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Abstract. We present a comprehensive quantification of daily NOx emissions from Paris using an inverse anal-
ysis of tropospheric NO2 columns measured by the Tropospheric Monitoring Instrument (TROPOMI) over a
5-year period (May 2018–August 2023). Our analysis leverages a superposition column model that captures
the relationship between the increase in NO2 with distance over an urban source region to underlying NOx
emissions, accounting for chemical transformations and wind in the urban boundary layer. To evaluate the ro-
bustness of the superposition column model, we tested it against high-resolution (300 m) Large Eddy Simula-
tions (LES) using MicroHH, a computational fluid dynamics model, with atmospheric chemistry, confirming
that the model’s simplifying assumptions introduce uncertainties below 10 %. Building on this foundation, we
develop a new Bayesian inversion method that incorporates prior knowledge on NOx emissions and lifetimes
and accounts for model and prior uncertainties. Compared to a previous look-up table approach, which relied on
least-squares minimization without prior constraints, the Bayesian method demonstrated superior performance.
In controlled tests, it reproduced known NOx emissions within 5 %. Applying Bayesian inversion to TROPOMI
data in Paris, we observed a significant reduction in NOx emissions from 44 mol s−1 in 2018 to 32 mol s−1 in
2023, representing a 27 % decrease. This decline exceeds the 12 % reduction predicted by the TNO-MACC-III
bottom-up inventory, indicating limited accuracy of current inventories. Seasonal analysis revealed higher pos-
terior emissions in winter, possibly highlighting the role of residential heating or vehicle cold starts, which may
be underrepresented in bottom-up estimates. Our improved Bayesian framework delivers accurate NOx emission
estimates that align well with independent data sets. This approach provides a valuable tool for monitoring urban
NOx emissions and assessing the efficacy of air quality policies.

1 Introduction

Nitrogen oxides (NOx =NO+NO2) are major air pollutants
which are central to the chemistry of the troposphere, and
which have negative impacts on human health and the en-
vironment (e.g. Boningari and Smirniotis, 2016). In urban
regions NOx is mainly emitted to the atmosphere as a result
of the burning of fossil fuels, particularly in combustion en-
gines. In the EU, the largest contributor to NOx emissions

is the transport sector (40 %), followed by energy production
and distribution (16 %), and the commercial, institutional and
households sectors (15 %) (EEA, 2019). At daytime, nitro-
gen oxides are short-lived, on the order of 1–12 h (Stavrakou
et al., 2013), because NO2 is quickly oxidized by reaction
with the hydroxyl radical (OH) to nitric acid (HNO3). Due to
its high water solubility, HNO3 is efficiently removed from
the atmosphere, primarily through precipitation and direct
deposition onto surfaces (Seinfeld and Pandis, 2016).
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Besides being a toxic gas itself, NO2 also has secondary
effects via its contribution to photochemical ozone produc-
tion (Seinfeld and Pandis, 2016; Jacob, 1999; Visser et al.,
2019), its influence on the formation of aerosols (Yan et al.,
2020), and its contribution to eutrophication via the deposi-
tion of HNO3 to ecosystems (e.g. Vitousek et al., 1997; Eris-
man and Draaijers, 1995).

To reduce the negative effects of NOx , the EU maintains a
limit value for average annual surface air NO2 concentrations
of 40 µg m−3. Currently, air quality in most European cities
complies (EEA, 2022). Nevertheless, NOx pollution remains
a significant health concern for Europeans, especially in ur-
ban areas, as daily guidelines set by the World Health Or-
ganisation (WHO) of 25 µg m−3 (WHO, 2021) continue to
be frequently exceeded (EEA, 2022).

Monitoring of NOx emissions typically relies on bottom-
up inventories, which are uncertain due to their reliance on
emission factors, extrapolations and activity assumptions.
Uncertainties in bottom-up emissions vary with location, and
are estimated to be typically more than 30 % (Kuenen et al.,
2014). Satellite measurements of NO2 offer a useful tool
for top-down inverse modelling of NOx emissions, provid-
ing more insights into NOx sources and distributions. How-
ever, inverse modelling is also subject to assumptions, such
as uncertainties of NOx lifetimes in the lower atmosphere
(Stavrakou et al., 2013), which can significantly influence the
accuracy of top-down emission flux estimates.

Research and refinement of inversion methods for estimat-
ing NOx emissions and lifetimes are crucial, especially for
initiatives like the Copernicus CO2M mission (Sierk et al.,
2021), which will utilize NO2 plumes to enhance CO2 mon-
itoring by pinpointing emissions more accurately. Several
studies have quantified NOx emissions based on satellite
NO2 retrievals, by analyzing downwind plumes of NO2 from
large sources, using inverse modeling computations with at-
mospheric chemical transport models (CTMs) (e.g. Brioude
et al., 2013; Cheng et al., 2021; Kurokawa et al., 2009; Krol
et al., 2024; Zhu et al., 2022). However, because CTMs can
have accessibility issues and require substantial computa-
tional resources, alternative approaches that do not depend
on CTMs have been developed and utilized to estimate NOx
emissions and lifetimes (e.g. de Foy et al., 2014; Beirle et al.,
2011).

Beirle et al. (2011) first presented a method to infer NOx
emissions from strong isolated sources, by averaging satel-
lite NO2 plumes with similar wind direction. Building upon
this concept, Lorente et al. (2019) presented a simple super-
position column model that uses NO2 retrievals over Paris
of the TROPOspheric Monitoring Instrument (TROPOMI),
combined with domain-average information about the wind
speed, wind direction and OH concentrations in the bound-
ary layer, to estimate urban NOx emissions and lifetimes
without the need for complex inverse modelling compu-
tations. This approach allows for day-to-day emission es-
timates under cloud-free conditions, offering the potential

for continuous emission estimations over a long period of
time. Zhang et al. (2023) expanded this model framework
to estimate the NOx and CO2 emissions originating from
Wuhan, introducing modifications to the method that in-
cluded considering chemical decay of upwind background
NO2 flowing into the city. Inverse modelling approaches de-
rived from the method of Beirle et al. (2011), as exemplified
by Lorente et al. (2019) and subsequent studies (e.g. Zhang
et al., 2023; Goldberg et al., 2022; de Foy and Schauer,
2022; Lange et al., 2022; Liu et al., 2022; Rey-Pommier
et al., 2022), inherently simplify the effects of atmospheric
dynamics and chemistry. These methods have nonetheless
been evaluated using synthetic data, with studies such as
de Foy et al. (2014) and Liu et al. (2022) showing that in-
ferred NOx emissions and lifetimes remain broadly consis-
tent with known model input. In a complementary approach,
Zhu et al. (2022) inferred long-term changes in NOx life-
time from decadal OMI NO2 columns, using machine learn-
ing to relate NO2 columns urban OH concentrations. Sim-
plifications arise from assumptions that spatially and tempo-
rally varying wind speeds, NOx /NO2 ratios, and NOx life-
times may be taken as constant throughout the inversion do-
main, whereas in reality there may be substantial temporal
and spatial fluctuations in these parameters, especially near
the edges of plumes (Hakkarainen et al., 2024; Krol et al.,
2024; Meier et al., 2024; Valin et al., 2013; Vilà-Guerau de
Arellano et al., 2004). We therefore address the following re-
search questions:

1. To what extent is the forward superposition model ca-
pable of simulating realistic NO2 concentrations, de-
spite simplifications on domain-average wind speed,
NOx /NO2 ratios, and NOx lifetimes?

We revisit the methodology introduced by Lorente et al.
(2019) and perform an Observing System Simulation Exper-
iment (OSSE). We generate synthetic satellite NO2 observa-
tions using two Large Eddy Simulation (LES) experiments
for a hypothetical city to investigate realistic chemical varia-
tions that occur in urban plumes. We assess to what extent the
simple column model of Lorente et al. (2019) is capable of
appropriately capturing NO2 increases along with the wind
over a city despite these simplifications. Next, we move on
to the inversion of NOx emissions, and pose the question:

2. Can a Bayesian inversion method that weighs prior
information, forward model uncertainty, and observa-
tional uncertainties improve estimates of NOx emis-
sions from TROPOMI NO2 plumes relative to a method
that does not account for constraints imposed by prior
knowledge?

We propose and evaluate a new more formal Bayesian
inversion method, incorporating prior knowledge on NOx
emissions and NOx lifetime and observations of NO2 and
their uncertainties. In Sections 2 and 3, we use the syn-
thetic observations sampled from simulations with a high-
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resolution computational fluid dynamics model that resolves
large-scale turbulence and atmospheric chemistry (MicroHH
Van Heerwaarden et al., 2017) to evaluate the forward su-
perposition model and inferred emissions. Then in Sect. 4,
to demonstrate the applicability of this method, we infer a
5-year timeseries of NOx emissions for Paris on individ-
ual clear-sky days between June 2018–August 2023 using
improved TROPOMI NO2 V2.4.0 retrievals. This retrieval
product is based on high-resolution (0.125°) surface albedo
information from the DLER database (Tilstra et al., 2024)
and high-resolution (0.1°) a priori NO2 profiles from CAMS
(Douros et al., 2023). TROPOMI NO2 retrievals based on
high-resolution input data have been shown to capture NO2
gradients well (Lange et al., 2024). The inversion illustrates
the potential of the method and allows us to identify trends
and patterns in the NOx emissions of Paris, including sea-
sonal and weekly emission cycles, and to assess the effec-
tiveness of pollution reduction efforts. We conclude with an
evaluation of our top-down NOx estimates with an indepen-
dent bottom-up inventory of NOx emissions of Paris.

2 Forward superposition column model

2.1 Model setup

The superposition column model first presented by Lorente
et al. (2019) calculates NO2 columns by superimposing NOx
emissions along the wind within a region. The region (e.g. a
city) that is analysed is divided into line cells that encapsulate
the entire source region perpendicular to the wind direction
(Fig. 1, Beirle et al., 2011). For each cell i between, within,
and beyond the city length, the contribution to the NO2 line
density downwind to the cell is calculated using a simple col-
umn model:

fi (x)= 0 for x < xi
fi (x)= Ei

k
(1− e−k(x−xi )/u)× [NO2]

[NOx ]
for x = xi

fi (x)= Ei
k

(1− e−kL/u)× e−k(x−xi )/u× [NO2]
[NOx ]

for x > xi
(1)

where fi is the contribution of the emissions in cell i to
the NO2 line density at x (mol cm−1), E(xi) represents the
NOx emissions from cell xi (mol cm−1 s−1), L is the length
of each line cell (m) and u is the effective wind speed
at which NOx is transported (m s−1). This effective wind
speed is determined by weighing the vertical wind speed pro-
file by the the vertical NO2 density profile, as described in
Lorente et al. (2019). The scaling with the [NO2] / [NOx]
ratio is required because a fraction of NOx is present as
NO2, and TROPOMI measures the NO2 columns. k is the
rate constant of the chemical loss of NOx during daytime
(s−1): k = k′[OH]

[NOx ]/[NO2]
, using the reaction rate constant k′

of 1.1× 10−11 cm3 molec.−1 s−1 for the OH + NO2 + M
reaction at surface pressure for 288 K (Burkholder et al.,
2020). PAN formation is not explicitly considered in this
framework, as it is a reversible NOx reservoir rather than
a permanent sink (e.g., Fischer et al., 2014). In the warm,

VOC-limited conditions typical of central Paris (e.g., John-
son et al., 2024), PAN decomposes rapidly and contributes
little to net NOx loss. The dominant NO2 sink under these
conditions is oxidation to HNO3, with some additional loss
to organic nitrates (RONO2).

The contributions to the line density from each cell are
added to the background NO2 concentration (b) to find the
overall NO2 line density at each distance x along with the
wind:

F (x)=
n∑
i=1

fi(x)+ b (2)

Following this model formulation, the NO2 that accumu-
lates over the city F (x) depends on the spatial pattern of
emissions E(x) within the city and is affected by the chem-
ical loss and the wind speed over the city, as discussed ex-
tensively in the studies by Lorente et al. (2019) and Zhang
et al. (2023). The superposition column model defined by
Eqs. (1) and (2) implies that prior knowledge is required on
oxidation chemistry (OH concentration and NOx : NO2 ratio)
within the urban boundary layer, and that the background b
represents the spatially invariant free tropospheric NO2 con-
tribution to the line density.

2.2 Comparison superposition model to synthetic NO2
satellite observations with MicroHH

To generate synthetic satellite observations of NO2, we use
MicroHH, a direct numerical simulation (DNS) and large-
eddy simulation (LES) model (Van Heerwaarden et al.,
2017), which has recently been extended to include an atmo-
spheric chemistry module based on the Kinetic Pre-Processor
package (KPP) (Krol et al., 2024). We set up a horizon-
tal model domain of 50 km (North–South) × 150 km (East–
West)× 4 km (vertical), with a horizontal resolution of 300 m
and a vertical resolution of 100 m. At the upper end of the
model domain, a buffer zone of 750 m serves to damp grav-
ity waves (Van Heerwaarden et al., 2017). For temperature,
humidity, and momentum, circular boundary conditions were
used. To avoid re-entering of emissions from the city source,
we employed free outflow conditions for tracers (Ražnjević
et al., 2022). More information about the MicroHH setup
and initial conditions used can be found in the Supplement
(Sect. S1).

We conduct two MicroHH simulations over a hypotheti-
cal city (“symcity”) to assess the capability of the forward
line density model (Eqs. 1, 2) to realistically simulate line
densities over a city, despite its simplifications (a spatio-
temporally constant windspeed, NOx : NO2 ratio, and NOx-
lifetime). Our simulated city, 30 km× 30 km in size, is posi-
tioned on the west side of the model domain, which is dom-
inated by a westerly flow. NOx is emitted within the city
as NO, and gradually transformed to NO2 by reaction with
ozone. The NO emissions are spatially distributed over the
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Figure 1. Left: the study area of wider Paris and illustration of the line density method. The black solid lines indicate the different line cells.
The black arrows indicate the wind speed (from the north-east). The dotted grey box to the north of Paris represents the background area.
Right: NO2 line densities at each distance x, calculated from the TROPOMI retrieval on 18 May 2018.

city in a Gaussian pattern, so that the emissions are much
larger in the center. 68 % of the emissions lie within a ra-
dius of 7.5 km around the city center, and 95 % within 15 km.
The simulation is performed between 06:00 and 18:00 h lo-
cal time. Photolysis representative for the city of Riyadh is
used in the simulation. We simulate two different scenario’s:
scenario 1 is a Spring case (photolysis of 15 April) which has
high NO emissions of 195.7 mol s−1, and a high wind speed
of 6 m s−1. Scenario 2 is a winter case (photolysis of 15 De-
cember) and has lower NO emissions of 58.7 mol s−1 and a
wind speed of 2 m s−1. Details of the two cases are summa-
rized in Table 1. Figure 2 displays the MicroHH tropospheric
NO2 columns between 0–4 km height at 13:00 h, close to
the approximate TROPOMI overpass time of 13:30 h. Since
the emissions are smoothly distributed over the city, the ir-
regularities in the simulated NO2 columns, visible in the
upper panels, are caused by the combined effects of atmo-
spheric turbulence and chemistry. The lower panel shows the
columns averaged to a 3 km× 3 km resolution, more similar
to the spatial resolution of the TROPOMI NO2 retrievals.

Building upon the 3 km× 3 km resampled simulations, we
computed NO2 line densities across symcity, depicted as
black dots in Fig. 3c and f. The simulated NO2 line densi-
ties over the city exhibit a tilted S-shaped pattern, similar
as the observed line densities over Paris reported in Lorente
et al. (2019). This pattern is a consequence of the dynamic
interplay between wind and the Gaussian emission distribu-
tion across the city, with maximal emissions concentrated at
the city center. NO2 columns are very low upwind of the city,
and the NO2 line densities increase once the emitted NO is
converted into NO2 via the NO+O3 reaction in the bound-
ary layer. For the Spring case, with 6 m s−1 wind speed, the
NO2 line density peaks downwind of the city, reflecting the

rapid transport of NO2 beyond the city limits. The Winter
case shows the NO2 line density peaks over the city, at about
25 km, reflecting the lower wind speed in that simulation.

We evaluate the forward superposition model (based on
Eqs. 1 and 2) by comparison to line densities we directly
obtained from MicroHH. For the forward model, we use
the NOx emissions (magnitude and spatial distribution) and
other model input parameters (the average NOx lifetime,
wind speed, and the average NOx /NO2 ratio (Eq. 1)) from
the symcity test (these average values are listed in Table 1).
We try to determine these parameters as closely as possible to
data we would obtain from CAMS (Copernicus Atmosphere
Monitoring Service), to ensure a realistic representation of
conditions encountered in a TROPOMI inversion scenario
(Lorente et al., 2019). The high resolution of the MicroHH
model enables us to discern the implications of these sim-
plifications. We calculate the parameter values from the Mi-
croHH output of 12:00 h local time, as the observed NO2
columns depend on the conditions of preceding time steps.
In the MicroHH simulation, the NOx lifetime ranges between
1–6 h (2–9 h for case 2) within the city domain (Fig. 3a, d).
The NOx lifetime is especially short in the downwind part of
the plume, reflecting high OH concentrations in the urban
plume (there were also substantial hydrocarbon emissions
from the city, which leads to O3 formation and consequently
enhanced OH). The NOx /NO2 ratio ranges between 1.2–
1.7 (1.2–1.6 for case 2) over the city domain (Fig. 3b, e).
For the Winter case (case 2) O3 and OH concentrations are
slightly lower than for the Spring case (case 1). This leads
to a slightly longer NOx lifetime, and a lower NOx /NO2
ratio than for the Spring case. In the MicroHH simulations,
the wind speed remains relatively constant across the entire
domain. The domain average wind speed, weighted verti-
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Figure 2. Tropospheric NO2 columns of symcity simulated by MicroHH for a Spring atmosphere with high NOx emissions and strong wind
(left panels), and a Winter atmosphere with low NOx emissions and weak wind (right panels). 68 % of the NOx emissions occur within the
smallest circle, and 95 % within the bigger circle. The upper panels show the NO2 columns at the MicroHH spatial resolution of 300 m, and
the lower panels show the same MicroHH simulations regridded to 3 km resolution.

cally by the vertical NO2 concentration is around 6 m s−1 for
Spring and 2 m s−1 for Winter.

Our superposition model requires effective values of wind,
NOx /NO2 and NOx lifetime as input parameters. Simulat-
ing NO2 line densities over the city using the superposition
model with the domain averaged input parameters from Mi-
croHH yields the values shown as red dots in Fig. 3c, f. We
see that despite simplifications, the simulated line densities
from the superposition model closely match those from the
MicroHH simulation. The agreement between the superposi-
tion and MicroHH NO2 line densities allows us to estimate
the superposition forward model error. We estimated the for-
ward model error as the average absolute deviation for the 10
line density values along with the wind. It amounts to 6.5 %
from the average MicroHH line density for case 1 and 6.3 %
for case 2. This suggests that, despite simplifications, the
superposition model is effective and provides realistic NO2
line densities based on city-domain averaged NOx emissions,
lifetime and NOx /NO2 ratio and wind speeds, at least at the
spatial resolution of TROPOMI NO2 observations.

3 Inversion of NOx emissions and lifetime

We now assess the ability of the inverse superposition
model to estimate known input NOx emissions and lifetimes
based on the NO2 line densities as simulated by MicroHH,
again using the two MicroHH simulations regridded to a
TROPOMI resolution.

3.1 Inversion methods

Since TROPOMI measures NO2 columns, we need to esti-
mate the NOx emissions using auxiliary and a priori knowl-
edge of wind, chemical regime and emissions. In Lorente
et al. (2019) a simple inversion method is used for this: the

forward model (Eqs. 1, 2) is fitted to the observed NO2 line
densities by minimizing the sum of the squares of the residu-
als, using a pre-calculated look-up table with a large number
of NO2 line densities corresponding to combinations of NOx
emissions and NOx lifetimes, which are allowed to vary by
± 50 % from their prior values. No formal weight is assigned
to prior knowledge regarding NOx emissions and lifetimes.
The optimal solution is determined by the NOx emissions
and lifetimes that result in the lowest residuals between ob-
served and pre-calculated line densities. The optimal solu-
tions (with the lowest residuals) according to the procedure
in Lorente et al. (2019) may therefore include some estimates
of NOx emissions and lifetimes that are unrealistic, e.g. with
large emissions accompanied by large OH.

Here we propose a new, more formal inversion method that
uses the minimization of the Bayesian cost function, taking
into account knowledge on uncertainties of the prior emis-
sions and lifetime, uncertainties in the forward model (see
Sect. 2.2), and uncertainties in the measured line densities:

J (x)=
(x− xa)2

σ 2
A

+
(F (x)− y)2

σ 2
O

(3)

where x is the state vector, including all the terms that are
fitted (k, and the emissions from each line cell). The cost
function is minimized by finding the solution of dJ/dx = 0.
The cost function comprises two different terms. The first
term is the deviation of the prior estimate (xa) of the state
from the actual state (x). The second term is the deviation of
the calculated line densities (F (x)) from the measured line
densities (y), given the solution for the state x. Both terms
are weighted by their uncertainties. σA represents the uncer-
tainty in the prior, and σO represents the combined measure-
ment uncertainty and the uncertainty in the model representa-
tion of the system. With this Bayesian inversion method, we
take into account not just the observations but also our prior
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Figure 3. NOx lifetimes and NOx /NO2 ratios for the two cases as simulated by MicroHH over the entire domain. Simulated line densities
over symcity of MicroHH and the line density model (c, f). The emission profile over the city is displayed in the small panel. The city-domain
averaged conditions are given in the white box. Figures are for 13:00 h local time.

Table 1. The range of parameter values within the city domain for the two cases of the MicroHH simulations for a Riyadh-like city, at 13:00,
and the domain-averaged parameters used in the forward model simulations. The wind speed used in the forward model is the height-averaged
wind speed weighted by the vertical NO2 distribution. The range displayed for MicroHH is the city-domain averaged wind speed at 100 m
height and 3 km height.

Photolysis Total ENOx Wind speed NOx lifetime NOx /NO2 Line densities
(mol s−1) (m s−1) (h) ratio

Case 1 15 Apr
MicroHH

195.7
4 (100 m)–8 (3 km) 2.6±1.2 1.5± 0.08 Black dots in Fig. 3c

Forward model 5.7 2.21 1.48 Red dots in Fig. 3c

Case 2 15 Dec
MicroHH

58.7
2 (100 m)–3 (3 km) 3.4± 1.8 1.4± 0.08 Black dots in Fig. 3f

Forward model 2.3 2.87 1.4 Red dots in Fig. 3f

knowledge. This prevents the model from excessively con-
forming to the observed data (“overfitting”), which is prob-
lematic in the basic inversion method. The main differences
between the least-squares inversion method from Lorente
et al. (2019) and the Bayesian inversion approach are dis-
played in Table 2.

3.2 Symcity emission inversion

We now apply the two inversion methods to infer the
NOx emissions and lifetimes of symcity based on the NO2
columns from MicroHH, for both the high and low emis-
sion scenario. First, we assume zero observational error, and
only uncertainty in the model representation of the system.
We use a σO of 6 %, representing the model representation
uncertainty that we determined in Sect. 2.2. We use a prior
lifetime uncertainty σa,τ of 30 %, and a prior emission uncer-
tainty σa,E of 50 %. First, we assume known prior conditions,

so the emission profiles over the city and city-average life-
times from MicroHH are used as the prior for the Bayesian
model. The results of the inversions are presented in Ta-
ble 3. The Bayesian inversion method yields emissions that
closely match those input into MicroHH (within 2 %). The
least-squares inversion method slightly underestimates emis-
sions (4 %) and overestimates lifetimes for case 1, and vice
versa for case 2 (16 % emission overestimation) highlight-
ing overfitting issues inherent in the least-squares inversion
approach. Although the Root Mean Square Error (RMSE) is
smaller when using the least-squares inversion method, there
are slight discrepancies in the inferred emissions and life-
times due to this overfitting.

This first inversion was performed for the idealized
scenario, with zero observational uncertainty. To enhance
the similarity of the NO2 columns in MicroHH to what
TROPOMI would observe, we introduced uncertainty on top
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Table 2. Differences between the least-squares and the Bayesian inversion method in inferring the NOx emissions and lifetimes from the
NO2 line densities.

(1) least-squares inversion (2) Bayesian inversion

Cost function J (x)= (F (x)− y)2 (4) J (x)= (x−xa )2

σ 2
A

+
(F (x)−y)2

σ 2
O

(5)

Condition state parameters τ ± 0.5τ τ ± σA,τ
E±∞ E± σA,E

Table 3. Comparison of ENOx ,tot, τNOx , and RMSE values for different inversion methods: MicroHH, least-squares inversion, and Bayesian
inversion.

Case 1 Case 2

ENOx ,tot (mol s−1) τNOx (h) RMSE (mol s−1) ENOx ,tot (mol s−1) τNOx (h) RMSE (mol s−1)

MicroHH 195.7 2.21 58.7 2.87
Least-squares inversion 188 3.31 0.002 69.9 2.26 0.0016
Bayesian inversion 196.7 2.77 0.003 57.9 3.09 0.0021

of the MicroHH-simulated NO2 columns. We prescribe this
uncertainty as:

σ = 0.4× 1015
+ 0.2×Nv (molec.cm−2) (4)

where Nv is the NO2 column. The first part represents ran-
dom uncertainty in TROPOMI measurements (originating
from measurement noise in the satellite level-1 data), while
the second part accounts for systematic uncertainty in esti-
mating the Air Mass Factor (AMF), for instance caused by
to uncertainties in albedo estimates (Van Geffen et al., 2022;
Riess et al., 2023). The systematic part is correlated between
adjacent cells, with a Gaussian-like shape between adjacent
cells with a spatial correlation length (where the correlation
falls to 1/e) of 7 km (e.g. Rijsdijk et al., 2025). We perform
1000 inversions with different random uncertainty, drawing
them from a normal distribution with the standard deviation
defined in Eq. (6).

The results are displayed in Fig. 4. Here we show the mean
emission estimates for all 1000 runs with uncertainty on the
NO2 columns, for the true MicroHH emissions, the prior
estimate, the Bayesian emission inversion and the Least-
squares inversion. We do this for both case 1, the Spring
case with high emissions (Fig. 4a) and case 2, the Winter
case with lower emissions (Fig. 4b). In this more realistic
setup, which uses realistic TROPOMI uncertainties instead
of the idealized inversion of Table 3, emissions are more
frequently overestimated in both MicroHH cases when us-
ing the least-squares inversion method than when using the
Bayesian method.

We also investigate the extent to which NOx emissions
and lifetime can be independently and simultaneously re-
produced. Figure 4b, d shows the correlation between the
errors in the inferred lifetime and emissions. The observed
errors in the inferred NOx emissions and lifetimes exhibit

substantial correlation. An overestimation in emissions is
consistently accompanied by an underestimation in lifetime
and vice versa. This relationship is in line with the funda-
mental equation of the superposition column model (Eq. 2),
where both elevated emissions and extended lifetimes con-
tribute to increased line density values. These inversions of
the emissions from MicroHH provide evidence and quanti-
tative insights into the strength of this correlation. The fig-
ures demonstrate a nonlinear relationship between the errors
in inferred NOx emissions and lifetimes, where the cross-
correlation appears strongest when the lifetime is underesti-
mated. This points to a logarithmic cross-correlation between
the error in NOx lifetimes and emissions, suggesting that
small deviations in lifetime have a more substantial impact
on emissions when the lifetime is underestimated.

The deviations in the inferred emissions are generally
larger for the least-squares inversion method. Figure 4b, d
clearly show that the lifetimes tend to be estimated at either
the −50% or +50% limit that is restricted in the fit. Be-
cause of this, the emissions are also estimated in two modes,
where one is close to the true value and in the other case,
emissions are overestimated. For the Bayesian model, the fit
is kept in check by the prior estimate, preventing overfitting,
and leading more often to the right emission estimate. For
the Bayesian inversion, the median error in the emission es-
timate of case 1 (case 2 in brackets) is −0.7% (−5.1%) and
the standard deviation is 6.9 % (11.3 %). For the least-squares
inversion, the median is 14 % (26 %) and the standard devi-
ation is 22 % (34 %). Regarding the lifetime, the median er-
ror in the lifetime estimate of case 1 (case 2 in brackets) is
32 % (13 %) for the Bayesian inversion and the standard de-
viation is 31 % (61 %). For the least-squares inversion, the
median is 2 % (−19%) and the standard deviation is 46 %
(37 %). To investigate the sensitivity of our results to devi-
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ations in the prior, we conducted an additional test. We re-
peated the OSSEs for both Symcity cases 50 times, introduc-
ing a ±20% deviation in either the prior lifetime or emis-
sions. These sensitivity tests show that increasing or decreas-
ing the prior emissions by 20 % results in a posterior bias of
no more than 6 % compared to the case with a known prior.

We showed here that the strong correlation between er-
rors in estimated NOx emissions and lifetimes makes their
independent estimation difficult. Some studies estimate NOx
lifetimes by analyzing the exponential decay of the NO2
plume downwind of a city (e.g. Beirle et al., 2011; de Foy
et al., 2014; Liu et al., 2022). While this e-folding dis-
tance approach can provide additional constraints on the
NOx lifetime compared to our method, which relies solely
on the enhancement of NO2 over the city, it does not ac-
count for variations in photochemistry between the urban
area and the downwind plume (as illustrated in Fig. 3). The
Bayesian inversion outperforms the least-squares method in
estimating NOx emissions with more accurate and consis-
tent results while avoiding the bimodal errors of the least-
squares approach. Lifetimes, however, remain more chal-
lenging to reproduce and show mixed results between the
two methods. The sensitivity tests show that also with deviat-
ing prior information, the Bayesian inversion method outper-
forms the Least-Squares approach, producing smaller biases
and a smaller standard deviation.

4 Model application: NOx emission estimations
Paris

We now apply the two inversion methods of the superposition
column model (the least-squares method and the Bayesian
method) to daily clear-sky TROPOMI NO2 data to estimate
NOx emissions of Paris between June 2018–July 2023 at the
TROPOMI overpass time of around 13:00 local time. We
use the European TROPOMI NO2 product that uses CAMS
a priori NO2 profiles in the air mass factor and averag-
ing kernel calculation. This product is based on the opera-
tional TROPOMI NO2 (v2.4.0) version, and is described in
Douros et al. (2023). We do not apply averaging kernels (Es-
kes and Boersma, 2003), because the superposition column
model does not provide tropospheric NO2 profiles. The stan-
dard and European NO2 product has been compared with
ground-based remote sensing measurements of nine Multi-
AXis Differential Optical Absorption Spectroscopy (MAX-
DOAS) instruments by Douros et al. (2023). They found an
average bias over all stations of the standard TROPOMI ver-
sion of−31%. For the European product, this bias is−19%.
As compared to the standard S5P tropospheric NO2 column
data, the overall bias of the European product for almost all
stations is 5 % to 18 % smaller, with NO2 columns up to 30 %
higher than previous in emission hotspots, especially in Win-
ter (Douros et al., 2023). This provides good confidence in

using TROPOMI tropospheric NO2 columns from the Euro-
pean product for the purpose of estimating NOx emissions.

A quality check is applied where less than 10 % of the
TROPOMI pixels in the study area are allowed to be below a
quality assurance (QA) value of 0.75 (recommended by van
Geffen et al., 2022). In this way, cloudy days or problematic
retrievals are filtered out.

4.1 Inferring NOx emissions from TROPOMI NO2
columns

4.1.1 Computation of TROPOMI line densities

For the calculation of the line densities, the TROPOMI NO2
data is first rotated towards the effective wind direction (elab-
orated in the next section) and re-scaled into grid cells of
0.05× 0.05°. Specifically, we do this by generating a target
grid with a 0.05°× 0.05° resolution, aligned parallel to the
wind direction at the time of the TROPOMI overpass. The
TROPOMI NO2 data are then regridded onto this new grid,
using weights based on the overlapping areas between the
original and target grids.

Within the 65× 65 km study domain, the grid cells are di-
vided into 13 “line cells” along the wind direction, as illus-
trated in Fig. 1 for the TROPOMI overpass on 18 May 2018.
Subsequently, the line densities are calculated by accumulat-
ing all the pixels within each line cell, and dividing by the
total width. The result is one value of the NO2 line density
for each “line cell”, with units of mol cm−1. This is a trans-
formation of a 2-D (65× 65 km2) field into a 1-D line den-
sity, which simplifies the analysis, at the cost of giving up
any constraints on the across-wind emission distribution.

The result of this line density transformation is shown for
the overpass on 18 May 2018 in the right panel of Fig. 1.
Here, the line densities are shown for each distance, where
x = 0 is the upwind start of the area. In the case of this ex-
ample, the line densities are increasing until 40 km, followed
by a slight decay. This pattern arises from higher emissions
in the center of Paris, at x ∼ 30 km, after which emissions are
lower and decay of NO2 dominates (Lorente et al., 2019).

4.1.2 Estimating NOx emissions and lifetimes

To compute the NOx lifetimes and emissions across the city,
the superpositon model (Eq. 1) is fitted to the calculated
TROPOMI NO2 line densities using the two different in-
version methods: the least-squares method and the Bayesian
variant.

The background NO2 level (b) is defined as the average
line density value in a box of 30 km upwind of the study area
(light grey dotted box in Fig. 1). In this definition, chemical
loss of background NO2 by reaction with OH is neglected,
because the background NO2 is assumed to be mostly lo-
cated above the boundary layer where OH concentrations
are assumed to be lower than in the photochemically active
boundary layer. The domain average, boundary layer mean
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Figure 4. (a, c) Mean emission strength of each 5 km line cell along the city for an ensemble of 1000 randomly generated noise profiles
over the city for both cases. The shaded areas indicate the interquartile range. (b, d) The correlation between the deviation from the true
NOx emissions and lifetimes, with kde (kernel density estimate) plots in the margins. For the Bayesian inversion (blue) and the least-squares
inversion (red).

NOx /NO2 ratio over Paris is taken from CAMS (0.4°×0.4°
resolution), 1h before the TROPOMI overpass time. The
CAMS 0.4° forecast product is part of the Copernicus Atmo-
sphere Monitoring Service and provides global 5 d forecasts
of atmospheric composition at approximately 0.4° (40 km)
resolution. Similarly, we take CAMS boundary layer mean
OH as prior in our Bayesian inversion. Using CAMS OH as a
prior is justified by its physical consistency, full spatiotempo-
ral coverage, and compatibility with the scale of the rotated
line densities and column model, which assumes a single ef-
fective NOx lifetime. The domain and boundary layer aver-
age wind speed, weighted by the vertical NO2 concentration
from CAMS, is taken for 1 h before the TROPOMI overpass
from ERA5, the fifth-generation ECMWF (European Centre
for MediumRange Weather Forecasts) atmospheric reanaly-
sis of the global climate.

4.1.3 Prior estimates and uncertainties

The TNO-MACC-III NOx emission inventory of 2011 (Kue-
nen et al., 2014) is used as a prior estimate of the NOx emis-
sions over Paris. This inventory predicts a total prior NOx
emission of 52.8 mol s−1 over Paris for 2011. We scale this
value of 2011 to the years 2018–2023 using predicted NOx
emission reductions after 2011 of France by the EEA rang-

ing from−27% for 2018 to−49% for 2023 (EEA, 2023). In
2020 and 2021, France took measures to prevent the spread
of the coronavirus outbreak (Covid-19), which caused re-
ductions in industrial activities and traffic intensity. To cor-
rect for this decrease in activity, we account for an addi-
tional decrease in the prior emissions of 40 % during the three
Covid-19 lockdown periods of France (Guevara et al., 2021b;
Ikhlasse et al., 2021). The NO2 concentrations in Paris never
completely increased to their pre-Covid levels in between the
lockdown periods (Pazmiño et al., 2021), which is why we
assume that prior emissions were reduced by 20 % in be-
tween the lockdown periods. A timeseries of these prior NOx
emissions is displayed in the light green line of the upper
panel of Fig. 5.

For a more realistic prior value than one yearly average, we
scale the emissions using monthly, weekly and hourly emis-
sion factors from TNO (Denier van der Gon et al., 2011),
based on prior knowledge of human activities. These factors
are given per source sector. We weigh the temporal emis-
sion factors by the contribution of the source sectors of Paris
according to the European Union (Degrauewe et al., 2019).
This gives us an hourly scaling factor of 1.17 for 12:00
(around the TROPOMI overpass time), because of higher
traffic intensity at 12:00 relative to the 24 h mean values. We
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also apply additional scaling factors varying per month and
weekday. These are higher for Winter months, when there
is more residential heating, and vehicles suffer more from
so-called cold starts (Tu et al., 2021) and lower for week-
end days because of reduced traffic intensity. A timeseries of
this corrected prior NOx emission, including the scaling fac-
tors, is displayed in the dark green line of the upper panel of
Fig. 5. It should be noted that our constructed prior is inten-
tionally simple and straightforward. The prior only needs to
be a good starting point, but the observations will adjust the
posterior emissions towards the most accurate solution.

For the prior estimate of the NOx lifetime, the domain-
average, boundary layer mean hydroxyl radical (OH) con-
centration is taken from CAMS for one hour before the
TROPOMI overpass.

In the Bayesian inversion method, NOx emissions and life-
times are permitted to deviate from the prior, constrained by
observation and prior uncertainties. We use a line density
observation uncertainty σo of 10 %, accounting for both the
measurement uncertainty and the uncertainty of the model
representation of the system. To incorporate the uncertainty
in OH concentrations and its impact on the NOx lifetimes,
we choose a standard deviation of 30 % on the prior lifetime
(σA,τ ). This selection aligns with the typical range of un-
certainty observed in NOx lifetimes, which commonly falls
within 50 % (Lorente et al., 2019). By adopting a standard
deviation of 30 %, we encompass the majority of uncertain-
ties within the expected 50 % range, while also allowing for
larger deviations in exceptional cases. Finally, to account for
uncertainty in the TNO-MACC-III inventory, we assign a
standard deviation of the prior emissions (σA,E) of 30 % in
each individual point (Kuenen et al., 2014).

4.2 NOx emission estimations Paris

4.2.1 Emission estimates 2018-2023

For the period spanning May 2018 to July 2023, we obtained
752 TROPOMI NO2 retrievals over Paris that are under pre-
dominantly clear-sky conditions and of sufficient quality to
perform NOx emission estimates. Some of these estimates
are in duplicate because Paris is observed from two sub-
sequent satellite overpasses on some days. This results in
560 inversions corresponding to unique days. Initially, the
emission inversions were conducted with both the Bayesian
method and the method outlined by Lorente et al. (2019).
The time-averaged estimates of both methods were simi-
lar, but the latter revealed substantial outliers in NOx emis-
sion estimates, reaching up to 250 mol s−1 on some days,
and lifetimes were underestimated, particularly on days with
low wind speed. This underscores the overfitting issue that
we raised in the previous section. We therefore continue
analysing the NOx emission estimates from the Bayesian in-
version. Table 4 shows the average conditions across all in-
versions.

The CAMS-derived domain average NOx /NO2 ratios,
averaging to 1.4 over all inversions, exceeded the commonly
adopted ratio of 1.32. This discrepancy results in higher
NOx emission estimates than if the constant value of 1.32
would be used. Daily temperatures, recorded at 13:00 from
the Montsouris weather station in Paris city center, consis-
tently appear relatively high, potentially influenced by urban
heat island effects and our clear-sky sampling. Our findings
indicate slightly lower average NOx emissions than the prior
estimates, especially during the Summer months. We find an
average top-down NOx emission over Paris of 32 mol s−1,
which is slightly lower than the prior (9 % year round), espe-
cially during the Summer months (11 %).

The middle panel (b) of Fig. 5 displays the monthly aver-
age NOx emissions of Paris estimated with the Bayesian in-
version method (blue line). Values from the CAMS-REGv7
inventory are displayed in red. This is an improved version
of the v4 dataset described by Kuenen et al. (2022). We
scale these values using emission factors from Guevara et al.
(2021a, b) (more information about how we calculated these
values can be found in the Sect. S2). To ensure a fair com-
parison, the prior estimate in this graph is resampled on days
with valid inversions, resulting in a slight variation from the
upper panel. The monthly average posterior NOx emissions
exhibit more variability than the prior. Higher variability of
posterior emissions is expected because of uncertainties in
their derivation. Additionally, posterior emissions reflect real
day-to-day and diurnal fluctuations, while prior emissions
are based on climatological averages and are therefore inher-
ently less variable. This difference between prior and poste-
rior NOx emissions indicates that factors beyond the month
and day of the week influence the emissions.

We observe an overall decreasing trend from 44 to
32 mol s−1 (27 %) in NOx emissions between May 2018/19
and August 2022/23. This decreasing trend can be partly
attributed to the Paris low-emission zone, which was esti-
mated to reduce traffic NOx emissions by about 20 % be-
tween 2018–2023 due to the adoption of cleaner vehicles
(Bernard et al., 2020). Significantly lower NOx emissions are
visible during the Covid-19 lockdown periods, even lower
than our prior assumptions. Especially during the first Covid-
19 lockdown (17 March 2020–11 May 2020) the NOx emis-
sions dropped substantially. We quantified the effect of the
Covid-19 lockdowns by calculating the change in emissions
between the lockdown periods in 2020–2021 and the prior
of the same periods in 2019. We find a significant decrease
in the posterior for the first lockdown to 17.5 mol s−1, a re-
duction of 61 %, surpassing the prior prediction of 44 %. The
second lockdown exhibits a reduction of around 40 % com-
pared to the 2019 prior for both the prior and posterior es-
timates. In the last lockdown, the decrease is less intense at
37 % compared to the prior’s 49 %.

The lower panel of Fig. 5 shows the time series of prior and
posterior NOx lifetime estimates over Paris. Our Bayesian
inversion framework captures seasonality, but the retrieved
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Table 4. Average meteorological and chemical conditions over Paris throughout the period May 2018–July 2023, and prior and posterior
NOx emissions and lifetimes during the TROPOMI overpass time (around 12:00). NOx /NO2 ratios and wind speeds are derived from
CAMS, and temperatures are measurements from the Montsouris weather station in Paris. Averages are given for the whole period and for
the Summer and Winter months separately, the range is one standard deviation. The posterior standard deviation is estimated through a Monte
Carlo analysis, using 50 randomly drawn prior and observation values, with their prescribed uncertainties as standard deviations, for eight
distributed days in 2022.

NOx lifetime (h) NOx emissions (mol s−1)

n NOx /NO2 Wind speed Temperature (°C) Prior Posterior Prior Posterior
(m s−1)

Year-round 752 1.40± 0.12 4.6± 2.3 20.4± 8.1 5.2± 30 % 6.0± 3.9 % 35± 30 % 32± 6.1 %
Winter (DJF) 114 1.53± 0.19 5.4± 2.8 9.5± 4.4 30 27 39 40
Summer (JJA) 243 1.33± 0.09 4.0± 1.9 28.4± 3.8 2.7 2.3 31 28

Figure 5. (a) NOx emissions from the TNO-MACC III emission inventory, corrected for the emission reductions predicted by the EEA, and
for emission reductions during COVID (light green). The dark green line shows daily predictions, accounting for the weekly and monthly
cycle and uses a scaling factor of 1.17 (relative to the 24 h mean) for the TROPOMI overpass time. Lower two panels: monthly median values
of the prior (green) and posterior (blue) NOx emission (b) and lifetime (c) estimates. The prior is resampled to the days with TROPOMI
NO2 retrievals. The errorbars represent the interquartile range within each month.

lifetime values should not be overinterpreted as chemically
precise quantities. Our end-to-end test (Table 3 and Fig. 4)
showed that the lifetime retrievals are subject to significant
biases – up to 30 % – highlighting the limitations of the
method. This bias stems from the inherent asymmetry in the
inversion sensitivity: the NO2 line density is strongly and

directly influenced by the strength of the NOx emissions,
whereas the lifetime exerts a more subtle control through the
dampening of the increase in line densities with distance. In
practice, the signal from NOx emissions dominates the inver-
sion, while the NOx lifetime estimate is more a regularization
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parameter that prevents overfitting than a robust diagnostic of
possible changes in atmospheric chemistry.

Figure 5 shows good agreement between prior and poste-
rior lifetime estimates for most months, but in summertime
the posterior lifetimes are often significantly below the prior
values. This indicates that the NOx emission reductions from
2018 to 2023 are not only supported by the satellite-observed
changes in NO2 column densities, but also require shorter ef-
fective lifetimes in the inversion to fit the observed spatial
gradients. Taken together with the fact that posterior NOx
emissions are consistently lower than prior values, this points
unambiguously to a substantial reduction in NOx pollution
over Paris. The simultaneous decrease in both posterior emis-
sions and lifetimes, relative to the prior, reinforces the robust-
ness of this conclusion: the observed NO2 pattern cannot be
reconciled without assuming cleaner conditions than those
represented by the prior.

4.2.2 Seasonal and weekly cycle

In Winter, enhanced NOx emissions are expected due to en-
gine cold starts and increased residential heating demand
(Paris generates the energy for heating within the city it-
self). Our analysis reveals a distinct seasonal cycle of NOx
emissions with a Winter : Summer ratio of 1.38 (Fig. 6a).
Contrastingly, in the prior estimate, the fall months show
the highest emissions (1.28 compared to the Summer). This
could suggest that residential heating starts later than ex-
pected in the prior. We find that NOx emissions are gen-
erally overestimated in the prior in Summer and underesti-
mated in Winter. This is in line with the study of Lorente
et al. (2019), who found that bottom-up emission inventories
underestimate actual residential heating emissions in Winter
months.

Additionally, a significant difference is found between
NOx emissions during low temperatures (< 10 °C) and high
temperatures (> 20 °C) (Fig. 6b). We filtered the data by ex-
cluding weekends, lockdown periods and the Summer hol-
iday period (July–August) to mitigate potential holiday ef-
fects. The resulting average posterior difference between
low- and high-temperature emissions is 43–33 mol s−1. This
represents a similar but slightly stronger difference compared
to the prior (43–35 mol s−1).

We observe a distinct weekly cycle in Paris (Fig. 6c),
starting with low emissions on Mondays, elevated levels on
Thursdays and Fridays, and a reduction during the weekend
(25 %). This cycle is slightly more pronounced than initially
assumed in the prior, which predicts a weekend reduction,
calculated relative to the Mon–Fri average, of 22 %. This
weekend reduction is smaller than what was found by Lange
et al. (2022) (40 %) and Lorente et al. (2019) (35 %). In Sum-
mer, the decrease in NOx emissions in the weekend is much
larger (39 %) than in Winter (11 %). This is likely because
of a higher contribution of traffic emissions to the total emis-
sions in the Summer months, whereas in Winter the share of

traffic emissions may be smaller because of local residential
heating and power generation. In Winter, the posterior week-
end reduction is lower than in the prior inventory. This, again,
could point to a prior underestimation of residential heating.
Additionally, the weaker weekly emission cycle observed in
winter could be influenced by the effect of cold starts. On
weekdays, vehicles are typically started early in the morning,
while on weekends, car usage tends to begin later, closer to
the TROPOMI overpass time. Weekend day emissions could
then show up higher than without cold starts, dampening the
weekly cycle.

4.2.3 Literature comparison

In Fig. 7, a comparison between prior and posterior emis-
sions is presented alongside multiple inventory datasets. The
interannual variation reveals a slight decrease in emissions
in 2019, followed by a substantial decline in 2020 during the
implementation of Covid-19 restrictions. Emissions veered
back in 2021 and stabilized through 2023.

We compared our findings with other literature that esti-
mates NOx emissions in Paris (Fig. 7). Lorente et al. (2019)
reported higher NOx emissions for 2018, but only investi-
gated these between January and June, while our estimation
started from May 2018 onwards. We incorporated a corrected
reaction rate constant for the oxidation of NO2, which could
contribute to the divergence in estimates. Lange et al. (2022)
also estimated NOx emissions for Paris from 2018 to 2020,
reporting an average emission of 56.2 mol s−1. Discrepancies
here may arise from a different estimation method or varia-
tions in the definition of the Paris city area. Our emission
levels align more closely with those reported by Lonsdale
and Sun (2023). Their findings, presented in nmol m−2 s−1,
were converted to match our surface area unit. They observed
lower values for 2019, comparable to our study for 2020 and
2021, and slightly lower values for 2022. The use of a fixed
NOx /NO2 ratio of 1.32 could contribute to their slightly
lower emissions.

We also compare our results to the CAMS-REGv7 in-
ventory and NOx emission estimates from AirParif, the air
quality observatory in the Île-de-France region (AirParif,
2021, 2023). AirParif provides emission estimates averaged
across the entire Île-de-France area, which we scaled to align
with our Paris study domain. Given that NOx emissions are
higher closer to the city center and lower in outlying areas,
we applied a scaling factor of 1.7 based on the ratio of emis-
sions from the CAMS-REGv7 gridded inventory between the
full Île-de-France region and our study area. These adjusted
annual emission values are presented as pink dots in Fig. 7.

Since these values represent annual averages, they are not
co-sampled with TROPOMI overpasses, which could ex-
plain the slightly higher NOx emission estimates from Air-
Parif compared to our estimates (blue line). For instance,
TROPOMI overpasses with sufficient cloud-free conditions
are generally more frequent in Summer, which biases our an-
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Figure 6. The seasonal (a) and weekly cycle (c) of NOx emissions in Paris, of the prior, the posterior, and the CAMS-REGv7 inventory.
White boxes display the count within each category. (c) shows the CAMS-REGv7 and Posterior NOx emissions, grouped by temperature
(< 10 °C (n= 56) and > 20 °C (n= 189)). The weekends, Summer holidays and COVID lockdowns are filtered out here.

Figure 7. Annual NOx emissions over the Paris from 2018 to 2023.
For our study (blue) and other studies. Note that our analysis spans
from May 2018 to July 2023, so the averages of 2018 and 2023 are
not over the whole year.

nual averages toward this season, when NOx emissions are
typically lower.

5 Discussion and conclusion

We evaluated the performance of our superposition column
model (Lorente et al., 2019) in estimating NOx emissions
within urban areas using satellite observations. Our inves-
tigation analyzed the ability of the forward model to cal-
culate NO2 columns over cities, given its use of simpli-
fied temporally and spatially averaged NOx emissions, wind

speed, NOx lifetime, and NOx /NO2 ratios. We performed
a comparison to synthetic NO2 observations generated with
the high-resolution Large Eddy Simulation model MicroHH,
which simulates atmospheric dynamics and chemistry over
a hypothetical city of 30 km × 30 km in minute detail. Mi-
croHH simulates substantial variability in NOx lifetime (1–
9 h) and NOx /NO2 ratio (1.2–1.7) over the city domain,
but the absolute deviation between NO2 line densities simu-
lated with the superposition model and with MicroHH stayed
within 7 %. This indicates that the superposition model is ef-
fective in describing the evolution of column NO2 with dis-
tance over a large city, given known average NOx /NO2 and
OH concentrations, despite averaging variable chemical and
meteorological parameters over the city domain.

Tests with inferring NOx emissions from synthetic NO2
line densities simulated by MicroHH using the superposition
model showed that simply minimizing the least-squares us-
ing a look-up table approach, as was done before in Lorente
et al. (2019) frequently resulted in overfitting, where the NOx
lifetime is overestimated and the NOx emissions are under-
estimated or vice versa. We propose a more formal Bayesian
approach of the inversion of the NOx emissions, which not
only considers the fit to the observations, but also incorpo-
rates prior information about NOx emissions and lifetime, to
keep the solution in check. Although the Bayesian approach
exhibits slightly larger discrepancies between the modeled
and observed line densities, it yields solutions closer to the
a priori known MicroHH emissions. The Bayesian approach
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reproduces the known NOx emissions to within 4 %, whereas
the least-squares minimization, which does not take into ac-
count uncertainties in the prior emissions, reproduces emis-
sions to within 20 %.

We applied Bayesian inversion to infer a 5-year time se-
ries of daily NOx emissions for Paris using TROPOMI NO2
V2.4.0 retrievals from June 2018 to August 2023 under clear
skies. Incorporating prior emission estimates from the TNO-
MACC-III inventory, corrected for France’s emission de-
crease reported by the European Environmental Agency, we
found average NOx emissions of 32 mol s−1, which is 9 %
lower than the prior estimate. We observe an overall reduc-
tion in NOx emissions between 2018 and 2023 of 27 %, com-
pared to a reduction of 12 % between 2018 and 2023 in the
prior estimate. COVID-19 lockdowns led to sharp reductions
of 61 %, 40 %, and 37 % during the first, second, and third
lockdown relative to emissions in the same period of the
year before the COVID-19 measures. We observed a Win-
ter:Summer emission ratio of 1.38, and significantly higher
NOx emissions on days with lower temperatures in Paris.
We find a weekend NOx reduction of 25 %, slightly more
pronounced than the weekend effect of 22 % in the emission
inventory. We demonstrated that the improved Bayesian in-
version method of the superposition model offers a reliable
and efficient means to monitor daily NOx emissions and eval-
uate policies in urban areas.

Code and data availability. The TROPOMI L2 product used in
this study is available through the TEMIS portal (https://www.
temis.nl/airpollution/no2col/no2_euro_tropomi_cams.php, last ac-
cess: 6 January 2025). CAMS model data were retrieved from the
CAMS Atmosphere Data Store (https://ads.atmosphere.copernicus.
eu, last access: 6 January 2026) and its predecessor hosted
by Météo-France. The MicroHH code used for the calculations
is available from GitHub (https://github.com/microhh/microhh.git,
branchdevelop_kpp, last access: 10 July 2024) and has also been
deposited on Zenodo, along with a Jupyter Notebook, the model
input, and the model output that was used to produce the figures
(https://doi.org/10.5281/zenodo.10053684, Krol, 2023). The inven-
tory from TNO (TNO-MACC-III) is available on request by con-
tacting HDG. Access to the CAMS-REG-v7 is provided through
the Emissions of atmospheric Compounds of Ancillary Data (EC-
CAD) system. Since the ECCAD system requires a registration
and login, a sample of the emission files has been made avail-
able for download directly. This sample includes data for the
year 2017 and is available through https://doi.org/10.24380/0vzb-
a387 (Kuenen et al., 2021). The hourly averaged observations
have been made publicly accessible in a persistent data reposi-
tory (https://doi.org/10.5281/zenodo.14893825, Mols and Boersma,
2025).
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