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Figure S1. Timeseries of zonal mean temperature changes at (a-b) 50 hPa, (c-d) 25 hPa, and (e-f) 1
hPa between the forced simulation and the control for the coupled ocean (left) and atmosphere-only
(right) simulations. Stippling denotes statistical significance (as in Fig. 1).
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Figure S2. As in Fig. 2 of the main paper but for years 6-10.
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Figure S3. As in Fig. 3 of the main paper but for years 6-10.




(a) APSL, FMA winter 1, HUNGA_fix (b) APSL, FMA winter 2, HUNGA_fix (c) APSL, FMA winter 3, HUNGA fix
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Figure S4. As in Fig. 7 of the main paper but for the changes in the atmosphere-only simulations.

(a) AU (65N, 50hPa), NDJ winter 1, HUNGA _fix (b) AU (65N, 50hPa), FMA winter 1, HUNGA fix
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Figure S5. As in Fig. 9 of the main paper but for the changes in the atmosphere-only simulations.
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(a) APSL, NDJ winter 1,

HUNGA_cpl
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Figure S6. As in Fig. 12 of the main paper but for the changes in the coupled ocean simulations
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