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Abstract. Marine cold air outbreaks (CAOs) frequently occur in the Arctic when cold air moves over the rela-
tively warm ocean, resulting in large turbulent fluxes, instability and cloud formation. Given the high frequency
of CAOs during the Arctic winter, the associated clouds have a large impact on the region’s radiative balance.
Due to Arctic warming, the prevalence of CAOs and their clouds may change, impacting the Arctic radiative
balance and potentially amplifying or mitigating local and global warming.

To better understand how CAO clouds respond to Arctic warming, this study has developed a phenomenolog-
ical CAO cloud classification tool that utilizes machine learning methods to identify closed and open cell clouds
in CAOs from MODIS satellite imagery. This new approach achieves better performance in identifying CAO
clouds compared to the marine cold air outbreak index calculated using MERRA-2 reanalysis, with accuracies
of 85.4 % and 78.0 %, respectively. The new approach has revealed frequent CAO cloud formation in regions of
high sea surface temperatures, with occurrence maxima along the Norwegian coast and the Northern Atlantic
region south of Iceland. Furthermore, the approach reveals trends in CAO cloud cover that suggest a shorten-
ing of the CAO season, characterized by an approximate 10 %, increase in cloud coverage during winter and a
nearly 20 % decrease during the shoulder months over the past 25 years. These trends suggest a positive radiative
feedback during winter in response to climate change, underscoring the importance of further investigating these
clouds to understand the trajectory of future Arctic climate.

1 Introduction

Clouds in polar regions are often associated with marine
cold air outbreaks (CAOs). These clouds form in the marine
boundary layer (MBL) when cold and dry air from snow- and
ice-covered regions moves over the relatively warm ocean.
This produces a turbulent environment where large latent
and sensible heat fluxes lead to the formation of clouds.
Near the sea ice edge, these clouds form long cloud streets
of densely packed closed cell stratocumulus, which transi-
tion into open cell broken cumulus when they traverse the
open ocean (Brümmer, 1999; Geerts et al., 2022). These
CAO clouds have a large impact on the surface radiative en-
ergy balance through their extensive coverage (Fletcher et al.,
2016a). This is observed through their high albedo compared

to the underlying dark ocean, reflecting incoming solar radi-
ation back to space (cooling effect), and absorption and re-
emission of outgoing terrestrial radiation (warming effect).

As the Arctic has experienced significant warming in re-
cent decades (Serreze and Barry, 2011), it is crucial to study
how CAOs may be affected. This warming is especially pro-
nounced during the winter months where CAOs are most
prevalent (Fletcher et al., 2016a; Dahlke et al., 2022), high-
lighting the potential of large impacts on CAOs in response
to warming. Specifically, the strength of CAOs is projected
to change (Landgren et al., 2019), which could affect cloud
properties (Murray-Watson et al., 2023) and influence future
warming. Furthermore, as the Arctic experiences polar night
and day with highly seasonal variations in solar radiation,
changes in CAO seasonality due to season-dependent warm-
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ing may further impact the Arctic’s radiative balance. This
could potentially amplify or mitigate the significant warming
observed in the region, underlining the importance of study-
ing climatological shifts in the seasonality of CAOs.

To better understand the development of CAO clouds, they
have been extensively studied through modeling, in situ ob-
servations and satellite studies (e.g., Hartmann et al., 1997;
Abel et al., 2017; Geerts et al., 2022; Wu and Ovchinnikov,
2022). Especially, the transition from dense closed-cell stra-
tocumulus to open-cell broken cumulus has been investigated
(e.g., Abel et al., 2017; Yamaguchi et al., 2017; Tornow et al.,
2021). As the denser closed cells have a higher albedo than
the open cells (McCoy et al., 2017), the processes influencing
the break-up to open cells become of high importance when
studying the radiative impact of CAO clouds.

Several studies have suggested the onset of precipitation
as a main driver for cloud break-up (e.g., Abel et al., 2017;
Yamaguchi et al., 2017; Tornow et al., 2021). This precipita-
tion, combined with increased winds, may further aid break-
up into open cells by increasing the MBL moisture (Eastman
et al., 2022), and favor the formation of cumuliform clouds
(Stevens et al., 1998). Additionally, precipitation and evapo-
rative cooling of the lower MBL (Abel et al., 2017) may lead
to a decoupling of the stratocumulus cloud layer from the
moisture-supplying surface (Bretherton and Wyant, 1997),
contributing to the break-up. Furthermore, other research
suggest that changes in MBL stability (McCoy et al., 2017),
such as from increasing sea surface temperatures (SSTs),
also play a role in this process.

While Abel et al. (2017) focused on a single CAO, intro-
ducing uncertainties regarding its universality, others have
analyzed multiple CAOs by utilizing the marine cold air out-
break index M (Kolstad and Bracegirdle, 2008). This index
measures the instability of the MBL and is calculated as the
difference between the surface potential skin temperature and
the potential temperature of a chosen pressure level, typically
850 hPa (i.e. Papritz and Spengler, 2017). By utilizing reanal-
ysis products such as Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2, Gelaro
et al., 2017), which provide global climate and weather data
of the past at up to hourly resolution, earlier studies have
defined a CAO as a model grid point where the index M is
positive, indicating instability and the possibility for clouds
(e.g. Fletcher et al., 2016a; Murray-Watson and Gryspeerdt,
2024). This method provides an easy way to find the loca-
tion of CAOs to use for further analysis, such as investigating
cloud break-up. Despite the ease of use, reanalysis data intro-
duces model biases especially in remote regions such as the
Arctic with limited available observational data. In addition,
uncertainties arise from the fact that a positive index does not
necessarily result in the existence of a CAO cloud. While this
can be addressed by requiring higherM indices (i.e. Murray-
Watson et al., 2023), this may introduce biases from omitting
clouds associated with weaker instabilities, skewing the anal-
ysis towards stronger CAO events. Furthermore, since the

M index has been shown to decrease downwind (Murray-
Watson et al., 2023), requiring higher M indices may result
in the omission of clouds as they are advected. Consequently,
as there is no universally acceptedM index for defining CAO
clouds, this motivates the introduction of a phenomenologi-
cal approach for defining CAOs that is based on the existence
of clouds, and that is free of the biases introduced by model-
ing and reanalysis.

Clouds within CAOs typically cover large areas and are
easily distinguishable from other clouds due to their cellu-
lar structure. This makes them easy to spot from satellite
images (e.g. Fig. 1b), which in turn can be used to better
understand their coverage and radiative impact. For the Arc-
tic, this requires a polar-orbiting satellite such as Terra which
since 24 February 2000 has provided multiple products of the
surface, atmosphere and clouds through the onboard Moder-
ate Resolution Imaging Spectroradiometer (MODIS) instru-
ment. This instrument provides near-daily surface, sea ice,
ocean and atmosphere data products of the entire Earth (King
et al., 1992), and has been extensively used through its mea-
surements of 36 radiance bands in the solar and thermal in-
frared spectral range. The 36 MODIS radiance bands are cal-
ibrated and provided as 5 min swaths with a wide viewing
angle of 55°, giving a total coverage of 2330×2030 km. This
extensive coverage makes MODIS an optimal instrument for
classification of CAO clouds.

Utilizing MODIS products, a human can hand-label CAO
clouds of interest, rather than using meteorological param-
eters to predict the possibility of a cloud. Such a labeling
approach would be time-consuming and could introduce sig-
nificant subjective bias from the labeler, as demonstrated
in other cloud classification tasks (Stevens et al., 2020). To
automate the cloud classification process, machine learn-
ing methods may be utilized. Wood and Hartmann (2006)
introduced a supervised neural network (NN) utilizing the
MODIS liquid water path (LWP) retrievals to classify closed
and open cells in the subtropics. Despite its application in
the study of CAOs (McCoy et al., 2017), this NN requires
MODIS daytime retrievals, leading to a lack of data dur-
ing the polar night. As Arctic CAOs are most frequent dur-
ing the dark winter season from late autumn to early spring
(Fletcher et al., 2016b), this model remains inapplicable for
Arctic CAO studies.

Utilizing daytime MODIS calibrated radiances, Kurihana
et al. (2022) developed an unsupervised machine learning ap-
proach comprising an autoencoder (Hinton and Zemel, 1993)
and hierarchical agglomerative clustering for cloud classifi-
cation. Although this study relied on certain radiance bands
that are only available during daytime, the method can be
adapted to eliminate this dependency. By modifying the ap-
proach of Kurihana et al. (2022), it becomes possible to
phenomenologically classify wintertime CAO clouds using
nighttime available bands in the thermal infrared. Specifi-
cally, band 31 (10.780–11.280 µm) in the thermal infrared
can be selected as it is widely used for MODIS cloud classi-
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fication algorithms given its sensitivity to clouds (Frey et al.,
2008). As this approach is unsupervised, it also reduces the
requirement of human labeling for training, reducing subjec-
tivity and possible restrictions from the training dataset in
producing accurate classifications. By developing a similar
tool to Kurihana et al. (2022), this study will not only help
in understanding drivers of cloud break-up within CAOs, but
also provide an accurate database of CAO clouds for other
studies, such as investigating past changes in CAO cloud
cover to provide future projections of the radiative impact
of CAOs.

This study aims to introduce a new phenomenological
CAO cloud classification tool called CAOnet, utilizing a NN
and 25 years of MODIS satellite imagery. CAOnet will pro-
vide a valuable CAO climatology database for future studies
of CAO clouds, mitigating uncertainties introduced by tradi-
tional reanalysis methods. Along with a M index optimized
for cloud detection, CAOnet will be employed to explore the
potential radiative impact of changes in CAO cloud cover in
response to projected climate change.

2 Methods

2.1 Data and model development

2.1.1 MODIS data preparation

Swaths of MODIS calibrated radiances (band 31, 10.780–
11.280 µm) in the thermal infrared from the satellite Terra
were utilized to provide a database for cloud classification
during an extended winter period from September to May.

Each MODIS swath has a resolution of 1354× 2030 pix-
els, that translates to 1 km resolution at nadir, decreasing to
4.8 km at the scan extremes. To keep the resolution as close to
1 km as possible for all pixels, the swath width was decreased
from 1354 to 1024 pixels. This resulted in a resolution of ap-
proximately 2.05 km at the scan extremes, balancing uniform
pixel resolution while keeping daily swath coverage in the
Arctic north of 55° N. Although additional MODIS swaths
from the satellite Aqua could have been utilized to further
enhance pixel uniformity, this was avoided to minimize stor-
age and computational requirements. Finally, up to four tem-
poral subsequent swaths were combined to extend the swath
size from five to 20 min, resulting in a resolution of up to
1024× 8120 pixels.

In order to make classifications of smaller regions contain-
ing closed and open cells, the combined satellite swaths were
split into smaller image patches of 128× 128 pixels each.
Such a patch was large enough to cover multiple closed or
open cloud cells, which made it possible for a human and the
classification model to distinguish cellular structures from
other cloud fields. By utilizing multiple swaths acquired be-
tween 1 March 2000 and 28 February 2025 split into patches,
a database for a classification model was created.

2.1.2 Developing a phenomenological classification
model

To classify the satellite images and find CAO clouds, an un-
supervised machine learning approach based on the work of
Kurihana et al. (2022) was developed. While Kurihana et al.
(2022) used hierarchical agglomerative clustering, this study
utilizes K-means clustering for faster computation and the
ability to train a model for predicting unseen data. K-means
is an unsupervised machine learning algorithm that classifies
data into a user-defined number of clusters. It operates by
optimizing cluster centroids during training, and assigning a
given input to the cluster with the nearest mean. In terms of
the satellite image patches, this mean equals the mean pixel
value of each patch. For the case of looking at clouds, the
mean pixel value may not efficiently describe cloud struc-
ture or type, giving meaningless classifications. By giving K-
means more input than just the original image, it may create
more meaningful clusters, especially if the input describes
the features that are most important for the specific image.
Such a feature could describe image contrast, cloud cell size,
or brightness, as well as features that are meaningless to hu-
mans but still helps informing correct classification.

Similar to Kurihana et al. (2022), an autoencoder was used
to extract dimensionally reduced information incorporating
the most important information of the input patches. This is a
convolutional neural network that comprises two main com-
ponents (see Fig. 1a). The first component is the encoder,
which performs compression on a given input image, pro-
ducing a compressed feature representation. This is fed to
the decoder, whose goal is to decompress the encoded fea-
tures into an output that resembles the original input image.
During training, these two components work together to most
accurately reproduce the original input image. The encoder
achieves this through saving the most significant informa-
tion in the compressed feature representation, helping the de-
coder to produce an accurate image reconstruction. The com-
pressed feature representation produced by the encoder was
employed in further classification tasks, aiding K-means in
making meaningful classifications. Thus, the encoder and K-
means clustering comprised the two main components of the
classification model called CAOnet, as visualized in Fig. 1b.

A simplified structure of the autoencoder used in the sub-
sequent analysis is shown in Fig. 1a. The encoder performs
four dimensionality reductions, with each reduction halving
the width and height of the input to that layer. Simultane-
ously, the number of features are increased from the single-
feature band 31 input patch, to 16, 32, 64 and finally 128
features. While some of the final 128 features could be un-
derstandable to a human, others are likely to be meaning-
less. Nevertheless, this number was found to aid K-means
in creating the most meaningful clusters. For each dimen-
sionality reduction, the input passes through residual blocks,
which have been shown to mitigate performance degradation
in deep neural networks (He et al., 2015). Within these resid-
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ual blocks, three convolutions and batch normalization are
performed before the output x is processed through a leaky
rectified linear unit activation function (Maas et al., 2013):

f (x)=max(0.3x,x).

This activation function introduces nonlinearities to the NN,
enhancing its ability to understand complex patterns.

After passing through the encoder, an input patch of 128×
128 pixels results in 128 features of 8× 8 pixels. Utilizing
this encoded output, the decoder performs transposed convo-
lutions and upsampling. This results in an autoencoder with
16 trainable convolutional layers, with four of these located
in the decoder. In total, the autoencoder comprised 635 953
trainable parameters, which were optimized for image re-
construction and precise compressed feature representations.
This helped K-means to make meaningful cloud classifica-
tions, assigning a single label to each 128×128 image patch.

2.1.3 Training the classification model

To train CAOnet comprising an autoencoder and K-means
clustering, a total of 15 200 swaths, split into 600 000 patches
was used. This data covered the period from November to
April for the years 2018 to 2023. First, a randomly sampled
85/15 split of the data was performed to create a training and
test dataset. The autoencoder was individually trained on the
whole training subset, and evaluated using the test split after
one pass through the entire training dataset. The loss func-
tion optimized during training was a combination of mean
squared error and Sobel loss similar to that used by Kurihana
et al. (2022). Training of the autoencoder was stopped once
the test loss had converged.

The encoder of the trained autoencoder was used to pro-
duce compressed feature representations that assisted K-
means during training in producing meaningful clusters. In
total, ten K-means models were trained, each with different
numbers of predefined clusters ranging from 7 to 16. Finally,
the classification of the ten K-means models were evaluated
against a hand-labeled dataset to determine which of their
clusters most closely aligned with CAO clouds, as further
explained in the next section. Figure 1b shows an example
of the satellite image classification process using a trained
K-means model with 7 predefined clusters. Here, the red and
pink clusters were evaluated to most closely align with CAO
clouds.

2.1.4 Evaluating the classification model

Even though the autoencoder and K-means clustering are un-
supervised machine learning methods, their classifications
require inspection and evaluation to acquire meaningful in-
formation about CAO clouds. To evaluate K-means cluster-
ing with different predefined numbers of clusters, a hand-
labeled dataset was generated. To make sure there were no

Table 1. Table showing the origin of the swaths making up the eval-
uation dataset.

Evaluation swaths total
data per 5-year swaths
subset period

CAO 25 100
No CAO 25 100
Random 25 100
Mixed 25 100
All 100 500

changes in the model’s ability to classify CAO clouds as a re-
sult of potential climatological shifts, five datasets covering
5-year periods from 2000 to 2024 were created. To guarantee
that each of the five subsets contained cases with and without
CAOs, one K-means model with 14 clusters was randomly
selected to identify satellite swaths containing CAOs. This
involved manually inspecting six example images of CAOs,
revealing four clusters from the example model aligning with
CAO clouds (see Fig. D1).

By utilizing the randomly chosen K-means model with 14
predefined clusters, images containing CAOs (more than 30
coherent CAO patches) and those without CAOs (fewer than
2 coherent CAO patches) were identified based on predic-
tions of the four clusters aligning with CAOs. This process
resulted in CAO subsets and no-CAO subsets for each 5-year
period. Additionally, random subsets were created, including
randomly sampled swaths from each 5-year period. The final
mixed subsets contained randomly sampled swaths for each
5-year period with equal probability corresponding to the
three other subsets. In total, this resulted in 500 swaths, with
100 swaths for each 5-year period. From these 100 swaths,
25 swaths corresponded to each of the CAO, no CAO, ran-
dom, and mixed subsets, as shown in Table 1.

The created evaluation dataset was presented to a la-
beler through an interactive website. The instructions were to
draw regions where they believed they observed CAO-related
clouds such as closed and open cells. Although closed and
open cells not associated with CAOs may occur in the study
region, these can be easily distinguished from CAO-related
clouds during the labeling process. By recognizing cloud
streets and clouds moving off the sea ice edge, it was ensured
that mostly CAO related cellular structures were included in
the CAO-specific evaluation dataset. The evaluation results
were then compared with different K-means models, iden-
tifying the clusters that most accurately represented CAO
clouds by calculating several score metrics. Consequently,
when referring to closed and open cells hereafter, these are
CAO-related cellular clouds.

To quantify uncertainty due to the relatively small eval-
uation dataset, swath-level bootstrap resampling was per-
formed. From the original 500-swath evaluation dataset,
10 000 new 500-swath bootstrapped replicates were sampled
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Figure 1. A visualization of a typical CAO and how it is processed by the unsupervised classification model. In panel (a) an image patch is
fed through the autoencoder which before training produces noise (orange). The trained autoencoder has optimized its trainable parameters
leading to an accurate reproduced image patch (purple). In panel (b), a classification example is shown, utilizing the encoder of the trained
autoencoder. Two patches (marked in red and blue) are followed from extraction to encoding, K-means clustering and a final classified image.
The blue patch containing typical CAO cellular cloud formation is classified as red, while the high clouds in the red patch are classified as
brown. In this example, K-means clustering with seven clusters was used, with the red and pink cluster evaluated to most closely align with
CAO clouds. Black regions of the classified image denote land, sea ice or regions outside of the study domain.

with replacement. For each replicate, score metrics were cal-
culated, before the standard deviation of the 10 000 bootstrap
metric values was computed to provide a bootstrap estimate
of the standard error.

2.1.5 Evaluation score metrics

The score metrics used to choose the most optimal clusters
for CAO cloud classifications were the Matthews correlation
coefficient (MCC), precision, recall and Fβ scores. The MCC
is a measure of association of two binary variables and de-
fined through the number of true positives (TP), false posi-
tives (FP), true negatives (TN) and false negatives (FN) as:

MCC=
TP×TN−FP×FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

. (1)

Precision is defined as the fraction of relevant predicted in-
stances over all retrieved instances, while recall is defined as
the fraction of relevant predicted instances over all relevant

instances:

precision=
TP

TP+FP
(2)

recall=
TP

TP+FN
. (3)

Utilizing the precision and recall, the Fβ score is a mea-
sure of predictive performance in binary classification analy-
sis and calculated as:

Fβ = (1+β2)
precision× recall

β2× precision+ recall
. (4)

Here, β is a parameter which denotes the relative importance
of recall compared to precision. Although the F1 score with
β = 1 is typically used, a final β of 1/1.75, valuing preci-
sion 1.75 times more than recall was chosen. This reflects a
willingness to miss some true positives in order to reduce the
number of false positives. It is expected that the model will
be able to accurately classify clear CAO cases, and by priori-
tizing precision over recall, the risk of false positives biasing
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the data is minimized even if it results in oversight of less
typical CAO cloud structures.

Finally, a combination of the Fβ and MCC score can be
calculated for a final evaluation score. By normalizing Fβ
and MCC over all models to be evaluated, the MCC and Fβ
scores equally contribute to the combined score (s) given as:

s =
MCC/MCCmax+Fβ/Fβ,max

2
, (5)

where MCCmax and Fβ,max are the highest MCC and Fβ
scores found for all the evaluated models.

2.1.6 Producing a binary CAO classification database

After the best performing K-means model and associated
CAO clusters were chosen, the final optimized CAOnet was
settled on to make predictions on all MODIS swaths for au-
tumn (September, October, November), winter (December,
January, February) and spring (March, April, May) between
March 2000 and February 2025. These predictions were re-
gridded onto a 100 km resolution grid of the Arctic, creating
a daily binary CAO classification database.

Potential biases may be introduced to this database
through uneven MODIS coverage, confusion between
clouds, land, and sea ice in coastal regions, and the uneven
distribution of missing data. To address these issues, several
processing methods were implemented.

First, to prevent uneven MODIS coverage, a day was de-
fined as extending from 01:00 to 00:59 UTC the following
day. This ensured that all grid points in the study areas expe-
rienced at least one overpass each day, given the orbit of the
Terra satellite.

Second, to avoid bias from more overlapping MODIS
swaths at higher latitudes, as shown in Fig. 2b, random sam-
pling among overlapping swaths was performed. This guar-
anteed that every grid point received only one classification
per day, resulting in a uniform database.

Third, to minimize the influence of sea ice and land on
cloud classifications, patches were discarded if their open
ocean fraction was less than 95 %. To calculate this fraction,
the sea ice concentration dataset from Nimbus-7 SMMR and
DMSP SSM/I-SSMIS Passive Microwave Data, Version 2
(DiGirolamo et al., 2022) was used. This resulted in lower
data coverage for grid points near the sea ice edge and land,
as shown in Fig. 2a.

Finally, to prevent the influence of missing data and the
variability of the sea ice edge from affecting further analysis,
all grid points with more than 10 % missing data over the
whole study period were discarded. This led to the final grid
points shown in the 90 %–100 % bin in Fig. 2a.

2.1.7 Evaluating CAO classification based on M index

To compare the phenomenological approach to a reanalysis
approach for CAO cloud classification, CAO classifications

were made using theM index calculated from MERRA-2 re-
analysis. To optimize its performance, various index thresh-
olds (Mthr) were evaluated against the evaluation dataset:

M = θSST− θ850 ≥Mthr, (6)

where θSST represents the potential sea surface temperature
and θ850 the potential air temperature at 850 hPa. The thresh-
old yielding the best score (s) according to Eq. (5) was then
used to create a M index binary CAO classification database
for the same grid points as those used in CAOnet. Here, the
average M index for any given day and grid point was used.
To ensure a fair comparison between the two CAO databases,
only days and regions with MODIS coverage were consid-
ered for the M index as well.

It is also important to note that in situations where over-
lying clouds were present, it was impossible to determine
the presence of CAO clouds below. While this limitation
skewed theM index scores towards scenarios without overly-
ing clouds, it optimized the final M index threshold for con-
ditions where CAO clouds are especially relevant for cloud
radiative properties.

2.2 CAO climatology

To produce a climatology of CAO clouds, both CAOnet and
the MERRA-2 M index were used. Similar to Papritz and
Spengler (2017), an extended winter stretching from Novem-
ber through April was used for the climatological analysis.
For each grid point, a relative frequency of occurrence (RFO)
was calculated, representing the fraction of days with CAO
coverage relative to the number of days MODIS had cover-
age for that grid point. For MERRA-2, two M index thresh-
olds of 0 and 3.75 K called M0 and M3.75 were used, where
the latter threshold was selected based on the model evalua-
tion as described in Sect. 2.1.7.

To further underline the importance of CAO clouds, their
contribution to total cloud cover was investigated. To esti-
mate this, a monthly climatology of the total cloud cover dur-
ing their presence was calculated using MERRA-2 reanaly-
sis data. As the CAOnet database has a daily temporal reso-
lution, the 24 h MERRA-2 dataset was averaged to provide
daily mean cloud coverages for every CAOnet grid point.

2.3 Trend analysis

To include the study of latitudinal variations of cloud cover
trends and their impact on the radiative balance, the entire
domain was divided into a southern and northern region, as
shown in Fig. 2. The northern region was chosen based on
typical CAO trajectories, capturing CAOs earlier on in their
development due to the proximity to the sea ice edge. This
typically results in larger concentrations of closed cells. In
contrast, the southern region was chosen for its distance from
the sea ice edge, capturing CAOs later on in their develop-
ment (Murray-Watson et al., 2023), where a greater preva-
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Figure 2. Average daily grid point coverage (a) and number of MODIS swaths (b). Low coverage can be found in coastal areas where
patches typically contain less than 95 % open ocean. S and N define a southern and northern subregion for subsequent analysis. Names of
the focus regions for this study are marked in blue.

lence of open cells are expected (Brümmer, 1999). Finally,
the binary classification databases were used to make three
daily CAO cloud coverage datasets: the entire region, the
southern region and the northern region.

Utilizing the CAO cloud cover fraction of each region,
trends were calculated using the median of pairwise slopes
method, also known as the Theil-Sen trend estimator TTS
(Theil, 1950; Sen, 1968). This trend estimator is non-
parametric, meaning it is independent of the distribution of
the data, making it widely applied in climate data analysis
(Gilbert, 1987; Yue et al., 2002; Collaud Coen et al., 2020).
It is estimated using daily mean coverage of CAO clouds
across the three regions, calculated as the median of all pos-
sible pairwise slopes:

TTS =median
(
yi − yj

xi − xj

)
, (7)

where yi denotes the cloud cover fraction on day xi . Addi-
tionally, a confidence interval for this trend was estimated as
the interval containing α (i.e. 95 %) of the pairwise slopes,
for which the median is represented as the trend in Eq. (7).

To test the significance of the trend estimation, the Mann-
Kendall test was used (Mann, 1945; Kendall, 1975). This
method requires no specific distribution of the data, but must
be applied to serially independent data (Collaud Coen et al.,
2020). To account for this, prewhitening algorithms have
been developed to reduce the influence of autocorrelation on
the significance level of the derived trend. Such a prewhiten-
ing method is described in Yue et al. (2002), where the data is
processed before performing the Mann-Kendall test. Follow-
ing Yue et al. (2002), the estimated trend TTS was calculated
using Eq. (7), before being removed from the time series Xt
and creating the detrended time series X′t :

X′t =Xt − TTS · t. (8)

The lag-1 autocorrelation (r1) was then calculated and used
to produce the independent series Y ′t :

Y ′t =X
′
t − r1X

′

t−1. (9)

The trend was then added to the independent series:

Yt = Y
′
t + TTS · t, (10)

which was used to asses the trend significance using the
Mann-Kendall test. The trend was deemed significantly dif-
ferent from 0 when the resulting p-value was less than α =
0.05. Additionally, to study seasonality, the seasonal Mann-
Kendall test (Hirsch et al., 1982) was used in order to acquire
trends for autumn, winter and spring.

3 Results and discussions

3.1 Model evaluation

The final configuration and structure of CAOnet was de-
termined based on the model’s accuracy. It was found that
CAOnet performed best when it was implemented with an
autoencoder-K-means combination with 7 clusters, of which
2 are defined as CAOs. This combination achieves an ac-
curacy and corresponding bootstrapped standard error of
85.4± 0.5 %, a recall of 72.4± 1.3 %, a true negative rate
of 90.4± 0.6 % and precision of 74.6± 1.3 %, as can be seen
in Fig. 3a. Meanwhile when evaluating previously used CAO
criteria for theM index, it was found that a threshold ofM >

3.75 K (M3.75) performed the best, in contrast to the com-
monly used threshold of M > 0 K (M0) (e.g. Fletcher et al.,
2016a; Murray-Watson and Gryspeerdt, 2024). With M3.75,
an accuracy of 78± 0.7 %, a recall of 71.1± 1.7 %, true neg-
ative rate of 80.7± 1.1 % and precision of 59.0± 1.2 % is
reached (see Fig. 3b), which is better than when using a
threshold of M0 reaching an accuracy of 67.4± 0.9 %, a re-
call of 93.5± 0.8 %, true negative rate of 57.3± 1.5 % and
precision of 46.0± 1.2 % (see Fig. 3c).

https://doi.org/10.5194/acp-26-1565-2026 Atmos. Chem. Phys., 26, 1565–1585, 2026



1572 F. S. von der Lippe et al.: Shortening of the Arctic cold air outbreak season

The precision metrics highlight the strengths of CAOnet
over the M index. For M3.75 the precision is only 59.0 %,
indicating that close to half of all CAO predictions made
are false positives. Furthermore, the reduction in precision
to 46.0 % for M0, suggests that the majority of CAO predic-
tions made using this threshold are false positives. This has
significant implications for studies of CAO clouds employ-
ing theM index. AsM > 0 is frequently used, these findings
emphasize the importance of selecting a higher threshold and
considering how any chosen threshold influences the uncer-
tainties of such analyses.

For further evaluation, visual inspection was performed
on two typical CAO cases found when screening through
the hand labeled dataset. Figure 4 shows one of these cases
where CAOnet and the MERRA-2 M index struggle to ac-
curately predict CAOs, where disagreements with the eval-
uation dataset mostly show up as false negatives. M3.75 in
Fig. 4c appears to struggle with capturing the more open cel-
lular structures (shown in orange), especially downwind in
the lower right corner of the swath. By lowering theM index
threshold to 0 K, these open cells are captured (see Fig. 4d),
but with a slight increase in false positives (shown in red),
suggesting that the threshold of 3.75 K may be too high to
capture the open cells in this example.

Additionally, Fig. 4 shows an example where the labeler
may have been too conservative in their labeling, underlining
the issue of subjective bias. Region 1 in panels a and d re-
veals closed cell-looking clouds labeled by the M index, but
not by the human labeler. Similarly, region 2 in panel b and
c shows what appears to be initial closed cell development,
which has been labeled by the M index but not by CAOnet
or the human. This can be explained by the uncertainties
associated with the subjectivity of human labeling. Stevens
et al. (2020) showed that six individuals rarely reached unan-
imous agreement when labeling mesoscale shallow clouds in
the trade winds. This illustrates how subjectivity can lead to
an evaluation dataset that may not accurately reflect ground
truth. Consequently, the classifications from a model such as
CAOnet and MERRA-2 using the M index is likely to pro-
vide more stable and accurate classifications than that pro-
duced by a single labeler. However, the evaluation dataset
may still indicate which model is better at classifying easily
distinguishable clouds, such as clear cases of closed and open
cells that are easily distinguishable by a human. As a result,
the higher accuracy of CAOnet over M3.75 combined with
a significantly higher true negative rate (90.4 % vs. 80.7 %)
and precision (74.6 % vs. 59.0 %), suggests that CAOnet has
captured more typical CAO clouds without the cost of more
false positives that could bias its predictions.

Figure 5 shows a second classification example. Here,
CAOnet (panel b) agrees well with the hand labeled data,
while struggling to capture some of the initial closed cell de-
velopment (marked as region 3). This is a general tendency of
CAOnet seen in multiple classification examples throughout
all seasons and years. It is a result of overlap between non-

CAO cloud types and the cluster aligning with initial dense
closed cell development. Discarding that cluster results in
better overall accuracy, but at the cost of missing CAO clas-
sifications close to the sea ice edge. This limitation must be
considered in all further analysis, as it may significantly im-
pact the results. Especially, a shift in the prevalence of initial
closed cell development off the sea ice edge as a result of cli-
mate change could result in lower or higher CAO detection
over time, affecting the upcoming trend analysis. However,
since the extent of initial cloud development is small com-
pared to the total extent of a typical CAO, the correct clas-
sification of these clouds may be insignificant regarding the
overall radiative impact of CAOs.

In Fig. 5c, M3.75 also fails to detect some initial closed
cell cloud development off the sea ice edge. While decreas-
ing the M index threshold down to 0 K solves some of the
missing detection (see Fig. 5d), it also greatly increases false
positives. One reason for these missed detections may be re-
lated to a typical shallow MBL of only a few hundred meters
close to the sea ice edge (Fletcher et al., 2016a). As a re-
sult, the initial cloud formation may be a result of instabilities
not stretching all the way to 850 hPa in MERRA-2. Conse-
quently, a higher pressure level (lower altitude) would have
to be used for more efficient cloud detection. However, as the
large turbulent fluxes act on the MBL, the potential tempera-
ture at a lower altitude may no longer describe the presence
of instability and CAO clouds. This suggests that relying on
the potential temperature from a single pressure level like
700, 800 or 850 as used in previous studies (e.g. Kolstad and
Bracegirdle, 2008; Fletcher et al., 2016a; Papritz and Spen-
gler, 2017), may not be optimal for CAO cloud classifications
using MERRA-2 or other reanalysis products over the entire
region where CAOs are found in the North Atlantic.

Additionally, the commonly used pressure levels for cal-
culating theM index account only for the lower troposphere,
missing out on a potential upper troposphere cloud layer.
This limitation can lead toM index CAO classifications even
when only high clouds are visible from space. Figure 5c, re-
gion 4 shows such an example where a high cloud extend-
ing from southern Norway along the CAO towards the sea
ice edge to the northwest has been misclassified as a CAO.
Although there may be CAO clouds present below, their ra-
diative influence is greatly reduced by the high cloud above.
Moreover, the high cloud region is quite large, giving a con-
siderable contribution to the CAO database produced by the
M index for this specific date. Even though an M index
threshold most closely aligning with the label data has been
selected, such discrepancies often occur, indicating that care-
ful consideration is required when aiming to use theM index
to study the radiative impact of CAO clouds.

3.2 Climatology

Having established the classification performance of
CAOnet, M3.75 and M0 on individual images, they were ap-
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Figure 3. Confusion matrices for CAOnet (a), MERRA-2 with M > 3.75 K (b), and MERRA-2 with M > 0 K (c). The y-axis represents
predicted classes by the models, while the x-axis represents the labeled classes. Positive corresponds to classified CAO, while negative means
no CAO was classified. For each colored box, the lower number corresponds to number of classified patches, while the upper percentage
corresponds to the rate of that predicted class relative to the actual class. The lower gray row shows the recall and true negative rate (upper) and
number of patches labeled as that actual class (lower). The rightmost gray column shows the precision for positive and negative prediction
(upper) and number of patches corresponding to that predicted class (lower). Finally the lower right corner in dark gray shows the total
accuracy (upper) and total number of patches classified (lower).

Figure 4. A CAO south of Iceland on 3 December 2013 22:50 UTC labeled by a Human (a), CAOnet (b) and MERRA-2 using a M index
threshold of 3.75 (c) and 0 K (d). Regions 1 and 2 highlight possible CAO cases not detected by CAOnet or the human labeler.

plied to produce climatologies of CAO clouds for the months
November to April from 2000 to 2025. In Fig. 6a, CAOnet
shows RFO maxima close to 30 % west of Lofoten along the
Norwegian coast, and south of Iceland. These regions are lo-
cated far from the sea ice edge and closely align with warmer

SSTs (see Fig. A1b), where weaker CAOs are expected to be
found (Papritz and Spengler, 2017). Similarly, a low RFO
is observed in the Iceland and Greenland seas, where SSTs
are expected to be relatively low. While this suggests a CAO
cloud SST dependency, these findings may be a consequence
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Figure 5. A CAO west of Norway 21 November 2008 21:00 UTC labeled by a Human (a), CAOnet (b) and MERRA-2 using a M index
threshold of 3.75 (c) and 0 K (d). Region 3 shows a typical example of CAOnet struggling in capturing initial closed cell development, while
region 4 shows an example of the M index classifying a high cloud as a CAO.

of the higher CAOnet detection rate of open cells and their
formation farther from the sea ice where higher SSTs are
found. The findings do however show an interesting SST-
aligning pattern, which suggests higher SSTs as a potential
necessity for CAOnet detection and thereby open cell forma-
tion.

The Fram Strait is a region known for CAOs due to fre-
quent instability in the MBL as indicated by the M index
(Papritz and Spengler, 2017; Dahlke et al., 2022). How-
ever, this region shows relatively low RFO for CAOnet in
Fig. 6a. This discrepancy may be attributed to earlier studies
employing the M index which suggests instability without
necessarily indicating cloud formation. It could also result
from high clouds obscuring the CAO clouds below or from
CAOnet failing to capture the initial development of closed
cell clouds, as shown in Fig. 5. In contrast, M3.75 and M0
aligns with expectations, showing maxima in the RFO over
the Fram Strait (Fig. 6b and c). This maximum also extends
towards the Norwegian coast, giving higher RFO in this re-
gion than CAOnet.

The Norwegian coast is a region where closed cells are
expected to start breaking up into open cells. As illustrated
in Figs. 4 and 5, CAOnet shows high sensitivity to open cell
clouds, suggesting that CAOnet likely represents their RFO
of approximately 30 %. Consequently, M3.75 overestimates
this occurrence with an RFO of more than 35 % . Addition-
ally, the low M3.75 CAO precision of just 59 % (see Fig. 3b),
implies a large number of false CAO classifications. These
inaccuracies for M3.75 may mainly result from high clouds
obscuring the CAO clouds below (i.e. region 2 in Fig. 5c),
giving non-aligning MERRA-2 classifications. While this is

not necessarily wrong, such cases are less relevant when
studying the radiative impact of CAO clouds.

Another region of disagreement between CAOnet and the
M index is south of Iceland, where CAOnet (Fig. 6a) shows
up to 20 % higher RFO than M3.75 (Fig. 6b). Given the
CAOnet precision of 74.6 % (Fig. 3a), it is unlikely that this
is the result of large amounts of false positives. Instead, it
may be explained by lacking CAO classifications by the M
index, which is shown as an example in Fig. 4. This Figure
illustrates that the region south of Iceland can be dominated
by open cells, which MERRA-2 may fail to detect, unless the
M index threshold is lowered (see Fig. 6c).

By decreasing theM index threshold to 0, the CAO occur-
rence south of Iceland increases by approximately 30 %, but
this comes at a significant cost to overall precision. With a
precision of only 46.0 % (see Fig. 3c), most of the M index
CAO predictions using M0 are false positives. This shows
how lowering the M index threshold can be beneficial in
certain cases such as in Fig. 4, but with the consequences
of lowering the total accuracy. This highlights the strength
of the phenomenological approach using CAOnet as a CAO
cloud predictor, provided that its limitations regarding miss-
ing classifications of initial closed cell clouds are acknowl-
edged.

To improve classifications by MERRA-2 in regions where
open cells are expected, it may be beneficial to use another
pressure level when calculating the M index. Near the sea
ice edge, CAOs and the MBL depth are expected to be a
few hundred meters, increasing to up to 2 km downstream
(Fletcher et al., 2016a). As a result, higher pressure levels
may lead to missing classification close to the sea ice edge,
making the 850 hPa potential temperature more suitable for
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detecting general instability and the potential for convective
clouds. However, as open cells develop, the MBL may fur-
ther deepen through mixing, suggesting that a lower pressure
level might be better suited for detection of these open cells.
Implementing a varying pressure level or M index thresh-
old based on region and CAO lifecycle could address these
issues, but would require extensive research to determine ac-
curate parameters.

In total, the climatology from CAOnet (Fig. 6a) identifies
regions where CAO clouds play a significant role for the ra-
diative balance. This offers an alternative perspective to pre-
vious studies, which have focused on instability associated
with CAOs, as indicated by SST - air temperature contrasts.
While instability remains an important factor for exchange
of heat fluxes (Papritz and Spengler, 2017), CAOnet demon-
strates its strengths in applications directly aimed at studying
CAO clouds. Other than potentially missing important areas
like the Fram Strait and close to the sea ice edge, the iden-
tified areas of high RFO point to the coastal Norwegian Sea
and the northern Atlantic south of Iceland as key regions for
investigating the radiative impact of CAO clouds.

Supplementing the RFO climatology, the average CAO
cloud coverage for each month is investigated. As visualized
in Fig. 8a, the average CAO coverage peaks during the win-
ter months for each model. This aligns with RFO maxima
reported in earlier Arctic CAO studies (e.g. Kolstad et al.,
2009; Dahlke et al., 2022), suggesting that both CAOnet and
the M index effectively capture the expected CAO season-
ality. When further comparing the monthly coverage, the re-
sults from CAOnet andM3.75 mostly agree. This is expected,
as both the M index threshold and CAOnet have been opti-
mized for the best fit with the evaluation data. Nevertheless,
discrepancies are still observed. While both models show
similar coverage in winter and spring, they disagree in au-
tumn, with M3.75 showing lower CAO coverage. This dis-
crepancy may indicate that M3.75 has a too high threshold to
detect clouds associated with weaker CAOs, which may oc-
cur when Arctic air masses are warmer during autumn. M0
yields more comparable results to CAOnet for September,
but the adjustment leads to a doubling of coverage in the fol-
lowing months. The alternative offered by CAOnet suggests
that varying the M index thresholds by season may be nec-
essary to optimize an M-index-based CAO cloud detection.

Despite the disagreements between the models, the clear
seasonal pattern obtained suggests a corresponding pattern in
terms of the cloud radiative impact. This is further illustrated
in Fig. 7, showing that CAO clouds contribute up to 20 % of
the region’s total cloud cover. With maximum coverage and
cloud contribution occurring during winter and early spring,
it is expected that potential trends during these months will
be of the greatest significance for the radiative balance. Con-
sequently, December to March are likely to play an impor-
tant role in CAO influence on the Arctic climate, especially if
trends in coverage are present. To further explore this, these
months will be emphasized in the following sections, with

a focus on CAOnet, while utilizing supporting results from
MERRA-2 with M3.75.

3.3 Trends

3.3.1 Arctic CAO cloud cover trends

To investigate how CAO clouds are responding to a warm-
ing Arctic, trends in their coverage are analyzed. Figure 8b
shows trends in CAO cloud coverage for September–May as
a 25-year relative change for CAOnet and the M index cal-
culated using MERRA-2. CAOnet suggests a seasonal trend
in which the shoulder months of the CAO season (October,
November and April) show a significant relative decrease
in cloud coverage of nearly 20 %, in contrast to the winter
season and December that show increases of approximately
10 % and almost 20 % respectively. While the winter increase
is not significant on a month-by-month basis, except for De-
cember, the nearly 10 % total winter season trend in Fig. 8c
is significant. As the winter also contains the highest CAO
coverage (see Fig. 8a), this relative trend has a great impact
on the total area covered by CAO clouds.

To further support these findings, trends obtained using the
M index can be examined. In Fig. 8b,M3.75 generally agrees
with the sign of the CAOnet trends, except for December,
when CAOnet suggests a significant increase and the M in-
dex a decrease. However, the confidence interval of this trend
is well inside the confidence interval of CAOnet, suggesting
a non-significant disagreement. When theM index threshold
is reduced to 0 K, the trend sign shifts to a strong and signifi-
cant increase. However, as explored in Sect. 3.1, this thresh-
old does not typically align well with CAO clouds. Never-
theless, the significance of the trend suggests an increase in
areas with MBL instability for December across the Arctic.

Overall, the seasonality of the MBL instability and cloud
cover trends, which is further supported by CAO cloud oc-
currence trends in Fig. C1, suggests clear seasonal drivers
that may impact both the exchange of heat fluxes and the ra-
diative balance of the Arctic.

3.3.2 Explaining the seasonality of Arctic trends

The observed trends motivate future studies to investigate the
climatological parameters driving them. Especially, the sea-
sonal nature of these trends underscores the potential impor-
tance of other season-dependent parameters such as temper-
atures and sea ice extent. Through CAOnet, future studies
have access to a phenomenological classifier that provides
an extensive database for correlation analysis with potential
CAO-influencing climatological parameters. To aid future re-
search in their analysis, we propose several factors for further
investigation in order to better understand CAOs in a future
Arctic.

First, Arctic air temperature warming tends to be greater
(Chylek et al., 2009; Johannessen et al., 2016; Rantanen
et al., 2022) and more surface-confined during winter than in

https://doi.org/10.5194/acp-26-1565-2026 Atmos. Chem. Phys., 26, 1565–1585, 2026



1576 F. S. von der Lippe et al.: Shortening of the Arctic cold air outbreak season

Figure 6. CAO climatologies for CAOnet (a) and the M index calculated using MERRA-2 reanalysis for the months November-April using
data from March 2000 to February 2025. In panel (b) and (c), M index thresholds of 3.75 and 0 K were used respectively. Regions with less
than 90 % data availability because of missing MODIS swaths or sea ice have been discarded.

Figure 7. Monthly CAO contribution to the total cloud cover in the
study region following CAOnet.

the shoulder seasons (Graversen et al., 2008; Alexeev et al.,
2012). This may serve as a wintertime destabilizing factor
for the MBL, in contrast to the more vertically distributed
warming during the shoulder seasons. However, increasing
air temperatures close to the ocean surface may also limit
moist convection and cloud formation, showing uncertainties
in the impact of atmospheric warming profiles. By investigat-
ing the correlation between the warming profiles and CAO
occurrence, the drivers behind the increasing prevalence of
CAO clouds during winter and their decreasing prevalence
during the shoulder seasons may be better understood.

Second, as indicated by CAOnet (Fig. 6a), CAO clouds
are more frequently observed in regions of higher SSTs
(Fig. A1b), revealing a potential SST dependence. However,
as suggested by the CAO-SST correlation (Fig. A1a) and
the relatively stable SSTs over the study period (Fig. A2),
SSTs are unlikely the driver of the observed CAO trends.
However, in the Tropics, Sandu and Stevens (2011) showed
that closed-to-open cell transition occurred as a result of in-
creasing SSTs. Consequently, as SSTs rise due to climate
change, conditions may become more favorable for cumulus

and open cells. This highlights the need for future research
to investigate how changing SSTs affect the distribution of
closed and open cell clouds, which is important for under-
standing the future radiative impact of CAOs.

Third, the impact of projected Arctic sea ice loss (DeRe-
pentigny et al., 2016) could be studied using CAOnet. Obser-
vations indicate larger wintertime sea ice loss (Garcia-Soto
et al., 2021), motivating future studies to conduct correlation
analysis to assess how this loss has influenced the observed
increase in wintertime CAO cloud cover. Investigating how
total cloud cover and cloud properties evolve in relation to
the location of the sea ice edge may help to quantify its ef-
fects on CAOs.

3.3.3 Radiative impacts of Arctic trends

Low-level clouds contribute the most to the Arctic surface
radiative energy balance (Shupe and Intrieri, 2004), making
trends in the low-level CAO clouds that contribute to up to
20 % of the total cloud cover in the study domain (Fig. 7) of
high importance for Arctic warming. Their net radiative ef-
fect does however largely depend on solar radiation, which
is negligible during winter for large portions of the study re-
gion. This results in a dominant longwave radiative warm-
ing from the increasing coverage of the CAO clouds during
winter. With CAO presence accounting for up to 20 % of the
region’s clouds, they are likely responsible for a large long-
wave effect that may have contributed to an enhanced and
region-dependent wintertime Arctic amplification (Rantanen
et al., 2022). In contrast, during the shoulder months, solar
radiation contributes significantly to the radiative balance,
which may lead to a warming effect associated with the de-
creasing prevalence of CAO clouds.

However, changes in CAO cloud cover potentially align
with shifts in other cloud types, complicating their radiative
impact. This motivates future work to uncover the exact ra-
diative impact of the observed CAO trends by using space-
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Figure 8. Trends in CAO coverage for September to May, 2000
to 2025 calculated using CAOnet (blue) and MERRA-2 with a M
index threshold of 3.75 K (red) and 0 K (purple). Panel (a) shows
the mean coverage of CAOs for the whole 25-year period. Panel (b)
shows the relative 25-year change in CAO coverage for each month
while panel (c) shows the relative 25-year change in CAO coverage
for each season. Error bars indicate the 95 % confidence interval
of the Theil-Sen slope, with the Theil-Sen estimate shown as dots.
Significant trends are shown as solid colors, indicating a p-value
less than 0.05 estimated using the non-parametric Mann-Kendall
test. Insignificant trends are shown as transparent colors.

borne radiative flux products such as from the clouds and
earth radiant energy system instrument (CERES, Wielicki
et al., 1996).

3.3.4 Trends and coverage in the north and south

To better understand changes in the radiative impact of CAO
clouds, it is important to study both seasonal and latitudinal
trends. As the North Atlantic ocean stretching to the Arc-
tic maintains fairly stable temperatures throughout the year
(Fig. A2), the outgoing longwave radiation from the ocean
surface remains close to constant. However, the incoming
solar radiation may vary greatly, particularly in the winter
season across the domain between 55 and 80° N. This latitu-
dinal dependency motivates a separate trend analysis for the
southern and northern part of the domain (see Fig. 2).

Figure 9 shows the trends and CAO cloud coverage for
the northern (panels a–c) and southern regions (panels d–f).
Similar to the whole domain in Fig. 8, the highest CAO cov-
erage occurs in both regions during winter. However, there is
a shift in maximum coverage towards late winter and spring
in the northern region (a) for both the M index and CAOnet,
while in the southern region CAOnet shows a shift towards

early winter and autumn (d). In the North, the M index gen-
erally suggests more CAO coverage than CAOnet, whereas
CAOnet suggests higher coverage than the M index in the
South. This aligns with the climatology presented in Fig. 6,
where the M index shows higher occurrences than CAOnet
in the north and lower in the south.

In general, a higher occurrence of CAOs is expected far-
ther north as a result of CAO initiation near the sea-ice
and snow-covered surfaces, which are more prevalent in the
north. However, as these clouds move over the ocean toward
the south, they develop into open cells that may expand to
cover large areas. Additionally, CAOs originating outside of
the study area, specifically west of Greenland, can extend
into the southern region as visualized in Fig. 5. This results in
a higher cloud coverage in the South than the North, despite
the expectation of higher CAO occurrence in the North. Con-
sequently, the high cloud coverage indicated by CAOnet in
the South (Fig. 9d), along with CAOnet demonstrating high
sensitivity to open cell clouds in this region (Fig. 5b), en-
hances confidence in the results produced by CAOnet. This
motivates the importance of the southerly trends (Fig. 9e and
f), especially when interpreting these findings as mostly re-
flecting changes in open cell coverage.

While M3.75 sees a significant decrease in February, no
general trend in CAO coverage is observed for CAOnet in
the northern region (panels b and c). In contrast, M0 reveals
significant increasing trends for December and January and
decreasing for February, as well as an increasing trend for the
whole winter season combined. This suggests an increase in
areas with MBL instability over the last 25 years, with corre-
sponding insignificant trends in cloud cover as indicated by
CAOnet. This can be explained by the M index trend contri-
butions largely resulting from increasing areas of very weak
instability, insufficient to form clouds.

In the southern region (Fig. 9e and f), a seasonal pattern is
observed, marked by an increase in cloud cover during winter
and decrease in the shoulder months October and Novem-
ber. This pattern aligns with the seasonality of the whole
domain (compare Fig. 8b), suggesting that the trends in the
southern region are driving those observed over the entire do-
main. As the southern region was chosen for its distance from
the sea ice edge, capturing more developed CAO clouds and
open cells, the trends likely reflect changes in the prevalence
of open cell clouds. Notably, significant increases in cloud
cover are found in December (Fig. 9e) and the winter sea-
son combined (Fig. 9f), while a significant decrease is found
in the shoulder months October and November (Fig. 9e). M0
exhibits similar significant trends for October and December,
while also suggesting a significant cloud cover decrease de-
crease for April. In contrast, M3.75 suggests no overall trend,
deviating from the two others and indicating that the M in-
dex threshold may be too high to capture the cloud structures
typically found in the southern region.

The overall trends attributed to the southern region and its
open cell coverage suggest potential changes in atmospheric
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Figure 9. Similar to Fig. 8, but for the northern region north of 65° N (a–c), and the southern region between 55 and 65° N (d–f) as shown
in Fig. 2. Significant trends are shown as solid colors, indicating a p-value less than 0.05 estimated using the non-parametric Mann-Kendall
test. Insignificant trends are shown as transparent colors.

circulation and the efficiency of cloud dissipation over the
past 25 years. While shifts in circulation patterns may re-
sult in more or fewer CAO clouds reaching the South, these
trends could also be caused by delayed or enhanced dissipa-
tion of open cell clouds. Regardless of the underlying cause,
the increasing prevalence of open cells during winter and de-
creasing prevalence during the shoulder seasons will change
the radiative impact of CAOs. Although these factors only
provide plausible explanations for the observed trends, they
emphasize the importance of understanding both circulation
changes and cloud dissipation within CAOs, as these pro-
cesses may themselves be influenced by climate change.

Consequently, further studies could utilize a phenomeno-
logical CAO classifier like CAOnet to directly assess changes
in radiative effects of regions experiencing CAO trends. Ad-
ditionally, by further developing this method to assess closed
and open cells separately, closed and open cell trend attribu-
tion may be determined accurately. This would yield more
precise insights into the future impacts of Arctic CAOs on
both the local and global climate.

4 Conclusions

Clouds associated with CAOs are important for the Arctic ra-
diative energy budget, particularly in the regions surrounding
the Norwegian sea, Barents sea and Northern Atlantic due to
the frequency of CAOs (Fletcher et al., 2016a; Dahlke et al.,
2022). In the rapidly warming Arctic, it becomes important
to understand how these clouds respond to climate change,
as changes in their prevalence and properties may either am-

plify or dampen local and global warming. To explore shifts
in CAO cloud coverage, a phenomenological CAO cloud
classification method named CAOnet has been developed.
Compared to the much used marine cold air outbreak index
(M), CAOnet based on MODIS data and machine learning,
has demonstrated promising results in detecting CAO clouds.
Additionally, an M index threshold of 3.75 K in contrast to
the much used threshold of 0 K (e.g Fletcher et al., 2016a;
Murray-Watson and Gryspeerdt, 2024), has been identified
for optimal detection of CAO clouds, providing future stud-
ies a basis for the instability required for CAO cloud forma-
tion.

By employing CAOnet, a CAO climatology focusing on
clouds rather than MBL instability has been produced. In
contrast to the M index calculated using MERRA-2 reanaly-
sis, this climatology has provided an alternative perspective
on CAOs, highlighting the Norwegian coast and the North
Atlantic region south of Iceland as key areas for CAO clouds
and their associated radiative impact. While these regions
align with relatively high SSTs, as well as frequent open
cells to which CAOnet shows a high sensitivity, low CAO-
SST correlation is found. Although this suggests SSTs to be
of little importance for CAO trends, future studies may find
clearer correlations as more data becomes available.

Utilizing data from the past 25 years, CAO clouds have
been found to contribute to up to 20 % of the total cloud cover
in the study region. This underscores the importance of the
observed trends, revealing a shortening of the CAO season
as indicated by a 10 % increase in wintertime CAO cloud
cover and nearly a 20 % decrease during the shoulder months
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of October, November and April. These shifts are in large
part linked to changes in open cell cloud cover as well as
changes in the SST – air temperature contrast (as indicated
by the M index). By utilizing CAOnet, future studies have
an easy-to-use database to investigate the potential drivers of
these trends, such as correlation analysis with atmospheric
warming profiles and the position of the sea ice edge.

Due to the lack of incoming solar radiation during win-
ter, the radiative impact of the observed wintertime cloud
cover trends are likely dominated by the terrestrial radiative
warming effect. This may have contributed to the anoma-
lously strong and region-dependent wintertime Arctic ampli-
fication (Rantanen et al., 2022). Conversely, during the shoul-
der months when decreasing cloud cover is observed, the in-
creased solar radiative effect introduces uncertainties regard-
ing the overall radiative effect of the cloud cover trends.

While these trends do not directly indicate future changes
in the Arctic’s radiative energy balance, they clearly indicate
that CAO clouds are influenced by climate change. This em-
phasizes the importance of accurately characterizing the ra-
diative impact of these clouds and understanding their role
in the local and global climate system. This motivates future
work to utilize CAOnet together with spaceborne flux prod-
ucts such as from CERES, to accurately uncover the radiative
impact of the observed CAO trends.

Appendix A: Sea surface temperatures

Figure A1. Panel (a) shows the SST-CAO correlation, with positive values indicating higher CAO occurrence for higher temperatures, while
panel (b) shows the average skin temperature over the whole period.
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Figure A2. Variations in the average temperature for the southern and northern region for the months September through May, including the
significant Theil-Sen trend estimate.

Appendix B: Optimizing M index threshold

Figure B1. CAO evaluation scores calculated using differentM index thresholds. In panel (a), a higher precision comes at the cost of recall.
This leads to the most optimal threshold of 3.75 K for the normalized score in panel (b).
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Appendix C: Occurrence trends

In addition to the CAO cloud coverage trends presented in
Figs. 8 and 9, monthly CAO cloud occurrence trends were
calculated on a grid point by grid point basis, as shown in
Fig. C1. This was accomplished using the median of pair-
wise slopes (Theil-Sen) method and Mann-Kendall test, as
described in Sect. 2.3. However, as each grid point has val-
ues of either 1 or 0 depending on whether a CAO is present
or not, and most grid points having zeros most of the time,
most pairwise slopes will also be 0. Consequently, the final
median and trend will also be 0. To overcome this limitation,
monthly means for each grid point were calculated, resulting
in monthly occurrence fractions that were used for the final
trend estimate.

Figure C1. Trends for each month calculated using the Theil-Sen estimator. Stippled points are insignificant by not satisfying a false
discovery rate of 0.2.

Furthermore, a p-value was calculated using the Mann-
Kendall test. A trend was deemed significant if it satis-
fied a false discovery rate of 0.2, following the Benjamini–
Hochberg procedure (Benjamini and Hochberg, 1995). This
method is recommended for addressing multiple hypothesis
testing in atmospheric sciences (Wilks, 2016), allowing con-
trol over the expected fraction of false positives among the
significant trends to be 20 %.

The resulting significant trends indicate a decreasing oc-
currence of CAO clouds in the southern region for both Octo-
ber and May over the past 25 years. This aligns with the cloud
coverage trends for October shown in Fig. 8, and further sup-
ports the observed trend seasonality, suggesting a shortening
of the CAO season.
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Appendix D: Manual inspection of CAO images

Figure D1. Example images of CAOs used to identify CAO-aligning clusters to facilitate the creation of a labeling dataset. Out of the total
14 K-means clusters, manual inspection identified clusters 2, 6, 9 and 10 to align with typical CAO clouds.
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Code and data availability. Data, including CAOnet and
MERRA-2 CAO masks, along with the code, are available
from Zenodo at https://doi.org/10.5281/zenodo.18352136
(von der Lippe et al., 2025; von der Lippe, 2026). MODIS
level 1B calibrated radiances can be accessed at https://ladsweb.
modaps.eosdis.nasa.gov/search/order/1/MOD021KM--61, last
access: 16 July 2025 (MODIS Characterization Support
Team (MCST), 2017). NIMBUS sea ice concentration data
is available at https://nsidc.org/data/nsidc-0051/versions/2,
last access: 29 June 2025 (DiGirolamo et al., 2022).
The MERRA-2 reanalysis products are accessible at
https://disc.gsfc.nasa.gov/datasets/M2T1NXSLV_5.12.4/summary,
last access: 17 July 2025 (Global Modeling and Assimilation Office
(GMAO), 2015)
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