Cluster 2 (orange)
which would have a broad impact on remaining uncertainty
in other regions of persistent uncertainty. These results show
how evaluating models within an uncertainty framework can
identify novel observations which, if made, would likely pro-
vide far-reaching additional constraint of 1Faci.

The conventional approach to model development typi-
cally focusses on increasing model fidelity, often inspired
by the detection of biases or insights from multi-model in-
tercomparisons (Chen et al., 2021). However, apparent im-
provements in model skill can largely be attributed to param-
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Table 1. Summary of existing observations with high potential to further constrain 1Faci, and the processes they would target.

Cluster(s) Key observation data Source(s) Spatial extent of
cluster(s)

Target causes of
remaining 1Faci
uncertainty

Brown: 6 Carbonaceous aerosol
optical properties

Budhavant et al. (2024); Sun et
al. (2024)

Central China, SE
Asia, Indian Ocean,
NW Pacific

bc_ri; dry_dep_acc

Orange: 2 Species concentrations;
Aerosol deposition;
Aerosol size
distribution

EANET – Endo et al. (2011);
ACE-Asia – Huebert et al.
(2003)

Eastern China, India,
Industrialized coastal
regions

dry_dep_acc; sig_w;
prim_so4_diam

Cyan: 10 Species concentrations,
Aerosol size
distribution

NAAMES – Gallo et al. (2023) NW Pacific, NW
Atlantic, SE Pacific,
Arctic

dry_dep_acc; sea_salt;
dms

Green: 3 Sea salt concentrations ATom – Brock et al. (2022);
Murphy et al. (2019)

North Pacific, North
Atlantic

sea_salt; dms;
dry_dep_acc

Red: 4 Aerosol number
concentration, Aerosol
size distribution, Cloud
and aerosol vertical and
radiative properties

ARM (Graciosa Island) –
Mather and Voyles (2013);
Zheng et al. (2018);
ARM-ENA – Wang et al.
(2022); Yeom et al. (2021)

NE Atlantic, NE
Pacific, SE Atlantic;
SE Indian

a_ent_1_rp

Purple: 5
and
Yellow: 9

Co-varying aerosol and
cloud properties

Gryspeerdt et al. (2016) Southern Hemisphere
marine regions

two_d_fsd_factor;
c_r_correl;
autoconv_exp; sea_salt

eter retuning rather than genuine structural advances (Ros-
tron et al., 2025). Increasing model fidelity carries a com-
putational burden which is not always beneficial (Proske et
al., 2022). Operationalizing a more targeted model devel-
opment cycle requires structural modifications, evaluation
within an uncertainty framework (Lee et al., 2012; Sexton et
al., 2021), and successive waves of observational constraint
to reduce model uncertainty and reveal structural deficien-
cies (Elsaesser et al., 2025; Fierce et al., 2024; Johnson et
al., 2020; McNeall et al., 2016; Regayre et al., 2023). Diag-
nosing the causes of remaining uncertainty, as demonstrated
here, is a key step in this cycle.

Here we have described a workflow for constraining
(narrowing uncertainty in) aerosol radiative forcing that
combines perturbed parameter ensembles (PPEs), extensive
observational constraints and statistical analyses to track
changes in the causes of uncertainty as observational con-
straints are progressively applied. Systematically analyzing
the causes of remaining 1Faci uncertainty after observa-
tional constraint enables us to: (a) identify regions where
model uncertainty resists observational constraint (highlight-
ing where additional observational data are most needed)
and (b) partition regions into clusters of shared uncertainty
sources (pointing to existing and novel observation types
that could further reduce 1Faci uncertainty). Our analysis
also suggests model uncertainty may be more effectively

constrained if observational constraints were applied within
clusters of common causes of model uncertainty, rather than
across geographic regions that are likely to span multiple
clusters. This approach to model evaluation and constraint
provides actionable information to guide both further obser-
vational constraint and efforts to increase model fidelity that
directly target 1Faci uncertainty.

The workflow of progressive observational constraint and
clustering of the common causes of uncertainty demonstrated
here tackles only part of the overall uncertainty in aerosol
radiative forcing – parametric uncertainty. The other part,
highlighted by R23, is structural uncertainty caused by struc-
tural deficiencies in models. Progressive observational con-
straint, reclustering, identification of new target observations
and further constraint only works if the multiple observa-
tions provide consistent constraints on the uncertain parame-
ters, but R23 showed that inconsistency is likely to become a
problem even after very few constraints have been applied –
that is, different observations constrain the model to different
(inconsistent or non-overlapping) parts of parameter space.
As we outlined in R23, the approach we have shown here
would therefore need to be combined with efforts to address
these inconsistencies by making model structural improve-
ments. We suggest that targeting model development at the
processes causing such multi-variable inconsistency will be
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more efficient than addressing causes of bias in single vari-
ables.

A key question is how transferable 1Faci constraint de-
rived from a single model is to other models. While climate
models share multiple parameterisations and fundamental as-
sumptions, and are evaluated against similar observational
datasets (Knutti et al., 2013; Kuma et al., 2023; Sanderson
et al., 2015), differences in tuning strategies (Hourdin et al.,
2017) and configurations result in diverse responses to an-
thropogenic aerosol changes (Bellouin et al., 2020; IPCC,
2023). To ensure our approach supports improvements across
a range of climate models, it is essential to extend this devel-
opment and evaluation cycle across multiple models. Multi-
model PPEs (MM-PPEs), which simultaneously sample both
structural and parametric uncertainties, offer a more robust
basis for identifying structural deficiencies, targeting model
development priorities, and guiding future observation strate-
gies. Applying our approach systematically across different
models and model versions would build a foundation for
strategic, evidence-based climate model development.

Appendix A

Additional Figs. A1 to A4 and Tables A1, A2.

Figure A1. The marginal dependence of 1Faci on normalized
prim_so4_diam parameter values. Values for the first 1000 of the
original 1 million model variants are shown. Parameter values are
normalized to be on the 0–1 scale. The dashed line separates values
below around 10 nm, which were removed to create Fig. 2b and the
set of model variants referred to as unconstrained.
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Figure A2. Maps of parametric causes of remaining 1Faci uncertainty after optimal constraint for 15 of the 22 parameters not shown in
Fig. 3. Shading indicates the proportion of variance caused by individual parameters, multiplied by the variance in that grid box and by the
sign of the 1Faci dependence on the parameter value. Negative values indicate increasing the parameter value is associated with stronger
(more negative) 1Faci values. Regions where the 1Faci 90 % CI is less than 3 W m−2 are masked.

Atmos. Chem. Phys., 26, 2293–2317, 2026 https://doi.org/10.5194/acp-26-2293-2026
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Figure A3. Maps of parametric causes of remaining 1Faci uncertainty after optimal constraint for the 7 parameters not shown in Fig. 3 nor
Fig. A2. Shading indicates the proportion of variance caused by individual parameters, multiplied by the variance in that grid box and by the
sign of the 1Faci dependence on the parameter value. Negative values indicate increasing the parameter value is associated with stronger
(more negative) 1Faci values. Regions where the 1Faci 90 % CI is less than 3 W m−2 are masked.

Figure A4. Shared causes of 1Faci uncertainty in the original set of 1 million model variants. As with Fig. 4 in the main article, the legend
shows the 4 most important causes of uncertainty in each cluster and anti-clockwise shading in the pie charts shows the corresponding
proportions of uncertainty caused by these parameters, out of 100 % total, with the white region representing contributions from the other 33
parameters.
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Table A1. Parameter names, perturbation type and description, following Regayre et al. (2023).

Parameter name Perturbation type Description

bl_nuc Aerosol process Boundary layer nucleation rate scale factor
ait_width Aerosol process Modal width of Aitken modes
cloud_drop_acidity Aerosol process Cloud droplet acidity
carb_ff_diam Aerosol process Emission diameter of carbonaceous aerosol from fossil fuel

sources
carb_bb_diam Natural aerosol emission Emission diameter of carbonaceous aerosol from biomass burn-

ing sources
carb_res_diam Anthropogenic aerosol emission Emission diameter of carbonaceous aerosol from residential

sources
prim_so4_diam Anthropogenic aerosol emission Emission diameter of 50 % of new sub-grid sulfate particles.

Remaining 50 % emitted into the larger coarse mode
sea_salt Natural aerosol emission Sea salt emission flux scale factor
anth_so2_chi Anthropogenic aerosol emission Anthropogenic SO2 emission flux scale factor – China
anth_so2_asi Anthropogenic aerosol emission Anthropogenic SO2 emission flux scale factor – Asia
anth_so2_eur Anthropogenic aerosol emission Anthropogenic SO2 emission flux scale factor – Europe
anth_so2_nam Anthropogenic aerosol emission Anthropogenic SO2 emission flux scale factor – North America
anth_so2_r Anthropogenic aerosol emission Anthropogenic SO2 emission flux scale factor – Rest of the

world
volc_so2 Natural aerosol emission Volcanic SO2 emission flux scale factor
bvoc_soa Natural aerosol emission Biogenic monoterpene production rate of secondary organic

aerosol scale factor
dms Natural aerosol emission Dimethyl-sulfide emission flux scale factor
prim_moc Natural aerosol emission Primary marine organic carbon emission flux scale factor
dry_dep_ait Aerosol process Dry deposition velocity of Aitken mode aerosol
dry_dep_acc Aerosol process Dry deposition velocity of accumulation mode aerosol
dry_dep_so2 Aerosol process Dry deposition velocity of SO2
kappa_oc Aerosol process Hygroscopicity parameter (κ) for organic aerosol
sig_w Aerosol process Standard deviation of shallow-cloud updraft velocity scale fac-

tor
rain_frac Aerosol process Fraction of cloud covered area where rain removes aerosol
cloud_ice_thresh Aerosol process Threshold of cloud ice water fraction for scavenging
conv_plume_scav Aerosol process Scavenging efficiency (as a fraction of total aerosol removed)

of Aitken mode aerosol in convective clouds
bc_ri Aerosol process Imaginary part of the black carbon refractive index
oxidants_oh Aerosol process Offline oxidant OH concentration scale factor
oxidants_o3 Aerosol process Offline oxidant O3 concentration scale factor
bparam Physical atmosphere Coefficient of the spectral shape parameter (β) for effective ra-

dius
two_d_fsd_factor Physical atmosphere Scale factor for the 2D relationship between cloud condensate

variance, cloud cover and convection – Controls sub-grid cloud
heterogeneity

c_r_correl Physical atmosphere Cloud and rain sub-grid horizontal spatial colocation
autoconv_exp_lwp Physical atmosphere Exponent of liquid water path in the power law for initiating

autoconversion
autoconv_exp_nd Physical atmosphere Exponent of cloud droplet concentration (Nd) in the power law

for initiating autoconversion
dbsdtbs_turb_0 Physical atmosphere Cloud erosion rate
ai Physical atmosphere Scaling coefficient for the dependence of ice mass on diameter
m_ci Physical atmosphere Ice fall speed scale factor
a_ent_1_rp Physical atmosphere Cloud top entrainment rate scale factor
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Table A2. Percentage of 1Faci uncertainty (90 % credible interval) caused by each of the 37 perturbed parameters before, during and after
optimal constraint. In the original set, causes of variance greater than 2 % of the total are in bold font, indicating these parameters are in the
first 1Faci bar in Fig. 1. Causes of remaining variance after the 13th (optimal) constraint are also bold where they differ from the original
causes by more than 1 %.

Parameter Original Un-constrained After 1st After 2nd After 4th After 13th
(1 million) (900 000) constraint constraint constraint (optimal) constraint

(431 143) (75 936) (5000) (5000)

bl_nuc 0.0 0.0 0.0 0.0 0.0 0.0
ait_width 0.6 1.4 1.5 2.3 2.9 2.8
cloud_drop_acidity 0.4 0.9 1.0 1.4 1.6 1.5
carb_ff_diam 0.5 1.0 0.9 1.3 1.1 1.4
carb_bb_diam 0.1 0.2 0.3 0.4 0.5 0.5
carb_res_diam 0.1 0.1 0.2 0.2 0.3 0.2
prim_so4_diam 54.9 3.5 26.0 10.4 5.0 2.8
sea_salt 7.4 17.0 12.4 14.4 16.3 17.0
anth_so2_chi 0.1 0.2 0.2 0.3 0.3 0.3
anth_so2_asi 0.0 0.1 0.1 0.2 0.3 0.3
anth_so2_eur 0.0 0.0 0.0 0.0 0.0 0.0
anth_so2_nam 0.0 0.0 0.0 0.1 0.2 0.2
anth_so2_r 0.8 1.9 1.8 2.7 3.2 3.0
volc_so2 0.2 0.5 0.7 0.9 1.2 1.1
bvoc_soa 0.0 0.0 0.0 0.0 0.0 0.0
dms 3.5 8.1 7.8 8.9 12.5 12.3
prim_moc 0.1 0.4 0.3 0.5 0.5 0.6
dry_dep_ait 0.0 0.0 0.0 0.0 0.0 0.0
dry_dep_acc 6.0 13.6 13.6 13.1 10.8 14.4
dry_dep_so2 0.1 0.4 0.3 0.6 0.7 0.7
kappa_oc 0.1 0.2 0.1 0.2 0.2 0.2
sig_w 13.9 25.6 10.8 7.9 5.3 5.1
rain_frac 0.0 0.0 0.0 0.0 0.0 0.0
cloud_ice_thresh 0.1 0.3 0.2 0.4 0.5 0.4
conv_plume_scav 0.2 0.2 0.2 0.3 0.3 0.3
bc_ri 0.8 1.6 1.5 2.4 2.7 2.7
oxidants_oh 0.1 0.1 0.1 0.2 0.2 0.2
oxidants_o3 0.0 0.0 0.0 0.1 0.1 0.1
Bparam 1.0 2.2 2.1 3.1 3.5 3.3
two_d_fsd_factor 1.6 3.7 3.4 5.3 5.5 5.6
c_r_correl 0.6 1.5 1.3 2.1 2.5 2.5
autoconv_exp_lwp 0.3 0.7 0.8 1.1 1.3 1.1
autoconv_exp_nd 1.2 2.4 2.4 3.4 3.9 3.8
dbsdtbs_turb_0 0.5 1.2 1.2 1.8 2.1 2.1
ai 1.7 3.6 3.4 4.8 4.1 3.2
m_ci 0.3 0.8 0.7 1.1 1.3 1.2
a_ent_1_rp 2.8 6.2 4.9 8.2 8.9 9.0

Code availability. Code used to create figures in this article are
available here: https://doi.org/10.5281/zenodo.16686812 (Regayre,
2025).

Data availability. Output from the A-CURE PPE is avail-
able on the CEDA archive (https://catalogue.ceda.ac.uk/uuid/
b735718d66c1403fbf6b93ba3bd3b1a9, Regayre et al., 2021).
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