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Abstract. Ice aggregation in clouds plays a crucial role in cloud development and precipitation formation.
Despite the significance of ice aggregation, direct in situ quantification of aggregation rates in natural clouds
has been challenging due to the difficulty of tracking ice crystals. Here, we present in situ measurements of
ice aggregation rates in persistent supercooled stratiform clouds. Using novel glaciogenic seeding experiments
(CLOUDLAB), ice crystals are nucleated upwind and subsequently measured downwind after a known advec-
tion time in cloud, allowing us to estimate their age. A deep-learning-based detection algorithm (IceDetectNet)
counts the individual monomers of aggregates to derive the initial ice crystal number concentration ICNCy,). We
considered several factors that may influence ice aggregation, including ICNC,,, temperature, ice crystal size,
aspect ratio, and turbulence. Among these, ICNC;, was found to be the dominant factor controlling aggregation
rates by three independent approaches: causal inference, a physical equation, and machine learning models. We
report, however, a subquadratic dependence of the aggregation rate on ICNC,, (mean exponent ~0.92; 95 %
CI: 0.88-0.97), in contrast to theoretical expectations (quadratic dependence). One possible explanation is that
aggregation may also involve smaller ice crystals, but this remains hypothetical. To predict aggregation rates, we
evaluated 11 machine learning models and a physically based formulation. CatBoost achieved the best statisti-
cal performance, while the physical model proved more robust in sensitivity tests. These findings provide new
insights into the microphysical and environmental controls of ice aggregation and establish a robust methodolog-
ical foundation for studying aggregation processes in natural clouds.

Ice aggregation is a key microphysical process that in-
fluences cloud development and precipitation formation.
This process has important implications for weather pre-
diction and climate modeling. During the early stage of
ice growth, diffusional processes such as the Wegener—
Bergeron—-Findeisen mechanism dominate (Korolev, 2007)
and vapor deposition in fully glaciated clouds such as cir-
rus(Gierens et al., 2003). As clouds mature, collisional pro-

cesses including aggregation and riming become increas-
ingly important (Connolly et al., 2012; Heymsfield, 1986;
Solch and Kircher, 2011; Hosler et al., 1957). These pro-
cesses enable ice crystals to grow into larger particles more
rapidly than by vapor deposition alone and are fundamental
for the formation of snowflakes and graupel, eventually lead-
ing to precipitation-sized hydrometeors (Heymsfield, 1986;
Solch and Kircher, 2011).

Numerous in situ observations have confirmed that ice—ice
aggregation occurs in clouds over a wide temperature range,
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from just below 0 down to —60°C (e.g., Connolly et al.,
2005; Crosier et al., 2011; Field and Heymsfield, 2003). Ag-
gregated ice crystals often constitute a substantial fraction
of total ice. For example, irregular ice crystals — which in-
clude both aggregated and aged ice crystals — have been re-
ported to account for 84 % of total ice crystals in stratiform
clouds (Korolev et al., 2000), 88 % in ground-based snow
particle measurements (Zamorsky, 1955), and 94 % in Arctic
clouds (Korolev et al., 1999). More specifically, aggregated
ice alone has been observed to comprise 38 % of ice crystals
in Arctic mixed-phase clouds (Zhang et al., 2024), 45 % in
thunderstorm clouds (Jaffeux et al., 2022), and 52 % on av-
erage across multiple cloud types during aircraft campaigns
(Moss and Johnson, 1994). Despite their apparent ubiquity,
quantitative understanding of aggregation rates remains lim-
ited.

Several factors have been hypothesized to influence ice
aggregation, such as temperature, ice crystal shape, size,
and turbulence. Temperature dependence has long been de-
bated, with laboratory studies conflicting trends: Hosler and
Hallgren (1960) observed a maximum aggregation efficiency
near —15°C, possibly due to the prevalence of dendritic
growth forms that interlock upon collision. In contrast, ear-
lier findings by Hosler et al. (1957) suggested peak aggrega-
tion rates around 0 to —5 °C, where quasi-liquid layers on ice
surfaces may enhance adhesion (Lamb and Verlinde, 2011).
These competing mechanisms — the habit-based, dendritic
ice crystal interlocking mechanism at colder temperatures
versus the enhanced surface stickiness near freezing, which
happens at the same time — highlight the complexity of ag-
gregation processes. Turbulence may further enhance aggre-
gation by introducing small-scale velocity fluctuations that
promote collisions (Chellini and Kneifel, 2024; Sheikh et al.,
2022). They also suggest that multiple other pathways may
operate, depending on the ambient conditions. Ice crystal size
and number concentration also play important roles. Larger
crystals exhibit greater fall-speed differences and larger geo-
metric cross-sections, while higher ice crystal number con-
centrations (ICNC) increase collision frequency; both fac-
tors enhance the probability of collision and sticking (Hobbs
et al., 1974; Field and Heymsfield, 2003; Field et al., 2006;
Connolly et al., 2012; Karrer et al., 2021). However, disen-
tangling these effects in natural clouds remains challenging
due to observational constraints and the interplay of multiple
factors.

Several experimental approaches have been developed to
estimate aggregation, yet each carries inherent limitations.
Aircraft measurements, often using a “Lagrangian spiral de-
scent” strategy, infer aggregation efficiency from changes in
ice crystal size distributions as the aircraft descends at ap-
proximately the terminal fall speed of the crystals (Field
and Heymsfield, 2003; Field et al., 2006). These measure-
ments rely on 2-D imaging probes and typically assume that
decreases in ice crystal number concentration result from
aggregation. However, uncertainties arise from experimen-
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tal artifacts (e.g., ice crystal breaking up on the inlets of
the probe) and misattribution of number loss to aggregation
alone (McFarquhar et al., 2007; Lawson, 2011). Laboratory
studies using ice cloud chambers offer better control over
experimental conditions and avoid shattering artifacts, but
chamber dimensions are generally too small to accommo-
date the timescales required for aggregation to occur natu-
rally (Shaw et al., 2020). Moreover, both aircraft and labo-
ratory studies typically rely on indirect estimates — based on
changes in ICNC — to infer aggregation efficiency, rather than
direct observations (Connolly et al., 2012; Field and Heyms-
field, 2003).

These challenges make direct in situ measurements of
aggregation rates in natural cloud systems challenging, yet
critical for constraining microphysical parameterizations in
models. In this study, we use a novel combination of UAV-
based glaciogenic cloud seeding experiments (Henneberger
et al., 2023) within CLOUDLAB project and an advanced
deep-learning detection algorithm (Zhang et al., 2024) to ad-
dress these gaps. This approach establishes a well-defined
initial condition for ice crystal formation and subsequently
captures a detailed snapshot of the ice crystal population
after their residence in cloud, thereby allowing aggregation
to be quantified over a precisely constrained time interval.
The deep-learning algorithm (IceDetectNet) robustly identi-
fies individual ice monomers within aggregated ice crystals,
providing a monomer-resolved level of detail for quantifying
aggregation.

The specific research questions that we address are:

1. Which microphysical and meteorological factors con-
trol the rate of ice aggregation?

2. How rapidly does aggregation occur following initial
ice formation, and to what extent can the aggregation
rate be inferred from the controlling parameters?

To answer these questions, we investigate ice aggregation
rates in stratiform clouds using both data-driven and physi-
cally derived approaches. Specifically, we (i) identify the mi-
crophysical and meteorological controlling controls on ag-
gregation (Sect. 3.1); (ii) disentangle the direct and indirect
effects of each factor using causal inference (Sect. 3.2); (iii)
evaluate predictive models trained on these factors (Sect. 4.2
and Sect. 4.3); and (iv) test the sensitivity of the predictions
to temperature and the initial ice crystal number concentra-
tion (ICNCy,) (Sect. 4.4).

2 The CLOUDLAB campaign and observational data

The CLOUDLAB experiments were conducted in persis-
tent wintertime stratus clouds over the Swiss Plateau, with
measurements centered at a site near Eriswil (47°04'14" N,
7°52'22" E; 920 m a.s.l.). These clouds were typically super-
cooled, liquid-dominated, and quasi-stationary, with bases
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below 1000 ma.g.l. and thicknesses of several hundred me-
ters (Scherrer and Appenzeller, 2014). We performed glacio-
genic seeding upwind of the measurement site using un-
crewed aerial vehicles (UAVs) and sampled the resulting mi-
crophysical changes with a suite of in situ and remote sens-
ing instruments. Methods specific to this study are detailed
below, including the seeding operations and instrumentation
(Sect. 2.1) and observed ice properties (Sect. 2.4).

2.1 Seeding Operations and Instrumentation

Glaciogenic seeding was performed upwind of the mea-
surement site using a customized uncrewed aerial vehicle
(UAV; Meteodrone MM-670, Meteomatics AG, Switzerland)
equipped with burn-in-place flares (Zeus MK2, Cloud Seed-
ing Technologies, Germany). Each flare contained approx-
imately 200 g of seeding material, including about 20 g of
silver iodide and other ice-active compounds effective at
temperatures below —5 °C (Chen et al., 2024; Miller et al.,
2024). The UAV was operated by flying multiple crosswind
legs (200400 m) while releasing seeding particles for 5—
6 min at distances of 2-3 km upwind of the measurement site
at seeding time #) (In-cloud seeding and ice nucleation pro-
cesses in Fig. 1). Further details on the seeding operations
and ice nucleation mechanisms are provided in Miller et al.
(2024, 2025).

The plume of ice crystals generated by seeding arrived at
the measurement site after 5-10 min depending on the wind
speed. Because the plume was typically several hundred me-
ters wide and persisted over the site for several minutes, it
could be sampled continuously as it passed, yielding a time
series of microphysical observations. The advection time ¢ —
the time between ice nucleation and observation — was cal-
culated by comparing the times of seeding particles release
and first ice detection, and using the observed wind speed
across the plume to estimate advection time. To avoid under-
estimating travel time, the maximum wind speed among the
measured instruments was used in the calculation (see Fuchs
et al., 2025 for more details regarding the method). Through-
out this growth period, the temperature and wind speed were
assumed to remain constant.

The microphysical properties of the plume were measured
using a suite of in situ and remote sensing instruments at
measurement time #; (see Fig. 1, Ice detection). Remote sens-
ing measurements included ground-based Ka- and W-band
Doppler cloud radars. These radars were used to observe
the general cloud structure (e.g., cloud top height) before
and after seeding. They were also used to retrieve the turbu-
lence intensity, which is expressed as the eddy dissipation
rate (EDR). EDR was retrieved from the Ka- and W-band
radars following the spectral-width method (Appendix E in
Wau et al., 2025). Primary estimates were obtained from the
Mira35 MBR7 Ka-band radar. In addition, the RPG94 W-
band radar was used to supplement data gaps. The retrieval
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was temporally averaged over 30s, and the resulting EDR
fields have a spatial resolution of approximately 30 m.

In situ observations were provided by a tethered balloon
system (TBS) carrying the HOLographic Imager for Mi-
croscopic Observations (HOLIMO; Ramelli et al., 2020).
The TBS consisted of a 200 m® helium-filled kytoon capable
of reaching altitudes up to 1 km above ground. Suspended
30m below the kytoon, the instrument platform carrying
HOLIMO, a digital in-line holography system with resolving
sizes of 6 um for cloud droplets and 25 um for ice crystals.
HOLIMO operated continuously before, during, and after
each seeding experiment, recording cloud droplets through-
out and ice crystals over the duration of the plume encounter.
Holograms were reconstructed using HoloSuite (Fugal and
Shaw, 2009) at 1 s resolution, and particles were classified as
artifacts, cloud droplets, or ice crystals using a convolutional
neural network (Touloupas et al., 2020). Manual verification
was performed for all cloud droplets and ice crystals larger
than 35 um to ensure classification accuracy; no ice crystals
smaller than this threshold were observed.

Classified ice crystals were then further analyzed using
a fine-tuned version of IceDetectNet (Zhang et al., 2024),
named IceDetectNet-CLOUDLAB (see Sect. 2.3 for de-
tails). IceDetectNet-CLOUDLAB is a rotated object detec-
tion model trained to assign each monomer a shape label
comprising its basic habit and microphysical process, and to
estimate the number of monomers per ice crystal. The clas-
sification scheme includes three basic ice habits — column,
plate, and irregular — and one microphysical process, rim-
ing. If an ice crystal contains more than one monomer, it
is additionally classified as aggregated. This results in two
independent microphysical processes (riming and aggrega-
tion) and four possible states for each ice crystal: pristine,
rimed, aggregated, and rimed + aggregated. Combining the
three habits with these four states yields a total of 12 distinct
ice crystal classes. The uncertainty in cloud droplet number
concentration is approximately 5 %, while that for ice crys-
tal number concentration ranges from 5 %-10% for crys-
tals larger than 100 pm and about 15 % for smaller ice crys-
tals. Uncertainty quantification for habit/process classifica-
tion and monomer counts is detailed in Appendix A.

2.2 Estimating Aggregation Rates from Experimental
Data

Ice aggregation was quantified by estimating the number of
monomer-level collisions that formed each observed aggre-
gate. Under the definition that all ice crystals are monomers
at the initial time #( and that aggregation proceeds via binary
collisions, an observed aggregate containing n; monomers
has undergone (n; — 1) aggregation events to reach its ob-
served state at time #1. The aggregation rate Ryge (s7'L71)
was thus defined as the mean number of aggregation events
per unit time per unit cloud volume, averaged over the ad-
vection time #:
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Figure 1. Scheme for quantifying in situ ice aggregation after cloud seeding. Seeding particles are released by a UAV, initiating ice crystal
formation at time fg. The ice crystals grow and aggregate during the advection time 7| — 7y, and at #; an image of them is captured by
a holographic imager on a tethered balloon system. The ice habit and the number of monomers per aggregate are quantified based on the
IceDetectNet (Zhang et al., 2024). For example, the right panel shows an aggregate consisting of two monomers classified as a frozen droplets
and a column-plate. The aggregation rate (Ragg) is defined as the total number of aggregation events, ) (n; — 1), divided by the advection

time ¢ and the sampled volume V;, at t1.
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agg = 1V,
1

ey
where N is the total number of detected aggregates, n; is the
monomer count of the ith aggregate, ¢ is the advection time
estimated based on the method in (Fuchs et al., 2025), and V;,
is the sampled cloud volume at time ¢1. The approach relies
on the following assumptions:

1. Steady background conditions. Environmental and mi-
crophysical properties of the background cloud (e.g.,
temperature, wind speed) are assumed to remain con-
stant throughout each experiment.

2. Instantaneous nucleation. Ice nucleation is assumed
to occur immediately upon release of seeding parti-
cles, providing a well-defined initial time to ice for-
mation. Our observations have revealed that ice forma-
tion is likely initiated very quickly after the release of
the highly hygroscopic and ice-active seeding material
(Miller et al., 2025).

3. Conservation of monomer number. The total number
of ice crystal monomers is assumed to be conserved
between the seeding and observation locations. This
implies that (i) sedimentation losses within the plume
are approximately balanced by ice crystals falling from
above. This assumption is supported by radar observa-
tions, which do not show a systematic downward dis-
placement of the enhanced reflectivity associated with
the seeded plume during the observation period (see
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Fig. 2 in Fuchs et al., 2025). (ii) no secondary ice pro-
duction (SIP) occurs. The latter is supported by observa-
tions: no large droplets or graupel were detected, and no
evidence of frozen droplet breakup was observed, con-
sistent with conditions unfavorable for SIP.

4. Complete detection of aggregate monomers. All
monomers within an aggregate are assumed to be accu-
rately identified by IceDetectNet. However, some early
aggregates may become unresolved after diffusional
growth and be classified as irregular, but this fraction is
very small (see Fig. 2h). Other potential detection errors
and classification errors are discussed in Appendix A
and are considered negligible.

2.3 Training IceDetectNet-CLOUDLAB for Aggregated
Ice Monomer Identification

To retrieve the number of monomers in each aggregate,
we fine-tuned the original IceDetectNet model (Zhang
et al., 2024) to create IceDetectNet-CLOUDLAB, specif-
ically adapted for holographic images collected during
CLOUDLAB seeding experiments. The original model was
trained to classify ten ice crystal habits; for this application,
the output layer was reconfigured to distinguish four cate-
gories: column, plate, column-rimed, and plate-rimed. The
final classification layer was randomly initialized, while all
other parameters were taken from the IceDetectNet. A to-
tal of 2380 manually labeled images were used, randomly
selected to ensure an approximate balance across all seed-
ing experiments. Of these, 2134 images were used for train-
ing and 246 for testing. The model architecture followed
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IceDetectNet-CLOUDLAB (Zhang et al., 2024), based on
S2ANet with a ResNet-50 backbone. To improve training
stability on the smaller CLOUDLAB dataset, which contains
fewer ice crystals and fewer classes than previous applica-
tions, the initial learning rate was reduced to 0.0001. The
number of training epochs was extended to 200, with learn-
ing rate decay scheduled earlier at epochs 32 and 48 to en-
courage earlier convergence and to prevent overfitting. A lin-
ear warmup phase of 1000 iterations was applied to avoid
early gradient instability. During inference, up to six predic-
tions per image were retained after non-maximum suppres-
sion (IoU threshold = 0.5).

2.4 Statistical Characterization of Ice Crystal Properties

We analyzed 21 seeding experiments (Table F1) con-
ducted at temperatures between —4.7 and —7.8°C. The
ice crystal habit distribution differed systematically with
temperature: warmer experiments (7 > —7°C) contained
exclusively columnar crystals, whereas the colder experi-
ments (T < —7 °C) contained both plates and short columns
(Fig. E1). Plates and columns have been shown to exhibit dif-
ferent diffusional growth rates along their major axes (Fuchs
et al., 2025), which can influence subsequent aggregation.
Based on this habit difference, the experiments were classi-
fied into “warmer” (T > —7 °C; 14 experiments, 2508 data
points) and “colder” (T < —7°C; 7 experiments, 797 data
points) regimes (Fig. 2a). Advection times were generally
shorter in the colder experiments, ranging from 294-532s,
compared to 371-629 s in the warmer experiments (Fig. 2b).

ICNCty, the initial ice crystal number concentration,
was estimated by assuming that each aggregated monomer
corresponds to one ice crystal present at fy. This al-
lows estimation of the ICNC;, at the initial state f.
ICNC;, was higher in the warmer regime than in the
colder, with mean = standard deviation of approximately
81SL™'+394L~! and 566L~!+£291L~!, respectively
(Fig. 2c). While these concentrations are higher than those
typically found in unseeded clouds (Heymsfield and Willis,
2014), the aggregation process is governed by the same un-
derlying collisional physics.Aggregates were more frequent
in the warmer regime, with fractions reaching up to 43 % of
total observed ice crystals, while remaining around 15 % in
the colder regime (Fig. 2d). Ice crystals in the warmer regime
reach mean major size (defined as the length of the crys-
tal’s major axis) per experiment of up to 312 ym (minimum
101 ym), compared to a range of 66—129 um in the colder
regime; the warmer regime also exhibited a broader, long-
tailed size distribution (Fig. 2e). Aspect ratio (defined as the
ratio of the major to minor axis lengths) distributions dif-
fered as well: the colder regime was narrowly peaked around
1.4-1.6, while the warmer regime showed a broader and flat-
ter distribution around 1.73—4.13 (Fig. 2f). The riming ratio
(RR) is defined as the fraction of rimed crystals. Rimed crys-
tals were abundant in both regimes, with fractions exceeding
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38 % in all experiments and reaching up to 94 % in one sin-
gle experiment, indicating that riming was nearly ubiquitous
(Fig. 2g). Finally, irregular ice crystals, which have no iden-
tifiable habit, were uncommon overall (2 %-5 %; Fig. 2h).
Some early aggregates may have grown sufficiently by dif-
fusion to obscure their monomer structure, thus being classi-
fied as irregular. These crystals were slightly more frequent
in the colder regime, suggesting that any resulting underesti-
mation of aggregation is likely negligible. EDR values mea-
sured during the seeding flights were modest (on the order of
10742103 m? s73, Fig. B1), comparable to turbulence levels
reported for other boundary-layer cloud environments (Chu
et al., 2025). This indicates that aggregation developed un-
der a weak-turbulence conditions characteristic of stratiform
mixed-phase clouds.

3 Microphysical and Environmental Controls on Ice
Aggregation

We examined the microphysical and environmental controls
on ice aggregation through a structured sequence of analy-
ses. We first examined how microphysical and environmental
factors influence the observed aggregation rates (Sect. 3.1).
We then applied a causal graph to disentangle the direct and
indirect effects of these factors on aggregation (Sect. 3.2).

3.1 Correlations Between Aggregation Rate and
Microphysical and Environmental Factors

To better understand the mechanisms underlying aggrega-
tion, we first examine the Pearson correlations between the
aggregation rate and four factors: ICNC;,, advection time,
temperature, and EDR. No clear correlation was observed
between aggregation rate and EDR, which characterizes the
turbulence intensity within the cloud (see Appendix B for
the EDR correlation analysis). This suggests that, under the
present experimental conditions, turbulence at the resolved
scales (30 m x 30 m) did not significantly influence aggrega-
tion. The correlations with ICNC,, advection time, and tem-
perature are all presented in the following.

3.1.1 Strong positive correlation between ICNC;, and
aggregation rate

ICNC,, exhibited a strong positive correlation with the ag-
gregation rate in all experiments (Fig. D1). This is consis-
tent with theoretical expectations, as higher crystal concen-
trations increase the probability of collisions leading to ag-
gregation (Hobbs et al., 1974).

To illustrate this relationship more clearly, we present
two experiments for reference: a warmer case (SM054,
T=-5°C) and a colder case (SM069, T =-7.6°C)
(Fig. 3a, b). Under the condition that the ice crystals are ho-
mogeneously distributed, the instantaneous aggregation rate
(Seifert and Beheng, 2006, Eq. 62), which is the number of
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Figure 2. Distributions of ice crystal properties during seeded periods, grouped by temperature: colder (T < —7 °C, blue) and warmer
(T > —7°C, red). (a) Temperature; (b) Advection time; (¢) ICNCy,; (d) Aggregation ratio; (e) Major size of ice crystals; (f) Aspect ratio;
(g) Riming ratio; (h) Irregular ratio. For (a) and (b), the solid lines show the per-experiment distributions. For (¢) through (h), the solid lines
represent one-second resolution distributions within each regime, and the scatter points indicate the means of the experiments (The scatter
positions along the y axis are offset solely to reduce overlap. Only the values along the x axis carry meaning).

aggregation events per unit time per unit volume of cloud,
can be expressed as:

Ragg = 1/2K(D1, D2, T) Ny N2,

where Ni and N, are the number concentrations of two ice
crystal populations of sizes Dy and D, T is temperature,
and K(D1, D>, T) is the collision kernel, which depends on
ice crystal size, shape, fall speed, and temperature (Connolly
et al., 2012). In the simplest case, if the shape of the size
distribution is approximately preserved and only its overall
magnitude changes with the total ice number concentration,
then the concentrations of the relevant size classes, N1 and
N3, both scale linearly with the initial total ice concentra-
tion, ICNC;,. Under this approximation, both the instanta-
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neous and time-averaged aggregation rates are expected to
scale as Ragg = 1/2K (D1, D3, T)(ICNCtO)Z.

Motivated by this scaling, we first evaluated the
data against this fixed quadratic relationship (Rue =
a- ICN C,20), where the prefactor a effectively represents
1/2K (D1, Dy, T). To account for differences between exper-
iments, a was fitted independently in each case. While this
model gets correlation coefficients of r = 0 and r = O for the
warmer and colder cases, respectively, it systematically un-
derestimated aggregation at low ICNC;, (Fig. 3a, b, dashed
grey lines).

A better fit was achieved using a free power-law relation-
ship (Ragg = a- ICNCy), where both a and n were estimated
separately for each experiment. This empirical model closely

https://doi.org/10.5194/acp-26-1459-2026
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Figure 3. Correlation between aggregation rate and ICNCy, in two temperature regimes. (a) warmer case (SM054, T = —5.0 °C); (b) colder
case (SM069, T = —7.6°C). One-second data points are shown as red circles (warmer) and blue squares (colder). Solid lines with shaded
areas show free power-law fits Ragg = a - ICNC] with 95 % confidence intervals (red for warmer, blue for colder); dashed lines with grey
shading show quadratic fits (n = 2). The prefactor a was fitted independently for each experiment and reflects the effective collision kernel.

matched the observations across the full range of concen-
trations (Fig. 3a, b, solid lines). In the warmer-case exper-
iment (SM054), the aggregation rate scaled with an expo-
nent of 1, improving the correlation to » = 0 (Fig. 3a). In the
colder-case experiment (SM069), the best-fit exponent was
0, with a corresponding correlation of » = 0 (Fig. 3b). This
pattern was consistent across all 21 experiments, where the
free-fit power-law systematically performed better than the
fixed-quadratic form (see Fig. D1). The average exponent
across all experiments was 0 & 0, smaller than the quadratic
dependence expected from the collision kernel formulation
(Melzak, 1957; Connolly et al., 2012; Seifert and Beheng,
2006). Bulk microphysics schemes such as Lin et al. (1983)
and Morrison and Milbrandt (2015) have even adopted a lin-
ear dependence on ICNC, which is closer to our observations,
often with an additional size threshold so that aggregation
only occurs once ice crystals exceed a certain size. However,
our observations hint that aggregation may also occur among
smaller ice crystals. This could result in effective dependence
with an exponent smaller than one.

3.1.2 No significant correlation between aggregation
rate and advection time

Advection time in our experiments ranged from 294 to 650 s
(Table F1, Fig. 4) and showed no significant correlation
with aggregation rate (r =—0.09, p =0). This parameter
is specific to our experimental design, as the ice crystals
were artificially generated by cloud seeding, enabling an ex-
plicit measurement of the total growth period. In natural-
cloud studies, advection time is rarely quantified, and di-
rect comparisons are therefore not straightforward. Theoret-
ically, a longer advection time would be expected to yield
a smaller time-averaged aggregation rate, because ICNC de-
creases over time. We find only a very weak tendency for
Rygg to decrease with advection time (Fig. 4, R? =0), sug-
gesting that our results remain broadly comparable to previ-
ous observational and laboratory studies despite this experi-
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mental uniqueness (Connolly et al., 2012; Field and Heyms-
field, 2003; Field et al., 2006). This weak dependence be-
tween aggregation rate and advection time may reflect the
fact that ice crystals must first grow to sufficiently large sizes
before collisional aggregation becomes efficient. During the
early growth phase, ICNC decreases rapidly due to plume di-
lution (as seeded particles are initially concentrated and then
disperse; see Fig. 2 in Ramelli et al., 2024), but this shows lit-
tle impact on the aggregation rate, making it appear largely
insensitive to advection time.

3.1.83 Temperature dependence of aggregation rate
associated with ice crystal size and aspect ratio

To investigate the role of temperature in shaping aggre-
gation, motivated by the higher aggregation rate observed
in the warmer case (SM054) compared to the colder case
(SM069), we first examined how ice crystal size and geome-
try differ between warmer and colder experiments. Using the
same representative cases shown in Fig. 3, we compared the
warmer case SM054 (—5°C) with the colder case SM069
(=7.6°C). Consistent with known temperature-dependent
ice habits, the warmer group (above —7°C) consisted al-
most exclusively of columnar ice crystals (Fig. E1a), whereas
the colder group (below —7 °C) included both columnar and
plate-like crystals (Fig. E1b). Correspondingly, the warmer
case exhibited consistently broader distributions of both ma-
jor axis length and aspect ratio (Fig. 6). This behavior
was not unique to these two cases: across the full dataset,
warmer experiments showed broader distributions of major
size (Fig. 2e) and aspect ratio (Fig. 2f) than colder experi-
ments. Increased variability in crystal size and shape broad-
ens the range of fall velocities among ice crystals (Heyms-
field, 1972; Mitchell, 1996), which is expected to enhance
collision frequency and thereby promote aggregation.
Consistent with this interpretation, aggregation rate shows
a very weak positive association with temperature across all
experiments (Pearson r =0, p = 0; Fig. 5). While this rela-
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Figure 4. Correlation between aggregation rate and advection time. Orange markers with error bars show the mean = standard deviation for
each experiment, and the solid line represents the linear fit (r = 0, p = 0) across all 21 experiments.

tionship does not reach conventional significance levels and
may therefore be difficult to distinguish from noise over the
limited temperature range sampled, it is qualitatively consis-
tent with the observed structural differences in the ice pop-
ulation and with previous laboratory studies suggesting en-
hanced aggregation under warmer conditions (Hosler et al.,
1957).

3.2 Causal Pathways Among Aggregation Drivers

Previous analyses showed that ICNC,,, temperature, major
axis length, and aspect ratio each correlate with aggregation
rate to varying degrees. However, these factors are not in-
dependent, and their relative contributions and interactions
remain unclear. To disentangle direct and indirect effects
among these variables, we constructed a causal graph in the
form of a directed acyclic graph (DAG; Fig. 7), incorporat-
ing these 4 variables as well as riming ratio (RR), which is
the percentage of rimed ice crystals to all the observed ice
crystals. Because riming influences ice crystal geometry —
particularly major size and aspect ratio — and it may also in-
fluence surface stickiness, especially shortly after the riming
event, it can, in principle, affect aggregation indirectly.

DAGs represent hypothesized cause—effect relationships,
with nodes denoting variables and arrows indicating the di-
rection of influence (Pearl, 2009; Peters et al., 2016). Unlike
correlation-based analyses, DAGs explicitly separate direct
effects from mediated pathways, enabling quantitative de-
composition of total effects. For example, temperature may
influence aggregation rate both directly and indirectly by al-
tering ice crystal size and aspect ratio.

The graph structure was specified by combining prior
physical knowledge with statistical dependencies inferred
from the data. Specifically, candidate causal links were first
proposed based on established microphysical understanding
of ice aggregation (e.g., ICNC, size, and habit influencing
collision and sticking probability), while arrows implying
physically implausible causality (e.g., aggregation rate influ-
encing temperature) were excluded a priori. Statistical asso-
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ciations were then used to assess whether the proposed links
were supported by the data. The final DAG therefore reflects
a physically constrained causal hypothesis rather than a data-
driven structure learned automatically. Path coefficients were
estimated using structural equation modeling (SEM), which
fits a system of regression equations to quantify the strength
of each link. All variables were standardized prior to fitting,
so that each coefficient represents the change in aggregation
rate (in standard deviations) associated with a one-standard-
deviation increase in the predictor, reflecting their relative
importance.

The fitted DAG (Fig. 7) shows that ICNC;, (+0.81), tem-
perature (+0.24), and major size (+0.08) have positive direct
effects on aggregation rate, with ICNC,, clearly dominating.
Aspect ratio exhibits a weak negative direct effect (—0.16),
likely because stronger aggregation tends to increase the
number of monomers per particle, producing more compact
and rounded aggregates and thus reducing the aspect ratio.
Beyond its direct effect, temperature also strongly influences
aspect ratio (40.61) and major size (40.40), which in turn
affect aggregation. Since aspect ratio and major size have
opposing effects (negative and positive, respectively), these
indirect contributions partially cancel, and temperature main-
tains an overall positive influence.

RR has a negligible direct effect on aggregation (—0.01).
RR indirectly increases the major axis length (+0.31), which
tends to promote aggregation; however, the positive contri-
bution of major size to the aggregation rate (+0.08) is itself
very small. Moreover, most rimed ice crystals in our mea-
surements exhibit only light riming (Fig. E1), limiting the
potential for riming-induced enhancements in fall speed or
sticking efficiency. Under these specific experimental con-
ditions, the overall influence of RR on aggregation appears
minimal, suggesting that any coupling between riming and
aggregation is weak or not detectable within these experi-
ments.
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4 Aggregation Rate Predictive Models

Building on the preceding analysis, we next evaluated
whether aggregation rates can be quantitatively predicted
from the identified microphysical and meteorological fac-
tors. We first describe the training procedures and evaluation
metrics (Sect. 4.1). Then, we implemented and compared
eleven machine learning models (Sect. 4.2) and one phys-
ically based equation (Sect. 4.3), using temperature, major
axis length, aspect ratio, and ICNC,, as input features and
the aggregation rate as the target variable. RR was excluded
from the predictive modeling as its direct effect on aggrega-
tion was found to be negligible in our causal inference anal-
ysis (Sect.3.2). Finally, to evaluate the robustness of these
models under varying atmospheric and microphysical con-
ditions, we performed a sensitivity analysis with respect to
temperature and ICNC,; (Sect. 4.4).

4.1 Predictive Model Training and Evaluation

We trained the models using temperature, major axis length,
aspect ratio, and ICNC;, as predictors of the aggregation rate.
All variables except temperature were available at 1 s resolu-
tion; temperature was constant for each experiment. We fitted
the analytical model (Eq. 2) by minimizing the mean abso-
lute error (L1 norm) between predicted and observed aggre-
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gation rates, with L, regularization applied to all parameters
(penalty coefficient = 10~%). All coefficients were initialized
to one and optimized using gradient descent with a learning
rate of 10~2 over 1500 iterations. All machine learning mod-
els were trained with default hyperparameters, except for a
fixed random seed (42) to ensure reproducibility. No early
stopping, feature engineering, or categorical coding was ap-
plied, as all inputs were continuous. Model performance was
assessed using five-fold cross-validation with group-based
splits defined by seeding experiment identifiers. This en-
sured that data from a given experiment were restricted to
either training or test sets. For each model and fold, we com-
puted the root mean square error (RMSE), which quantifies
the typical magnitude of prediction error, and the coefficient
of determination (R?), which reflects the proportion of vari-
ance explained. We reported the mean and standard devia-
tion of both metrics across the five folds. After evaluation,
each model was retrained on the full dataset and archived
for reproducibility. Model interpretability was assessed using
SHapley Additive exPlanations (SHAP; Lundberg and Lee,
2017). SHAP values quantify how much each feature shifts a
prediction away from the dataset’s average prediction, with
positive values indicating an increase and negative values a
decrease. Conceptually, each feature is treated as a “player”
in a cooperative game, and its SHAP value represents the av-
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erage change in the prediction when the feature is added to all
possible subsets of other features. This provides a consistent
measure of each feature’s contribution to the prediction, ac-
counting for interactions with other features. Global feature
importance was obtained by averaging the absolute SHAP
values across all samples, and the results were visualized us-
ing summary plots.

4.2 Machine Learning Models for Aggregation Rate
Prediction

4.2.1 Overview of Machine Learning Algorithms

We implemented eleven supervised regression algorithms to
model the relationship between environmental and micro-
physical predictors and aggregation rate. These included lin-
ear methods (Linear, Ridge, and Bayesian Ridge Regres-
sion), instance-based learning (K-Nearest Neighbors), de-
cision tree-based models (Decision Tree, Extremely Ran-
domized Trees), and ensemble boosting techniques (Adap-
tive Boosting, Gradient Boosting, Light Gradient Boosting
Machine, Extreme Gradient Boosting, and gradient boosting
with categorical features support (CatBoost)). Linear models
assume independent, additive effects and are limited in rep-
resenting nonlinear interactions. Tree-based models capture
nonlinear and interaction effects through hierarchical parti-
tioning of the feature space, while boosting methods itera-
tively refine predictions by combining multiple weak learn-
ers. Detailed descriptions of all models are provided in Ap-
pendix C. Among these, CatBoost is particularly well-suited
for the current problem because of its ability to handle non-
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linear interactions and its robustness to overfitting. CatBoost
is a gradient boosting method that uses symmetric (oblivi-
ous) decision trees, where all nodes at the same depth split
on the same feature and threshold. This symmetry simpli-
fies optimization and improves generalization. It also intro-
duces “ordered boosting,” which builds trees in a way that
avoids using future information during training, thereby re-
ducing overfitting. Additionally, CatBoost efficiently handles
categorical features and typically requires minimal hyperpa-
rameter tuning.

4.2.2 Predictive Performance and Feature Contributions

Among all machine learning models, CatBoost and Gradi-
ent Boosting achieved the highest performance, with the low-
est RMSE (1 x 107! s~ L=1) and high R? (0) for CatBoost,
and a slightly higher RMSE but marginally better R> (0)
for Gradient Boosting. Their comparable skill likely reflects
their shared ensemble structure and residual learning strat-
egy. Extra Trees and Light Gradient Boosting Machine fol-
lowed closely in performance (Table 1). For subsequent anal-
yses, CatBoost was selected as the representative data-driven
model owing to its competitive accuracy and robust gener-
alization. The physically derived equation also performed
comparably to the tree-based models, achieving an RMSE
of 2x 1071 s~ L=" and R? of 0, suggesting that it captures
the dominant aggregation dependencies despite its reduced
complexity and lack of data-driven tuning. In contrast, lin-
ear models (Linear Regression, Ridge, Bayesian Ridge) per-
formed poorly, with R? values around 0 and RMSE around

https://doi.org/10.5194/acp-26-1459-2026



H. Zhang et al.: Key Controls of Ice Aggregation

2% 10~!'s7'L~!, highlighting the importance of nonlinear
interactions and feature dependencies that linear approaches
cannot represent. In each experiment (Fig. 8), the agreement
between observed aggregation rates and CatBoost predic-
tions is evident, with residuals having means near zero and
relatively small standard deviations. These results demon-
strate that the model effectively captures the relevant phys-
ical mechanisms.

To interpret the predictions, we computed SHAP, which
quantifies the relative contribution of each feature factor.
ICNC,, was the dominant predictor, explaining 69.9 % of
the variance (Fig. 9), consistent with the earlier correla-
tion analysis (Figs. 3, D1) and the causal graph (Fig. 7),
where ICNC,; also showed the strongest standardized effect.
However, a simple linear regression model using ICNC,,
alone performed poorly (R? =0 + 0, RMSE =2 x 1074 +
0x 10~ s~ L=!: Table 1), underscoring the importance of
nonlinear interactions among multiple variables.

Major axis length (14.9 %) also contributed meaningfully
to the predictions. Larger major sizes were associated with
higher aggregation rates, consistent with the expectation that
larger crystals, with greater cross-sectional area and fall-
speed variability, enhance collision likelihood (Heymsfield
and Miloshevich, 2003) — in agreement with the positive di-
rect effect identified in the causal graph (4-0.08, Fig. 7). As-
pect ratio (8.3 %) had a weaker and more complex effect:
SHAP values clustered near zero, with a slight tendency for
lower aspect ratios to favor aggregation and higher aspect ra-
tios to suppress it, consistent with its negative effect in the
causal graph (—0.16).

Temperature accounted for 6.9 % of the model output.
Higher temperatures generally promoted aggregation, con-
sistent with laboratory findings (Hosler et al., 1957) and the
causal graph (4-0.24, Fig. 7). Also, unlike the other variables,
temperature was measured as a single value per experiment
rather than at a 1 s resolution, which may have limited its ex-
planatory power in the model. Nevertheless, its limited con-
tribution suggests that its influence is largely indirect and
mediated by changes in crystal habit and size, as reflected
by aspect ratio and major axis length. Therefore, tempera-
ture likely acts as a secondary driver embedded within other
structural parameters.

4.3 Physical Model
4.3.1 Model Formulation

We constructed an empirical formulation for the ice aggre-
gation rate based on established microphysical principles.
The basic structure follows the collision kernel framework
(Melzak, 1957), in which the aggregation rate is proportional
to the product of the number concentrations of the interact-
ing particles. Under the simplest assumption of equal-sized
populations, this scaling becomes quadratic in ICNC,,. How-
ever, several bulk microphysics schemes adopt a linear de-
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pendence. For example, in Lin et al. (1983), the aggregation
rate is parameterized as being proportional to the ice mix-
ing ratio (Lin et al., 1983, Eq. 21). Because the mixing ratio
is given by the product of number concentration and mean
ice crystal mass, this formulation effectively yields a linear
dependence on number concentration when the ice-crystal-
mass—number relationship (i.e., the assumed PSD shape) is
held fixed within the scheme. Similar linear forms also ap-
pear in two-moment parameterizations such as Morrison and
Milbrandt (2015). To allow flexibility between these theo-
retical and parameterization-based scalings, the exponent on
ICNC,, was treated as a free parameter. The temperature de-
pendence is represented as an exponential term, consistent
with parameterizations of collision efficiency in two-moment
schemes (e.g. Seifert and Beheng, 2006), where temperature
modulates the quasi-liquid layer and hence the sticking prob-
ability upon collision. The dependence on major axis length
is formulated as a power law to account for its role in de-
termining both geometric cross-section and differential fall
speed, which are classical components of aggregation ker-
nels. Thus, the proposed equation is:

Rage = & - ICNCLY - exp” T - MajSiz? )

where: R, is the observed aggregation rate 'L, @
is a dimensioned scaling constant, By, f1, and B, are em-
pirically fitted exponents, ICNC;, is the initial ice crystal
number concentration (L™1), 7 is the ambient temperature
(°C), MajSiz is the average major axis length of ice crys-
tals (m). The term ICN Cff)o accounts for the increased prob-
ability of collisions as a function of ice crystal concentra-
tion. Collection theory suggests a near-quadratic dependence
under the assumptions of random motion and homogeneous
mixing (Connolly et al., 2012). We retain a flexible expo-
nent By to account for inhomogeneities and dispersion ef-
fects in real clouds. The temperature-dependent exponen-
tial term, 17, reflects the nonlinear role of temperature in
aggregation-relevant processes. Temperature modulates dif-
fusional growth, growing dimension and the thickness of the
quasi-liquid layer, which shapes ice size and habit. Many of
these processes exhibit exponential or Arrhenius-like behav-
ior with temperature. The exponential formulation is consis-
tent with aggregation parameterizations in operational two-
moment microphysics schemes (e.g. Seifert and Beheng,
2006; Lin et al., 1983). The power-law dependence on ice
crystal size, MajSiz®2, represents the combined influence of
fall speed variability and geometric collision cross section.
Larger crystals sediment faster and offer larger interaction
surfaces, increasing the likelihood of collision and adhesion.
This formulation follows classical approaches to the collec-
tion kernel under differential sedimentation. Aspect ratio was
excluded from the final model, as it is not explicitly repre-
sented in two-moment bulk schemes (Lohmann and Roeck-
ner, 1996; Seifert and Beheng, 2006), and its fitted coefficient
in our analysis was negligible compared to the other factors.
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Table 1. Model performance comparison. Mean RMSE 10~ 's~'L=1yand R? values along with their standard deviations, sorted by RMSE

in ascending order.

Model RMSE (x10~1)  R?
CatBoost 1+1 0£0
Gradient Boosting 1£0 0£0
Extremely Randomized Trees 1+£0 0+£0
Light Gradient Boosting Machine 1£1 0£0
Extreme Gradient Boosting 1£1 0£0
Decision Tree 1£0 0£0
Adaptive Boosting 2+£0 0£0
K -Nearest Neighbors 2+1 0£0
Physical Equation 2+1 0£0
Bayesian Ridge Regression 2+£0 0£0
Linear Regression 2+£0 0£0
Ridge Regression 2+0 0£0
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Figure 8. Observed, predicted, and residual aggregation rates per experiment. For each experiment, observed aggregation rates (dark blue
circles), CatBoost-predicted aggregation rates (yellow triangles), and residuals (pink squares, observed minus predicted) are shown side by
side, with observed values on the left, predicted in the middle and residuals on the right. Markers indicate mean values, and error bars
represent the standard deviation within each experiment. Rates are expressed in L—1s 1,

The final fitted form is:

Rygg =0-ICNC} - exp(0- T) - MajSiz’, 3)

When optimized on the same dataset, this physical model
achieved an RMSE of 2 x 10~*s~'L~! and an R? of 0.78
(Table 1). Although lower than the CatBoost model (R2=0),
its performance remains strong, suggesting that the dominant
dependencies of aggregation are well captured.

The fitted ICNC,, exponent (8 = 0) is below 1, which is
consistent with the above free power-law fitting, which in-
cludes only one controlling factor, ICNC,,. This strong, but
nonlinear, positive contribution aligns with both the causal
graph (Fig. 7) and SHAP analysis (Fig. 9), which also iden-
tified ICNC,, as the dominant predictor. The temperature co-
efficient (81 = 0) indicates a positive sensitivity to tempera-
ture, consistent with laboratory evidence (Hosler et al., 1957)
as well as the causal graph and SHAP findings, though the ef-
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fect is modest. However, this coefficient reflects only the be-
havior within our observational temperature range (between
—4.7 and —7.8 °C). Finally, the major size exponent (83 = 0)
is relatively small, suggesting a weaker dependence on crys-
tal size compared to ICNCy, or temperature. This may re-
flect either the limited variation in crystal size across exper-
iments, especially the colder cases (Fig. 2e) or the dominant
influence of concentration effects under high-ICNC;, seeded
conditions.

4.4 Sensitivity to temperature and ICNGCy,

We evaluated the sensitivity of predicted aggregation rates to
temperature and ICNC,, by comparing predictions from Cat-
Boost (CatB) and the physical equation against observations
(Fig. 10). Three prescribed ICNC,, levels — 107, 102, and
103 L~! — were selected to represent conditions characteris-
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lower values of the feature.

tic of stratus clouds (Gultepe et al., 2001), deep convection
(Heymsfield and Willis, 2014), and secondary ice production
in convective cloud systems (Korolev et al., 2020). To en-
able a meaningful comparison between predictions and ob-
servations, we stratified the measurements into three corre-
sponding ICNC;; intervals: (100, 101), (101, 102), and (102,
103)L~!. These intervals approximately align with the pre-
dicted ICNC;, levels and allow an assessment of the models’
ability to capture the observed magnitudes and trends across
representative regimes.

Both models reproduce the observed positive tempera-
ture dependence within the measurement domain (—7.8 to
—4.7°C; shaded region in Fig. 10) and exhibit physically
plausible trends beyond. At all fixed ICNC,,, predicted ag-
gregation rates increased systematically with temperature,
broadly consistent with the observations. Observed rates gen-
erally clustered around the predicted values at their respec-
tive ICNC levels, supporting the proposed scaling.

CatBoost predictions were smooth and closely aligned
with observations at high and intermediate ICNC levels,
but at low ICNC they exhibited pronounced fluctuations at
warmer temperatures (7 > —6 °C) and a nearly flat response
at colder temperatures (T < —6 °C; solid dark blue line in
Fig. 10). This behavior reflects the high variability of obser-
vations in the low-ICNC regime. We quantify this variability
using the coefficient of variation (CV), defined as CV = o/,
where o and u are the standard deviation and mean of Rjg
within a given bin. Across the observed temperature range,
CV values at low ICNC are typically 1.2-2.1, compared
to 0.7-1.0 at intermediate ICNC and <0.6 at high ICNC.
Such large CV values indicate that aggregation rates in this
regime are dominated by strong fluctuations rather than a
clear temperature signal. In combination with the imposed
lower bound on the target variable during training, this lack
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of a resolvable signal causes the tree-based model to revert
to the lower-bound baseline, resulting in an approximately
constant prediction at low temperatures. The flat behavior
therefore reflects the absence of a learnable temperature de-
pendence in this regime, rather than a physically meaning-
ful relationship. The fact that a localized dip near —5.3 °C
appears consistently across all ICNC regimes, while being
most pronounced at low ICNC and progressively weaker at
higher ICNC, further supports this interpretation. This fea-
ture is more likely to reflect experiment-to-experiment vari-
ability and condition mixing near this temperature, together
with the non-smooth, threshold-based nature of tree models,
rather than a robust, generalizable physical transition.

In contrast, predictions from the physical equation were
stable and monotonic across the full ICNC and temperature
ranges, reproducing the general trends well, though slightly
overestimating aggregation rates at the lowest ICNC and
T < —7°C. The increased variability in low-ICNC observa-
tions suggests that other factors, such as habit composition,
size distribution, or turbulence, may exert a proportionally
stronger influence when ICNC is low. From a modeling per-
spective, this implies that physically based parameterizations
provide a more reliable baseline representation of aggrega-
tion under such conditions, with observational or machine-
learning-based approaches best suited for diagnosing vari-
ability or informing uncertainty estimates rather than defin-
ing deterministic temperature dependence.

Although evaluation based on RMSE and R? over the
full test set indicated slightly better performance of Cat-
Boost compared to the physical equation, Fig. 10 suggests
that the two approaches perform similarly in most regimes,
with the physical equation outperforming CatBoost in some
cases (e.g., low ICNC at T < —7 °C). This apparent discrep-
ancy can be partly attributed to how the performance metrics
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model (CatB) and a physical equation are shown for three pre-
scribed initial ice crystal number concentrations (ICNCy,) of 10!
(solid), 10? (dashed), and 103L~! (dash-dotted); blue and red
curves correspond to CatB and the physical equation, respectively.
Observations are divided into three ICNC;; intervals: (100, 101),
(101, 102), and (102, 103) L_l, and are plotted as crosses in cyan,
orange, and red, respectively. The shaded region indicates the ob-
served temperature range (—7.8 to —4.7 °C).

are computed: RMSE and R? are dominated by data-rich re-
gions, where CatBoost tends to follow the observed scatter
more closely — especially when the observations themselves
are subject to variability from binning into three ICNC; in-
tervals [(10°, 101), (10!, 10?), and (102, 10®)L~!]. In such
regions, CatBoost can achieve lower residuals by adapting
flexibly to local variations, whereas the physical equation pri-
oritizes smooth, process-consistent behavior. In contrast, in
sparsely sampled or more physically complex regimes, the
physical equation yields more stable and monotonic trends,
while CatBoost shows larger deviations. These complemen-
tary behaviors underscore the value of combining data-driven
flexibility with physically constrained formulations.

5 Conclusions

In this study, we present the in-situ quantification of ice ag-
gregation rates in persistent supercooled stratiform clouds.
This was made possible by a novel experimental design com-
bining glaciogenic cloud seeding, which provided a con-
trolled initial state and allowed us to determine the age of ice
crystals from nucleation to observation, and IceDetectNet, a
deep-learning algorithm capable of counting the number of
monomers in individual ice crystals. This approach offered
new insights into the microphysical and meteorological con-
ditions that govern aggregation. The ICNCs observed during
the experiments exceeded those typically found in naturally
occurring stratiform clouds but were comparable to levels ob-
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served during secondary ice production events in convective
clouds (Korolev et al., 2020). The combination of high ICNC
and the absence of secondary ice production provided a rare
opportunity to isolate the contribution of aggregation with-
out the confounding influence of ice multiplication processes
and to generate observational constraints relevant to natural
clouds.

We found ICNC,,, temperature, major axis length, and as-
pect ratio as the primary controls on aggregation rate among
all the factors we investigated, with ICNC,, emerging as the
dominant factor. Even though ICNC;, has the strongest influ-
ence, a linear model based solely on ICNC;, failed to repro-
duce the observed rates, showing the importance of other fac-
tors and the nonlinearity of their interactions. While ICNC,,
temperature, and major axis length contribute positively to
aggregation, aspect ratio acts as a negative factor, and riming
showed no detectable effect, showing that riming and aggre-
gation are largely independent processes. The influence of
temperature operates both directly and indirectly by modify-
ing ice crystal shape, consistent with current microphysical
schemes (e.g. Seifert and Beheng, 2006). EDR showed no
significant correlation with the aggregation rate. This finding
likely reflects the combined effects of narrow size distribu-
tions and the dominant roles of ICNC;, and temperature in
these seeded clouds. Within the EDR range sampled, aggre-
gation appears to be at most weakly sensitive to EDR, and
any residual dependence is small compared with the primary
controlling factors.

We demonstrated that both machine learning models and
the physically derived equation successfully reproduced the
observed aggregation rates. CatBoost achieved the best per-
formance in terms of RMSE and R? on the test dataset
by capturing nonlinear interactions, whereas the physically
based model proved more robust and stable in sensitivity
tests, particularly in regimes with low ICNC;, higher ob-
servational variability, and outside the observed temperature
range. These differences highlight the complementary nature
of data-driven and physically constrained approaches.

This study advances our understanding of the microphys-
ical and environmental controls on ice aggregation. It em-
phasizes the central role of ICNC;, and the influence of
temperature-dependent ice crystal properties. The study also
showed that the aggregation occurs within 5-10 min after the
ice formed. However, the mechanism behind the observed
sub-quadratic relationship between ICNC;, and aggregation
rate remains uncertain. One possible explanation that is con-
sistent with our observations is that aggregation may involve
smaller ice crystals. However, this remains hypothetical. Ad-
dressing these uncertainties requires experimental designs
that can capture the intermediate stages of ice crystal growth
and interaction. The single-point experimental setup limits
our ability to capture the full evolution of microphysical pro-
cesses and may obscure intermediate stages of aggregation.
Future experiments would benefit from a Lagrangian ob-
servational setup to better resolve the complete aggregation
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pathway. This would allow us to refine the representation of
aggregation in weather and climate models, ultimately im-
proving predictions of precipitation and cloud radiative ef-
fects.

Appendix A: IceDetectNet-CLOUDLAB Uncertainties

To assess the uncertainty of IceDetectNet-CLOUDLAB, we
compared its predicted monomer counts with manual anno-
tations on a test set comprising 246 images of aggregates, to-
taling 359 labeled monomers. Discrepancies were calculated
as the difference between predicted and annotated monomer
counts. For example, if the hand label (HL) assigned two
monomers while the prediction assigned one, the discrep-
ancy was recorded as —1; if the prediction assigned three,
the discrepancy was +1. Across all test images, the total
discrepancy summed to 14, indicating a slight net overes-
timation of 14 monomers. To investigate the model’s be-
havior across different aggregation levels, we grouped ice
crystals by their hand-labelled monomer count (1 to 4) and
computed the mean and standard deviation of the predicted
counts within each group. Ideally, a perfect model would
yield a mean equal to the true monomer count and a stan-
dard deviation of zero. The largest relative deviation oc-
curred in the 2-monomer category, where the model overesti-
mated the monomer count by 21.9 % (Table A1). Predictions
for 3-monomer aggregates showed a slight underestimation.
For the most frequent class 1-monomer ice, ice crystals —
IceDetectNet-CLOUDLAB performed reliably, with a mean
prediction of 1.10 and a low standard deviation of 0.35 (Ta-
ble F1). These results indicate that the model is robust for
monomer number counting but tends to slightly overestimate
complexity in multi-monomer aggregates.

1473

Table A1. Prediction uncertainty of IceDetectNet-CLOUDLAB. Comparison between predicted (Pred) and hand-labeled (HL) monomer
counts on the test set. Discrepancy (Discr.) is defined as prediction minus ground truth. Discr. (%) is normalized by HL. Count.

#HL Monomer #HL Ice Crystal Pred (mean+std) #Discr.  Discr. (%)
1-monomer 167 1.10£0.35 16 9.6
2-monomer 96 2.444+0.90 21 21.9
3-monomer 51 2.71+1.36 -5 —-9.8
4-monomer 24 4.17+£0.75 1 4.2
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Appendix B: Correlation Between Aggregation Rate
and EDR

We evaluated whether turbulence intensity, represented by
EDR, influenced the aggregation rate across the 21 seeding
experiments. No significant correlation was found in either
the warmer (r =0, p =0) or colder (r = —0, p =0) tem-
perature regimes. Mean aggregation rates remained largely
invariant across EDR bins, with substantial within-bin vari-
ability. HOLIMO imaged cloud particles within a three-
dimensional volume of 11.76cm? at 20 Hz during seeding
conditions (Fuchs et al., 2025; Ramelli et al., 2020, 2024),
yielding an effective spatial resolution of approximately 1 m
along the flight path.

Several factors may contribute to the absence of a de-
tectable EDR signal: (1) the ice crystal size distribution in
seeding experiments was relatively narrow and often dom-
inated by specific ice habits, unlike the broader and more
complex size distributions typical of natural mixed-phase
clouds. This simpler distribution composition may reduce the
sensitivity of aggregation processes to turbulence; and (2) the
dominant influence of ICNC and temperature on aggregation
rates could obscure turbulence effects, particularly in short-
lived seeded clouds. A more straightforward interpretation
is that aggregation is only weakly sensitive to EDR within
the range of dissipation rates sampled here, and any remain-
ing dependence is small relative to the dominant effects of
ICNC;, and temperature.

—— Cold (T =-7.0 °C) (r=-0.14, p=0.767)
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Warm (Mean + Std)

My

e
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Figure B1. Correlations between aggregation rate and EDR grouped by temperature. Same as Fig. 2c, but with EDR as the x axis.

Atmos. Chem. Phys., 26, 1459—-1481, 2026 https://doi.org/10.5194/acp-26-1459-2026



H. Zhang et al.: Key Controls of Ice Aggregation

1475

—— Cold (T =-7.0°C)
i 0.20 —— Warm (T >-7.0 °C)
2 ® Cold (T=-7.0°C)
g ® Warm (T>-7.0°C)
5015 I —
c —]—
=
> I
g . —
S 0.10
©
2
E
©
3 0.05
o

) ’
I [ )
0.00 . . .‘ 2= [ ] F L !,
. ry ) 3 -2
10 10 10 10
EDR (m?s73)

Figure B2. Distribution of EDR grouped by temperature group. Top: Probability density functions of EDR for all seeding experiments,
grouped by temperature: colder (T < —7 °C, blue) and warmer (T > —7 °C, red). Bottom: Mean EDR values for individual experiments,

shown as red circles (warmer) and blue squares (colder).

Appendix C: Machine Learning Aggregation
prediction Models

We used a total of 10 supervised regression algorithms. A
general introduction to these machine learning methods can
be found in Géron (2022). Below we summarize the basic
principles of each model:

— Linear Regression fits a linear function by minimizing
the squared difference between predicted and observed
values. It assumes independent, additive relationships
among input features and cannot capture nonlinear in-
teractions.

— Ridge Regression extends linear regression by adding
L, regularization, which penalizes large coefficients
and reduces overfitting, particularly in the presence of
small sample sizes.

— Bayesian Ridge Regression introduces a probabilistic
prior over the regression coefficients and estimates them
using Bayesian inference. This yields both regularized
predictions and uncertainty estimates, while still assum-
ing linearity.

— K-Nearest Neighbors is a nonparametric method that
predicts output values by averaging the labels of the
k training samples closest to the test point. Similar-
ity is typically measured by Euclidean distance in the
standardized feature space. Although simple and inter-
pretable, the method becomes less effective in high-
dimensional spaces.

— Decision Tree Regression recursively partitions the in-
put space by choosing feature-value thresholds that
minimize the prediction error (typically mean squared

https://doi.org/10.5194/acp-26-1459-2026

error) at each split. The resulting model is a set
of hierarchical “if-then” rules — for example, “if
ICNC,, > 800 L~! and temperature < —6 °C, then...”.
At each node, the best split is selected without looking
ahead. While decision trees can capture nonlinear rela-
tionships and feature interactions, they tend to overfit if
not regularized.

Adaptive Boosting constructs an ensemble of weak
learners — models that perform only slightly better
than random guessing — by sequentially reweighting the
training samples. After each iteration, higher weights
are assigned to mispredicted samples, forcing the next
learner to focus more on difficult cases. The final out-
put is a weighted sum of all learners. While this can
substantially reduce bias, AdaBoost can be sensitive to
noise and outliers.

Gradient Boosting also builds an ensemble of deci-
sion trees, but instead of adjusting sample weights, it
fits each new tree to the residuals (i.e., errors) of the
combined ensemble so far. This stage-wise additive ap-
proach allows the model to incrementally improve pre-
dictions and capture complex nonlinear dependencies.

Light Gradient Boosting Machine (Ke et al., 2017) is
an optimized gradient boosting implementation. It uses
histogram-based feature binning, where continuous in-
put features are discretized into fixed-width bins to ac-
celerate training and reduce memory usage. Unlike tra-
ditional level-wise tree growth, LightGBM grows trees
leaf-wise by expanding the leaf with the highest loss,
leading to deeper, more specialized trees. These op-
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timizations make LightGBM highly efficient on large
datasets.

— Extreme Gradient Boosting enhances standard gradi-
ent boosting with L and L, regularization to penalize
model complexity and prevent overfitting. It also sup-
ports parallelized training and handles missing values
natively during tree construction. These improvements
make it robust and scalable for structured data tasks.

— Extremely Randomized Trees is an ensemble of deci-
sion trees where both the features and split thresholds
are selected randomly at each node, rather than chosen
based on an optimal impurity measure. This high degree
of randomness reduces variance and helps avoid overfit-
ting, especially when the data contain noise.
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Appendix D: Correlation Between Aggregation Rate

and ICNC
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Figure D1. ICNCy, — aggregation rate relationships across all experiments. Same as Fig. 3, but shown individually for all 21 experiments.
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Appendix E: Examples of ice crystals

Figure E1. A randomly selected sample of ice crystal images observed by HOLIMO during (a) SM054 and (b) SM069.

Appendix F: Experiments overview

Table F1. Summary of all seeding experiments. For each experiment (Exp.) (where “SM” denotes seeding mission, consistent with Fuchs
et al., 2025; Miller et al., 2025), the table lists the number of 1s data points (#Data), advection time between seeding and sampling (Time,
in s), wind speed at seeding level (Wind, in m s_l), temperature (Temp, in (°C)), mean ice crystal number concentration (ICNC, in cm_3),
background liquid water content (LWC, in mg m~3), cloud droplet number concentration (CDNC, in cm~3), and mean eddy dissipation rate
(EDR, in 1073 m?2 5_3). ICNC, LWC, CDNC, and EDR reported values are means = standard deviations.

Exp. #Data  Time (s) Wind Temp ICNC LWC CDNC EDR

ms™H (0 L) (mgm™3)  (em™) (1073 m?s7d)
SM048 61 650 4.0 —-5.6 563 + 1388 45434 106 =83 1.2+09
SMO51 138 358 7.2 —4.8 110+ 127 107 £25 178 43 45+55
SMO052 174 430 6.0 —-5.6 308 =458 228 +£34 369 +76 24+23
SMO053 146 429 6.0 —-5.1 370 +458 226 +37 319+77 5.6+54
SMO054 64 464 4.5 —-5.0 370+ 852 267 +£27 295 +40 24+1.9
SMO055 178 398 5.2 5.1 247 £ 501 235 +28 275 +32 4.8+5.0
SMO056 261 560 5.5 -52 75+101 215+24 267 +47 1.24+1.2
SMO058 191 489 53 55 191 £206 229+ 14 423 +35 1.0+1.1
SMO059 175 403 5.1 —54 325 +443 249 £+ 18 471 £48 3.0+4.6
SMO060 101 519 5.9 —54 85+ 124 261 +£17 453 +£74 224+15
SMO061 350 619 4.1 —5.6 54+ 61 450+ 37 437 +42 29+53
SMO062 320 629 4.1 —6.1 245 +203 383 +54 380 =60 2.8+53
SMO063 184 541 3.8 —6.4 180 =209 394 +43 407 £79 1.5+22
SMO064 165 550 3.7 —6.2 233 4+251 348 +£28 357+63 3.1+33
SMO068 99 339 7.6 —7.8 851 + 1387 239+ 18 345 + 38 20+£2.7
SMO069 177 474 6.5 —-7.6 98 +£128 300+ 15 345+ 36 5.8+9.1
SMO071 80 532 4.8 —7.6 267 £397 277 £22 310 +44 1.5+1.7
SMO072 94 331 7.7 -7.5 599 £+ 857 275 +£38 352+ 69 9.1+13.2
SMO073 189 313 8.2 —-7.6 663 + 1387 115+27 121 £33 29+25
SM074 113 371 8.2 -7.2 573 +726 148 +21 172 +28 4.1+3.7
SMO075 45 294 7.0 —7.2 1064 £ 1938 21028 191+ 31 1.1+14
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