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Abstract. The biophysical effects of agricultural residue burning, driven by the excessive release of energy and
carbonaceous aerosols, remain poorly quantified at the global scale. Residue-based fires have the potential to
modify regional climate by altering land surface temperature (LST), highlighting the need for investigation at
regional scale. Here, an observation-driven assessment of spatial variations in LST due to concurrent release of
energy and aerosols has been made over northwestern India using multiple satellite and reanalysis-based datasets.
Year-specific fire pixel density was used to delineate an intensive fire zone characterized by medium-to-large
residue-based fire. Geospatial analysis revealed positive association among FRP (fire radiative power), LST and
AOD (aerosol optical depth). Over intensive fire zone, a space-for-time approach revealed significant increase
in both 1LST (0.57 °C; 95 % CI: 0.33–0.81 °C) and 1AOD (0.13; 95 % CI: 0.08–0.17) due to fire. Random
Forest non-linear model was employed to regress potential influence of FRP and AOD on LST having several
other variables as confounding factors. FRP consistently emerged as the dominant predictor of LST, followed by
planetary boundary layer height and aerosols. An increase in relative feature importance of FRP was noted during
days having high fire intensity and positive association with LST. Geographically weighted regression further
explained spatial heterogeneity in LST modulation by FRP. Overall, this analysis provides the first empirical
evidence that residue-based fire contributes to changes in land surface temperature. It further highlights that the
magnitude of this perturbation is governed by interannual variations in fire intensity and influenced strongly by
prevailing meteorological conditions.

1 Introduction

Burning agricultural residues is a widespread practice for
the rapid removal of post-harvest biomass from croplands in
many regions of the world (Streets et al., 2003; Singh et al.,
2018; Shyamsundar et al., 2019). While biomass burning is
often associated with deforestation (Chuvieco et al., 2021),
forest fires (van der Werf et al., 2017; Aditi et al., 2025), and
shifting cultivation (Prasad et al., 2006), residue burning on
agricultural land is primarily conducted to clear fields, fer-
tilize soil, eradicate weeds and pests, and prepare land for
the next crop cycle (Graham et al., 2002; Korontzi et al.,
2006; Lan et al., 2022). This practice is observed across large
agricultural regions globally, including China (Streets et al.,
2003; Zhang et al., 2020), South America (Graham et al.,

2002), Southeast Asia (Lasko and Vadrevu, 2018), and north-
western India (Singh et al., 2018, 2021; Sarkar et al., 2018).
In northwestern India, extensive residue burning during Oc-
tober to November is a recurring phenomenon and has been
widely examined from multiple perspectives. Previous stud-
ies report that these burning events contribute to severe air-
quality degradation in downwind urban centers (Singh et al.,
2018; Jethva et al., 2019), alter aerosol loading and chem-
istry (Mhawish et al., 2022), modify aerosol vertical strat-
ification and radiative forcing (Hsu et al., 2003; Vinjamuri
et al., 2020; Banerjee et al., 2021), induce adverse health ef-
fects (Singh et al., 2021), and may influence regional hydro-
logical processes (Kant et al., 2023). However, limited atten-
tion has been paid to investigate its effect on urban climate,
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especially on modulating lower atmospheric thermal budget
which has been otherwise strongly evident in case of forest
fire (Liu et al., 2018, 2019).

Across the northwestern India, dual cropping pattern in-
cluding rice and wheat crop is predominately practised over
roughly 4.1× 106 ha of land (NAAS, 2017). Such a crop-
ping pattern leads to generation of huge crop residues that are
low in nutrient content and rich in silica and ash. Typically,
residues from rice-wheat cropping system possess limited
economic value, as they are unsuitable for use as alternative
fodder, bioenergy feedstock or as raw material in pulp and
paper industry (Shyamsundar et al., 2019; Lan et al., 2022).
Besides, with the introduction of mechanical harvester in
the 1980s and enactment of groundwater preservation act in
the late 2000s, in situ burning of agricultural residues has
become a recurrent practice among the local farmers. This
practice serves to expedite field clearance and reduce the
turnaround period between rice harvest and the subsequent
sowing of the wheat crop (Balwinder-Singh et al., 2019). In-
dia produces an estimated 500× 106 metric tonnes (MT) of
crop residues annually, of which 20 %–25 % are disposed of
through open-field burning. Crop residue burning is partic-
ularly prevalent in northwestern India, where roughly 20–
25 MT of residues are set on fire each year (Balwinder-Singh
et al., 2019; Lan et al., 2022). Unregulated residue burn-
ing in this region contributes approximately 300 Ggyr−1 of
PM2.5 and 50 Tg of CO2 equivalent green-house gas emis-
sion (Singh et al., 2020). Notably, the frequency of fire in-
cidences has exhibited a persistent upward trend, coincid-
ing with concurrent increases in vegetation indices and at-
mospheric aerosol loading (Jethva et al., 2019). In addition
to atmospheric emissions, fires exert numerous biophysical
impacts on the surrounding ecosystems. Fire induces a cas-
cade of consequential processes, including modifications to
the surface energy balance, redistribution of nutrients, alter-
ations in species composition, changes in surface albedo, and
variations in evapotranspiration rate (Ward et al., 2012; Liu
et al., 2019). Additionally, fire can induce certain biogeo-
chemical and biophysical stresses on local environment by
modifying atmospheric composition and surface properties
(Andela et al., 2017; Aditi et al., 2025). Such transformation
of the native landscape, coupled with excessive release of en-
ergy, aerosols and its precursors, may therefore have several
potential implications on the environment.

Most studies on biomass-based fires have focused on iden-
tifying land–atmosphere processes responsible for fire ini-
tiation and propagation, quantifying emissions, and evalu-
ating fire-induced land–atmosphere exchanges (Lasko and
Vadrevu, 2018; Jethva et al., 2019; Chuvieco et al., 2021;
Aditi et al., 2025). In contrast, there is a paucity of knowl-
edge regarding how biomass burning contributes to climate
feedbacks through modifications of Earth’s surface radiative
budget and land surface temperature (Bowman et al., 2009;
Andela et al., 2017). Plausible explanation to this includes
limited observation and associated uncertainties in estimat-

ing key biophysical parameter like surface albedo, land–
atmosphere exchange of sensible heat flux and water vapor,
changes in evapotranspiration before and after fire events.
There are instances when global forest fire incidences and
size have been linked with modifications in land surface tem-
perature (LST; Alkama and Cescatti, 2016; Liu et al., 2018,
2019). Likewise, Liu et al. (2019) noted an enhancement in
mean annual LST over burned forest area in the northern
high latitudes. Similar evidence of increase in summertime
surface radiometric temperature over temperate and boreal
forests in the Northern Hemisphere was accounted by Zhao
et al. (2024). Alkama and Cescatti (2016) reported increases
in mean and maximum air temperature over arid regions fol-
lowing forest loss, highlighting the sensitivity of surface tem-
perature to land-cover modification. However, fire-induced
thermal forcing is strongly constrained by the fire size (Zhao
et al., 2024). Small, short-lived fires, such as those associated
with agricultural residue burning, often fail to produce suffi-
ciently large changes in surface albedo or evapotranspiration,
and therefore may not generate a detectable LST response.
Incidence of elevated LST over different provinces in China
due to agricultural residue burning has only recently reported
by Zhang et al. (2020). A spatially heterogeneous increase in
LST correlated strongly with fire count, with highest LST
gradient noted at distances of 4–10 km from the central point
of crop residue burning and persisting for 1–3 d. In contrast,
the effects of post-harvest fire incidences in northwestern In-
dia on LST remain largely unexplored. This gap introduces
considerable uncertainty in assessing the climate feedback of
crop residue burning and highlights the need for a better un-
derstanding of the underlying mechanisms.

This study aims to explore immediate biophysical effect of
agricultural residue fire on surface temperature over north-
western India. By integrating spatially and temporally con-
sistent satellite observations and reanalysis datasets, includ-
ing fire counts, fire radiative power, land surface temper-
ature, aerosols, meteorological covariates, topography, sur-
face property, and physical environment over intensive fire
zone, we sought to quantify time-bound changes in LST
in response to variations in fire intensity and aerosol load-
ing. Several statistical methods were applied to construct the
changes in LST with fire severity and aerosols. Additionally,
a space-for-time framework was followed to assess the ef-
fects of recurrent FRP variations on LST and aerosol optical
depth (AOD) throughout the fire season. Specifically, we ad-
dressed two key questions: (1) Does LST respond to changes
in fire intensity over northwestern India? and (2) How do lo-
cal meteorology and aerosol loading modulate LST variation
with respect to space and time? To the best of our knowl-
edge, this is the first systematic assessment of agricultural
residue fire–driven modulations in LST over northwestern
India. By integrating multiple geospatial observations, the
analysis offers critical insights into the biophysical feedbacks
of residue-based fire and advances understanding of LST re-
sponses to residue burning. Further, it refines estimates of
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fire-induced perturbations in the regional radiative budget of-
fering valuable representation of biomass-based fire in Earth
system models.

2 Dataset and methodology

2.1 Study domain

Post-harvest biomass burning is predominantly practiced
across the northwestern Indo-Gangetic Plain (IGP) of South
Asia, particularly in the agrarian states of Punjab and
Haryana, which together contribute nearly 60 %–70 % of In-
dia’s total food grain production. The concurrent rise in rice
and wheat cultivation has led to a substantial increase in crop
residue generation, resulting in higher fire intensity in recent
years (Jethva et al., 2019). In this study, geospatial analy-
ses of LST, fire activity, and aerosol loading were conducted
over northwestern India during October–November between
2017 and 2021. The combination of high agricultural output,
extensive biomass burning, and increasing fire activity makes
this region particularly suitable for investigating fire dynam-
ics and their environmental implications. Schematic work-
flow indicating core datasets and adopted methodology for
exploring FRP-AOD-LST association is illustrated in Fig. S1
in the Supplement. Instead of defining a fixed spatial domain
a priori, year-wise fire signals were retrieved across cropland
areas in northwestern India. This approach allowed the de-
lineation of a core study region that varied annually accord-
ing to year-specific fire intensity and spatial trends (as shown
in Fig. S2 in the Supplement), but all eventually bound to
29.2770–32.1625° N and 73.8996–77.0718° E, as illustrated
in Fig. 1b.

2.2 Spatial dataset

Active fire count data was retrieved from the standard fire
product of Visible Infrared Imaging Radiometer Suite (VI-
IRS) Collection-2 (VNP14IMG) available at 6 min L2 swath
at 375 m resolution. The VIIRS onboard the Suomi Na-
tional Polar-orbiting Partnership (SNPP) satellite is a cross-
track single-angle scanning radiometer which was launched
in year 2011 under joint operation of NASA and NOAA. The
VIIRS fire detection algorithm typically extends well refined
and validated MODIS Fire and Thermal Anomalies product
(Giglio et al., 2003). The I-band based fire detection algo-
rithm primarily utilizes brightness temperature of Channel I4
on middle infrared spanning from 3.55–3.93 µm, centred at
3.74 µm. Additionally, to isolate the active fire spots from the
fire-free background channel, a single gain I5 at thermal in-
frared regions (10.5–12.4 µm) is also considered. Rest of the
I-band channels i.e. I1 to I3, covering visible, near and short-
wave IR are used to distinguish pixels with cloud, water and
sun-glint (Schroeder et al., 2014). The VIIRS fire database
was considered due to its superior precision and accuracy in
identifying relatively small fire, greater spatial resolution at

footprint and pixel saturation temperature (Li et al., 2018;
Vadrevu and Lasko, 2018; Aditi et al., 2023). For this experi-
ment, SNPP VIIRS 375 m L2 active fire count data with nom-
inal (fire mask class 8) and high confidence (fire mask class
9), was retrieved over northwestern India from year 2017–
2021 (all inclusive).

Fire radiative power (FRP) quantifies the release of radia-
tive energy from biomass burning integrated at all angles and
wavelengths over a spatial scale. Measured in Watt, FRP re-
trieval quantifies the release of heat energy against time and
in many instances linearly associated with the rate of fuel
consumption and emission (Ichoku et al., 2008; Nguyen and
Wooster, 2020). A detailed description on FRP retrieval and
comparison among the sensors are available in Wooster et al.
(2003, 2005) and Ichoku et al. (2008). Li et al. (2018) con-
cluded VIIRS FRP as comparable with MODIS FRP in most
of fire clusters and stable across swath. Here, FRP (MW) was
processed from the SNPP VIIRS C2 Level-2 (L2) 375 m ac-
tive fire product (VNP14IMG). VIIRS FRP was used as a
proxy of fire intensity and potential emission strength from
the biomass burning area, and considered as a direct mea-
surement of radiative energy being released from individual
fire pixel.

Land surface temperature (LST, in °C) at 1 km spatial reso-
lution was utilized from Moderate Resolution Imaging Spec-
troradiometer (MODIS) version 6.1 Land Surface Temper-
ature and Emissivity retrievals product (MYD11A1). Typi-
cally, LST indicates thermodynamic temperature of the in-
terface atmospheric layer within soil, plant cover and lower
atmosphere, and serves as an indicator of land–atmosphere
interaction and exchange (Li et al., 2023). Here, MODIS
MYD11A1 radiometric dataset with quality flag “00” was
specifically chosen considering its broad swath and wider
applicability in estimating land surface temperature. MODIS
LST is validated against ground observations on diverse land
covers and reported to provide realistic estimate of surface
temperature (Wan, 2014) with an uncertainty of≤ 0.5 K. The
dataset includes daytime maximum LST (at 01:30 PM LT)
and nighttime minimum LST (at 01:30 AM LT). Here, day-
time LST dataset were obtained solely from the MODIS sen-
sor onboard the Aqua satellite to closely coincide with VIIRS
fire count observations at 01:30 PM LT, a period when crop
residue–based fires are expected to reach at peak.

Aerosol optical depth (AOD) from Visible Infrared Imag-
ing Radiometer Suite (VIIRS) sensor on-board SNPP satel-
lite offers accurate estimation of columnar aerosol loading at
550 nm over land. Accuracy of VIIRS V1 DB AOD was eval-
uated extensively over South Asia by Aditi et al. (2023) and
reported to provide stable AOD retrieval against AERONET.
Sayer et al. (2019) reported an estimated error of ±(0.05+
20%) in VIIRS Version 1 DB AOD dataset. Here, Deep Blue
(DB) Version 1 AOD dataset (AERDB_L2_VIIRS_SNPP
Level-2) was used to retrieve AOD with a nominal spa-
tial resolution of 6 km at nadir. Only quality assured AOD
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Figure 1. Spatial variation in satellite-based fire radiative power across northwest India, distribution of FRP-based fire intensity
(MWpixel−1) (a) and domain selected for retrieval and processing of SNPP VIIRS FRP, AOD and Aqua MODIS LST (b). The region
marked with blue in Fig. 1a subset indicates the Indo-Gangetic Plain (IGP) spanning from Pakistan to Bangladesh through India. The ex-
tended fire zone selected for analysis is marked with red within the IGP and has been shown in detail in Fig. 1b with fire pixel density.

(QA≥ 2) was retrieved for the months of October to Novem-
ber over selected spatial domain.

Terra/Aqua MODIS land cover data was used to dis-
criminate crop land against the rest to filter out thermal
anomalies exclusively over the agriculture land. To achieve
this, MODIS L3 V6.1 Global Land Cover type product
(MCD12Q1) was retrieved from LAADS DAAC site for year
2017, available at 0.5 km spatial resolution. MODIS land
cover types adopts International Geosphere-Biosphere Pro-
gramme (IGBP) and other land type classification schemes
to classify land cover. Here, land cover type 12 (cropland)
was earmarked to isolate the agriculture land from its sur-
rounding (Fig. S3 in the Supplement).

Daily composite data on surface and root-zone soil
moisture (SM, m3 m−3) available at 9 km resolution was
obtained from NASA’s Soil Moisture Active Passive
(SMAP) satellite mission having L-band radar. The Nor-
malized Difference Vegetation Index (NDVI) at 6 km res-
olution was derived from the VIIRS/SNPP Deep Blue
(AERDB_L2_TOA_NDVI) dataset and was utilized to quan-
tify surface vegetation greenness dynamics. Elevation data
at 30 m resolution was retrieved from Copernicus DEM –
Global and European Digital Elevation Model dataset for
year 2015. Surface albedo data was acquired from MCD43
suite of NASA standard product which integrates both Terra
and Aqua retrievals. Here, white-sky version 6.1 shortwave
albedo data (MCD43A3, Albedo_WSA_shortwave) at 500 m
pixel resolution with daily-time step (quality score: 0) was
used.

Lower surface meteorological data including air tem-
perature (AT), total solar radiation flux (SR), precipitation
(PR), relative humidity (RH) was procured from European
Centre for Medium-Range Weather Forecasts (ECMWF)
AgERA5 dataset. The AgERA5 dataset has been generated
by Copernicus Climate Change Service (2020) from hourly
ECMWF ERA5 dataset for specific agro-ecological based
applications. The meteorological data were pre-customized
with temporal aggregation aligned to local time zones and
spatial enhancement to a 0.1° resolution using grid-based
variable-specific regression model. Here, air temperature at
2 m above the surface, total solar radiation flux received at
the surface over a 24 h time period, and relative humidity
at 2 m height was selectively used over pre-identified inten-
sive crop-based fire zone. Planetary boundary layer height
(PBLH) data at 0.25°× 0.25° resolution was acquired from
ECMWF ERA5 for 13:00–14:00 LT corresponding with VI-
IRS overpass time. A description of all core datasets used in
this analysis and their resolution, version, and quality flags is
included in Table S1 in the Supplement.

2.3 Spatial analysis for fire-aerosols-LST association

2.3.1 Selection of intensive fire zone

Post-harvest residue burning typically begins in mid-October
and reaches peak intensity by mid-November across north-
western India. Accordingly, all spatial analyses were con-
ducted for October and November for the years 2017–2021.
The VIIRS 375 m fire product successfully retrieved active
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fire pixels across the Indo-Gangetic Plain, capturing substan-
tial spatial heterogeneity. To ascertain a representative region
having predominance of residue-based fire, spatial compari-
son of fire pixel density was made using daily retrieved VI-
IRS FRP dataset. FRP was selected instead of fire counts
because it directly quantifies the radiative energy released
from active burning and therefore provides a more meaning-
ful metric for assessing potential impact on LST. FRP den-
sity was computed on a 1.5km× 1.5 km grid to characterize
spatial variations in fire intensity across northwestern India.
Following Giglio et al. (2003), FRP density was estimated as
the ratio of total FRP within a grid cell to the grid area.

Initially, geospatial variations in fire intensity and the asso-
ciated changes in LST and AOD were evaluated. Spatial in-
tercomparison between FRP, LST, and AOD was performed
over the region delineated in Fig. 2a. This area was se-
lected to encompass an extended geographical domain with-
out imposing thresholds on low or high FRP density across
northwestern India. The region is hereafter referred to as the
“extended geographical region,” as it integrates fire activity
across all years and was used exclusively to establish the spa-
tial association between the predictor (FRP) and dependent
variables (LST and AOD).

In contrast, to assess the day-to-day influence of fire in-
tensity and aerosol loading on LST, a comparatively high-
intensity fire zone was delineated relative to low-intensity
areas. To achieve this, the entire crop-residue burning re-
gion of northwestern India was mapped using a constraint
from low FRP density (< 5 MWgrid−1) to high FRP den-
sity (> 15 MWgrid−1). Spatial variations in FRP density
were evaluated for each year, and regions with FRP density
> 5 MWgrid−1 were identified as the “intensive fire zone”
(Fig. 2b–f). This threshold ensured a better representation
of the effect of medium to large crop-based fire on regional
LST as small-intensity fire deem to extinguish faster while
being inconducive to considerably influence surface temper-
ature (Zhao et al., 2024).

All subsequent spatial datasets used for evaluating FRP–
AOD–LST relationships were retrieved exclusively within
the year-specific “intensive fire zone” having FRP density
> 5 MWgrid−1. Notably, the spatial extent of the high-FRP
region remained largely consistent across all years (Fig. 2b–
f), with areal estimates summarized in Table S2 in the Sup-
plement. It is noteworthy, the region was pre-filtered based
on the Terra/Aqua MODIS land cover data to deselect any
FRP pixel that emerged from a non-agricultural/crop land.

2.3.2 Selection of temporal window

After isolating the region with higher fire pixel density, the
next step was to identify the temporal window in which po-
tential associations between fire intensity and other explana-
tory variables could be examined. The temporal selection
was based on two scenarios, as illustrated in Fig. 3. Scenario
1 was designed to quantify the influence of FRP, aerosols,

and other parameters on LST during the period when fire ac-
tivity begins to intensify and remains persistent over the in-
tensive fire zone. Scenario 1 defines the initiation day as the
first instance in October when aggregate FRP consistently
exceeds 1500 MW and shows at least a 50 % increase com-
pared to the previous day. The scenario concludes in Novem-
ber when aggregate FRP decreases by at least 50 % relative to
the previous day. The selected dates for Scenario 1 are listed
in Table S3 in the Supplement, with two exceptions. First, in
year 2018 when a > 50 % criteria was not met despite hav-
ing an aggregate FRP > 1500 MW and second, in year 2017
when a prior decrease (> 50 %) in FRP was avoided because
of subsequent rise in fire intensity.

To define Scenario 2, a statistical association was ex-
amined between day-specific aggregate FRP and the spa-
tially averaged LST. Pixel-based LST values were averaged
over the intensive fire zone and compared against the area-
weighted sum of FRP on a day-to-day basis. A temporal win-
dow (“Scenario 2” in Fig. 3) was selected using two crite-
ria: (i) the end of the window had to coincide with a period
of persistently high FRP, and (ii) the window had to exhibit
a strong positive correlation (r ≥ 0.5) between FRP and re-
gional LST. Such restricted criteria were put to ensure that
we only select year-specific window(s) when FRP (so the fire
count) increases with time and exhibit a strong association
with regional LST. Descriptive statistics of both scenarios are
included in Table S4 in the Supplement. It is noteworthy that
selecting multiple windows within a year having coinciding
days was avoided while ensuring windows should not contain
more than 5 % of missing days, irrespective of parameters.

2.4 Spatial correlation between fire, aerosols and LST

To examine the spatial association among FRP, LST, and
AOD over the residue–based fire zone, grid-based spatial
correlation coefficients were computed, and their statistical
significance (p < 0.05) was tested across the study domain.
Daily FRP (375 m) and LST (1 km) datasets were initially
resampled to a 6km× 6 km resolution to match the VIIRS
AOD dataset before subject to spatial correlation analyses
among the predictor and dependent variables. This approach
facilitated the identification of regions exhibiting strong co-
variability in thermal conditions corresponding to variations
in fire intensity and columnar aerosol loading.

2.5 Hurst Exponent

The Hurst exponent is a statistical measure used to character-
ize the properties of a time series without imposing assump-
tions about its underlying distribution. Originally introduced
by Hurst (1951) in hydrological studies and later refined by
Markonis and Koutsoyiannis (2016), it has since been widely
applied across diverse scientific disciplines to analyse long-
term trends and variability. In this study, the Hurst exponent
was computed for FRP, AOD, and LST time series to identify
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Figure 2. Selection of high intensity residue-based fire zone based on fire radiative power pixel density (MW2.25km−2 d−1). (a) indicates
the “extended geographical region” demarcating the entire area with varying fire intensity selected for spatial analysis. Rest of the figures
(b–f) classify year-specific “intensive fire zone” based on FRP density.

Figure 3. FRP and LST time series over intensive fire zone showing the extent of scenarios used for geospatial modelling.

long-term statistical persistence in the datasets. To estimate
the Hurst exponent at the spatial scale, 6km× 6 km resam-
pled datasets of FRP, AOD, and LST were used. Adjustment
of seasonal cycle was not accounted, as the datasets were re-
trieved and processed exclusively for a single season across
the selected years. The main calculation procedures were as
follows (Granero et al., 2008):
A time series x(t) is given,

(x)t = 1/τ
∑τ

t=1
x(t) t = 1,2,3. . . (1)

The cumulative deviation is determined using Eq. (2):

X(t, τ )=
∑τ

u=1
(x(u)− (x)t ),

with a condition of1≤ t ≤ τ . (2)

Extreme deviation sequence, is defined as:

R(τ )= max
1≤t≤τ

X(t, τ )− min
1≤t≤τ

X(t, τ )

whereτ = 1, 2, 3. . . (3)
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The standard deviation sequence is calculated by Eq. (4):

S(τ )=
[
1/τ

∑τ

t=1
(x(t)− (X)τ )2

]1/2

whereτ = 1, 2, 3. . . (4)

By considering both extreme deviation sequence and stan-
dard deviation sequence,

R/S = R(τ )/S(τ ) when assuming(R/S)∝ (τ/2)H (5)

The Hurst exponent ranges between 0 and 1. A value of 0.5
indicates that the time series behaves as a purely stochastic
process without persistence, implying that future variations
are independent of past behaviour. Values greater than 0.5
denote statistical persistence, reflecting a tendency for fu-
ture changes to follow the same trend as in the past, with
higher values corresponding to stronger persistence. Con-
versely, values below 0.5 indicate anti-persistence, suggest-
ing a tendency for the time series to reverse its trend over
time; lower values represent stronger anti-persistence (Peng
et al., 2012).

2.6 Space-for-time approach

A space-for-time approach was employed to assess and com-
pare the changes in LST and AOD with respect to FRP
within the extended geographical region experiencing recur-
rent medium- to high-intensity fire. To ensure that changes in
LST and AOD were attributable solely to fire activity, grids
with similar characteristics in terms of topography, climate,
and physical environment were compared (Liu et al., 2019).
To achieve this, daily datasets including meteorological co-
variates (PBLH, AT, SR, RH and PR), physical environment
(elevation), vegetation and soil characteristics (NDVI, soil
moisture), climatological mean LST and AOD, and surface
property (albedo) were extracted over both fire and no-fire
grids at a spatial resolution of 10km×10 km. The daily data
were retrieved for each grid under Scenario 2, when FRP
reached its peak and exhibited a positive association with re-
gional LST.

After filtering out the grid cells with missing LST or AOD
values, remaining grids were classified into two groups: those
with zero FRP (no-fire) against the grids having FRP> 0, in-
dicating presence of fire. Fire and no-fire grids with com-
parable spatial characteristics were grouped into a single
stratum, and a stratified matching technique was applied
to generate multiple strata based on combinations of the
selected confounders. Grids were retained only when dif-
ferences in their physical environment, vegetation and soil
characteristics, climate and land cover between fire and
no-fire conditions were smaller than the defined thresh-
olds (1elevation< 50 m; 1NDVI< 0.05; 1soil moisture<
0.05;1albedo< 0.05;1LST< 10.0;1AOD< 0.80). Com-
parisons were then made within strata containing grids of
similar attributes to ensure that the observed variations in

LST and AOD could be attributed solely to fire activity. The
difference in LST (1LST) among the fire grids (LSTfire) and
grids exhibiting no-fire (LSTno-fire) having similar attributes
were compared to constitute effect of residue-based fire on
LST. A positive (negative) 1LST (LSTfire−LSTno-fire) indi-
cates fire-induced warming (cooling) and was used to quan-
tify changes in LST associated with residue burning for the
selected years. A similar approach was also adopted to eval-
uate 1AOD variations using grid-based retrievals.

It is noteworthy that the grids were not classified based
on meteorological covariates, as only insignificant variations
were noted among the grids. The entire northwestern crop-
land experiences a relatively uniform background climate
during October–November, including comparable boundary
layer heights, with PBLH standard deviations ranging from
±10 to ±33 m within a single fire season. The climatolog-
ical mean LST and AOD were computed only for the pre-
fire season (September, 2017–2021), during which none of
the grids experienced residue-burning activity. Furthermore,
grids were not differentiated by slope or aspect, given the
minimal topographic variation across the Gangetic Plain.

2.7 Multicollinearity assessment

Multicollinearity, where independent variables are highly
correlated, can distort regression estimates and obscure the
true contribution of individual predictors (Graham, 2003). To
assess this, the Variance Inflation Factor (VIF) for all covari-
ates was calculated using the statsmodels library. A VIF of
1 indicates no correlation, values between 1 and 5 suggest
moderate correlation, and values greater than 5 are gener-
ally interpreted as evidence of substantial multicollinearity
(Daoud, 2017). All biophysical, land–surface, and meteoro-
logical variables met acceptable VIF thresholds, except solar
radiation, which was therefore excluded from Random For-
est and GWR analysis. Additionally, soil moisture data was
removed from further analysis due to a high percentage of
missing observations (∼ 30 %).

2.8 Random Forest regression

Random Forest regression was used to model the relation-
ship between the dependent variable (LST) and predictor
variables (AOD, PBLH, AT, RH, SR, PR, NDVI, elevation,
albedo, and FRP) within the intensive fire zone. Daily re-
trievals, averaged over the year-specific intensive fire area,
were incorporated into the ensemble framework to capture
potential non-linear associations among variables. The se-
lected approach ensures robustness to multicollinearity, min-
imizes overfitting, and effectively captures complex predictor
interactions.

Random Forest is a non-linear ensemble machine learning
algorithm that constructs multiple decision trees from boot-
strapped samples of the training data, with a random subset
of predictors evaluated at each split. Final predictions are ob-
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tained by averaging all trees, improving generalization and
reducing overfitting (Breiman, 2001; Puissant et al., 2014).
The algorithm was selected due to its strong predictive capa-
bility, scalability to large environmental datasets, resilience
to correlated inputs, and demonstrated success in previous
LST-related studies (Logan et al., 2020; Wang et al., 2022;
Zhang et al., 2025). These attributes collectively support
Random Forest as an appropriate and interpretable choice
for assessing the complex interactions between fire intensity,
aerosol loading, and LST dynamics.

Key Random Forest hyperparameters (n_estimators,
max_depth, min_samples_split, min_samples_leaf, and
max_features) were optimized using Bayesian optimization
implemented via BayesSearchCV in scikit-optimize (Snoek
et al., 2025; Shahriari et al., 2015; Frazier, 2018). This
adaptive, probabilistic search strategy efficiently identifies
near-optimal hyperparameter combinations while minimiz-
ing computational cost. To ensure robust model evaluation
and mitigate temporal dependence, we employed temporal
block cross-validation using a 3-fold GroupKFold in the
scikit-learn library, where all observations from a given year
were assigned to the same fold. This approach prevented
temporal overlap between training and validation datasets
and reduced information leakage across years. This approach
also minimized temporal autocorrelation and prevented data
leakage across time periods. Model performance was quanti-
fied using cross-validated coefficient of determination (R2),
Root Mean Squared Error (RMSE), and Mean Absolute
Error (MAE), providing a comprehensive assessment of
model accuracy and prediction error.

2.9 Assessment of relative feature importance

Variable importance was derived from the trained RF model
using the mean decrease in impurity method, which quan-
tifies each predictor’s relative contribution to reducing vari-
ance in model predictions. This approach provides insight
into the dominant factors governing the spatial and temporal
variability of LST. Feature importance values were extracted
and ranked to identify the most influential predictors under
different fire intensity scenarios. To enable direct comparison
among predictors, the relative contribution of each feature
was expressed as its importance score normalized by the sum
of all feature importances. As Scikit-learn’s RandomFore-
stRegressor.feature_importances_inherently returns normal-
ized values summing to one, the reported scores directly
represent each predictor’s proportional influence within the
model.

2.10 Spatial heterogeneity assessment using GWR

Spatial heterogeneity in the influence of FRP, AOD, and
other spatial predictors on LST within the intensive fire
zone was assessed using Geographically weighted regres-
sion (GWR) at 1km×1 km grid. GWR is a spatially explicit

regression technique designed to quantify how relationships
between predictors and a dependent variable vary across ge-
ographic space by estimating spatially varying coefficients
(Brunsdon et al., 1996). The method applies a distance-based
weighting scheme, whereby observations closer to a given lo-
cation receive higher weights, allowing local parameter esti-
mation that reflects neighbourhood-specific dynamics (Yang
et al., 2020). Unlike global regression models that assume
spatial stationarity, GWR produces location-specific coeffi-
cient estimates, offering a more nuanced understanding of
spatially varying associations between LST and its predictors
(Fotheringham et al., 2009). The GWR model is formally ex-
pressed as:

yi = β0(ui, vi)+
∑m

k=1
(βk(ui, vi)xik)+ εi (6)

where (ui, vi) are the coordinates of observation i, βk(ui,vi)
are spatially varying coefficients, xik are predictor variables,
and εi denotes random error. In GWR, local parameters are
estimated using weighted least squares, where each observa-
tion is assigned a weight based on its spatial proximity to
the location being evaluated. These weights are determined
by a spatial kernel function and a bandwidth parameter that
defines the extent of spatial influence. Selecting an optimal
bandwidth is therefore essential to balance the trade-off be-
tween model bias and variance. In this study, the optimal
bandwidth was identified through an iterative optimization
procedure that minimizes the corrected Akaike Information
Criterion (AICc) (Fotheringham et al., 2009). This approach
ensures robust estimation of local relationships while effec-
tively accounting for spatial non-stationarity in the dataset.
Such a framework is particularly valuable in fire-affected
landscapes, where the impacts of fire intensity, aerosol load-
ing, and surface characteristics on LST are inherently hetero-
geneous and vary substantially across space.

3 Results and discussions

3.1 Spatial association between fire, aerosols and LST

Spatial variations in FRP, LST and AOD averaged for Oc-
tober to November between 2017 and 2021 over extended
geographical region is shown in Fig. 4a–c. While residue-
based FRP did not exhibit a distinct spatial pattern, tempo-
ral variations were prominent, with monthly mean FRP in
November (310 188 MW month−1) showing nearly a 100 %
increase compared to October (152 616 MW month−1; Ta-
ble S5 in the Supplement). In contrast, the spatial pattern
of LST exhibited considerable heterogeneity, with relatively
higher temperature observed in the southern parts of the re-
gion that gradually declined northward. This north–south
gradient may be partially attributed to the proximity of the
Himalayan foothills, where the cooler mountainous environ-
ment likely offsets fire-induced surface warming. A gradual
decline in spatially averaged monthly mean LST was also
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accounted in November (29.0 ± 2.4 °C) compared to Octo-
ber (31.0± 1.6 °C). A spatially distinct pattern in columnar
aerosol loading was evident across the extended geograph-
ical region, with elevated AOD (> 0.65) retrieved over the
central areas that gradually decreased towards its periph-
ery (< 0.30). Such spatial variability in aerosol loading is
likely driven by differences in the intensity of residue-based
fires and the associated emissions of aerosols and trace gas
precursors. Moreover, the pronounced increase in monthly
mean AOD (October: 0.59 ± 0.08; November: 0.82± 0.12)
likely reflects the intensification of fire during early Novem-
ber, compounded by concurrent meteorological influences,
most notably the seasonal decline in boundary layer height
(Banerjee et al., 2022).

Spatial associations among VIIRS-derived FRP, MODIS
LST, and VIIRS-based AOD daily retrievals were assessed
over the extended geographical region (Fig. 4d–f). Spa-
tial correlation between pixel-based FRP against LST re-
veals positive but spatially heterogenous association across
most parts of the study area, except in the southern re-
gion. A statistically significant relationship (P < 0.05) be-
tween FRP and LST underscores the potential influence of
crop residue burning on surface temperature. Similarly, a sig-
nificant association between FRP and AOD was observed
across the central region, where fire intensity was notably
higher than in surrounding areas. This spatial covariation
between fire intensity and columnar aerosol loading further
reinforces the influence of biomass-burning-induced emis-
sions of aerosols and their precursors on atmospheric aerosol
abundance. Biomass-burning aerosols, predominantly com-
posed of carbonaceous soot particles, are known to modulate
the thermal budget of the lower atmosphere (Freychet et al.,
2019; Xu et al., 2021). The spatial association between AOD
and LST further supports the existence of a fire–aerosol–
surface temperature nexus over northwestern India. A com-
paratively weak yet statistically significant positive correla-
tion between AOD and LST likely reflects lower-atmospheric
warming induced by smoke aerosols, consistent with the sim-
ilar warming effect over western United States during 2017
California wildfire (Gomez et al., 2024).

3.2 Evaluation of Hurst exponent

The Hurst exponent was evaluated to assess the long-term
persistence of fire intensity, surface temperature, and aerosol
loading time series over the extended geographical region. In
principle, the Hurst exponent is used to quantitatively distin-
guish a purely stochastic time series (H = 0.50) from a per-
sistent (H > 0.50) or anti-persistent (H < 0.50) time series
of pixel-based FRP, LST, and AOD, following the method-
ology described in Markonis and Koutsoyiannis (2016) and
Chen et al. (2022).

As shown in Fig. 5, nearly the entire extended geographi-
cal region of northwestern India exhibits Hurst exponent val-
ues greater than 0.50 for FRP, with relatively higher values

(0.60–0.70) concentrated toward its central zone. Although
variations in Hurst exponent for FRP was spatially inconsis-
tent, primarily due to temporal and spatial fluctuations in fire
intensity, the FRP time series over most of the region indi-
cates statistical persistence. Similarly, elevated Hurst expo-
nent values for LST (> 0.50) across the region also exhibits
persistence at long run. Notably, the northern portion of the
study region shows slightly higher Hurst exponent values
compared to the southern part. For regional aerosol loading,
except few isolated patches, comparatively high Hurst expo-
nent values (> 0.75) were observed over the central region.
Notably, this area also coincides with zones characterized by
high AOD (> 0.65) and a statistically significant FRP–AOD
association. Overall, the Hurst exponent analysis indicates
that the observed FRP, LST, and AOD time series across most
of the residue-burning region exhibit statistical persistence.

However, interpretation of the Hurst exponent results
should be approached with caution. The five-year dataset
used here may not be sufficient to derive statistically ro-
bust estimates. For the same reason, trend analysis was not
undertaken, as the limited dataset constrains the reliability
of such estimates and falls beyond the scope of the present
study. Nonetheless, several studies have documented long-
term trends in fire dynamics and aerosol loading over north-
western India (e.g., Vadrevu and Lasko, 2018; Jethva et al.,
2019; Singh et al., 2020).

3.3 Surface temperature and aerosols response to fire
intensity

Fire intensity in terms of pixel-based FRP, aerosol loading
and surface temperature were retrieved to compute corre-
sponding daily and spatial means based on five years of
satellite retrievals. It is noteworthy that to account imme-
diate response of fire intensity and aerosol loading on sur-
face temperature, all variables were retrieved exclusively
over year-specific intensive fire zones, having cumulative
FRP≥ 5 MWgrid−1, as illustrated in Fig. 2b–f.

A distinct temporal pattern is evident in the FRP time
series (Fig. 6a), which corresponds closely with daily vari-
ations in fire counts (Fig. S4 in the Supplement). Over
northwestern India, FRP starts to build-up typically in mid-
October, peaks consistently during the first week of Novem-
ber, and declines thereafter by mid-November. In contrast,
the temporal pattern of the five-year mean LST time se-
ries appears less pronounced, as daily retrievals exhibit sub-
stantial variability. Regional LST demonstrates both interan-
nual and intra-annual fluctuations, as illustrated in Fig. S5
in the Supplement. Notably, the FRP time series aligns well
with the mean columnar aerosol loading, underscoring the
potential influence of aerosol and precursor emissions from
widespread biomass burning. The characteristic rise in AOD
during the first two weeks of November likely represents a
direct response to intensified fire activity, as columnar AOD
values consistently exceed 1.00 over the intensive fire zone.
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Figure 4. Spatial variations of FRP, LST and AOD over extended geographical region, 5 year mean FRP (a), LST (b) and AOD (c), and
spatial correlation between FRP_LST (d), FRP_AOD (e) and AOD_LST (f). To compute spatial correlation, daily retrievals of FRP, AOD
and LST were converted to a common 6km× 6 km grid. Spatial correlation was computed for the entire duration and significant correlation
(P < 0.05) is shown with black dot.

Figure 5. Estimating FRP (MW), LST (°C) and AOD time-series persistence in extended geographical region.
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Interestingly, between 25 October and 20 November each
year, approximately 90 % of daily AOD observations surpass
the five-year mean (0.74 ± 0.28), coinciding with an 800 %
increase in average FRP (13085 ± 6825 MW) compared to
the remainder of the season (1148 ± 1478 MW). During this
interval, the five-year mean columnar AOD exhibits a strong
association with the aggregate FRP (r = 0.46) and mean
LST (r = 0.41), whereas these associations weaken consid-
erably outside this period (AOD–FRP: r = 0.18; AOD–LST:
r =−0.02).

The temporal associations among FRP, AOD, and LST
clearly demonstrate the immediate response of fire-induced
variations in aerosol loading and surface temperature over
northwestern India. Accordingly, in the subsequent section,
these relationships were modelled using a geospatial tree-
based regression framework that integrates concurrent tem-
poral features (e.g., day-specific retrievals) and spatial pre-
dictors (e.g., regional meteorology, aerosol loading, and fire
intensity) to quantify and characterize the FRP–AOD–LST
nexus within the intensive fire zone.

3.4 Fire induced change in LST and AOD

The effect of crop residue burning on land surface temper-
ature and aerosol loading was assessed using a space-for-
time approach by overlaying grid-based VIIRS LST, FRP,
and AOD datasets over the northwestern region experiencing
recurrent fire. To remove potential confounding effect, fire
and no-fire grids were retained for comparison only when
they matched in terms of topography, meteorology, physical
environment, vegetation and soil characteristics, climatolog-
ical mean LST and AOD, and surface property. Comparisons
were performed within defined strata containing grids with
identical characteristics to ensure that the quantified changes
in LST and AOD could be attributed solely to fire. A to-
tal of 7489 paired no-fire and fire grids were used between
2017 and 2021 to quantify the relative change in LST and
AOD. It is noteworthy that all grids, whether exhibiting fire
or not, were selected from within the extended geographi-
cal region to capture localized variations in temperature and
aerosol loading.

As illustrated in Fig. 7, a consistent yet temporally dy-
namic increase in both LST and AOD was observed over
regions affected by residue-based burning compared with no-
fire zone. However, the magnitude of LST and AOD change
across the fire zone was spatially heterogeneous. On aver-
age, residue-based burning induced an increase of 0.60 °C in
LST during 2017–2021, with interannual variability ranging
from 0.33–0.76 °C. This indicates that residue burning ex-
erts a persistent warming influence on land surface temper-
ature, likely driven by reduced evapotranspiration, enhanced
shortwave absorption, increased sensible heat flux, and fire-
induced changes in surface albedo. However, a strong spatial
heterogeneity in LST and AOD modulation further indicates
the potential influence of key confounding factors and inten-

sity of fire in regulating the change. The results of this study
align with Liu et al. (2019), who attributed a 0.15 °C rise in
surface temperature over burned areas globally to satellite-
observed forest fires, as well as Liu et al. (2018), who doc-
umented a net warming effect over the Siberian boreal for-
est. Additional evidence from Alkama and Cescatti (2016)
and Zhao et al. (2024) also indicates a positive linkage be-
tween forest fire occurrence, fire intensity, and surface tem-
perature. In contrast, the biophysical effects of agricultural
residue burning on land surface temperature remain poorly
constrained. Zhang et al. (2020) reported LST increases of
1–3 °C over three provinces in China associated with crop
residue burning. However, the feedback effects of meteoro-
logical covariates and systematic land-cover differences on
fire occurrence were not accounted for, leading to causal at-
tribution of fire to LST remains tentative.

A consistent annual increase in aerosol loading was also
observed over the fire-affected grids over northwestern In-
dia. A clear upward trend in AOD was noted across the fire
zones, with a mean increase of 0.13 AODyr−1 and a range of
0.07–0.22 AODyr−1. The change in columnar aerosol load-
ing, however, was spatially heterogeneous. Overall, the in-
crease in AOD from fire-associated emissions of aerosols and
their gaseous precursors reinforces the source-specific con-
tribution of crop residue burning, a phenomenon well docu-
mented in previous studies (Vinjamuri et al., 2020; Mhawish
et al., 2022).

To quantify uncertainty in the estimated differences be-
tween fire-affected and non-fire-affected grid cells, we fur-
ther computed 95 % confidence intervals for 1LST and
1AOD using nonparametric bootstrapping. For each vari-
able, 10 000 bootstrap samples were generated by resampling
grid cells with replacement, and the mean difference was re-
calculated for each bootstrap replicate. The 2.5th and 97.5th
percentiles of the resulting sampling distribution were taken
as the bounds of the 95 % confidence interval (CI). Nonpara-
metric bootstrapping results into significant increase in both
1LST (0.57 °C; 95 % CI: 0.33–0.81 °C) and 1AOD (0.13;
95 % CI: 0.08–0.17) in fire-affected regions. Because both
CIs do not overlap zero, these differences are statistically ro-
bust and unlikely to be due to sampling variability.

3.5 Spatial regression of fire intensity and aerosols on
LST

A machine learning algorithm was employed to establish
the statistical association between the dependent variable
LST and multiple predictors including fire radiative power,
aerosol loading, regional meteorology (Fig. S6 in the Sup-
plement), surface properties, and vegetation characteristics.
All biophysical parameters, except SR and soil moisture,
retrieved under two pre-defined scenarios, (one) days with
moderate-to-high fire intensity and (two) days with sus-
tained high fire intensity exhibiting a positive association
with regional mean LST, were used to model the FRP–AOD–
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Figure 6. Time series of five-year mean fire radiative power (FRP, a), land surface temperature (LST, b) and aerosol optical depth (AOD, c)
against daily retrievals, (d) covariation of FRP, AOD and LST over intensive fire zone. Gray dots show daily retrievals from October to
November (2017–2021), with the red line depicting the corresponding 5 year mean.

Figure 7. Crop residue-based fire induced changes in land surface
temperature and aerosol loading.

LST relation. Relative feature importance (RFI) of selected
predictors was first evaluated for the fire season, and the
marginal effects of FRP and aerosols on LST were subse-
quently quantified. Figure 8a presents the normalized RFI
values for all predictors under both scenarios, and the Ran-
dom Forest hyperparameter tuning procedure is summarized
in Table S6 in the Supplement. RFI quantifies the sensitiv-
ity of regional LST to each predictor and reflects their par-
tial contribution to surface temperature variability. Fire ra-
diative power emerged as the dominant predictor under both
scenarios, indicating the strong influence of fire-related en-

ergy release on regional radiative balance, likely through re-
duced evapotranspiration and fire-induced changes in surface
albedo (Liu et al., 2018, 2019). Notably, the RFI was substan-
tially higher during period of sustained high-intensity burn-
ing (Scenario 2; RFI= 0.40) compared with days charac-
terized by moderate-to-high fire activity (Scenario 1; RFI=
0.22), highlighting the stronger thermal response associated
with intensive burning condition.

Next to FRP, PBLH exerted a significant influence on
LST (RFI: 0.21–0.24), followed by atmospheric temperature
(RFI: 0.09–0.21). The strong effect of PBLH on LST can
be explained by restricted turbulent mixing during shallow
boundary-layer conditions in post-monsoon season. A rela-
tively low PBLH (mean±SD: 71 ± 29 m) over northwest-
ern India reduces vertical mixing and traps fire-induced heat
and aerosols close to the surface (Vinjamuri et al., 2020).
This enhances shortwave absorption, suppresses evaporative
cooling, and limits turbulent heat dissipation, resulting in a
stronger and more persistent increase in LST. Another no-
table finding was the modification of LST due to enhanced
columnar aerosol loading during fire season. The RFI of
AOD varies from 0.09–0.11, indicating its influence on re-
gional radiative budget. Residue burning releases aerosols
and their gaseous precursors, which can exert significant ra-
diative impacts and drive rapid adjustments in both surface
and atmospheric temperature (Freychet et al., 2019; Xu et al.,
2021). Fire-generated aerosols influence the energy balance
through scattering and absorption of radiation, alterations
in cloud microphysics, and changes in surface albedo via
deposition of carbonaceous particles. However, the magni-
tude and direction of these radiative effects remain uncer-
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Figure 8. Normalized relative feature importance of predictor variables on LST (a), cross-validated evaluation of random forest perfor-
mance (b), and partial dependence plots of LST on AOD (c) and FRP (d). Here, K indicates ×1000. The PDP plots are based on scenario 2.
Both RMSE and MAE have unit °C.

tain at the global scale (Tian et al., 2022). The partial influ-
ence of all other parameters, including meteorological vari-
ables, land characteristics and elevation was less significant
(RFI< 0.30).

The predictive skill of the random forest model was as-
sessed using temporal block cross-validation to minimize
temporal autocorrelation and prevent data leakage. Under
both scenarios model performance was found satisfactory
with R2 varying from 0.65–0.75, marked with relatively low
RMSE (0.87–0.95 °C) and MAE (0.58–0.61 °C). A satisfac-
tory model performance also ensures that residue burning
provide a clear LST response and the RF model was able
to resolve non-linear land–atmosphere interactions, irrespec-
tive of the selected scenarios. Relatively better performance
was however, achieved in scenario 2 during the fire days hav-
ing better spatial association between FRP and LST. Collec-
tively, this confirms that moderate-to-high intensity residue
burning leaves a measurable and predictable thermal signa-
ture on the land surface over northwestern India.

The partial dependence plots (PDPs) in Fig. 8c and d
illustrate the marginal effects of FRP and AOD on LST.
These plots show the expected change in LST associated
with variation in each predictor while holding all other pre-
dictors constant. The estimated effects of both FRP and
AOD exhibit a non-linear, saturating response. LST increases
sharply at low-to-moderate values of each predictor but
the effect progressively weakens at higher magnitudes, ap-
proaching an asymptotic limit. This behaviour likely arises
from the complex interplay of radiative and thermodynamic
processes associated with biomass-burning emissions. Fire-
originated aerosols exert both direct and indirect radiative ef-
fects whose magnitudes and signs vary with aerosol loading
and composition (Freychet et al., 2019; Xu et al., 2021; Tian

et al., 2022). At moderate aerosol loading, UV-absorbing
black carbon aerosols may enhance atmospheric heating
and can transiently increase near-surface temperature (Ja-
cobson, 2001). Fire-induced convective plumes may initially
enhance surface temperatures, whereas strong aerosol build-
up can reduce solar transmittance to the ground. Aerosol–
cloud interactions further contribute to non-linearity by mod-
ifying cloud microphysics, lifetime, and albedo, altering
the regional radiative balance. Additionally, aerosol-driven
changes in boundary-layer structure, evapotranspiration, and
soil moisture introduce additional land–atmosphere feed-
backs. Together, these interacting processes operate across
multiple spatial and temporal scales and do not scale lin-
early with aerosol loading or fire intensity, producing the
observed non-linear LST response. The RF model therefore
provides strong evidence that both fire intensity and fire-
derived aerosols exert measurable and non-linear effects on
regional LST, with potentially important implications for the
regional radiative budget.

3.6 Geographically weighted regression on LST

A Global Moran’s I test was first applied to assess spatial
autocorrelation in LST across the intensive fire zone for the
cumulative five-year period. As shown in Table S6, Moran’s
I was 0.225, accompanied by a high positive Z-score and a
statistically significant p-value (< 0.001), indicating a clus-
tered spatial pattern of LST that is highly unlikely (< 1 %)
to have arisen by random chance. Given this spatial depen-
dence, GWR was employed to evaluate spatial heterogeneity
in the relationships between LST, FRP, and other predictors.
All variables used in the Random Forest model were incorpo-
rated into the GWR framework under both pre-defined sce-
narios. Model specifications and performance metrics includ-
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Figure 9. Spatial distribution of FRP and AOD GWR coefficients
across intensive fire zone.

ing bandwidth and kernel details are mentioned in Table S8
in the Supplement.

GWR model demonstrated strong explanatory power, with
global R2 values exceeding 0.74, confirming that the se-
lected predictors effectively captured spatial variability in
LST. FRP consistently showed a positive and spatially vary-
ing association with LST across both scenarios, underscoring
its dominant influence in fire-affected regions. Aerosol load-
ing demonstrated weak but spatially heterogeneous effects,
reflecting localized differences in aerosol–temperature inter-
actions. Other predictors, including NDVI, RH, AT, PBLH,
elevation, and albedo (Fig. S7 in the Supplement), exhibited
local coefficients ranging from −0.76 to +0.23, indicating
spatial variability but comparatively weaker contributions to
LST modulation across the study area.

4 Conclusions

The manuscript unfolds by identifying the geospatial vari-
ations in crop residue–based fires and their associated im-
pacts on aerosol loading and land surface temperature across
northwestern India. A brief methodology and key findings
are summarized in Fig. S8 in the Supplement. Based on
year-wise, pixel-level fire intensity, the geographical region
with intensive fire activity was initially delineated, and all
satellite-derived and reanalysis datasets were subsequently
processed exclusively over the selected zone. A robust and
consistent spatial correlation between FRP, AOD, and LST
was observed across multiple years, indicating potential fire-
induced perturbations in LST. The Hurst exponent analysis

reaffirmed the long-term persistence of fire intensity, surface
temperature, and aerosol loading time series. A grid-based
analysis over the intensive fire zone revealed a significant in-
crease in both LST and AOD during the peak fire season.

The article further employs the Random Forest model and
Geographically weighted regression (GWR) to assess the po-
tential influence of FRP and aerosol loading on LST, while
accounting meteorological covariates, physical environment,
vegetation characteristic and surface property as confound-
ing factors within the selected zone. Two contrasting sce-
narios were hypothesized to examine the FRP–LST–AOD
nexus. Scenario 1 considered spatially aggregated FRP from
fire initiation to subsidence, whereas Scenario 2 focused on
days characterized by high-intensity fires exhibiting a strong
positive correlation between FRP and LST. In both the sce-
narios, the Random Forest regression successfully captured
and mapped FRP-induced modulation of LST, though with
varying magnitudes. A distinct increase in FRP-induced LST
modulation was observed during high-intensity fire events.
Both boundary layer height and columnar aerosol loading
also contributed partially, with aerosols’ influence on LST
increasing during periods of intense release of fire energy.
The Global Moran’s I test indicated significant spatial clus-
tering of LST while GWR results further confirmed FRP and
AOD-modulated LST variations across northwestern India,
highlighting strong spatial heterogeneity in FRP-AOD-LST
nexus.

This analysis reveals that the biophysical effects of crop
residue–based fires across northwestern India can substan-
tially influence the regional radiative budget by altering
LST. The magnitude of LST modulation, however, depends
on fire intensity and feedbacks from regional meteorology.
This study provides novel insights into residue-based fire in-
duced surface temperature dynamics in a region where re-
current fires have been historically linked primarily with de-
teriorating air quality in Delhi and its surroundings. The
observation-driven analysis offers a comprehensive under-
standing of LST responses to residue burning and helps re-
duce uncertainties in fire-induced modifications of the radia-
tive budget. Nonetheless, uncertainties remain due to unac-
counted agricultural feedbacks, limited temporal coverage,
retrieval uncertainty in geospatial datasets, and the com-
plexity in aerosol–meteorology interactions. The multifaced
influence of fire aerosols and energy on regional climate
through rapid atmospheric and land surface adjustments, re-
mains complicated at the global level. Our findings under-
score the need for Earth system model–based simulations to
better quantify climate feedbacks from crop residue burn-
ing. Besides, assessing the underlying mechanisms of fire-
energy-induced changes in evapotranspiration, the radiative
effects of aerosols, fire–aerosol–meteorology feedbacks, and
incorporating additional proxies could further reduce the un-
certainty in estimating radiative impacts from residue burn-
ing.
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