Supplement of Atmos. Chem. Phys., 26, 1515-1535, 2026 Atm heri
https://doi.org/10.5194/acp-26-1515-2026-supplement t ospheric

© Author(s) 2026. CC BY 4.0 License. Chemistry
and Physics
Supplement of

Seasonal variability, sources, and parameterization of ice-nucleating
particles in the Rocky Mountain region: importance of soil dust and
biological contributions

Ruichen Zhou et al.

Correspondence to: Russell Perkins (rperkins @colostate.edu)

The copyright of individual parts of the supplement might differ from the article licence.



Text S1. Source apportionment

The PMF analysis was performed using the EPA PMF 5.0 software and using data from the White
River IMPROVE site, which is located near the SAIL campaign (~ 30 km distant), from January
2014 to April 2024 to understand the aerosol sources impacting this region. The atmospheric
concentrations in the PM; 5 fraction of nineteen elements (Al, As, Br, Ca, Cl, Cr, Cu, Fe, K, Mg,
Mn, Na, Ni, Pb, Se, Si, Ti, V, and Zn), nitrate, sulfate, elemental carbon, organic carbon, and the
mass concentrations of PMo and coarse mass, which was calculated by subtracting PM, 5 from
PM,, were used for the source apportionment. The concentrations were reported based on local
conditions of temperature and pressure. The uncertainties in concentrations for various
components were used directly as reported in the IMPROVE dataset. There are no uncertainties
reported for organic carbon and elemental carbon before 2017. These uncertainties were therefore
calculated based on the method introduced in Nifio (2021) and the IMPROVE standard operating
procedure (SOP 351; IMPROVE, 2021). Based on the signal/noise ratio for each component, As,
Cr, Ni, Pb, Se, were categorized in the “bad” category and excluded from PMF rotations. Cu and
V were put into the “weak” category and their uncertainties were tripled. PM ;o was used as a total
variable to constrain the total aerosol mass concentrations. PMF was run multiple times, exploring

4-7 factor solutions.

A 5-factor solution was chosen as an optimal solution based on the Q/Qcxp and interpretation of the
physical meanings of the factors. The factor profiles and their time series are shown in Figure S5.
The five factors were identified as coarse dust, fine dust, biomass burning, sulfate-dominated, and
nitrate-dominated sources. Coarse and fine dusts had high contributions from Al, Ca, Fe, Mg, and
Si, which are main components of mineral dust. Coarse dust explained more than 90% of the coarse
mass, while there was no contribution from coarse mass in the fine dust factor. These mineral
elements contributions were higher in fine dust than in coarse dust, which is mainly due to the fact
that elemental analyses of IMPROVE samples were performed only on the PM; 5 fraction. The
biomass burning factor was strongly associated with organic and elemental carbon, which are
mainly from combustion processes, and K, a tracer of biomass burning. The other two factors are
dominated by nitrate and sulfate, which are related to the formation of secondary aerosols and
possibly some primary emissions from regional sources that include energy production and distant

urban regions.



From the 10-year time series (Figure S5b), the seasonal variation of sources was clearly identified.
Dust concentrations presented a seasonal cycle with higher concentrations in spring, summer, and
fall. Fine dust mostly occurred in spring seasons except in 2020, while coarse dust was prevalent
in spring, summer, and fall with highest concentrations in summer. This suggests different sources
for fine and coarse dust. There were significantly higher fine dust concentrations in 2022, and high
coarse dust concentrations in 2022 and 2023. Biomass burning showed an event-driven time series.
There were intense wildfire smoke events detected at White River in 2020 and 2021. Biomass
burning in the western U.S. is an annual occurrence and contributes to aerosol loadings through
summer and early fall, although the locations of the most severe fires and the dominant transport
pathways vary interannually (Brey et al., 2018). The sulfate-dominated factor had higher
concentrations in warm seasons, suggesting the importance of photochemical processes in driving
secondary aerosol formation. The nitrate-dominated factor was highest in spring, which may relate

to the combined impacts of dust and photochemistry.

PMF analyses were also performed for two additional regional IMPROVE sites, Mount Zirkel
Wilderness (MOZI) and Rocky Mountain NP (ROMO), which are located approximately 150 km
north and 170 km northeast of the White River site, respectively. These two sites also resolved
similar 5-factor solutions. The seasonal patterns of coarse dust, fine dust, and biomass burning
were highly consistent among all 3 sites (Figures S5 and S7), although with differences in
attributed concentrations. This suggests that these aerosol types are largely influenced by regional
sources that impact aerosol concentrations across a broad region of the Colorado Rockies. This
comparison supports the assumption that aerosol types observed at the SAIL campaign site and at
WHRI (30 km away) are likely similar, and that the source apportionment results can be used to

estimate dominant aerosol types for the SAIL campaign.



Test S2. qPCR analysis of Pseudomonas syringae

To investigate potential Pseudomonas syringae influence, which may be indicative of snowmaking
activities, DNA was extracted using the DNeasy PowerSoil Pro Kit (Qiagen) from 8 samples with
an INP spectrum similar to Snomax® and 4 reference samples without that spectrum (i.e., normal
winter samples) with. Half of each filter was used for extraction,and DNA was eluted into 60 pL
of CD6. qPCR was performed at University of Colorado Boulder with the QuantStudio 3, using
the Applied Biosystems™ PowerUp™ SYBR™ Green Master Mix, established Pseudomonas
specific primers (Guilbaud et al., 2016), and a GBlock Gene Fragment (IDT) to make standards

that ranged from 101-108 copies/pL. All reactions were performed in triplicate.

The results are shown in Figure S4. DNA from Pseudomonas syringae was detected in four
samples, while no Pseudomonas syringae was found in the reference samples. This result supports
the conclusion that some samples collected during winter were affected by snowmaking activities.
Although Pseudomonas syringae was not detected in all eight samples that had an INP spectrum
similar to Snomax, this possibly due to low DNA concentrations. Given that their INP
concentration spectra are highly similar to that of Snomax, all eight samples are suspected to have

been affected by snowmaking and were excluded from further analysis in this study.
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Figure S1. The INP temperature spectra of samples that were subjected to heat treatments (in total 43 samples). The base analyses
(black dots) are shown along with spectra after heat treatment (orange dots). For clarity, uncertainties are not shown here.
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Figure S2. The INP temperature spectra of samples with base analysis (black dot), heat treatment (orange dot), and H,O, treatment
(blue dot, in total 34 samples). For clarity, uncertainties are not shown here.
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Figure S3. INP concentrations (sL™!) at temperatures from —7.5 °C to —27.5 °C (interval of 2.5°C)
for all analyzed samples during SAIL campaign. The grey shadows show samples collected during

cloud seeding and affected by snowmaking activities.
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Figure S4. (a) INP temperature spectra for wintertime samples with a distinct shape similar to
that of Snomax. (b) P. syringae DNA copy numbers in these samples and in reference samples
presumed not affected by Snomax, according to inspection of their INP spectra.



Source Profiles

Coarse dust
100 T T T T T T T T T T T T T T T T T T

g

Percentage (%)
o 3

g

3

o

b COarse dust I ‘
10~ 1
OMMLMLMMM kJL Aol WMLL
10— Fine dust ! | I
— 5
T L
; % Bloma‘ss Burning ! l ‘ I ‘ ]
.% 20— -
g 12~ _L.L T v R P T VAR ST, | D Lml pbinly | ’.hh‘i th | _L.; Lethiiliig ] |
8 2+ Sulfat;-dominated I I ‘ I ‘ ‘ ] ! | |
! .W Uﬂ{\d*m MWLJ,
orH: Ak JM“M y! MJmM’“\w t“WMML\MW ‘MM
o Nltrate-dommated
0.1
M‘WMMM oM e b MM&M&M

2014/01/01 2015/01/01 2016/01/01 2017/01/01 2018/01/01 2019/01/01 2020/01/01 2021/01/01 2022/01/01 2023/01/01 2024/01/01

Figure S5. (a) Factor profiles and (b) time series of aerosol type concentrations (ug m) for the

five-factor solution from the PMF analysis of data from the IMPROVE site at White River.
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Figure S6. (a) Time series of mass concentrations (ug m) attributed to the five factors during the
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