
Atmos. Chem. Phys., 26, 1769–1794, 2026
https://doi.org/10.5194/acp-26-1769-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Understanding the causes of satellite–model
discrepancies in aerosol–cloud interactions using

near-LES simulations of marine boundary layer clouds

Shaoyue Qiu1, Xue Zheng1, Peng Wu2, Hsiang-He Lee1, and Xiaoli Zhou3

1Atmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
2Atmospheric, Climate, & Earth Sciences Division, Pacific Northwest National Laboratory,

Richland, WA 99354, Washington, USA
3Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada

Correspondence: Xue Zheng (zheng7@llnl.gov)

Received: 18 July 2025 – Discussion started: 29 July 2025
Revised: 24 December 2025 – Accepted: 16 January 2026 – Published: 4 February 2026

Abstract. Aerosol–cloud interactions (ACI) remain the largest source of uncertainty in model estimates of
anthropogenic radiative forcing, primarily because of deficiencies in representing aerosol–cloud microphysical
processes that lead to inconsistent cloud liquid water path (LWP) responses to aerosol perturbations between
observations and models. To investigate this discrepancy, we conducted a series of large-eddy-scale simulations
driven by realistic meteorology over the eastern North Atlantic, and evaluated LWP susceptibility, precipitation
processes, and boundary layer thermodynamics using satellite and ground-based observations.

Simulated LWP responses show a strong dependence on cloud state. Non-precipitating thin clouds exhibit a
modest LWP decrease with increasing cloud droplet number concentration (Nd), consistent in sign but weaker in
magnitude than satellite estimates, reflecting enhanced turbulent mixing and evaporation. The largest model-
observation discrepancy occurs in non-precipitating thick clouds, where simulated LWP susceptibilities are
strongly positive (+0.32) while observations indicate large negative values (−0.69). This discrepancy stems
from excessive precipitation driven by underestimated entrainment, overly active accretion, and overly broad
drop-size distributions in polluted conditions. While our high-resolution setup mitigates the excessive drizzling
common in coarser models and captures key regime transitions, these biases persist – highlighting that improved
parameterizations of cloud-top processes, precipitation, and aerosol effects are needed beyond simply increasing
model resolution.

Additionally, misrepresented moisture inversions in reanalysis introduce a moist bias in cloud-top relative
humidity, further amplifying positive LWP susceptibility. Our results also suggest that large negative Nd–LWP
relationships in observations may reflect internal cloud processes rather than true ACI effects.

1 Introduction

Marine boundary layer clouds exhibit substantial influ-
ence on Earth’s radiation balance due to their high albedo
and extensive global coverage. Aerosols modulate cloud
albedo through changing cloud droplet number concentra-
tion (Nd), cloud liquid water path (LWP), and cloud frac-
tion. The estimated radiative cooling from aerosols partially
offsets the warming from greenhouse gas emissions (Slingo,

1990). However, aerosol-cloud interaction (ACI) remains the
most uncertain component of anthropogenic radiative forc-
ing (Forster et al., 2021). In particular, liquid-phase cloud ad-
justments in LWP, cloud fraction, and cloud lifetime present
the largest uncertainties in determining the net radiative forc-
ing of ACIs, especially under varying large-scale conditions
(Han et al., 2002; Small et al., 2009).

Among these uncertainties, the LWP response to aerosol
perturbations has drawn particular attention due to its large
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spread in both observations and numerical model sim-
ulations. Theoretically, increasing aerosols would reduce
droplet size and suppress precipitation, thereby increasing
LWP and cloud lifetime (Albrecht, 1989). However, smaller
droplets might also enhance evaporation and entrainment,
leading to a reduced LWP in non-precipitating clouds (Ack-
erman et al., 2004; Xue and Feingold, 2006; Bretherton et al.,
2007). This competition between processes leads to a bifur-
cated LWP response that varies with aerosol concentration,
cloud type, and background meteorology.

In recent years, numerous satellite studies have reported
an overall decrease of LWP with increasing Nd for non-
precipitating clouds in polluted environments and an increase
in LWP for precipitating clouds (e.g., Gryspeerdt et al., 2019,
2021; Toll et al., 2019; Zhang et al., 2022; Zhang and Fein-
gold, 2023; Qiu et al., 2024; Yuan et al., 2023, 2024). In con-
trast, current global climate models (GCMs) mostly simulate
a positive LWP response to aerosol perturbation regardless
the cloud conditions, which leads to an over-estimation of
the aerosol-induced radiative forcing that is dominated by
ACI (e.g., Ghan et al., 2016; Michibata et al., 2016; Mülmen-
städt et al., 2024). This discrepancy could stem from poorly
resolved cloud processes in GCMs due to their coarse hori-
zontal resolution (∼ 100 km).

Recent development in computing have enabled the global
convection-permitting models (GCPMs) with kilometer-
scale grid spacing, serving as an invaluable complement
to the traditional climate models (e.g. Satoh et al., 2019;
Stevens et al., 2019; Caldwell et al., 2021; Donahue et al.,
2024). Notably, Sato et al. (2018) employed a GCPM and
simulated a negative LWP response, attributing it primarily to
better resolved evaporation and condensation processes from
aerosol perturbations. Yet, other CPM studies with finer res-
olution than Sato et al. (2018) mostly simulate an increase
in LWP with aerosol perturbations (e.g., Fons et al., 2024;
Christensen et al, 2024), largely due to uncertainties in mi-
crophysics schemes, particularly regarding the treatment of
precipitation (White et al., 2017).

Since most current GCPMs and GCMs adopt two-moment
microphysics schemes, it is important to evaluate precipita-
tion parameterizations using observational constraints, and
to examine their influences on simulated ACI. Meanwhile,
Terai et al. (2020) found that the lack of LWP decrease
in kilometer-scale models may result from unresolved sub-
kilometer processes most relevant to ACI. For example, when
increasing model resolution from 4 km to 250 m, the frac-
tion of precipitating clouds decreased substantially, espe-
cially for thick clouds, and the LWP response becomes neg-
ative for non-precipitating clouds. Therefore, it is critical
to assess the benefit of increasing model resolution to near
large-eddy simulation (LES) scale in representing precipi-
tation and evaporation-entrainment feedback without alter-
ing microphysics parameterization structure, and to reconcile
satellite-observed LWP adjustments with those simulated by
GCMs and GCPMs.

With model resolutions ranging from 25 to 200 m, nu-
merous LES studies have utilized idealized meteorological
conditions and provided valuable process-level insights into
the mechanisms governing cloud responses to aerosol per-
turbations (e.g., Xue and Feingold, 2006; Xue et al., 2008;
Bretherton et al., 2007; Seifert et al., 2015; Glassmeier et
al., 2019; Hoffmann et al., 2020; Chen et al., 2024; Zhang et
al., 2024). However, idealized simulations cannot be directly
evaluated or constrained by observations, limiting their abil-
ity to explain divergent LWP responses. Additionally, many
LES studies employ limited domain size that cannot resolve
mesoscale organization and variability of clouds and precip-
itation, which significantly influence retrieved Nd–LWP re-
lationships (e.g., Zhou and Feingold, 2023; Kokkola et al.,
2025; Tian et al., 2025). Finally, aerosol and cloud fields are
strongly modulated by synoptic conditions (e.g., Engström
and Ekman, 2010; Zheng et al., 2011, 2025). LES studies fo-
cusing on a few cases fail to capture the influence of cloud
regimes and synoptic variability on the sign and magnitude
of ACI.

The eastern North Atlantic (ENA) region is uniquely
suited to address this issue due to its location at the transition
between midlatitude and subtropical regimes (e.g., Rémil-
lard and Tselioudis, 2015; Zheng et al., 2025). Long-term,
high-quality ground-based observations from the DOE At-
mospheric Radiation Measurement (ARM) program enable
comprehensive and process-level evaluation. Marine bound-
ary layer (MBL) clouds in this region frequently drizzle and
are sensitive to aerosol and meteorological perturbations,
making them ideal for studying aerosol-cloud-precipitation
interactions (Wood et al., 2015).

The goal of this study is to evaluate key ACI pro-
cesses, such as precipitation suppression and evaporation-
entrainment feedback, as well as precipitation treatment in
a two-moment scheme using simulations approaching LES
scale. To address limitations in previous LES studies, we
employ a nested-domain configuration to simulate realistic
circulations across synoptic regimes, with the innermost do-
main spanning 1°× 1°, consistent with typical GCM grid
spacing and satellite analysis scales. We simulated an en-
semble of MBL cloud cases across three synoptic regimes
characterized by northerly surface flow over the ENA site.
Regime classification follows Zheng et al. (2025). To enable
a process-level evaluation of warm-rain parameterization,
we leverage ARM ground-based radar measurement and ap-
ply a newly developed radar simulator for direct model-
observation comparison.

2 Data and methodology

2.1 Datasets

This study adopts both satellite and ground-based observa-
tions to assess the simulated cloud, precipitation processes,
and ACI processes. For satellite observations, we used

Atmos. Chem. Phys., 26, 1769–1794, 2026 https://doi.org/10.5194/acp-26-1769-2026



S. Qiu et al.: Understanding the causes of satellite–model discrepancies in ACIs 1771

cloud retrievals derived from the Spinning Enhanced Vis-
ible InfraRed Imager (SEVIRI) on the geostationary satel-
lite Meteosat-10 and Meteosat-11 over the ENA region. The
cloud retrievals are based on the methods developed by the
Clouds and the Earth’s Radiant Energy System (CERES)
project using the Satellite ClOud and Radiation Property re-
trieval System (SatCORPS) algorithms (Minnis et al., 2011,
2021; Painemal et al., 2021). The SEVIRI Meteosat cloud re-
trieval products are pixel-level cloud retrievals produced by
NASA LaRC SatCORPS group, specifically tailored to sup-
port the ARM program over the ARM ground-based observa-
tion sites. For Meteosat-10 and Meteosat-11 cloud retrievals,
the products have a spatial resolution of 4 and 3 km at nadir
and temporal resolutions of hourly and half-hourly, respec-
tively.

In this study, we used the cloud mask, cloud effective ra-
dius (re), cloud optical depth (τ ), LWP, cloud phase, and
cloud top height variables in the SEVIRI Meteosat cloud
retrieval product (Minnis et al., 2011, 2021). We focus on
warm boundary layer clouds with cloud top below 3km and
a liquid cloud phase. The re and τ retrievals are based on the
shortwave-infrared split window technique during the day-
time. Cloud LWP is derived from re and τ using the equation:
LWP= 4reτ

3Qext
, whereQext represents the extinction efficiency

and is assumed to be constant at 2.0. Cloud mask algorithm
is consistent with the CERES Ed-4 algorithm, as described
in Trepte et al. (2019), where cloudy and clear pixels are dis-
tinguished based on the calculated TOA clear-sky radiance.
Cloud top height is derived from the retrieved cloud effective
and top temperature, together with the boundary-layer tem-
perature profiles and lapse rate, as described in Sun-Mack
et al. (2014). Cloud Nd is retrieved based on the adiabatic
assumptions for warm boundary layer clouds, based on the
following equation:

Nd =

√
5

2πk

(
fadcwτ

Qextρwr5
e

)1/2

(1)

In Eq. (1), k represents the ratio between the volume mean
radius and re, and it is assumed to be constant of 0.8 for stra-
tocumulus, fad is the adiabatic fraction, cw is the conden-
sation rate, Qext is the extinction coefficient, and ρw is the
density of liquid water (Grosvenor et al., 2018).

To facilitate a consistent comparison, the satellite re-
trievals are adjusted to the same domain size as the sim-
ulation (e.g., 1°× 1°) and the pixel-level cloud retrievals
are smoothed to 25 km resolution to reduce impact from
cloud heterogeneity and small-scale covariability on the es-
timated cloud susceptibility (e.g. Arola et al., 2022; Zhou
and Feingold, 2023). In the context of ACI: cloud suscep-
tibility quantifies how sensitive a cloud property responds
to change in aerosol concentration or Nd. To constrain the
spatial-temporal variation in meteorological conditions and
cloud properties, cloud susceptibility is estimated as the re-
gression slope between Nd and cloud properties within the

1°× 1° domain at each time step of satellite observations. In
this study, we quantify LWP and cloud fraction (CF) suscep-
tibilities. Because of the non-linear relations between LWP
and Nd, the LWP susceptibility is quantified in logarithm
scale as d ln(LWP)/dln(Nd) (e.g., Gryspeerdt et al., 2019;
Qiu et al., 2024), whereas CF susceptibility is quantified as
dCF/dln(Nd) (e.g., Kaufman et al., 2005; Chen et al., 2022;
Qiu et al., 2024). Due to the dependence of cloud responses
on cloud regimes (e.g., Chen et al., 2014; Zhang et al., 2022;
Qiu et al., 2024), the estimated cloud susceptibilities are dis-
played in the Nd–LWP parameter space as the classification
of cloud states.

In addition to the satellite retrievals, we adopt the ground-
based observation at the ARM ENA site. Specifically, we
use the ground-based cloud radar and lidar observations for
process-level evaluation of modeled precipitation processes.
In this study, the radar reflectivity (Ze) and cloud bound-
aries are from the Active Remote Sensing of Clouds (AR-
SCL) value added product (Clothiaux et al., 2001). To re-
move noise in the data, we smoothed the 4 s reflectivity pro-
files into 1 min. Cloud top height is derived as the upper
most range gate height with radar reflectivity greater than the
sensitivity threshold of the Ka-band zenith radar (−40 dBZ)
combined with the hydrometer layer top data in the ARSCL.
Cloud base height is from the best-estimate cloud base height
variable in the ARSCL product. Thermodynamic profiles are
derived from the radiosonde data, which is launched at the
ENA site twice daily at 00:00 and 12:00 UTC.

The ground-based re and τ retrievals are based on the pa-
rameterization developed in Dong et al. (1998), where re
is retrieved from a radiative transfer model as described in
Dong et al. (1997) and parameterized as a function of cloud
LWP, shortwave transmission ratio, and cosine of solar zenith
angle. Cloud LWP is retrieved from the brightness temper-
ature measured by the three-channel microwave radiometer
(MWR3C) at 23.8, 30, and 90 GHz (Cadeddu et al., 2013).
The shortwave transmission ratio is calculated from the un-
shaded pyranometer from the QCRAD product (Long and
Shi, 2006), defined as the ratio between cloudy and clear-sky
shortwave irradiance.

Meteorological and thermodynamic variables are ex-
tracted from the European Center for Medium-Range
Weather Forecasts (ECMWF) ERA5 reanalysis data and used
as the forcing for the simulation. ERA5 is the fifth genera-
tion of the ECMWF reanalysis, replacing the ERA-Interim
reanalysis. ERA5 provides the best-estimate of the global at-
mosphere, land surface, and ocean waves with a horizontal
resolution of 31 km and an hourly output throughout (Hers-
bach et al., 2020). Atmospheric variables are available on 137
vertical levels, ranging from 1000 hPa (near surface) to 1 Pa
(∼ 80 km).
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2.2 WRF model

We used the Weather Research and Forecasting (WRF)
model version 4.4.2 (Skamarock et al., 2021) for our sim-
ulations. In a companion study, Lee et al. (2025) used the
WRF model at near LES scale with interactive chemistry and
aerosol schemes (WRF-Chem) and investigated ACI and its
feedback on both clouds and aerosols in the ENA region.
As the WRF-Chem simulations are 5–10 times more com-
putationally expensive, the present study adopted the same
dynamical and physical configuration and conducted more
experiments with prescribed aerosol concentrations and real-
istic meteorology.

We employed four one-way nested domains in the model,
with the domain size of 27°× 27°, 9°× 9°, 3°× 3°, and
1°× 1°, and spatial resolution of 5 km, 1.67 km, 0.56 km, and
190 m, respectively, for d01, d02, d03, and d04 domain. The
innermost domain (d04) exhibits a domain size close to most
GCM grid spacing and is consistent with the spatial scale for
quantification of cloud susceptibility in satellite study (e.g.,
Zhang et al., 2022; Zhang and Feingold, 2023; Qiu et al.,
2024). The spatial resolution of 190 m is much higher than
the CPMs and close to the LES scale. All the analyses and
evaluations in this study are based on output from the in-
nermost domain (d04). There are 75 vertical levels in the
model with a model top of ∼ 20 km, the grid spacing is log-
stretched with higher resolution of ∼ 50 m near the surface
and increases to∼ 150 m at the height of∼ 1500 m. As men-
tioned above, the initial and lateral boundary conditions for
the outer domain are taken from the ERA5 reanalysis data.

The simulations are performed using the Rapid Radia-
tive Transfer Model for Global Climate Models (RRTMG;
Mlawer et al., 1997), and the Noah land surface model (Chen
and Dudhia, 2001). The Mellor–Yamada–Janjic (MYJ; Mel-
lor and Yamada, 1982) planetary boundary layer (PBL)
scheme and the shallow cumulus schemes (Hong and Jang,
2018) are utilized for the outer domain (d01 and d02) only.
Simulations in this study employ a two-moment Morrison
microphysics scheme, which has been widely implemented
in both CPMs and GCMs (Morrison et al., 2005; Morrison
and Gettelman, 2008; Golaz et al., 2022). In the Morrison
two-moment microphysics scheme, the DSD (φ) is defined
as:

φ (D)=N0D
µe−λD, (2)

η = 0.0005714Nd+ 0.2714, (3)

µ=
1
η2 − 1, (4)

λ= [
πρNc0 (µ+ 4)

6qc0(µ+ 1)
]
1/3, (5)

where D is the diameter, N0 is the intercept parameter, µ is
the shape parameter, λ is the slope parameter, η is the disper-
sion parameter which governs the width of the DSD (Morri-
son and Gettelman, 2008).

Instead of prescribing a constant cloud droplet number
concentration, total aerosol number concentrations are pre-
scribed as a constant throughout the domain with no explicit
vertical variation or transport in all simulations. Aerosol ac-
tivation follows the parameterization of Abdul-Razzak and
Ghan (2000), with fixed assumptions for size distribution,
chemical composition, aerosol type, and mixing state. The
activated fraction mainly depends on the local supersatura-
tion and updraft speed. The fixed aerosol field neglects spa-
tial and temporal variability driven by emissions, long-range
transport, wet scavenging, and CCN reactivation from evap-
orated raindrops. These missing processes can sustain higher
CCN concentrations, suppress precipitation, and potentially
exaggerate positive LWP responses.

Despite this simplification, our companion WRF-Chem
study (Lee et al., 2025) shows that, even with full aerosol
microphysics, wet scavenging, and aerosol reactivation, the
simulated LWP responses remain broadly consistent with the
results presented here, especially the positive susceptibility
in precipitating clouds. This agreement suggests that the key
findings of this work are robust, although the prescribed-
aerosol assumption may still contribute to some of the quan-
titative discrepancies discussed in Sect. 3.

For each case, we run the model for 36 h (except for the
consecutive case on 21 July 2016, where the model was run
for 60 h), starting at 12:00 UTC of the previous day and the
first 12 h are used as model spin-up period. The time resolu-
tion of the model is 30 s in the outer domain for advection
and physics calculation and is 1 s for the innermost domain.
Model variables are output instantaneously for every 10 min
for the innermost domain, similar to the snapshot frequency
of satellite observations.

To access the cloud responses to aerosol perturbations,
we conduct three sets of simulations with different pre-
scribed aerosol number concentration of N = 100, 500, and
1000 cm−3 for all 11 cases. Cloud susceptibility is quantified
as the change in domain-mean cloud properties within the in-
nermost domain at the same output time, comparing polluted
and clean simulations (e.g. N = 1000 vs. N = 100, N = 500
vs.N = 100, andN = 1000 vs.N = 500). With constant and
uniform aerosol concentration, the Nd–LWP relations result-
ing from internal cloud processes are able to be quantified
within each experiment at the same output time. To minimize
Nd–LWP relations from cloud heterogeneity and small-scale
covariability and to be consistent with the quantification of
cloud susceptibility in satellite observations, the pixel level
model outputs are smoothed to 25 km resolution and Nd–
LWP relations are quantified as d ln(LWP)/dln(Nd) using the
smoothed data.

To directly compare the WRF simulations with ground-
based observations, we used the Cloud Resolving Model
Radar Simulator (CR-SIM; Oue et al., 2020). It is a forward-
modeling framework which uses consistent microphysics as-
sumptions as in the atmospheric model (i.e., the two-moment
Morrison scheme in this study) and emulates radar and li-
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dar observables. Some common radar and lidar variables in-
clude: the radar reflectivity factor at horizontal and vertical
polarization, depolarization ratio, Doppler velocity, spectrum
width, lidar backscatter, attenuated backscatter, lidar extinc-
tion coefficient, and so on. In this study, we analyzed the
simulated radar reflectivity factor to characterize cloud and
precipitation properties.

To distinguish different precipitation modes and the mi-
crophysical growth processes that transition clouds from
non-precipitating to drizzling and raining, we investigate
the vertical transition from cloud to precipitation using the
Contoured Frequency of Optical Depth Diagram (CFODD)
method (Suzuki et al., 2010) from both observations and
model simulations. The CFODD analysis calculates the fre-
quency of radar reflectivity profiles as a function of in-
cloud optical depth (τd), where τd is calculated based on
an adiabatic-condensation growth model and it starts at zero
at cloud top and increases downward. One benefit of the
CFODD analysis is that the slope of reflectivity directly re-
lates to the droplet collection efficiency, where the slope
of reflectivity in the common geometric height depends on
cloud water content (Suzuki et al., 2010).

2.3 Case studies

With the focus of MBL clouds in this study, cases are se-
lected when both satellite and ground-based observations de-
fine MBL clouds in the ENA region. For cloud type clas-
sification in ground-based observations, we used the same
method as in Zheng et al. (2025), where clouds are classi-
fied into seven types based on the boundaries and duration of
each cloud object. In this study, we include both cumulus and
stratocumulus clouds. Days are excluded when only shallow
cumulus clouds are detected to filter out clouds that are below
the detectable resolution of the Meteosat observations and to
minimize uncertainties in the cloud microphysical retrievals
from the ground-based observations. We further exclude days
with more than three layers of cloud in the boundary layer
to minimize uncertainty in cloud retrievals. Classification of
cloud type in Meteosat observations uses a similar method
as the ground-based observations. Cloud objects are defined
as connected cloudy pixels, where low clouds are defined as
clouds with 90th percentile of cloud top height below 3km.
Low clouds are further classified as stratiform clouds and cu-
mulus or broken stratiform clouds using an area threshold of
10 000 km2 (Qiu and Williams, 2020).

We focus on summer months (June, July, August) in the
ENA region, when this region is often dominated by the
Bermuda high-pressure systems and MBL clouds have the
highest occurrence frequency (e.g., Li et al., 2011; Mechem
et al., 2018; Dong et al., 2014, 2023). Previous studies found
that the ARM measurements at the ENA site – located near
the northern shore of the Graciosa Island, the northernmost
island in the Azores archipelago – can be influenced by lo-
cal emissions and island effects during southerly wind con-

ditions. These impacts include modification to the aerosol
and CCN concentrations, boundary layer turbulence, and the
cloud field (e.g., Ghate et al., 2021, 2023). To minimize these
influences, we focus on the three synoptic regimes identified
in Zheng et al. (2025) when the ENA site is influenced by
northerly surface wind: the high-ridge regime (characterized
by a mid-tropospheric ridge and surface high-pressure sys-
tem), the post-trough regime, and the weak trough regime
(Table S1, Fig. S1).

With the case selection criteria discussed above, there are
a total 11 cases for the WRF simulations, covering differ-
ent cloud states and synoptic conditions. The general char-
acteristics of the 11 cases are listed in Table S1 in the Sup-
plement. The synoptic pattern for each case from ERA5 is
shown in Fig. S1 in the Supplement, the cloud fields observed
from Meteosat are shown in Fig. S2. WRF simulated cloud
fields in the N = 100 and N = 1000 experiments are shown
in Figs. S3, S4. To better illustrate the large-scale cloud orga-
nization and compared with Meteosat observations, the sim-
ulated LWP in domain 2 are shown. As seen in Figs. S2–S4,
our WRF simulations well capture the frontal systems and
synoptic pattern of cloud fields across different cases.

3 Results

3.1 Case study: Impacts of aerosols on PBL
thermodynamics and cloud evolution

Previous studies have demonstrated distinct cloud responses
to aerosol perturbations between precipitating and non-
precipitating regimes in both model simulations and obser-
vations (e.g., Chen et al., 2014; Sato et al., 2018; Gryspeerdt
et al., 2019; Fons et al., 2024; Qiu et al., 2024). To explore
these differences, we analyze two representative cases in our
simulations: one dominated by precipitating clouds and an-
other by non-precipitating clouds, to illustrate the distinct in-
teractions among aerosols, clouds, and PBL thermodynamics
in the presence and absence of precipitation.

On 21 July 2016, the ENA site was dominated by pre-
cipitating stratocumulus clouds from 00:00 to 13:00 UTC,
as seen from radar reflectivity profiles in Fig. S5b. The
clouds dissipated from 12:00 to 18:00 UTC and redevel-
oped after 18:00 UTC (Fig. 1a, black line). The sounding
observations show a moist and well-mixed boundary layer,
with relative humidity (RH) near saturation above cloud top
(Fig. S6). Our simulation captures the structure of the bound-
ary layer, with a moist layer above the cloud, and the cloud-
top RH close to sounding observations (99 % and 96 %,
Fig. S6c). Due to biases in the ERA5 reanalysis in repre-
senting the temperature inversion, the boundary layer top in
the model is approximately 500 m lower than in sounding
data (Fig. S6). Consequently, the simulated cloud tops are
300–500 m lower than both satellite and ground-based radar
observations (Figs. 1b, S6).
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Figure 1. Time series of domain-averaged cloud properties from
satellite observations and model simulations on 21 July 2016.
(a) Cloud coverage, (b) cloud top height, (c) cloud liquid water path,
and (d) rain-water path for N = 100 (blue lines) and N = 1000 (or-
ange lines) experiments.

In the N = 100 simulation, the WRF model reproduces
overcast and precipitating stratocumulus clouds, with a
domain-mean cloud cover varying between 0.90 to 0.94 from
00:00–13:00 UTC, which is slightly below than the Meteosat
estimate of 0.97–1.0 (Fig. 1a, blue and black lines). However,
unlike observations, the simulated clouds do not dissipate
after 14:00 UTC; both cloud cover and LWP remain nearly
constant throughout the day (Fig. 1a, d, blue lines). With in-
creased aerosol concentration (N = 1000), the simulated pre-
cipitation is suppressed (Fig. 1e), and the cloud layer remains
overcast while deepening, accompanied by rising cloud tops
and increasing LWP (Fig. 1b, c, orange lines). This cloud re-
sponse arises from aerosol-induced precipitation suppression
and the corresponding changes in boundary layer processes,

as illustrated in Fig. 2. The turbulent kinetic energy (TKE)
is calculated as 1

2

(
u′2+ v′2+w′2

)
, with a unit of m2 s−2,

and buoyancy flux is calculated as g/θ0w′θ ′v, with a unit of
m2 s−3.

In the simulations, increases in aerosol concentrations lead
to higherNd and smaller drop size. As the two-moment Mor-
rison scheme does not consider the cloud drop size in the pa-
rameterization of evaporation, aerosol impacts on clouds and
boundary layer occur through the influence of precipitation
on PBL structure. Specifically, aerosols suppress precipita-
tion by reducing autoconversion with increasingNd, decreas-
ing sedimentation rate and terminal velocity from smaller
droplets. The formation of drizzle release latent heat and re-
duce both entrainment and the production of turbulent kinetic
energy (TKE) by buoyancy; while the evaporation of driz-
zle below cloud cool and moisten the sub-cloud layer that
decrease buoyancy and TKE (Stevens et al., 1998). As a re-
sult, the reduced precipitation increases both TKE and buoy-
ancy flux in the cloud layer and below cloud (Fig. 2e, f). The
enhanced turbulence and buoyancy support vertical develop-
ment of clouds, raising cloud tops and expanding the cloud
layer upward (Figs. 1b and 2), while also increasing RH near
the cloud top (Fig. 2d).

On the second day (22 July 2016), the precipitating stra-
tocumulus clouds transition into non-precipitating thin stra-
tus over the ENA site (Fig. S7). The clouds were predomi-
nately overcast from 00:00–09:00 UTC and dissipated after
10:00 UTC, with the domain-mean cloud coverage decreas-
ing from 0.8–0.9 to 0.1–0.2 (Fig. 3a, black line). As shown
in Fig. S8, the boundary layer was moist and well-mixed,
capped by a sharp temperature inversion, and moisture de-
creases rapidly above the inversion. The WRF model repro-
duces the general thermodynamic structure, including the in-
version and moisture decline above the PBL. However, due to
biases in ERA5 thermodynamic profiles, the simulated PBL
top is about 700 m lower than observed (Fig. S8). Addition-
ally, WRF model fails to capture the rapid decrease of mois-
ture above cloud top, resulting in a more humid layer above
cloud with cloud-top RH of 87 % in the model, compared to
62 % in sounding observation (Fig. S8c).

In the N = 100 simulation, the simulated stratocumulus
cloud generates light precipitation from 00:00–06:00 UTC,
then it transitions to a non-precipitating thin cloud layer after
06:00 UTC (Fig. 3d, blue line). However, the cloud does not
dissipate in the model. Domain-mean cloud cover remains
between 0.85 and 0.95 throughout the day, and the simulated
LWP is nearly twice that retrieved from Meteosat (Fig. 3a
and c, blue lines). When aerosol concentrations are increased
toN = 1000, clouds dissipate from 14:00–20:00 UTC, with a
decreasing domain-mean cloud cover and become more con-
sistent with observations (Fig. 3a, orange line). Meanwhile,
cloud tops rise slightly with increasing aerosol. The cloud
dissipation reflects a net effect of aerosol induced changes
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Figure 2. Time series of domain-averaged thermodynamic profiles on 21 July 2016, for (a) relative humidity, (b) turbulent kinetic energy
(TKE; m2 s−2), (c) buoyancy flux (m2 s−3) in the N = 100 simulation, and (d) changes in relative humidity, (e) changes in TKE, (f) changes
in buoyancy flux between the N = 100 and N = 1000 simulations. The black contours show cloud water mixing ratio (g kg−1) in (a)–(c) for
N = 100 and in (d)–(f) for N = 1000 simulations.

in condensation, evaporation, turbulence, and buoyancy, as
shown in Fig. 4.

During the early phase (00:00–06:00 UTC), increased
aerosol loading suppresses drizzle, leading to an increase
in LWP and a decrease in RWP (Fig. 3c, d). Similar to the
first case, the suppressed precipitation enhances turbulence
and increases TKE in and below cloud (Fig. 4e), lifts the
cloud top, and leads to an increase in RH near cloud top
(Fig. 4d). Meanwhile, the free tropospheric air above cloud
top is relatively drier compared to the first case (Fig. 4a).
The increased turbulence and raised cloud top entrain dry air
into the cloud and enhance evaporation. After 06:00 UTC, as
clouds become non-precipitating in theN = 100 experiment,
the decrease of cloud water from evaporation starts to dom-
inate the increase from precipitation suppression and lead to
a net decrease in LWP. Reduced buoyancy weakens the up-
ward transport of moisture and energy from the sub-cloud
layer, further contributing to cloud dissipation. As a result,
both cloud cover and LWP decrease with increasing aerosol
(Fig. 3a, c).

The absence of afternoon cloud dissipation in WRF simu-
lations are likely associated with model biases in the ther-
modynamic structure inherited from ERA5. For example,
on 21 July 2016, ARM sounding observations show a pro-
nounced decrease in specific humidity and relative humidity
above the PBL between 14:00 and 20:00 UTC (figures not
shown). This sharp drying leads to cloud erosion in the ob-
servations. However, WRF simulations or ERA5 reanalysis

produces only a gradual reduction in moisture from 00:00
to 20:00 UTC (Fig. 2a), maintaining a moist layer above
cloud top and preventing cloud breakup. On 22 July 2016,
the model reproduces the moisture gradient above PBL with
a warm and dry layer above, the lifted cloud top in the
N = 1000 simulation entrain dry air into cloud system and
dissipate clouds in the afternoon (Fig. 3a). On days when
ERA5 accurately capture the observed moisture decrease
above PBL (e.g., 25 and 28 July 2016), the model reproduces
both the dissipation and evening redevelopment of clouds
seen in Meteosat data (figures not shown). This indicates that
the diurnal evolution of MBL clouds is highly sensitive to the
representation of diurnal variation in moisture as well as the
moisture gradients near the inversion.

The prescribed, vertically uniform aerosol concentration
further reinforces cloud persistence by maintaining elevated
CCN levels and suppressing drizzle formation. The lack
of precipitation scavenging prevents cloud-base evaporative
cooling and inhibits decoupling, both of which would other-
wise promote afternoon cloud breakup. The implications of
thermodynamic biases (e.g. the moist layer above cloud top
and the underestimated PBL height) for the estimated ACI
are discussed in detail in Sect. 3.3.2.

In a nutshell, precipitating and non-precipitating clouds
react differently to aerosol perturbations in our simulations.
For precipitating clouds, aerosols increase LWP through pre-
cipitation suppression and support vertical development of
cloud through the impact of precipitation on PBL dynamic
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Figure 3. Time series of domain-averaged cloud properties from
observations and model simulations on 22 July 2016. (a) Cloud cov-
erage, (b) cloud top height, (c) cloud liquid water path, and (d) rain-
water path for N = 100 (blue lines) and N = 1000 (orange lines)
experiments.

and thermodynamics. For the non-precipitating case, PBL air
is drier compared to the first case, the enhanced turbulence
and entrainment of dry air above leads to evaporation and re-
duced buoyancy. The reduced buoyancy stabilizes PBL and
decays the cloud layer.

3.2 Evaluation of LWP susceptibilities across cloud
states and synoptic conditions

The two cases in Sect. 3.1 demonstrate the impact of different
cloud states and PBL thermodynamics on cloud responses
to aerosol perturbations. To systematically evaluate ACI pro-

cess across all simulated cloud states, we composite the cloud
fields from all 11 cases and all three aerosol concentrations
(e.g. N = 1000 vs. N = 100, N = 500 vs. N = 100, and
N = 1000 vs.N = 500) to estimate the mean LWP response,
and compare it with satellite retrievals, as shown in Fig. 5.
More specifically, LWP susceptibility in WRF simulations is
defined as the change in domain mean cloud properties as
d ln(LWP)/dln(Nd) between polluted and clean simulations
for each 10 min model output. To be consistent with satel-
lite retrievals, we focus on daytime with solar zenith angle
less than 65°. Lastly, we use the LWP-Nd parameter space to
represent different cloud states. (Qiu et al., 2024).

Based on the relationships between re, LWP, and
Nd in the satellite retrievals (e.g., LWP= 4reτ

3Qext
, Nd =

√
5

2πk

(
fadcwτ

Qextρwr5
e

)1/2
), re = 15 µm isoline is marked in the LWP-

Nd parameter space as an commonly used indicator of pre-
cipitation likelihood in the satellite retrieval (e.g., Gryspeerdt
et al., 2019; Toll et al., 2019; Zhang et al., 2022; Qiu et
al., 2024). Based on the distinct LWP, cloud albedo and CF
susceptibilities between cloud states, MBL clouds are classi-
fied into three states: precipitating clouds (re > 15 µm), non-
precipitating thick clouds (re < 15 µm, LWP > 75 g m−2),
and non-precipitating thin clouds (re < 15 µm, LWP <

75 g m−2) (Qiu et al., 2024). To remain consistency with ob-
servational reference, the WRF-simulated cloud states are
classified using the same definition. Similar to warm MBL
clouds in observations (e.g. Qiu et al., 2024), LWP responses
to aerosol perturbations in model simulations show a clear
dependence on cloud state (Fig. 5a).

For precipitating clouds (re > 15 µm), LWP slightly in-
creases with Nd, with a mean susceptibility of + 0.15.
The increase of LWP agrees with the precipitation suppres-
sion mechanism. Meanwhile, there are only 4 % of clouds
in model simulations locate to the left of the re = 15 µm
isotherm with small Nd, even with aerosol concentration set
to 100 cm−3 (Fig. 5b). The non-precipitating thick clouds
(re < 15 µm, LWP > 75 g m−2) are the dominant cloud state
in model simulation, accounting for 49 % of total cloud oc-
currence. In contrast to the evaporation-entrainment feed-
back mechanism, LWP increases substantially in the model
with increasing aerosols, with a mean susceptibility of
+ 0.32. For non-precipitating thin clouds (re < 15 µm, LWP
< 75 g m−2), LWP decreases with aerosol perturbations with
a mean susceptibility of − 0.14, consistent with the second
case discussed in Sect. 3.1.

To evaluate model performance, we estimated LWP sus-
ceptibility from satellite retrievals within the same domain
and for the same 11 cases as the model simulations (Fig. 5c
and d). Specifically, LWP susceptibility was quantified as the
regression slope between LWP and Nd within the 1°× 1°
domain at each time step of satellite observations. For pre-
cipitating clouds, LWP slightly decreases with increasing Nd
in satellite data, consistent with the four-year climatologi-
cal mean feature in the ENA region reported in our previ-
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Figure 4. Time series of domain-averaged thermodynamic profiles on 22 July 2016, for (a) relative humidity, (b) turbulent kinetic energy
(TKE; m2 s−2), (c) buoyancy flux (m2 s−3) in the N = 100 simulation, and (d) changes in relative humidity, (e) changes in TKE, (f) changes
in buoyancy flux between the N = 100 and N = 1000 simulations. The black contours show cloud water mixing ratio (g kg−1) in (a)–(c) for
N = 100 and in (d)–(f) for N = 1000 simulations.

ous study (Qiu et al., 2024). This decrease of LWP with in-
creasing Nd is likely associated with the depletion of LWP
through sedimentation–evaporation–entrainment feedbacks,
which outweigh the increase of LWP from precipitation sup-
pression. In contrast, in model simulations, the lack of realis-
tic evaporation-entrainment feedback results in LWP increas-
ing primarily through precipitation suppression. The sim-
ulated LWP susceptibilities are significantly different with
satellite observations at the 95 % confidence level for most
precipitating clouds (Fig. 5a).

For non-precipitating thin clouds, the simulated decrease
in LWP with increasing aerosol concentration agrees in
sign with satellite observations. However, the magnitude
of this decrease is weaker, and the simulated susceptibili-
ties remain significantly different from satellite estimates at
the 95 % confidence level for most bins (Fig. 5a, c). This
model behavior contrasts with most GCM and coarse CPM
studies, which typically simulate LWP increases for non-
precipitating clouds (e.g., Fons et al., 2024; Christensen et
al, 2024; Mülmenstädt et al., 2024). The improved represen-
tation in our high-resolution simulations arise from better-
resolved PBL turbulence and thermodynamics, which en-
hance entrainment of dry air, accelerate evaporation, reduce
buoyancy, and promote dissipation of the cloud system.

In contrast, for non-precipitating thick clouds, the model
and observations diverge substantially. In satellite observa-
tions, LWP decreases most strongly for this cloud state,
with a mean LWP susceptibility of − 0.69 (Fig. 5c). This

observational estimate is consistent with the climatological
mean derived from four years of Meteosat data over the
ENA region (Qiu et al., 2024). In the model, however, LWP
increases most strongly with increasing Nd for this cloud
state. Moreover, compared with satellite retrievals, model
simulates a substantially larger population of polluted thick
clouds characterized by high Nd and LWP. For example,
non-precipitating thick clouds are the dominant cloud state
in the model, accounting for 49 % of total cloud occurrence
(Fig. 5b), whereas they are the least frequent in observations,
at only 15.7 % (Fig. 5d). Meanwhile, only 4 % of simulated
clouds fall into the precipitating cloud regime with Nd < 50,
compared with 22.2 % in satellite observations

The overall overestimation of Nd likely arises from the
prescribed aerosol concentration in the model configuration,
combined with the absence of precipitation scavenging. For
reference, the mean aerosol concentration over the ENA re-
gion during summer is approximately 400 cm−3 (e.g., Zhang
et al., 2021; Wang et al., 2021; Zheng et al., 2024). The
model’s overestimation of LWP may stem from its exces-
sively positive LWP susceptibility in thick clouds. As shown
in Fig. S9, simulated LWP in theN = 100 experiment agrees
reasonably well with the Meteosat retrievals, with a mean
value about 10 % lower than observed. However, in the N =
500 and N = 1000 simulations, the strong positive LWP sus-
ceptibility leads to increases in LWP for clouds with LWP
> 75 g m−2, resulting in mean values 30 % and 40 % higher
than Meteosat retrievals, respectively.

https://doi.org/10.5194/acp-26-1769-2026 Atmos. Chem. Phys., 26, 1769–1794, 2026



1778 S. Qiu et al.: Understanding the causes of satellite–model discrepancies in ACIs

Figure 5. Mean liquid water path (LWP) susceptibility from (a, b) WRF simulations and (c, d) Meteosat cloud retrievals during daytime.
Panels (a) and (c) show cloud LWP susceptibility, defined as dln(LWP)/dln(Nd), panels (b) and (d) show the frequency of occurrence in
each bin. Dashed lines in each panel indicate thresholds of re = 15 µm, re = 10 µm for precipitation, and LWP= 75 g m−2 for thick clouds.
Precipitating clouds are located to the left of the re = 15 µm line, and thick clouds are defined as LWP > 75 g m−2. Black-outlined bins
denote cases where the WRF and Meteosat LWP susceptibilities differ significantly (p < 0.05) based on a Welch’s t test.

To further examine whether these discrepancies depend on
large-scale meteorological conditions, we assessed LWP sus-
ceptibility across different synoptic regimes. Because only
one case is available for the “weak-trough” regime (Ta-
ble S1), our comparison focuses on the “high-ridge” and the
“post-trough” regimes (Fig. S10). The “high-ridge” regime
shows a higher occurrence of non-precipitating thin clouds
than the “post-trough” regime, with total frequencies of 49 %
and 40 %, respectively (Fig. S10b, d). This more frequent
non-precipitating thin cloud in the model is consistent with
our previous study based on six years of ground-based ob-
servations at the ARM ENA site, which revealed that the
“high-ridge” regime favors single-layer stratocumulus clouds
with shallower cloud depth and smaller LWP compared to the
“post-trough” regime (Zheng et al., 2025).

In addition, non-precipitating thin clouds in the “high-
ridge” regime exhibit more negative LWP susceptibilities
than clouds with similar LWP and Nd in the “post-trough”
regime. This difference in LWP susceptibility is associated
with the colder and drier air above clouds under subsidence
in the “high-ridge” regime, which facilitates cloud dissipa-
tion, as also demonstrated in the case study. Furthermore,
non-precipitating or lightly drizzling thick clouds in both
synoptic regimes manifest strong positive LWP susceptibil-

ities, suggesting that the model-observation discrepancy for
this cloud state persist regardless of synoptic conditions and
therefore warrants further investigation.

In summary, mean LWP susceptibility from our simula-
tions were evaluated against satellite retrievals in the LWP-
Nd parameter space across different cloud states and syn-
optic conditions for a comprehensive comparison. The sim-
ulations reproduce the observed decrease in LWP for non-
precipitating thin clouds, although with weaker magnitudes.
For precipitating clouds, the model predicts a slight increase
in LWP instead of the weak decrease seen in satellite obser-
vations, reflecting the limited representation of evaporation-
entrainment feedback in the model. Large discrepancies re-
main for non-precipitating or lightly drizzling thick clouds,
where the model simulates too many polluted thick clouds
and yields an opposite (positive) LWP response compared to
the strongly negative satellite signal.

In addition, these discrepancies persist across all synoptic
regimes, suggesting that they originate from the model’s rep-
resentation of cloud microphysics, precipitation, and aerosol-
cloud coupling rather than from large-scale meteorological
variability. The consistency of these modeled LWP response,
in agreement with previous LES studies of similar cloud
regimes (e.g., Wang et al., 2020; Lee et al., 2025), further
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motivates the central focus of the next section: diagnosing
the physical mechanisms driving these biases. We show that
three leading factors dominate the discrepancy: excessive
precipitation production in thick clouds, a moist bias above
cloud top, and contamination of satellite retrieved Nd–LWP
relationships by internal cloud processes.

3.3 Causes of satellite–model discrepancies in LWP
susceptibility

The satellite–model differences highlighted above point to
systematic biases in how the model represents cloud micro-
physics, precipitation processes, and entrainment pathways.
In this section, we diagnose the physical mechanisms driving
these discrepancies, beginning with the model’s precipitation
efficiency.

3.3.1 Precipitation efficiency

A long-standing challenge in numerical models is the ten-
dency to produce precipitation too frequently and too lightly
(Sun et al., 2006; Stephens et al., 2010). To assess the
modeled precipitation efficiency against observations, Fig. 6
shows the mean cloud properties from Meteosat observations
and from WRF simulations for the 11 cases, combining all
three aerosol concentrations (N = 100, 500, and 1000). As
satellite retrieves re near cloud top, we use re at ∼ 100 m be-
low cloud top in the simulations, which approximately cor-
responds to τ ≈ 2 from cloud top for marine stratocumu-
lus. The modeled pixel-level precipitation fraction is calcu-
lated as the area fraction of cloudy pixels with the column
maximum radar reflectivity (Zmax) greater than −15 dBZ at
each model output time (Haynes et al., 2009; Suzuki et al.,
2015; Jing et al., 2017). Modeled radar reflectivity is from
the radar simulator (CR-SIM), as discussed in the method-
ology. The precipitation fraction in Meteosat is calculated as
the area fraction of clouds with re > 15 µm. Qiu et al. (2024)
evaluated different effective radius thresholds and rain rate
thresholds in satellite retrievals using precipitation masks de-
rived from ground-based radar reflectivity at the ENA site,
and concluded that the re > 15 µm threshold showed the best
agreement with observations.

As shown in Fig. 6a, c, the modeled re is∼ 1–3 µm smaller
than satellite retrievals for a similar cloud condition. Addi-
tionally, compared to observation, the model produces pre-
cipitation too frequently at smaller drop size (re > 10 µm)
and at higher Nd concentration (Fig. 6b and d, re = 10 µm
dashed line). The large discrepancy in LWP susceptibility
for thick clouds between the 10 and 15 µm isolines is likely
linked to model bias in precipitation efficiency. To further
investigate the model bias of excessive rain at smaller drop
size and the positive LWP responses to aerosol perturbations,
we compared the modeled radar reflectivity profiles from the
radar simulator with ARM observations using the CFODD
framework. Based on the relationship between Ze and the

droplet collection efficiency (Ec), the vertical slope of Ze as
a function of in-cloud optical depth (τd) is directly linked to
Ec, a steeper slope indicates a larger Ec (Suzuki et al., 2010).

Ground-based radar reflectivity profiles and cloud re-
trievals at the ARM ENA site are used as the observational
reference. To reduce noise, radar reflectivity profiles and
cloud boundary data are smoothed to a 1 min resolution.
To increase the sample size, we analyzed summer (June–
August) climate-mean radar reflectivity profiles for stratocu-
mulus and cumulus clouds observed from 2016 to 2021,
comprising a total of 91 737 profiles. Radar reflectivity pro-
files derived from the selected 11 cases exhibit consistent
characteristics (figure not shown).

To better distinguish microphysical processes such as au-
toconversion and accretion from dynamical processes such
as updraft, clouds are further categorized by both re and
τ ranges. MBL clouds are classified as non-precipitating
clouds, drizzle, and rain using a reflectivity threshold ofZe <

−15 dBZ,−15 dBZ< Ze < 0 dBZ, and Ze > 0 dBZ, respec-
tively, as denoted by black dashed lines in Fig. 7 (Haynes et
al., 2009; Suzuki et al., 2015; Jing et al., 2017).

Applying the same cloud state classification as in the satel-
lite observations (e.g., re > 15 µm for precipitating clouds
and LWP> 75 g m−2 for thick clouds), the total frequency of
occurrence of precipitating, non-precipitating thin, and non-
precipitating thick clouds are 30.7 %, 46.3 %, and 23.0 %, re-
spectively, based on six years of ARM observations. These
frequencies are consistent with those derived from satellite
data for the 11 cases (22.2 %, 55.6 %, and 22.2 %, respec-
tively; Fig. 5d). Therefore, the selected cases are represen-
tative of the typical summer MBL cloud-type distribution in
the ENA region.

As shown in the first column of Fig. 7, in clean envi-
ronment with re > 15 µm, the observed MBL clouds start
to drizzle with Ze >−15 dBZ even in the thinnest category
(Fig. 7a), of which the cloud top is mostly non-precipitating
(Ze <−25 dBZ). Cloud drops rapidly grow from cloud top
downward and initiate drizzle at ∼ 4–6 optical depth into the
cloud. However, most observed MBL clouds, even for the
thickest category (Fig. 7g), remain drizzling rather than rain-
ing as most of the radar reflectivity is lower than 0 dBZ.

Figure 7b, e, and h represent clouds with observed re =
10–15 µm, indicating increased Nd relative to clouds of sim-
ilar τ with re > 15 µm (Fig. 7a, d, and g). Precipitation in
these clouds is suppressed: Ze is mostly below −15 dBZ in
thin clouds (τ < 10, Fig. 7b). Thick clouds produce drizzle
at approximately τd > 20, and Ze slightly decrease at cloud
base, likely due to mixing and evaporation (Fig. 7h).

When re decreases to below 10 µm (Fig. 7c, f, and i),
Ze further reduces to around −20 to −30 dBZ throughout
the cloud layer, indicating that precipitation is further sup-
pressed. The precipitation suppression effect is shown not
only by the peak frequency of Ze, but also the slope of Ze,
which indicates the droplet collection efficiency as discussed
above. As seen in Fig. 7, for clouds with similar thickness,
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Figure 6. Mean cloud properties from (a, b) Meteosat retrievals and (c, d) WRF simulations during the daytime. (a, c) Effective radius, (b,
d) pixel-level precipitation fraction. The dashed lines indicate re = 15 µm, re = 10 µm, and LWP= 75 g m−2, as re thresholds for precipita-
tion (precipitating clouds located to the left of the line), and for thick clouds (with LWP > 75 g m−2), respectively.

the slope of Ze decreases with decreasing re, which reflects
a weaker collision coalescence and accretion processes with
higher Nd and smaller cloud drops.

In thick clouds with re < 10 µm (Fig. 7i), most radar re-
flectivity remains below −25 dBZ in the lower cloud layer,
while reflectivity increases slightly toward cloud top in the
region corresponding to ∼ 10–20 optical depth into the
cloud. Reflectivity then decreases again toward cloud top.
This vertical pattern is consistent with the structure of ma-
rine clouds reported in Suzuki et al. (2010). The observed
decrease in reflectivity near cloud top may be attributed to en-
trainment and evaporation, or to the accretion process involv-
ing large droplets falling downward, as indicated by localized
reflectivity peaks exceeding −15 dBZ (Fig. 7i). Meanwhile,
observations suggest that for clouds with small droplet sizes,
cloud deepening and dynamical variability have limited in-
fluence on precipitation initiation.

Compared with the observational reference (“ground
truth”), the model simulations reasonably identify the non-
precipitating regime in clouds with re < 10 µm and τ < 20,
where cloud drops are too small for efficient collision-
coalescence (Fig. 8c and f). Additionally, drizzle initiates at
the same re and τ ranges as in observations: for example, the
maximum frequency of Ze exceeds −15 dBZ in thin clouds
with re > 15 µm and τ < 10 (Fig. 8a) or in thick clouds with

re = 10–15 µm and τ = 10–20 (Fig. 8e). This result contrast
with GCM or GCPM results, in which models often simu-
late few non-precipitating clouds, or initiate drizzle too early
within the cloud layer (e.g. 5–10 optical depths; Jing et al.,
2017, 2019; Michibata and Suzuki, 2020). The improved
representation of non-precipitating clouds and the transition
from non-precipitating clouds to drizzle process in our sim-
ulations highlights the importance of high model resolution
for realistically simulating precipitation processes.

On the other hand, the model overestimates precipitation
in both intensity and frequency in optically thick clouds with
τ > 20. The simulations produce rain with peak Ze exceed-
ing 0 dBZ across all droplet size ranges, even for clouds with
re < 10 µm (Fig. 8g–i). Furthermore, precipitation initiates
too early near cloud top: all precipitating clouds in the model
start to drizzle or even rain at cloud top (Fig. 8a, d, e, g, h,
i). Based on the features shown in the CFODD analysis, the
overestimation of precipitation could be attributed to the fol-
lowing four aspects in the parameterization.

First, the overestimation of reflectivity near cloud top in-
dicates that autoconversion is activated too early in clouds
near the top. For a given aerosol concentration, clouds with
lower activated Nd exhibit larger re (Fig. 6c). As the au-
toconversion rate scaled nonlinearly with Nd (e.g. ∂qc

∂t
=

1350q2.47
c N−1.79

d ), clouds with larger droplets (e.g. ∼ 15–
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Figure 7. Frequency of radar reflectivity as a function of in-cloud optical depth (τd) for ARM ground-based observations during the daytime.
Different rows correspond to different optical depth (τ ) ranges: (a–c) τ < 10, (d–f) 10< τ < 20, (g–i) τ > 20. Different columns correspond
to effective radius (re) ranges: 15–20 µm (left), 10–15 µm (middle), and 5–10 µm (right). The black dashed lines denote −15 and 0 dBZ,
thresholds for drizzle and rain, respectively. The percentage of sample (P ) in each subgroup is shown in each panel; the total sample size is
91 737.

20 µm) have smaller Nd, and therefore exhibit larger auto-
conversion rate.

Second, the elevated reflectivity near cloud top may reflect
an underestimation of entrainment rate or evaporation rate
from the moist layer above the cloud. As shown in Fig. 8, the
simulated Ze does not decrease towards cloud top or cloud
base as in the observations, indicating insufficient entrain-
ment and evaporation.

Third, excessive rain production indicates an overestima-
tion of the accretion process. In the Morrison scheme, ac-
cretion depends on both cloud water and rainwater content;
thus, when autoconversion is triggered too early, accretion
also initiates too early. This bias is amplified in thick clouds,
which have larger liquid water content and provide longer

path for droplet collection (Fig. 8g–i). For thick clouds with
small drop size (Fig. 8i), they remain non-precipitating near
cloud top, indicating that autoconversion is appropriately
suppressed by small drop size. However, these clouds still
produce rain, suggesting excessive accretion.

Lastly, excessive rain production in thick clouds also sug-
gest an overly broad parameterized drop size distribution
(DSD), which lead to an early initiation of autoconversion
at cloud top and rain formation in clouds with large re.

Overall, in N = 100 simulation (Fig. 8), most modeled
MBL clouds are optically thin (τ < 20) and exhibit medium
(re = 10–15 µm, 49.8 %) or large droplet sizes (re = 15–
20 µm, 25.8 %). In contrast, observations show that the ma-
jority of clouds have re < 10 µm (53.3 %) (Fig. 7, third col-
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Figure 8. Frequency of radar reflectivity as a function of in-cloud optical depth (τd) for WRFN = 100 simulation. Different rows correspond
to different optical depth (τ ) ranges: (a–c) τ < 10, (d–f) 10< τ < 20, (g–i) τ > 20. Different columns correspond to effective radius (re)
ranges: 15–20 µm (left), 10–15 µm (middle), and 5–10 µm (right). The black dashed lines denote −15 and 0 dBZ, thresholds for drizzle and
rain, respectively. The percentage of sample (P ) in each subgroup is shown in each panel.

umn). Meanwhile, although the aerosol concentrations are
prescribed, the model predicts Nd through aerosol activa-
tion and microphysical processes, resulting in variabilities in
Nd. For clouds of a given optical depth, decreasing re cor-
responds to increasing Nd. This increase in Nd is associated
with both lower peak of Ze and a reduced vertical Ze gradi-
ents in the CFODD, suggesting aerosol-induced precipitation
suppression. Lastly, cloud dynamics exhibits a stronger in-
fluence in the simulations than in observations. For example,
thicker clouds in the model show higher peak Ze values and
broader Ze distribution than thinner clouds with the same re,
whereas this enhancement is less evident in ARM observa-
tions.

By comparing simulations with different prescribed
aerosol concentrations, we observe that with increasing
aerosols and decreasing drop size, precipitation is sup-
pressed. This suppression is evidenced by a shift in the fre-
quency of precipitating clouds, along with reduced peak Ze
values and shallower vertical gradient of Ze. For example,
the most common cloud type shifts from thin clouds with
moderate re in the N = 100 simulation (Fig. 8b and e) to
thicker clouds with smaller re in the N = 500 run (Fig. 9h
and i), revealing a typical cloud response to precipitation sup-
pression. Meanwhile, the percentage of clouds with re = 15–
20 µm decreases substantially from 31.9 % inN = 100 simu-
lation to 6.1 % inN = 500 simulation. As a result, the droplet
size distribution in N = 500 simulation aligns more closely
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Figure 9. Frequency of radar reflectivity as a function of in-cloud optical depth (τd) for WRFN = 500 simulation. Different rows correspond
to different optical depth (τ ) ranges: (a–c) τ < 10, (d–f) 10< τ < 20, (g–i) τ > 20. Different columns correspond to effective radius (re)
ranges: 15–20 µm (left), 10–15 µm (middle), and 5–10 µm (right). The black dashed lines denote −15 and 0 dBZ, thresholds for drizzle and
rain, respectively. The percentage of sample (P ) in each subgroup is shown in each panel.

with ARM observations, although the simulated clouds re-
main optically thicker than observed. For clouds with similar
re and τ , both the peak Ze and its vertical gradient decrease
with increasing aerosol concentrations due to the reduced au-
toconversion with higher Nd. In particular, thick clouds with
medium re (re = 10–15 µm, τ > 20, Fig. 9h) transition from
raining to drizzling in theN = 500 simulation, aligning more
closely with observations.

For clouds with re > 15 µm, rain becomes stronger com-
pared to the N = 100 simulation, even in the thinnest cloud
(Fig. 9a, d, and g vs. Fig. 8a, d, and g). While the enhance-
ment of precipitation with increasing aerosol concentration
may initially seem counter-intuitive, it can be explained by
the parameterization of DSD in the model. For clouds with

similar τ , increasing re is associated with higher LWP and
qc, but lower Nd. Based on Eq. (5), the slope parameter λ de-
creases with increasing re, resulting in a broader DSD with a
flatter slope. Additionally, the dispersion parameter η is pro-
portional to Nd so that polluted clouds in N = 500 simula-
tion also exhibit broader DSDs. As a result, even under sup-
pressed autoconversion due to higher Nd, the extended tail
of the broader DSD initiates autoconversion, enhances ac-
cretion from higher fall speed, and ultimately enhances pre-
cipitation in the N = 500 simulation. Note that this type of
cloud occurs much less frequently in theN = 500 simulation
(6.1 %) than in the N = 100 simulation (31.9 %).

When aerosol concentration is further increased fromN =

500 to N = 1000 (Fig. 9 versus Fig. 10), the CFODD of re-
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Figure 10. Frequency of radar reflectivity as a function of in-cloud optical depth (τd) for WRF N = 1000 simulation. Different rows
correspond to different optical depth (τ ) ranges: (a–c) τ < 10, (d–f) 10< τ < 20, (g–i) τ > 20. Different columns correspond to effective
radius (re) ranges: 15–20 µm (left), 10–15 µm (middle), and 5–10 µm (right). The black dashed lines denote −15 and 0 dBZ, thresholds for
drizzle and rain, respectively. The percentage of sample (P ) in each subgroup is shown in each panel.

flectivity changes little, indicating a saturation of precipita-
tion suppression and DSD broadening. A larger fraction of
clouds shifts into the non-precipitating thick-cloud subgroup
with re < 10 µm and τ > 20 (44.6 %, Fig. 10i).

In summary, we evaluated the vertical development of pre-
cipitation in the model using ARM radar reflectivity profiles.
Our simulations realistically reproduce the non-precipitating
regime and the transition to drizzling clouds at similar re and
τ ranges as ARM observations. Meanwhile, model overesti-
mates precipitation for optically thick clouds and clouds with
re > 15 µm. This overestimation could be attributed to the
early initiation of the autoconversion process, which leads
to an early onset of rain near the cloud top. The excessive
accretion rates, along with underestimation of entrainment

and evaporation, lead to an overproduction of rain in the
model, especially in thick clouds with larger water content
and longer droplet collection path. Additionally, the parame-
terized DSD is too broad in the model, especially for polluted
clouds with large Nd and large re.

Because the model reasonably captures the properties of
non-precipitating thin clouds in agreement with ARM obser-
vations, the simulated LWP susceptibility aligns well with
satellite-based estimates. In contrast, the overestimation of
precipitation in thick clouds leads to a predominantly pos-
itive LWP susceptibility in the model due to the precipita-
tion suppression effect. However, satellite observations indi-
cate that these clouds are typically non-precipitating, where
entrainment drying dominates, resulting in a negative LWP
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susceptibility. These results highlight the need to improve the
parameterization of precipitation processes: particularly au-
toconversion, accretion, and DSD representation, in order to
better simulate ACI across all cloud regimes.

While our analysis focuses on the two-moment Morrison
scheme, Christensen et al. (2024) found that the choice of
microphysics and PBL schemes accounts for only about 30 %
of the variability in simulated ACI, much smaller than the
variability across meteorological conditions and cloud states.
Given that this study encompasses 11 cases spanning diverse
synoptic regimes and cloud types, the overly positive LWP
susceptibility for thick clouds is consistent across synoptic
regimes, we therefore expect that the overall conclusions are
not strongly sensitive to the specific choice of two-moment
bulk microphysics schemes.

Moreover, the key deficiencies identified in this study
(e.g. early initiation of autoconversion, excessive accretion,
and too broad DSD) are well-known limitations within the
framework of two-moment bulk microphysics scheme, rather
than being unique to the Morrison formulation. As a re-
sult, the process-level diagnostics and physical interpreta-
tions presented here are broadly applicable. We acknowledge
that explicit sensitivity tests using alternative microphysics
schemes would further strengthen these conclusions. How-
ever, such experiments are computationally expensive at the
near-LES resolution (∼ 200 m) employed here for a large en-
semble of realistic cases. Nonetheless, future investigations
using multiple microphysics schemes would be valuable for
quantifying the robustness of the precipitation parameteriza-
tion and its role in ACI uncertainty.

3.3.2 Model bias in capturing inversions

As discussed in the case study in Sect. 3.1, ERA5 profiles
fail to accurately represent the location and strength of inver-
sions over the ENA region. These biases lead to an under-
estimated boundary layer height and an overestimated RH
above cloud top in the simulations. Figure 11 compares the
probability density function (PDF) of cloud-top RH between
ARM sounding observations and WRF simulations across all
11 cases for N = 1000 simulation. Simulations with other
aerosol concentrations (e.g., N = 100, N = 500) show simi-
lar results (not shown).

In ARM observations, cloud-top height is derived from
radar reflectivity profiles, as described in the method sec-
tion; whereas in WRF simulations, cloud top is defined as
the highest model level where the cloud water mixing ratio
exceeds 0.001 g kg−1. The RH is sampled at ∼ 100 m above
cloud top in both datasets. We further compare the cloud-top
heights in WRF simulations defined using cloud water mix-
ing ratio and radar reflectivity profiles with Ze >−40 dBZ
from the radar simulator. The two approaches yield nearly
identical results, with a mean difference of less than 40 m
(figure not shown).

Figure 11. PDF of cloud-top relative humidity (RH) for WRF sim-
ulations (blue line) and ARM sounding observations (black line).

To ensure a meaningful comparison between WRF out-
put and ground-based observations, cloud-top RH from WRF
is averaged over a 10 km× 10 km grid box centered at the
ARM ENA site for each sounding time, given the ∼ 1.2–
1.4 km mean cloud-top height for MBL clouds and∼ 7 m s−1

prevailing wind speed at ENA during summer (Wood et al.,
2015; Wu et al., 2020). As seen in Fig. 11, WRF simulations
exhibit a systematic wet bias in cloud-top RH, with mean
values 7.9 % higher than observations and with no RH val-
ues below 71 %.

Figure 12 shows the mean relationship between clout-top
RH and cloud susceptibilities calculated based on domain-
mean values for all three simulations (N = 1000 vs. N =
100, N = 500 vs. N = 100, and N = 1000 vs. N = 500).
Cloud-top RH is the domain-mean RH at ∼ 100 m above
cloud top for each simulation. As seen in Fig. 12a, we find a
positive correlation between cloud-top RH and LWP suscep-
tibility in the simulations, consistent with case-study results
in which a dry layer above cloud promotes evaporation and
decreases LWP. Additionally, this positive relationship is ro-
bust across different aerosol concentrations (e.g., N = 1000
vs. N = 100 or N = 500 vs. N = 100; figures not shown).
Moreover, cloud-top moisture exhibits a stronger impact on
LWP susceptibility than CF susceptibility (Fig. 12). The re-
lationships between cloud-top moisture and cloud suscepti-
bilities identified in our simulations are consistent with that
in satellite-based analyses on a global scale (e.g. Toll et
al., 2019; Yuan et al., 2023), except that LWP susceptibility
is predominantly negative while CF susceptibility predomi-
nantly positive in satellite observations.

Based on the relationship between cloud susceptibility and
cloud-top RH, the over-estimated cloud-top RH of ∼ 8 %
may lead to an overestimation of 0.04 and 0.005 in LWP
and CF susceptibilities, respectively. Meanwhile, the under-
estimated cloud-top height of 480 m could result in underes-
timations of LWP and CF susceptibilities of 0.18 and 0.02,
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Figure 12. Dependence of (a) LWP susceptibility and (b) CF susceptibility on cloud-top relative humidity in WRF simulations during
daytime. The solid blue lines show the median value in each RH bin, and the shaded area indicates the interquartile range (25th–75th
percentiles).

respectively (figures not shown). These results suggest that
improvements in the representation of thermodynamic pro-
files, such as through data assimilation, are necessary for fu-
ture modeling studies over the ENA region.

To further illustrate the influence of cloud-top evapora-
tion on LWP and CF adjustment rates, we analyzed the re-
lationship between cloud susceptibilities and change in the
cloud-layer buoyancy flux. As shown in the case study, buoy-
ancy flux increases with aerosol perturbation in precipitating
clouds due to precipitation suppression, whereas it decreases
in non-precipitating clouds owing to enhanced entrainment-
driven evaporation. Thus, changes in buoyancy flux serves
as a proxy for both cloud-top evaporation and precipitation
suppression processes.

In Fig. 13, changes in cloud-layer buoyancy flux are cal-
culated as differences in domain-mean values between pol-
luted and clean experiments (e.g., N = 1000 vs. N = 100,
N = 500 vs. N = 100, and N = 1000 vs. N = 500), aver-
aged over the cloud layer defined by the domain-mean cloud
water mixing ratio. As shown in Fig. 13, two distinct regimes
emerge: when cloud-layer buoyancy flux substantially de-
crease with increasing aerosols, both LWP and CF decrease.
When changes in buoyancy flux are weakly negative or pos-
itive, LWP and CF susceptibilities are generally positive or
near zero. Together with the results shown in Fig. 12, these
findings support the conclusion that the reductions in LWP
and CF in the model are primarily driven by cloud-top evap-
oration associated with enhanced entrainment. The absence
of negative LWP responses in earlier modeling studies may
therefore be attributed to inadequate resolution of the cou-
pled interactions among boundary layer turbulence, entrain-
ment, and cloud-top evaporation.

3.3.3 LWP adjustment from internal cloud processes
and precipitation heterogeneity

In addition to model biases in representing precipitation pro-
cesses and PBL thermodynamic profiles, one leading factor
contributing to the discrepancy in ACI estimates lies in how
ACI is diagnosed in numerical studies versus observations. In
model simulations, ACI can be isolated using controlled ex-
periments by varying aerosol concentrations while holding
meteorology constant. In satellite-based analysis, however,
the retrieved ACI signal inevitably includes not only aerosol-
induced cloud responses but alsoNd–LWP covariability aris-
ing from internal cloud processes, even under strict spatial
and temporal sampling constraints. Diagnosing these inter-
nal cloud processes in satellite observations is difficult be-
cause key governing variables, such as cloud-base updraft
speed, TKE, entrainment rate are not directly measured or
retrieved. In contrast, model simulations allow us to quan-
tify the Nd–LWP relationships driven by internal cloud pro-
cesses by examining their spatial covariation under homoge-
neous aerosol conditions. To ensure consistency with satellite
methodology and suppress small-scale cloud heterogeneity,
pixel-level model outputs are aggregated to a 25 km× 25 km
grid.

Figure 14a shows the resulting Nd–LWP relationships
across all cases and all aerosol concentrations, revealing op-
posing signs between different cloud regimes: a strong posi-
tive correlation for non-precipitating clouds and a strong neg-
ative correlation for precipitating clouds. To understand this
contrast, we examine whether bothNd and LWP co-vary with
a third parameter indicative of internal dynamics. Cloud-base
updraft speed emerges as a physical meaningful driver: the
ratio of dln(LWP)

dln(Updraft) to dln(Nd)
d ln(Updraft) in Fig. 14b closely mirrors

the Nd–LWP relations in Fig. 14a. This indicates that cloud
base updraft speed largely governs the opposing responses.

Atmos. Chem. Phys., 26, 1769–1794, 2026 https://doi.org/10.5194/acp-26-1769-2026



S. Qiu et al.: Understanding the causes of satellite–model discrepancies in ACIs 1787

Figure 13. Dependence of (a) LWP susceptibility and (b) CF susceptibility on changes in buoyancy flux (unit: m2 s−3) in the cloud layer in
WRF simulations during the daytime. The solid blue lines show the median value in each buoyancy flux bins and the shaded areaindicates
the interquartile range (25th–75th percentiles).

Figure 14. (a) LWP-Nd relations stem from internal cloud processes (b) LWP-Nd relations driven by cloud base updraft speed in WRF
simulations during the daytime.

In non-precipitating clouds, stronger updrafts enhance super-
saturation, activation, and condensation, increasing both Nd
and LWP, and resulting in a positive Nd–LWP relationship.
In precipitating clouds, stronger updrafts increase LWP and
rain rate, but precipitation formation reduces Nd via coales-
cence and collection, leading to a negative relation.

Furthermore, mesoscale variability in precipitation struc-
ture can further modulate the Nd–LWP relationship in pre-
cipitating clouds. To test this hypothesis, precipitating cases
(domain-mean precipitation fraction > 0.1) are further di-
vided into heterogeneous and homogeneous categories based
on the spatial standard deviation of precipitation fraction
using the upper and lower 50th percentile, respectively
(Fig. 15). Precipitation fraction is defined as the areal frac-
tion of cloud pixels with the column maximum reflectivity
greater than −15 dBZ (Fig. 6).

In heterogeneous convective precipitation (Fig. 15a),
strong and spatially variable latent heating release enhances
buoyancy within clouds, while rain evaporation and down-

drafts generate cold pools. Both processes act to intensify
updrafts, which in turn promote rapid droplet growth and in-
crease the cloud’s capacity to retain liquid water, leading to
higher LWP and precipitation. Meanwhile, stronger coales-
cence and precipitation scavenging reduce Nd. Such oppo-
site changes in LWP and Nd amplify the negative Nd–LWP
relationship (Fig. 15c). In homogeneous stratiform precipita-
tion, latent heating is more spatially uniform and stratifica-
tion inhibits localized buoyancy-driven updrafts. Weaker co-
alescence and less efficient scavenging lead to a less negative
Nd–LWP relationship (Fig. 15d).

In summary, even though clouds with LWP > 75 g m−2

and re < 15 µm are typically classified as non-precipitating
thick clouds in observational ACI studies, pixel-level data
real that 20 %–35 % of these clouds produce precipitation
(Fig. 6a). The strongly negative LWP susceptibilities in-
ferred from satellite data for non-precipitating thick clouds
may partly arise from internal cloud processes driven by up-
draft speed and mesoscale precipitation structure, rather than
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Figure 15. LWP-Nd relations stem from internal cloud processes for scenes with (a) heterogeneous and (b) homogeneous precipitating
clouds. (c) and (d) show the difference between (a) and (b) with Fig. 14a.

from aerosol–cloud interactions alone. providing a plausible
explanation for the model–observation discrepancy. Mean-
while, non-precipitating thin clouds with LWP < 75 g m−2

and re < 15 µm exhibit low pixel-level precipitation fractions
(typically< 0.1, Fig. 6a), and the positive Nd–LWP relation-
ships arising from internal cloud processes may bias satellite-
derived LWP susceptibility toward more positive values, fur-
ther expanding the model-observation gap. The opposing
signs of Nd–LWP relationships in Figs. 14a and 5c for non-
precipitating thin clouds highlight the need for additional
process-level analysis in future study.

4 Conclusions and discussions

Previous studies have found that model simulations and ob-
servations often reveal opposing results in LWP responses to
aerosol perturbations for MBL clouds. For example, satellite-
based assessments indicate a decrease in cloud LWP with
aerosol perturbations, especially in polluted conditions for
non-precipitating clouds (e.g., Gryspeerdt et al., 2019; Toll
et al., 2019; Zhang et al., 2022; Zhang and Feingold, 2023;
Qiu et al., 2024; Yuan et al., 2023, 2024). On the other hand,
most GCMs and CPMs simulate an increase in LWP with in-
creasing aerosols (e.g., Ghan et al., 2016; Michibata et al.,
2016; Mülmenstädt et al., 2024; Fons et al., 2024; Chris-
tensen et al, 2024). Previous studies have shown that increas-

ing model resolution to sub-kilometer scales can improve the
representation of precipitation processes and model perfor-
mance in ACI by resolving small-scale processes most rel-
evant to ACI (e.g., Terai et al., 2020). However, it remains
unclear how well models perform at near-LES scales in rep-
resenting ACI feedbacks when using realistic meteorological
conditions and large case ensembles spanning diverse cloud
states and synoptic regimes.

To address these gaps, our study makes three key ad-
vances: (1) we conduct a series of realistic near-LES-scale
simulations that enable direct comparison with ground-based
and satellite observations to reconcile observed–modeled
discrepancies; (2) we examine a large ensemble of MBL
cloud cases spanning a range of cloud states and synoptic
conditions to capture the diversity of ACI responses; and
(3) we employ the same two-moment microphysics scheme
implemented in several GCMs and CPMs, making our find-
ings directly relevant for improving microphysical parame-
terizations in climate models.

The simulated MBL clouds generally match the satellite
observation in domain-mean cloud coverage and mesoscale
organization (Figs. 1, 3, and S2–S4). However, the model
struggle to reproduce the observed diurnal evolution of
clouds, particularly afternoon cloud dissipation. The model
overestimates cloud LWP, especially in polluted simulations,
and underestimates cloud-top height compared to satellite re-
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trievals. To illustrate the dependence of cloud responses on
cloud state, LWP susceptibilities are displayed in the Nd–
LWP parameter space (Fig. 5).

For non-precipitating thin clouds, our simulations show
a consistently negative but weaker LWP susceptibility com-
pared to satellite observations, with a mean value of −0.13.
This negative LWP susceptibility likely results from bet-
ter resolved turbulence, condensation-evaporation processes,
and their feedback on PBL thermodynamics. More specif-
ically, increases in aerosols enhance turbulence and TKE
within the cloud layer. In the presence of dry air above
clouds, the entrained dry air intensifies evaporation, reduces
buoyancy flux in the cloud layer, and leads to cloud dissipa-
tion (Figs. 4 and 13).

For precipitating clouds, the model predicts a slight in-
crease in LWP with a mean susceptibility of +0.15, consis-
tent with the precipitation suppression hypothesis and with
the climatological mean cloud response for heavily precip-
itating clouds (e.g., Qiu et al., 2024). For non-precipitating
thick clouds, model simulations and satellite observations
show the largest disagreement, with opposite LWP suscep-
tibilities of +0.32 and −0.69, respectively. Meanwhile, non-
precipitating thick clouds dominate the modeled cloud popu-
lation, accounting for 49 % of occurrences, compared with
only 15.7 % in satellite observations. This systematic bias
can be traced to both aerosol and microphysical assump-
tions in the model. The overestimation of Nd arises from
the prescribed aerosol concentration in the model configu-
ration combined with the absence of precipitation scaveng-
ing. The overestimation of LWP primarily reflect the strong
positive LWP susceptibility in thick clouds, whereas LWP in
N = 100 simulation shows good agreement with satellite re-
trievals (Fig. S9)

Our analyses indicate that such discrepancy mainly re-
sults from the overestimation of precipitation in thick clouds:
MBL clouds in the simulations produce precipitation at much
smaller cloud drop size (e.g., re > 10 µm) and under more
polluted conditions than indicated by satellite observations
(Fig. 6). Based on ARM radar observations, our simulations
reasonably capture the non-precipitating regime and the tran-
sition from non-precipitating to drizzling clouds within the
same re and τ range as observed (Figs. 7, 8). In this re-
spect, our simulations better represent marine clouds than
most GCMs or GCPMs, which often initiate drizzle or rain at
cloud top and rarely simulate non-precipitating clouds (e.g.,
Jing et al., 2017, 2019; Michibata and Suzuki, 2020).

However, several biases remain. In non-precipitating
clouds, the model shows near-constantZe profile with height,
whereas observations show a decrease near cloud top, sug-
gesting an underestimation of entrainment and evaporation
(Fig. 8). In thicker clouds (τ > 20), drizzle often initiates too
early near cloud top (Ze >−15 dBZ), indicating excessive
autoconversion. This early onset allows raindrops to grow
too large through prolonged collection in deeper clouds, re-
sulting in overestimated rain rates (Ze > 0 dBZ), whereas

observations show primarily drizzle (Fig. 8). Additionally,
stronger rain in polluted cases with large re points to an
overly broad DSD, as the dispersion parameter η in the Mor-
rison scheme increases with Nd, and the DSD slope flattens
with larger re (Figs. 9 and 10). The overestimation of pre-
cipitation in thick clouds therefore leads to increased LWP
through precipitation suppression in the simulations.

The overestimation of LWP susceptibility may also stem
from biases in ERA5 and WRF thermodynamic profiles in
representing the location and strength of moisture inversions
(Figs. S6 and S8), leading to shallower PBL and a moist bias
above cloud top in the simulations (Fig. 11). Consistent with
observations, model simulations show a positive correlation
between LWP susceptibility and cloud-top RH, suggesting
that the wet bias in cloud-top RH contributes directly to the
positive bias in LWP susceptibility (Fig. 12).

Lastly, we find that part of the discrepancy in quantified
ACI may stem fromNd–LWP relationships driven by internal
cloud processes that are mixed with true ACI signals in satel-
lite observations. Using model simulations with homogenous
aerosol concentrations, we isolate these internally drivenNd–
LWP relationships. Our results reveal large opposing sig-
nals between precipitating clouds (strongly negative relation-
ships) and non-precipitating clouds (strongly positive rela-
tionships), primarily governed by cloud-base updraft speed
(Fig. 14) and modulated by mesoscale cloud and precipita-
tion organization (Fig. 15). Therefore, the strongly negative
LWP susceptibility observed in thick clouds in satellite data
could reflect internal cloud dynamics rather than true ACI.

Overall, this study shows that while discrepancies be-
tween modeled and observed ACI can be reduced by increas-
ing model resolution for precipitating and non-precipitation
thin clouds, the positive bias in LWP susceptibility for non-
precipitating thick clouds persists. This bias is attributed to
deficiencies in microphysics parameterization and model bi-
ases in lower-tropospheric thermodynamics over the ENA re-
gion. These findings highlight the need for improved repre-
sentation of precipitation processes, entrainment, and drop
size distribution and motivate process-level evaluation of mi-
crophysics schemes using combined satellite and ground-
based observations.

Data availability. The WRF-ARW model (version 4.2) is publicly
available via the NCAR/MMM website and was used to produce
the simulation data (Skamarock et al., 2019). SEVIRI Meteosat
cloud retrieval products, produced by NASA LaRC SatCORPS
group, are available from the Atmospheric Radiation Measurement
(ARM) Data Discovery website at https://adc.arm.gov/discovery/
(last access: 27 January 2023), Minnis Cloud Products Using Visst
Algorithm. The ARM ground-based radar and lidar observations
(KAZRARSCL), LWP retrievals, and balloon sounding observa-
tions are available from ARM Data Discovery.
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