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Abstract. Accurate estimation of convective boundary layer height (CBLH) is vital for weather, climate, and
air quality modeling. Machine learning (ML) shows promise in CBLH prediction, but input parameter selec-
tion often lacks physical grounding, limiting generalizability. This study introduces a novel ML framework for
CBLH prediction, integrating thermodynamic constraints and the diurnal CBLH cycle as an implicit physical
guide. Boundary layer growth is modeled as driven by surface heat fluxes and atmospheric heat absorption rep-
resented with the low tropospheric stability, using the diurnal cycle as input and output. TPOT and AutoKeras are
employed to select optimal models, validated against Doppler lidar-derived CBLH data, achieving an R2 of 0.84
across untrained years. Comparisons of eddy covariance (ECOR) and energy balance Bowen ratio (EBBR) flux
measurements show the same prediction capability. Models trained on the ARM SGP C1 site with ECOR data
and tested at E37 and E39 yield R2 values of 0.79 and 0.81, respectively, demonstrating their adaptability. The
ML model trained with all sites’ data slightly enhances the performance compared with ML models trained over
single-site data. The interquartile range for predicted CBLH is consistently narrower than that for DL-derived
CBLH, reflecting lower variability in predicted CBLH compared to DL-derived CBLH, which is influenced by
additional factors, which are not well represented with the model inputs. The model’s generalizability across
multiple sites at the ARM SGP site demonstrates its potential for transfer to greater distances, offering a scalable
approach for enhancing boundary layer parameterization in atmospheric models.

1 Introduction

The convective boundary layer (CBL) is a critical compo-
nent of the Earth’s atmosphere, governing the exchange of
heat, moisture, and momentum between the surface and the
free troposphere (Stull, 1988; Garratt, 1994). Accurate es-
timation of the CBL height (CBLH) is essential for under-
standing atmospheric processes, including turbulence, pollu-
tant dispersion, and cloud formation (Stull, 1988; Seibert et

al., 2000). In numerical weather prediction (NWP) and cli-
mate models, CBLH serves as a key parameter for parame-
terizing turbulent mixing and convective processes, directly
impacting forecast accuracy and climate projections (Grenier
and Bretherton, 2001; Holtslag et al., 2013; Baklanov et al.,
2014). Errors in CBLH estimation can lead to significant bi-
ases in surface temperature, humidity, and air quality predic-
tions (Vogelezang and Holtslag, 1996; Hu et al., 2010). Con-
sequently, improving CBLH predictions has been a priority
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in atmospheric science, with numerous studies emphasizing
its role in model performance and data assimilation (Helmis
et al., 2012; Cohen et al., 2015; Wulfmeyer and Turner, 2016;
Brown et al., 2008; Barlow et al., 2015; Chu et al., 2022;
Teixeira et al., 2025).

While current observational techniques have greatly con-
tributed to the determination of the CBLH, each method still
presents inherent limitations related to resolution, sensitivity,
or applicability under different atmospheric conditions. Ra-
diosondes provide direct measurements of temperature and
humidity profiles but suffer from low temporal resolution,
typically limited to twice to fourth-daily launches (Seidel
et al., 2010; Liu and Liang, 2010; Lin et al., 2024). Me-
teorological towers measure near-surface variables but are
constrained by their height, rarely capturing the full CBL
(Bianco et al., 2011; Emeis et al., 2009). Weather radars of-
fer vertical profiles but lack the resolution to resolve fine-
scale CBL structures (Heo et al., 2003; Compton et al.,
2013). Aerosol lidars, while effective for detecting entrain-
ment zones, are often confounded by residual layers, lead-
ing to ambiguous CBLH estimates (Hennemuth and Lam-
mert, 2006; Sawyer and Li, 2013; Schween et al., 2014; Luo
et al., 2014). Doppler lidars provide high-resolution veloc-
ity and backscatter data, enabling precise CBLH retrievals,
but their algorithms vary widely (Tucker et al., 2009; Barlow
et al., 2011; Chu et al., 2020). Each method employs differ-
ent inversion algorithms – such as gradient-based, variance-
based, or wavelet techniques – each with inherent uncertain-
ties depending on atmospheric conditions and data quality
(Cohn and Angevine, 2000; Hägeli et al., 2000; Lammert and
Bösenberg, 2006; Compton et al., 2013; Chu et al., 2022).

Recent advances in machine learning (ML) have revolu-
tionized CBLH prediction by leveraging large datasets to
model complex atmospheric relationships. Early ML ap-
proaches used simple regression models to estimate CBLH
from radiosonde data (Krishnamurthy et al., 2021a; Madonna
et al., 2021). Subsequent studies adopted random forests
and neural networks, incorporating inputs from aerosol li-
dars, Doppler lidars, and reanalysis datasets (Liu et al., 2022;
Krishnamurthy et al., 2021b; Peng et al., 2023; Wei et al.,
2025; Zhang et al., 2025). For instance, random forest mod-
els have been applied to lidar-derived backscatter profiles
(Du et al., 2020; Chu et al., 2025a), while deep neural net-
works have integrated reanalysis data for regional CBLH pre-
dictions (Ayazpour et al., 2023; Su and Zhang, 2024). De-
spite these advances, most ML models select input param-
eters empirically, lacking physical constraints, which limits
their generalizability across diverse sites (de Arruda Moreira
et al., 2022; Su and Zhang, 2024; Chu et al., 2025a; Macatan-
gay et al., 2025; Stapleton et al., 2025). Few studies have ex-
plored physically constrained ML frameworks or evaluated
model performance across multiple stations, highlighting a
critical gap in the literature (Krishnamurthy et al., 2021b; Su
and Zhang, 2024; Wei et al., 2025; Stapleton et al., 2025).

Evaluating numerous ML algorithms to identify the optimal
one is still highly time-consuming.

Building on these insights, this study introduces an Auto-
ML framework that automatically selects the optimal ML al-
gorithm for CBLH prediction, utilizing Doppler lidar-derived
CBLH data and thermodynamically constrained input pa-
rameters, including sensible heat flux (SHF), latent heat flux
(LHF), and lower tropospheric stability (LTS). Daily CBL
evolution is mainly driven by SHF and LHF, atmospheric
heat absorption and constrained by low tropospheric tem-
perature. Thus, these thermodynamical inputs offer physical
constrains to predict CBL growth. This approach ensures ro-
bust predictions across varying atmospheric conditions and
sites. To assess the model’s transferability, we evaluate its
performance at four sub-sites (C1, E32, E37, and E39) within
the Atmospheric Radiation Measurement (ARM) Southern
Great Plains (SGP) supersite. These locations were selected
due to their comprehensive observations of SHF, LHF, and
LTS. These sites provide a diverse testbed for validating the
model’s generalizability and its potential to enhance CBLH
predictions in atmospheric models.

This paper is organized as follows: Sect. 2 describes the
data sources and ML methodology, including the implicit
physical constraints. Section 3 presents the model results, en-
compassing performance metrics, site-to-site comparisons,
and contrasts across different seasons and ML approaches.
Section 4 discusses the findings, their implications for atmo-
spheric model, and future research directions.

2 Data and methods

2.1 Site description

This study utilizes data from the ARM SGP facility, a pre-
mier research site established by the U.S. Department of En-
ergy to investigate land-atmosphere interactions in a conti-
nental mid-latitude environment (Mather and Voyles, 2013).
Located in Oklahoma, USA, the SGP spans a diverse agri-
cultural landscape, making it ideal for studying CBL dy-
namics under varying meteorological conditions (Mather and
Voyles, 2013). We focus on four SGP sites: the central fa-
cility (C1) and three extended facilities (E32, E37, E39),
selected for their comprehensive measurements of surface
fluxes, vertical velocities, and atmospheric profiles. The lati-
tude and longitude coordinates of the four sites are shown in
Table 1 (Wulfmeyer and Turner, 2018). The C1 site, located
near Lamont, Oklahoma, serves as the primary hub, hosting
a suite of instruments including radiosondes, a Doppler lidar
(DL), and an Atmospheric Emitted Radiance Interferometer
(AERI). The extended sites – E37 and E39 – are equipped
with Eddy Correlation (ECOR) systems for surface flux mea-
surements. Additionally, the nearby E14 site (Lamont, Ok-
lahoma; 36.605° N, 97.485° W, 315 m elevation), co-located
with C1, which we attribute to C1 for consistency. The E32,
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E39, and E13 (near C1) sites employ Energy Balance Bowen
Ratio (EBBR) technology to measure heat flux.

The distances between the ARM SGP sites are as fol-
lows: ∼ 40 km for C1-E32, ∼ 77 km for C1–E37, ∼ 41 km
for C1-E39, ∼ 57 km for E32-E37, ∼ 67 km for E32-E39,
and ∼ 77 km for E37-E39. These distances ensure a range of
spatial variability in surface and atmospheric conditions, en-
abling robust evaluation of the model’s transferability across
sites (Sisterson et al., 2016). The C1 site’s DL provides high-
resolution vertical velocity and backscatter data, while ra-
diosondes offer 4th-daily temperature and humidity profiles.
The AERI at four sites measures downwelling infrared radi-
ance to derive atmospheric stability metrics.

2.2 Data and preprocessing

The dataset comprises multiple variables critical for CBLH
estimation, sourced from the ARM SGP sites over the pe-
riod 2016–2019. The DL used are Halo Photonics Stream
Line models (1.5 µ m wavelength), with the C1 site featuring
an upgraded Stream Line XR+ model for enhanced signal-
to-noise ratio (SNR). These lidars provide a vertical resolu-
tion of 30 m and a temporal resolution of 1–3 s, ensuring de-
tailed vertical velocity profiles (Newsom and Krishnamurthy,
2022). The CBLH is calculated using Chu et al. (2022)’s al-
gorithm on ARM DL data, utilizing wavelet analysis to ac-
count for turbulence eddy size and gravity wave effects, and
applying dynamic thresholds to estimate CBLH from 2-D
vertical velocity variance. LTS is derived from AERI obser-
vations at C1, calculated as the potential temperature differ-
ence between 700 and 1000 hPa (LTS = θ700− θ1000), vali-
dated against radiosonde data (Feltz et al., 2003; Wood et al.,
2006). Surface fluxes, including SHF and LHF, are obtained
from ECOR systems at C1 (via E14), E37, and E39, and from
the EBBR system at C1 (via E13), E32, and E39. The ECOR
systems use eddy covariance techniques to measure turbu-
lent fluxes, while the EBBR system estimates fluxes via the
Bowen ratio method, incorporating net radiation, soil heat
flux, and temperature-humidity gradients (Cook, 2018a, b).

Previous studies have shown significant flux discrepancies
between ECOR and EBBR beams obtained through differ-
ent detection techniques, making them non-interchangeable
for direct use (Tang et al., 2019; Chu et al., 2026). Data pre-
processing involves quality control to remove outliers and
missing values, following ARM’s standard protocols (e.g.,
flagging data with unrealistic values or low SNR).

2.3 Machine learning methods

ML algorithms have emerged as powerful tools in atmo-
spheric science, enabling the analysis of complex, non-linear
relationships within large datasets to improve predictions of
phenomena such as CBLH (Krishnamurthy et al., 2021). ML
methods excel at identifying patterns in atmospheric data,
enhancing applications like weather forecasting, air quality

modeling, and boundary layer parameterization by integrat-
ing diverse data sources, including ground-based observa-
tions and reanalysis products (Reichstein et al., 2019). Two
prominent ML approaches for regression tasks are decision
tree-based methods and neural networks, each offering dis-
tinct advantages for atmospheric applications (Bauer et al.,
2015; de Burgh-Day and Leeuwenburg, 2023).

Decision tree-based methods partition data into hierarchi-
cal decision nodes, creating a flowchart-like structure to pre-
dict outcomes based on input features. Advanced ensem-
ble techniques, such as random forests and gradient boost-
ing, combine multiple trees to improve accuracy and ro-
bustness, making them well-suited for tasks like CBLH es-
timation (Breiman, 2001; Chen and Guestrin, 2016). Neu-
ral networks, conversely, consist of interconnected layers of
nodes that learn intricate patterns through backpropagation,
excelling in capturing non-linear dynamics in atmospheric
datasets, such as turbulence or stability gradients (Good-
fellow et al., 2016). Automated ML frameworks streamline
model development by optimizing architectures and hyper-
parameters(Salehin et al., 2024). Prior studies have compared
frameworks like AutoKeras (Zhong et al., 2024; Liang et al.,
2024), which automates neural network design, and the Tree-
based Pipeline Optimization Tool (TPOT), which focuses on
tree-based models, finding comparable performance in at-
mospheric applications (Jin et al., 2019; Olson et al., 2016).
Considering computational efficiency and the adaptability of
algorithms to diverse datasets, this study does not simul-
taneously compare the results of various machine learning
methods. Instead, it focuses on comparing the outcomes of
TPOT and AutoKeras after their automated selection of op-
timal models. This research employs the automated machine
learning frameworks TPOT (version 0.12.2) and AutoKeras
(version 1.0.20), integrated within a Python 3.9 environment
(Windows 11 OS, Intel® Core™ i9-10900 CPU @ 2.8 GHz,
32 GB RAM). Development was executed using the spyder-
kernels package (version 2.4.4), ensuring robust and repro-
ducible computational workflows.

2.4 Implicit physical constraints

2.4.1 Parameter selection based on thermodynamic
equilibrium constraints

Traditional machine learning methods for predicting CBLH
typically employ Principal Component Analysis (PCA) or
random combinatorial approaches to select input parameters
(Liu et al., 2022). While these methods can achieve good
predictive performance at specific sites, they lack a phys-
ical basis, resulting in poor transferability across different
sites and limiting their applicability. To address this issue,
this study proposes an innovative approach by incorporat-
ing the physical foundation of thermodynamic equilibrium
to optimize parameter selection, thereby developing a CBLH
prediction model that is transferable across sites. As noted
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Table 1. Instruments and datasets used in this study.

Sites Latitude Longitude Altitude AERI data stream DL data stream ECOR data stream EBBR data stream Other
(° N) (° W) (m)

C1 36.6073 97.4876 314 sgpaerioe1turnC1.c1. sgpdlfptc1.b1 sgp30qcecorE14.s1. sgp30baebbrE13.c1. E14’s ECOR
E32 36.8193 97.8198 328 sgpaerioe1turnE32.c1. Sgpdlfpte32.b1 – sgp30baebbrE32.c1. or E13’s
E37 36.3104 97.9274 379 sgpaerioe1turnE37.c1. Sgpdlfpte37.b1 sgp30qcecorE37.s1. – EBBR used
E39 36.3735 97.0691 279 sgpaerioe1turnE39.c1. Sgpdlfpte39.b1 sgp30qcecorE39.s1. sgp30baebbrE39.c1. for the C1

Figure 1. Graphical approach to estimate Convective Boundary
Layer Height (CBLH) thermodynamically by equating heat sup-
plied with heat absorbed; Zi is CBLH (adapted from Stull, 1988).

by Stull (1988), although the development of the CBL is in-
fluenced by multiple factors, thermodynamic equilibrium is
the primary driver of its evolution. Figure 1a depicts the sur-
face heat flux evolution following solar radiation absorption,
while Fig. 1b illustrates the heat required for CBL growth,
which together determine the CBLH and is used as the the-
oretical framework to quantify the dynamic evolution of the
CBLH in this study. Specifically, the relationship is described
by the following integral expression:

t1∫
t=0

¯w′θ ′s(t)dt =

θ1∫
θ=θ0

Z(θ )dθ. (1)

Here, ¯w′θ ′s(t) denotes the time-averaged heat flux
(W m−2), Z(θ ) represents boundary layer height as a func-
tion of potential temperature, and θ is potential temperature
(K). This formulation reflects the role of surface heat flux and
low troposphere stability in driving boundary layer growth,
where the left-hand side represents the cumulative contribu-
tion of surface heat flux over time, and the right-hand side de-
scribes the amount of heat required to produce a well-mixed
CBL. Therefore, it provides a solid physical foundation for
the model, ensuring that parameter selection not only en-
hances predictive capability but also maintains physical con-
sistency across different sites (e.g., C1, E32, E37, E39).

However, Eq. (1) only provides a robust physical con-
straint during the development from sunrise to the top of
the CBL. After reaching the BL top, the entrainment pro-
cess in the entrainment zone must also be considered. The en-
trainment process is till poorly understood. Additionally, fac-

tors, such as moisture, wind speed, wind direction, and cloud
cover, could introduce complex, nonlinear effects on CBL
development. Therefore, the direct application of Eq. (1) is
not enough to constrain full daily CBL evolution. This study
proposes an innovative approach that combines heat flux with
LTS as major inputs to achieve implicit physical constraints
in ML models.

Surface heat flux and LTS as core inputs ensure the ML
model’s physical consistency and transferability. The heat
flux is further broken down into physical components, in-
cluding the cumulative sensible heat flux (C_SHF) and la-
tent heat flux (C_LHF) since sunrise, as well as the in-
stantaneous sensible heat flux (I_SHF) and latent heat flux
(I_LHF) within a one-hour window, while LTS is taken as
an hourly instantaneous value. This parameterization effec-
tively captures diurnal variations in solar radiation, enrich-
ing the model with more comprehensive physical informa-
tion. To address diurnal and seasonal variations in CBLH,
the model incorporates sunrise and sunset times along with
their corresponding timestamps, defining a normalized tem-
poral parameter,

SUNPERCENT= (TIME−SUNRISE)/

(SUNSET−SUNRISE), (2)

which represents the proportion of the current time rela-
tive to the daylight duration. In summary, this study em-
ploys physically driven variables for parameter selection –
specifically surface heat flux and LTS as core inputs – to
ensure the model’s physical consistency and transferability.
The heat flux is further broken down into physical compo-
nents, including the cumulative sensible heat flux (C_SHF)
and latent heat flux (C_LHF) since sunrise, as well as the in-
stantaneous sensible heat flux (I_SHF) and latent heat flux
(I_LHF) within a one-hour window, while LTS is taken as
an hourly instantaneous value. This parameterization effec-
tively captures diurnal variations in solar radiation, enriching
the model with more comprehensive physical information.

2.4.2 Integrated Diurnal Evolution of the CBL

The current approaches on predicting CBLH using ma-
chine learning predominantly focus on discrete, moment-to-
moment predictions, often overlooking the integrated diur-
nal evolution of the CBL as a unified process. For instance,
Chu et al. (2025a) employed ML to estimate CBLH over the
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Figure 2. Relative locations of ARM SGP Sites C1, E32, E37, E39,
and E41. Top inset: geographic position of SGP sites in Oklahoma;
bottom inset: diurnal variation of CBLH observed by Doppler lidar
across the five sites on 1 September 2018 (background: © Google
Maps).

Southern Great Plains, but this approach centered on individ-
ual time steps, neglecting the full diurnal cycle. However, as
shown in Fig. 2, the diurnal variation of CBLH across five
ARM sites reveals distinct site-specific patterns. The CBLH
at each moment evolves continuously from the preceding
moment, establishing a dynamic and interconnected devel-
opmental trajectory. Treating these moments in isolation dis-
rupts this continuity, failing to capture the underlying evolu-
tionary dynamics. Specifically, the peak CBLH values vary
across the sites, and the morning growth and evening decay
phases exhibit notable differences, highlighting the critical
role of temporal dependencies in boundary layer evolution.
While some studies incorporate the CBLH of the previous
moment – or CBLH derived from alternative methods, such
as sensible heat flux or parcel methods – as an input variable,
this approach often overemphasizes the influence of prior
CBLH values, thereby overshadowing the contributions of
other meteorological drivers. For example, Su et al. (2024)
demonstrated that machine learning models relying heavily
on CBLH derived from sensible heat flux and parcel meth-
ods tend to exhibit excessive dependence on temporal auto-
correlation, which diminishes the model’s sensitivity to key
meteorological factors such as heat flux and atmospheric sta-
bility. Consequently, these methods are limited in their ability
to comprehensively predict the diurnal variation of CBLH,
constraining the scope of their investigations.

To address these shortcomings, this study adopts the
CBLH across the entire diurnal cycle as the training target
for the machine learning model, treating the CBL evolution
as a continuous and interconnected process. This holistic ap-
proach enables the model to comprehensively capture the

dynamic evolution of the boundary layer, from the gradual
rise of the CBLH after sunrise, through its midday peak ac-
companied by oscillations, to the rapid decay observed af-
ter sunset. By integrating the complete developmental tra-
jectory, the model not only better represents the intercon-
nected dynamics of the CBL but also accounts for the com-
plex interplay of meteorological drivers that govern its evo-
lution. For instance, the morning growth phase is heavily in-
fluenced by surface heating and turbulent mixing, while the
midday peak often reflects a balance between entrainment
processes at the boundary layer top and surface-driven con-
vection. The evening decay phase, on the other hand, is mod-
ulated by radiative cooling and the cessation of surface heat
fluxes, which vary significantly across different sites due to
local land surface characteristics and atmospheric conditions.
To enhance the model’s predictive capability, we incorporate
time-dependent variables that reflect the diurnal cycle’s pro-
gression. This approach mitigates the overreliance on prior
CBLH values by ensuring that the model learns the under-
lying physical relationships between CBLH and its meteo-
rological drivers, rather than simply exploiting temporal au-
tocorrelation. As a result, the model is expected to improve
the accuracy of CBLH predictions across the diurnal cycle,
offering a more comprehensive understanding of boundary
layer dynamics.

2.5 Auto-ML model for CBLH

We prepared the relevant input parameters and employed the
following methodology to enable the machine learning ap-
proach to uncover the complex physical mechanisms under-
lying the physical parameters. After the compilation environ-
ment was set up and the data was prepared, the specific model
application process (Fig. 3) is as follows:

1. Data Collection and Pre-processing. Based on the
content of Sect. 2.1 and 2.2, we prepare the data
for each timestamp of the day, including C_SHF,
C_LHF, I_SHF, I_LHF, LTS, TIME, SUNRISE, SUN-
SET, SUNPERCENT, and CBLH. The SUNRISE and
SUNSET represent the sunrise and sunset times calcu-
lated based on the latitude and longitude coordinates of
the site. To simplify the dataset, we aggregate the data
from 06:00 to 21:00 (UTC−6), covering a 15 h period,
as a single daily dataset. Although daily SUNRISE and
SUNSET values are constant, for comparison consis-
tency, we expanded their dimensions to match the time
dimension of other parameters (15 h in this study). Thus,
all input and output parameters have a uniform dimen-
sion of 15. The CBLH for the entire day is designated
as the target variable for output, while the other param-
eters serve as input variables. We randomly split all the
data into 70 % for training and 30 % for testing by date.
The subfigure in Fig. 3 that depicts the ARM site, in-
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cluded in the Data Collection section, is adapted from
Wulfmeyer and Tang (2018).

2. Use AutoML to find the Best Train Model. Using the
training dataset, we employ TPOT and AutoKeras to de-
rive their respective optimal algorithms or hyperparam-
eters. By comparing the R2 and Mean MAE metrics,
we select the model that performs best in both MAE
and R2 as the optimal model, which is then designated
as the candidate best model for further evaluation and
application.

3. Use the Best Model with training Data for Training. The
best model is trained on the training dataset and saved
for later use, ensuring optimal performance for future
applications.

4. One-Day CBLH Prediction. Use the trained model to
predict CBLH for a single day.

Figure 3’s flowchart outlines the algorithm proposed in this
study (termed the Auto-ML algorithm). Its core principles
are: (1) utilizing thermodynamical variables as input param-
eters with implicit physical constraints; (2) incorporating the
complete CBL development cycle as unified input, with cor-
responding CBLH as output; and (2) employing TPOT and
AutoKeras models to automatically select the optimal ma-
chine learning algorithm. This approach enables the model
to capture the entire CBL development process, enhancing
prediction accuracy and representation of CBL dynamics.

3 Results

To validate the effectiveness of the Auto-ML framework, we
first conducted tests using data from the C1 site spanning
2016 to 2019, presenting the results for ECOR and EBBR
heat flux, respectively. Subsequently, the algorithm was eval-
uated by appling to other sites. Next, we compared the per-
formance of the optimal TPOT and AutoKeras algorithms for
summer (JJA) and further evaluated the advantages and lim-
itations of different methods by computing SHAP (Shapley
Additive exPlanations) values. Furthermore, we analyzed the
variations in Auto-ML’s relative importance across seasons.
Finally, we compared the performance of models trained on
multi-site data and tested on site-specific data.

3.1 Application of the Auto-ML to the ARM SGP C1 Site

The Auto-ML algorithm demonstrates robust performance
in predicting CBLH when using ECOR flux dataset. The
selected machine learning framework is the ExtraTreesRe-
gressor architecture chosen by TPOT. The scatter predicted
CBLH in Fig. 4a demonstrates a strong linear correlation
(R2
= 0.85) between predicted and observed CBLH across

the annual dataset, suggesting that the Auto ML model effec-
tively captures the general trends of CBL evolution (Fig. 4a).

However, the MAE of 0.21 km highlights a non-negligible
systematic bias, potentially linked to specific meteorological
conditions or seasonal variations not fully resolved by the
model. Notably, the density of point clusters around the 1 : 1
line in the lower CBLH range (0–1.5 km), while deviations
increase slightly at higher CBLH values (> 2 km), possibly
indicating reduced model sensitivity to extreme events (e.g.,
intense convective days).

The diurnal variability between predicted and observed
CBLH also shows good agreement (Fig. 4b). The predicted
CBLH closely tracks observed values during the morning
development phase (07:30–13:30 UTC−6), with overlapping
interquartile ranges (IQR) from ∼ 0.3 to ∼ 0.8 km, reflect-
ing reliable performance during periods of rapid boundary
layer growth driven by surface heating and turbulent mixing.
However, a significant divergence emerges in the afternoon
(15:30–17:30 UTC−6), where the predicted mean CBLH un-
derestimates observations by ∼ 0.1 km. This discrepancy co-
incides with the typical peak phase of the CBL, characterized
by weakening turbulence, entrainment processes at the CBL
top, and increasing influence of subsidence or advection.

The afternoon underestimation may stem from the algo-
rithm’s limited ability to resolve complex interactions during
the CBL peak phase. During midday, solar radiation max-
imizes surface heat flux, driving vigorous turbulent eddies
that homogenize the CBL, making CBLH prediction rela-
tively straightforward. By late afternoon, surface heating di-
minishes, turbulence decays, and the entrainment zone at
the CBL top becomes dynamically significant. Entrainment
of free-tropospheric air into the CBL can temporarily ele-
vate the observed CBLH, a process that may not be eas-
ily captured in the Auto ML model due to the inputs lack-
ing information for characterizing entrainment. Additionally,
the advection of air masses with different thermodynamic
properties (e.g., moisture or temperature gradients) could in-
troduce spatial heterogeneity, further challenging the algo-
rithm’s generalizability during transitional periods.

Moreover, the model’s training data might underrepre-
sent late-afternoon scenarios, where PBL dynamics are in-
fluenced by mesoscale phenomena (e.g., cloud cover or topo-
graphic effects). For instance, enhanced subsidence or cloud
shading at 15:30–17:30 (UTC−6) could suppress turbulent
mixing, leading to a shallower predicted CBLH compared to
observations.

To evaluate the performance of the AutoML algorithm,
Linear Regression was used as a competitive baseline. Re-
sults at site C1 show that the AutoML model significantly
outperformed Linear Regression, which yielded an R2 of
0.69 and an MAE of 0.32 km compared to the AutoML’s R2

of 0.85 and MAE of 0.21 km. Notably, the performance dis-
crepancy reached over 0.5 km during the afternoon and pre-
sunset hours (Fig. 4b; see Text S3 and Fig. S1 in the Sup-
plement for further details). To confirm its applicability be-
yond the ECOR heat flux dataset at C1 site, we compared its
performance on the EBBR heat flux dataset. The EBBR can
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Figure 3. The Auto-ML workflow of CBLH.

Figure 4. Results of Auto ML model with ECOR dataset for predicting CBLH: (a) Comparison of all test data, (b) Diurnal variation average
with IQR (interquartile range), (c) Diurnal variation of absolute and relative difference between DL CBLH and predicted CBLH.

accurately predict the CBLH, comparable to the predictions
of the ECOR (see Text S4 and Fig. S2).

A comparison of Fig. 4c reveals that the discrepancies be-
tween the predicted values and the DL observations are pri-
marily evident at the PBL top (∼ 15:30 UTC−6) and during
the dissipation phase (∼ 19:30 UTC−6). Specifically, at the
CBL top (∼ 15:30 UTC−6), the predicted values are gener-
ally lower than the DL observations, whereas during the dis-
sipation phase (∼ 19:30 UTC−6), the predicted values tend
to exceed the observed values.

3.2 Effectiveness of the Auto-ML Across Multiple Sites

The Auto-ML algorithm demonstrates notable adaptability
beyond the C1 site, highlighting its potential for broader ap-
plication across multiple observation sites. To evaluate this,
we tested an Auto-ML model trained on ECOR heat flux data
at the C1 site (E14 site) for its performance at the E37 and
E39 sites. Similarly, an Auto-ML model trained on EBBR
heat flux data at the C1 site (E13 site) was assessed for its
performance at the E32 and E39 sites.

The Auto-ML model trained at the C1 site with ECOR
data exhibits strong performance at the E37 and E39 sites,
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Figure 5. C1 ECOR model for E37 and E39 sites; (a) and (c) rep-
resent the R2 and MAE for E37 and E39 respectively; (b) and (d)
show the MEAN CBLH with IQR for E37 and E39 respectively.

achieving R2 values of 0.79 and 0.81, and MAE values
of 0.22 and 0.21 km, respectively (Fig. 5a and c). How-
ever, as observed in Fig. 5b and d, the model’s performance
varies across different time periods at these sites. Specifi-
cally, Fig. 5b shows that at the E37 site, the model predic-
tions align well with observations during the CBLH dissipa-
tion phase (15:30–21:30 UTC−6). However, during the ini-
tial development phase (07:30–14:30 UTC−6), a significant
discrepancy is observed, with predicted values consistently
higher than the DL observations. Notably, no similar discrep-
ancy is evident in Fig. 4b, suggesting that additional factors
other than heat fluxes and LTS impact CBL development at
the C1 and E37 sites during the initial phase, while the dif-
ferences diminish after reaching the boundary layer top. A
similar discrepancy (see Fig. 5d) is also observed at the E39
site during the initial phase (09:30–11:30 UTC−6).

The above analysis indicates that while the Auto-ML
model trained at the C1 site performs well at the E37 and
E39 sites, its performance varies across different time peri-
ods, reflecting both similarities and differences in behavior
at these sites. This highlights the spatial variability between
sites. Furthermore, the differences between the C1 and E39
sites are smaller than those between the C1 and E37 sites,
which aligns with their relative distances (41 km vs. 77 km).

We used the Linear Regression algorithm as a baseline for
comparison, with results indicating that the AutoML-derived
algorithm outperforms Linear Regression across other sites
(see Text S5 and Fig. S3). To demonstrate its applicability
beyond the ECOR heat flux dataset, we compared its perfor-
mance using the EBBR heat flux dataset. The EBBR can also
accurately predict the CBLH, comparable to the predictions
of the ECOR (see Text S6 and Fig. S4 for details).

The Auto-ML algorithm demonstrates significant adapt-
ability beyond the C1 site, underscoring its potential for
wider application across multiple observational stations

(Figs. 5 and S4). Although the C1 ECOR model shows incon-
sistent performance across sites, it accurately predicts CBLH
during daytime at all three sites (C1, E37, E39) with an abso-
lute error< 0.10 km (see Text S5 and Fig. S5 for detailed dis-
cussion). The Auto-ML model trained at the C1 site performs
effectively at the E37 and E39 sites, while models trained at
the E37 and E39 sites also exhibit robust performance at the
C1 site, achieving R2 values of approximately 0.80–0.85 and
MAE values ranging from 0.19 to 0.23 km (figures not shown
in this study).

3.3 The relationship between Auto-ML model
performance and the spatial separation between
sites

Section 3.2 demonstrates the cross-site applicability of the
Auto-ML algorithm. To further investigate the relationship
between Auto-ML performance and the spatial separation
between sites, we selected data from the C1 site (E14 and
E13 sites with ECOR and EBBR data, respectively) and the
E39 site, training separate models using both datasets. These
models were then applied to other sites with similar heat
flux characteristics to assess the correlation between perfor-
mances and inter-site distances.

The predictive performance of the Auto-ML algorithm ex-
hibits a clear but now negative correlation with the spatial
separation between observational sites (Fig. 6). For instance,
as shown by the solid red and dashed lines in Fig. 6, the
model trained on ECOR data from the C1 site performs ro-
bustly at its primary site (R2

= 0.85, MAE= 0.20 km), but
its accuracy decreases at the E39 site 41 km away (R2

=

0.80, MAE= 0.21 km) and further declines at the E37 site
77 km away (R2

= 0.80, MAE= 0.21 km). A similar de-
creasing performance with site distance is observed for the
model trained on ECOR data from the E39 site.

Despite this overall trend of performance decline with dis-
tance, notable irregularities are observed. For example, the
model trained on EBBR data from the C1 site performs best
at its primary site (R2

= 0.83, MAE= 0.21 km), with a slight
decrease in accuracy at the E39 site 41 km to the south-
east (R2

= 0.80, MAE= 0.20 km), but a more significant de-
cline at the E32 site 40 km to the northwest (R2

= 0.72,
MAE= 0.27 km). Likewise, the model trained on EBBR data
from the E39 site excels at its primary site (R2

= 0.80,
MAE= 0.22 km), maintains comparable performance at the
C1 site 41 km to the southeast (R2

= 0.81, MAE= 0.23 km),
but shows a substantial drop at the E32 site 67 km to the
northwest (R2

= 0.76, MAE= 0.26 km).
The sharp performance differences between the E32 and

E39 sites with the model trained on C1 EBBR data could
be caused by the representativeness of surface flux measure-
ments. ARM’s ECOR systems are typically surrounded by
winter wheat fields or farmland, whereas EBBR systems are
primarily deployed in pastures. The performance drop at E32
may stem from vegetation differences and measurement prin-
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Figure 6. Relationship between Auto-ML model effectiveness and
distance evaluated by applying the model trained at one site to other
sites.

ciples. E32’s pasture dominated EBBR data, prone to over-
estimating latent heat flux, contrasts with the winter wheat
fields around C1 and E39, likely measured by ECOR, which
directly captures turbulent fluxes. These discrepancies in sur-
face heat flux inputs challenge the model’s generalization,
particularly at E32, where site-specific factors like soil mois-
ture or EBBR measurement errors near sunrise/sunset may
further degrade performance.

This analysis reveals that the predictive performance of the
Auto-ML algorithm exhibits a clear negative correlation with
spatial separation between sites, accompanied by spatial het-
erogeneity. These irregularities align with theoretical expec-
tations: local factors such as terrain variations (e.g., changes
in elevation or surface roughness), land use differences (e.g.,
urban vs. rural settings), and microclimate effects (e.g., hu-
midity or temperature gradients) disrupt the coherence of
CBL dynamics with increasing distance. These site-specific
perturbations limit the algorithm’s generalizability across di-
verse regions.

3.4 Comparison of Performances of two ML methods for
summer at the C1 site

Here, the performance of two high-performing machine
learning models – an ExtraTreesRegressor from TPOT and a
neural network from AutoKeras, is compared with the June–
July–August (JJA) season selected due to its higher vari-
ability in deep learning-derived CBLH and larger data vol-
ume, thereby enhancing the reliability of the results. Both
models are trained on the same dataset. The primary ad-
vantage of the ExtraTreesRegressor is its built-in resistance
to overfitting, achieved through randomized feature selec-
tion and split point selection. As a result, the model per-
forms well on high-dimensional data and noisy datasets and
shows strong resilience to outliers. However, it is not suit-
able for small-sample datasets. The best-performing model
selected by AutoKeras is a neural network with 10 836 pa-
rameters, implemented using the Functional API. It com-

prises an input layer for 9-dimensional features, preprocess-
ing layers for multi-category encoding and normalization (19
non-trainable parameters), two dense hidden layers with 256
and 32 units respectively (ReLU activation, 10 817 train-
able parameters), and a regression output layer. The archi-
tecture leverages AutoKeras’s automated feature engineering
through integrated preprocessing, while its two-layer struc-
ture maintains moderate complexity. The parameter distri-
bution (256 to 32 units) indicates a progressive reduction
in feature dimensionality, supporting effective feature ex-
traction for the regression task. The ExtraTreesRegressor se-
lected by TPOT is configured with key hyperparameters that
optimize its performance: n_estimators: 100, defining 100
trees for robust ensemble learning; max_depth: None, al-
lowing unrestricted tree depth to capture complex patterns;
min_samples_split: 6 and min_samples_leaf: 6, setting mini-
mum samples for splits and leaves to control overfitting; and
max_features: 1.0, considering all features per split for com-
prehensive feature utilization. These settings enhance its re-
sistance to overfitting and suitability for high-dimensional,
noisy datasets.

3.4.1 SHAP Computation Methods: Tree-Based vs.
Gradient Approaches

To compare the relative importance of features between the
two methods, SHAP values (Cunha and Barbosa, 2024) for
the ExtraTreesRegressor are computed directly using the
TreeExplainer, which leverages the tree structure (split paths
and leaf node values). In contrast, the AutoKeras neural
network employs the GradientExplainer, a gradient-based
method, to estimate SHAP values. SHAP values are calcu-
lated by treating each day as a whole, rather than individ-
ual time segments within a day. Their summer (JJA) perfor-
mance, shown in Fig. 7, reveals similar R2 and MAE values:
ExtraTreesRegressor (0.86, 0.22 km) versus neural networks
(0.84, 0.25 km), as depicted in Fig. 7a (ExtraTreesRegressor)
and Fig. 7e (neural networks). These consistent metrics high-
light the robustness of both approaches in capturing CBLH.
However, despite their similarity in overall performance, the
two models diverge significantly (SHAP method) in their as-
sessment of feature importance. In Fig. 7c, ExtraTreesRe-
gressor assigns a notably higher importance to LTS (∼ 0.23);
attributes nearly equal importance to I_SHF, I_LHF, TIME,
and SUNPERCENT each hovering around 0.15, indicating
a clear prioritization of LTS in its decision-making process.
In contrast, the neural network, as shown in Fig. 7g, assigns
a notably higher importance to I-LHF (∼ 0.28); attributes
nearly equal importance to C_SHF and I_SHF, each hover-
ing around 0.2. The different machine learning models can
achieve comparable accuracy by using varied nonlinear com-
binations of predictors. In such scenarios, the physical inter-
pretation of these models becomes challenging or may lack
sufficient reliability.
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Figure 7b and d show that the diurnal variations pre-
dicted by the AutoKeras neural network and the TPOT Extra-
TreesRegressor are generally comparable. However, Fig. 7f
reveals that the neural network predicts lower CBLH val-
ues than the ExtraTreesRegressor (Fig. 7b) between 07:30–
11:30 and around 19:30 UTC−6. Despite this, the neural
network exhibits inferior performance, with lower R2 and
higher MAE compared to the ExtraTreesRegressor.

A comparison of Fig. 7g–h (neural network) with Fig. 7c–
d (ExtraTreesRegressor) highlights distinct differences in
feature contributions. For the neural network, the SHAP val-
ues and relative importance of TIME, SUNRISE, and SUN-
SET are zero, whereas SUNPERCENT retains a non-zero
SHAP value. This suggests that the neural network effec-
tively captures the information encoded in Eq. (5), priori-
tizing SUNPERCENT as the primary contributor to CBLH
predictions. In contrast, the ExtraTreesRegressor assigns re-
duced but non-zero relative importance to SUNRISE and
SUNSET, indicating a broader distribution of feature con-
tributions.

These differences likely stem from the distinct SHAP ex-
plainers used for each model. The ExtraTreesRegressor em-
ploys the TreeExplainer, which leverages the tree structure
(split paths and leaf node values) to compute SHAP values
directly, without requiring a background dataset. Conversely,
the neural network uses the GradientExplainer, a local expla-
nation method that relies on a background dataset (100 sam-
ples in this study) and computes SHAP values based on gra-
dients near specific input points. When the local gradient for
features such as TIME, SUNRISE, and SUNSET approaches
zero, this reflects their negligible impact on the model’s local
decision boundary, resulting in corresponding SHAP values
of zero. This explains the neural network’s tendency to assign
zero importance to these features, while the ExtraTreesRe-
gressor’s global approach captures their residual contribu-
tions.

3.4.2 Comparative Analysis of SHAP Value Estimation
Methods for AutoKeras Neural Networks

To validate the reliability of SHAP values and assess differ-
ences across computation methods, we compare the results of
alternative SHAP explainers with those shown in Fig. 7g–h.
The GradientExplainer, used for the AutoKeras neural net-
work, approximates SHAP values by computing gradients of
input features relative to model outputs, relying on a back-
ground dataset (100 samples in this study) to estimate fea-
ture contributions. The choice of background dataset can in-
fluence results, as GradientExplainer assumes local differen-
tiability and quantifies feature importance based on gradient
information. Consequently, features with near-zero gradients
(e.g., those with minimal local influence near the background
dataset) may yield zero SHAP values.

To mitigate this limitation, two additional explainers were
employed: (1) KernelExplainer, a model-agnostic method

that estimates SHAP values through sampling and weighted
regression, suitable for any model. By sampling the global
feature space, it captures non-local or nonlinear contribu-
tions, potentially yielding non-zero SHAP values even when
local gradients are zero. However, KernelExplainer still re-
quires a background dataset. (2) ExactExplainer, which does
not require an explicit background dataset but uses a mask-
ing strategy, typically shap.maskers.Independent, to implic-
itly define the background distribution based on the data it-
self (Ponce-Bobadilla et al., 2024). By precisely computing
Shapley values for all feature combinations, ExactExplainer
provides the theoretically most accurate SHAP estimates,
though it is computationally intensive.

Table 2 summarizes the performance of different SHAP
explainers. The GradientExplainer assigns zero SHAP values
to input features with low influence, resulting in larger errors,
but it offers high computational efficiency and requires fewer
resources. In contrast, the ExactExplainer provides more re-
liable results but incurs high computational complexity, mak-
ing it resource-intensive. For scenarios with limited compu-
tational resources and a need for high-accuracy SHAP val-
ues, the KernelExplainer is recommended as a balanced alter-
native. Notably, for features with lower relative importance,
such as TIME, SUNRISE, and SUNSET, the ExactExplainer
and KernelExplainer yield nearly identical results, with mi-
nor differences (approximately 0.01) observed for C_SHF
and LTS.

Based on these findings, the SHAP value computation
strategy in this study is as follows: For the TPOT-selected
model (ExtraTreesRegressor), the TreeExplainer is used,
leveraging its efficiency for tree-based models. For the Au-
toKeras neural network, the ExactExplainer is employed to
compute SHAP values when computational resources are
sufficient; however, the KernelExplainer is preferred when
resources are limited.

3.5 Seasonal comparative analysis of Auto-ML’s
performance

3.5.1 Seasonal comparative analysis of Auto-ML’s
comprehensive performance

The performance of Auto-ML varies across different sites
and seasons. As shown in Fig. 8, after training with multi-
year ECOR data at C1 sites, the model’s performance is
evaluated across four seasons. Figure 8a1–8a4 illustrate that
autumn (SON) achieves the highest overall R2 (0.860) but
ranks second in MAE (0.178 km). Winter (DJF) exhibits the
lowest MAE (0.173 km) but the poorest R2 (0.736). Summer
(JJA) records the highest overall CBLH with strong perfor-
mance (R2: 0.855, MAE: 0.221 km). Spring (MAM) yields
an R2 of 0.768 and an MAE of 0.239 km. Given the higher
CBLH in summer and lower CBLH in winter, Auto-ML per-
forms best overall in autumn. As illustrated in Fig. 8c2 and
8c4, the absolute differences for summer and winter are all
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Figure 7. Performance comparison of two machine learning frameworks during summer (JJA) (a–d) ExtraTreesRegressor (a) Comparison
of observed and predicted CBLH; (b) Diurnal evolution of mean observed and predicted CBLH; (c) SHAP-derived feature importance;
(d) Beeswarm plot of SHAP values; (e–h) Corresponding panels for Neural Network: (e) observed vs. predicted CBLH; (f) diurnal variations;
(g) SHAP-derived feature importance; (h) Beeswarm plot of SHAP values.

Table 2. Performance comparison of various SHAP value calculation methods on feature importance.

SHAP Values

GradientExplainer KernelExplainer ExactExplainer

C_LHF 0.12 0.09 0.09
C_SHF 0.21 0.22 0.21
I_LHF 0.28 0.18 0.18
I_SHF 0.2 0.13 0.13
LTS 0.11 0.15 0.16
TIME 0 0.13 0.13
SUNRISE 0 0.02 0.02
SUNSET 0 0.01 0.01
SUNPERCENT 0.08 0.07 0.07

below 0.14 km. However, the relative differences in summer
are less than 0.1 except for the 19:30 UTC−6 (∼ 0.3); in con-
trast, the relative differences between morning and evening in
winter exceed 0.5. Consequently, Auto-ML exhibits the best
overall performance in summer.

3.5.2 Season-wise comparison of hourly averaged
AutoML performance

However, when considering diurnal variations across sea-
sons, summer (JJA) appears to perform best. As shown in
Fig. 8b1–8b4, predictions for spring (MAM) and autumn
(SON) near the CBL top phase are approximately 0.1 km
lower than DL observations. In winter (DJF), due to lower
overall CBLH, predictions are about 0.05 km below observa-
tions. In contrast, summer (JJA) shows no significant discrep-
ancy near the CBL top (12:30–14:30 UTC−6), with predic-
tions only slightly lower (∼ 0.05 km) around 11:30 UTC−6.
Potential reasons include: (1) a larger number of summer
data points, leading Auto-ML model weighted more to sum-

mer conditions, and (2) distinct entrainment processes in
summer compared to other seasons.

The entrainment process at the top of the atmospheric
boundary layer exhibits a dual influence on boundary layer
development. When warm, dry air is entrained into the
boundary layer, it enhances turbulent mixing and promotes
vertical growth (Angevine et al., 1998). Conversely, if a
strong inversion layer exists aloft, entrainment can suppress
convection by dissipating turbulent kinetic energy and reduc-
ing upward heat flux (Lenschow et al., 2012). The entrain-
ment rate ωe, defined as the volume flux of air drawn from
the free atmosphere into the mixing layer per unit time at the
boundary layer top, follows a modified form of the classical
entrainment parameterization (Lilly, 1968; Deardorff, 1979;
Stull, 1988; Sullivan et al., 1998):

ωe = A
ω3
∗

h1θv
(3)

where, the entrainment efficiency coefficient A is around 0.2
(Beare et al., 2006; Cuxart et al., 2006; Pino et al., 2003); h
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is CBLH, ω∗ is convective velocity scale(Deardorff, 1979);
1θv is virtual potential temperature jump (virtual poten-
tial temperature at the bottom of the inversion layer – aver-
age virtual potential temperature of the mixing layer). Equa-
tion (3) indicates that deeper boundary layers (larger h) ex-
hibit weaker entrainment due to diminished turbulent en-
ergy (Beare, 2008). Additionally, when cloud fraction ex-
ceeds ∼ 60 %, the boundary layer growth rate declines by
over 50 %, as cloud shading suppresses surface-driven turbu-
lence (Zhang et al., 2020).

In humid summer conditions, high specific humidity
(> 18–20 g kg−1) further inhibits boundary layer growth
through multiple pathways: (a) increased cloudiness reduces
surface solar heating (Luo et al., 2024), (b) precipitation de-
pletes convective available potential energy (Hohenegger and
Stevens, 2013), and (c) evaporative cooling enhances stabil-
ity (Zhang, 2003). Observational studies confirm that tropical
moist boundary layers are 30 %–40 % shallower than their
arid counterparts (von Engeln and Teixeira, 2013), highlight-
ing moisture’s threshold-like suppression effect.

The AutoML model developed in this study predicts
CBLH across all seasons, with mean differences between
DL-derived and predicted CBLH consistently within 0.2 km.
Notably, in summer (JJA, Fig. 8c2), the mean difference is
less than 0.1 km, demonstrating the model’s robust perfor-
mance.

Despite the close agreement in mean values, the IQR of
DL CBLH is consistently wider than that of predicted CBLH
across all seasons, with the most pronounced difference in
JJA (Fig. 8b2). This suggests greater variability in boundary
layer development, likely driven by meteorological factors
such as wind-driven advection and entrainment processes,
which are not fully captured by the thermodynamic parame-
ters (e.g., surface heat flux and LTS) used in the model. For
instance, at 11:30 UTC−6, the IQR of DL CBLH (∼ 600 m)
is approximately four times larger than that of predicted
CBLH (∼ 150 m). In summer, the model may not account for
perturbations like upstream air mass advection or enhanced
entrainment due to intense convective activity, contributing
to the larger IQR in DL CBLH.

In winter (DJF, Fig. 8a4), the model captures the CBL evo-
lution well but exhibits reduced performance (R2

= 0.736),
likely due to challenges in accurately estimating surface
fluxes under cold, frozen surface conditions. The smaller
winter sample size (240 points) compared to summer (720
points) further contributes to higher uncertainty. The IQR
during winter is generally smaller than during summer. For
instance, around 11:30 UTC−6, the IQR of the DL-derived
CBLH is approximately 300 m, while that of the predicted
CBLH is less than 100 m. This is consistent with the win-
ter CBLH (top ∼ 1 km) being lower than the summer CBLH
(top ∼ 2 km).

As shown in Fig. 8c, the absolute differences in mean
CBLH are peaking at noon, whereas the relative differences
are more pronounced in the morning and evening. For exam-

ple, although the absolute difference between observed and
predicted CBLH from 11:30 to 15:30 UTC−6 across the four
seasons can reach 0.1–0.17 km, the relative difference be-
tween observed and predicted CBLH during this period re-
mains below 0.1. In contrast, the relative difference between
observed and predicted CBLH in the morning and evening
is generally less than 0.12 km, but the relative difference can
exceed 0.5 km in autumn and winter.

These seasonal differences in variability about mean
CBLH difference and the IQR difference are important find-
ings, as they are not explicitly documented in prior literature.
We hypothesize that the complex interactions involving ad-
vection and entrainment, which the current model does not
fully resolve, contribute differently among seasons to CBL
development. To improve model performance, future work
should incorporate additional parameters, such as entrain-
ment rates and wind profiles, to better capture these processes
and improve CBLH variability predictions.

3.5.3 Visualizing SHAP dependencies with Beeswarm
plots

Analysis of Fig. 8d1–d4 reveals the relationships between
various variables and CBLH. Firstly, the heat flux com-
ponents (C_SHF, C_LHF, I_SHF, I_LHF) exhibit a pre-
dominantly positive correlation with CBLH, indicating that
stronger heat flux corresponds to greater CBLH. Conversely,
LTS shows a negative correlation with CBLH, suggesting
that higher LTS values are associated with reduced CBLH.
Time and SUNPERCENT display a biphasic relationship
with CBLH: a positive correlation is observed during the
pre-peak phase, where CBLH increases with time, while a
negative correlation emerges post-peak as CBLH decreases
with time. This behavior is consistent with CBL dynam-
ics. Additionally, SUNRISE exhibits a weak negative cor-
relation with CBLH, implying that later sunrise times cor-
respond to lower CBLH, whereas earlier sunrise times are
linked to higher CBLH. Similarly, later sunset times are as-
sociated with higher CBLH, and earlier sunset times with
lower CBLH. These patterns align well with the established
development processes of the atmospheric boundary layer.
Since SUNPERCENT integrates the effects of time, sunrise,
and sunset, its relationship with CBLH closely mirrors that
of time.

While the general relationships between input parameters
and CBLH are outlined above, seasonal variations are no-
table. For instance, LTS consistently exhibits a negative cor-
relation with CBLH in spring (MAM), autumn (SON), and
winter (DJF). However, in summer, certain data points show
a positive correlation, suggesting that under specific complex
meteorological conditions in summer, factors beyond LTS
dominate CBLH development, further highlighting the com-
plexity of summer CBL dynamics. Additionally, I_LHF dis-
plays a positive correlation with CBLH across spring, sum-
mer, and autumn, but a negative correlation in winter, despite
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Figure 8. Seasonal performance of the C1 ECOR model. The four columns represent the four seasons: spring (MAM), summer (JJA),
autumn (SON), and winter (DJF); (a) Comparison of observed and predicted CBLH; (b) Diurnal evolution of mean observed and predicted
CBLH; (c) Diurnal evolution of Absolute difference and relative difference between observed and predicted mean CBLHs; (d) Beeswarm
plot of SHAP values for four-season analysis; (e) SHAP-derived feature importance for four-season analysis.

most corresponding SHAP values exceeding −0.1, creating
a stark contrast with the other seasons. A similar, though less
pronounced, trend is observed with C_SHF in winter. This
phenomenon may be attributed to the dominance of northerly
monsoon winds in winter, exacerbating cold, dry conditions.
An increase in I_LHF could reduce I_SHF, potentially sup-
pressing turbulence generation. In winter, both SUNRISE
and SUNSET exhibit a negative correlation with CBLH, in-
dicating that the overall CBLH remains low during this sea-
son. The specific mechanisms underlying these phenomena
require further investigation.

3.5.4 Relative importance of input parameters in
Auto-ML model

The relative importance of different parameters across the
four seasons exhibits a consistent pattern (Fig. 8e1–e4). LTS
ranks highest (0.2–0.25), as it determines the energy required
for CBLH growth. Next are the instantaneous heat flux com-
ponents (I_SHF: 0.15–0.18 and I_LHF: 0.15–0.18), indicat-
ing that current heat flux plays a critical role in sustaining
CBLH. Following these are TIME (0.12–0.15) and SUN-
PERCENT (0.12–0.15), which collectively govern the di-
urnal variation in boundary layer development; a positive
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Table 3. The performance of predictive models and feature impor-
tance results of multi-site training with site-specific testing.

ECOR EBBR

C1 E37 E39 C1 E32 E39

R2 0.85 0.83 0.81 0.84 0.78 0.82
MAE (km) 0.20 0.19 0.21 0.20 0.25 0.21

C_LHF 0.04 0.03 0.03 0.07 0.06 0.07
C_SHF 0.11 0.11 0.11 0.03 0.04 0.04
I_LHF 0.09 0.09 0.09 0.15 0.14 0.15
I_SHF 0.17 0.18 0.18 0.14 0.13 0.15
LTS 0.2 0.19 0.18 0.2 0.24 0.18
TIME 0.16 0.16 0.16 0.18 0.17 0.17
SUNRISE 0.04 0.05 0.05 0.03 0.03 0.04
SUNSET 0.03 0.03 0.03 0.03 0.03 0.03
SUNPERCENT 0.16 0.16 0.17 0.17 0.16 0.17

correlation is observed before CBLH peaks (typically when
SUNPERCENT is around 0.5), transitioning to a negative
correlation post-peak. Subsequently, C_SHF (0.06–0.09) ex-
ceeds C_LHF (∼ 0.05) in influence. The least impactful fac-
tors are SUNRISE (∼ 0.02) and SUNSET (0.01–0.02). These
relative importance values are consistent with the discussion
in Sect. 3.5.3.

However, minor seasonal variations in the relative impor-
tance of these parameters are observed. For instance, in sum-
mer, LTS reaches a relative importance of 0.22, but its er-
ror bar extends to 0.3, suggesting that while LTS temporarily
dominates CBLH development, its influence is significantly
modulated by other conditions, underscoring the complex-
ity of summer boundary layer dynamics. In contrast, during
winter, LTS maintains a relative importance of approximately
0.23 with an error bar of only 0.1, indicating its dominant and
stable role in governing winter boundary layer development.

3.6 Comparative analysis of multi-site training with
site-specific testing

Previous analyses employed Auto-ML models trained sep-
arately for individual sites. To investigate potential perfor-
mance improvements, we conducted experiments using com-
bined multi-site training followed by site-specific testing
while controlling for cross-heat-flux interference. Two inde-
pendent test groups were evaluated: the ECOR cluster (C1,
E37, E39) and the EBBR cluster (C1, E32, E39), with com-
parative results presented in Table 3. Figure 9 further illus-
trates the CBLH diurnal variation patterns to enhance tem-
poral resolution analysis.

To evaluate the performance of the ECOR and EBBR
models, we trained both using 70 % of the data from three
sites combined and tested them on the remaining 30 % of
site-specific data. The results show that ECOR outperforms
EBBR overall, with an average R2 of 0.83 and MAE of 0.20

across the three sites, compared to EBBR’s average R2 of
0.81 and MAE of 0.22. However, at site E39, EBBR achieves
a slighly better R2 (0.82) and MAE (0.21) than ECOR’s R2

(0.81) and MAE (0.21). The overall performance is only
marginally better than that of training and testing solely
with C1 site data: ECOR (R2: 0.85 vs. 0.85; MAE: 0.20 km
vs. 0.21 km), EBBR (R2: 0.84 vs. 0.83; MAE: 0.20 km vs.
0.21 km).

In terms of input parameter importance, ECOR exhibits
minimal variation, with all parameters contributing approxi-
mately 0.01, except for LTS at 0.02. For EBBR, the LTS con-
tribution at site E32 (0.24) is 0.06 higher than at E39 (0.18).
Despite E32’s lower overall performance (R2: 0.78, MAE:
0.25) compared to E39 (R2: 0.82, MAE: 0.21), E32’s predic-
tions are more accurate near the CBL top (∼ 15:30 UTC−6),
closely aligning with observations (mean values nearly over-
lap). In contrast, E39’s predictions at the same time are ap-
proximately 0.1 km lower than observed. This suggests that
E32’s emphasis on LTS enhances prediction accuracy near
the CBL top (Fig. 9), where LTS is a critical factor.

The primary influencing factors for ECOR and EBBR
were similar (in Table 3), with the largest difference observed
in LTS (E32: 0.24, E39: 0.18). Additionally, the allocation of
SHF and LHF at E39 differed significantly between ECOR
and EBBR, with notable disparities in C_LHF (0.07 vs. 0.03)
and C_SHF (0.03 vs. 0.04). However, other factors, such
as LTS and SUNPERCENT, showed near-identical patterns.
These findings highlight discrepancies in heat flux measure-
ments between ECOR and EBBR. Such differences typically
require data assimilation in traditional PBL schemes but can
be mitigated through machine learning’s nonlinear combina-
tions, yielding comparable CBLH estimates. This approach
could also facilitate future heat flux data assimilation.

The lower overall R2 and MAE at E32, combined with
its distinct LTS contribution, indicate that local surface and
meteorological conditions at E32 could differ from those
at the other sites. According to Tang et al. (2019), E32 is
surrounded primarily by pasture, unlike the seasonal crops
and grasslands near C1 and E39, consistent with findings in
Sect. 3.3. Including E32’s data in training improves its per-
formance (R2: 0.78, MAE: 0.25) compared to Sect. 3.3 (R2:
0.73, MAE: 0.27), highlighting the benefit of site-specific
data in model training.

As shown in the diurnal variations across different sites
(Fig. 9), noticeable discrepancies remain among them. For
the model trained with the ECOR measurements, the pre-
dicted CBL top heights are lower than the observations at
the C1 and E39 sites, whereas at the E37 site, the predicted
values exceed the observed ones. This suggests that the en-
trainment process near the CBL top at E37 differs from that
at C1 and E39. In contrast, the EBBR-based results show
that predictions at C1 and E32 closely match the observa-
tions near the CBL top throughout the day, while at E39, the
model tends to underestimate the CBL top height. Overall,
the discrepancy in EBBR-based estimates is smaller than that
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of ECOR, particularly near the CBL top. One possible expla-
nation is that the E39, C1, and E32 sites lie along a south-
east wind trajectory, potentially leading to more consistent
boundary layer characteristics across these locations (Chu et
al., 2025a).

4 Summary and conclusions

This study develops an Auto-ML framework for predict-
ing CBLH, guided by thermodynamic physical constraints
and the implicit diurnal cycle of CBLH. By leveraging the
TPOT and the AutoKeras to automatically select optimal
models, the approach bypasses manual comparisons of ma-
chine learning algorithms, enhancing efficiency and repro-
ducibility. The resulting Auto-ML models, validated against
Doppler lidar CBLH measurements, demonstrate robust per-
formance with an overall R2 of 0.84. Comparisons between
ECOR and EBBR techniques for measuring surface heat and
energy fluxes reveal consistent predictions, with an R2 dif-
ference of approximately 0.01 and the same MAE. The mod-
els exhibit strong adaptability across multiple sites. When
trained on ECOR data from the C1 site and applied to E37
and E39 sites within the ARM SGP network, the models
achieve R2 values of 0.79 and 0.81, respectively. Models
trained on combined C1 and E39 data and tested on other
sites show a gradual decline in R2 and MAE with increas-
ing distance yet maintain high predictive accuracy. These re-
sults underscore the transferability of ML models with sur-
face flux and LTS as primary inputs based on the Auto-ML
framework, highlighting its potential for integration with tra-
ditional numerical weather prediction models.

The study compared the performance of the C1 ECOR site
across four seasons, revealing that summer exhibited the best
performance (R2: 0.86, MAE: 0.22 km). Subsequently, the
model was trained using data from multiple sites and tested
individually. The overall performance surpassed that of train-
ing and testing solely with C1 site data: ECOR (R2: 0.85
vs. 0.85; MAE: 0.20 km vs. 0.21 km). ECOR sites (C1, E32,
E39) generally outperformed EBBR sites (C1, E37, E39) on
average, though EBBR at E39 outperformed ECOR. The pri-
mary influencing factors for ECOR and EBBR were similar,
with the largest difference observed in LTS (E32: 0.24, E39:
0.18). Additionally, the allocation of SHF and LHF at E39
differed significantly between ECOR and EBBR, with no-
table disparities in C_LHF (0.07 vs. 0.03) and C_SHF (0.03
vs. 0.04). However, other factors, such as LTS and SUN-
PERCENT, showed near-identical patterns. These findings
highlight discrepancies in heat flux measurements between
ECOR and EBBR. Such differences typically require data
assimilation in traditional PBL schemes but can be mitigated
through machine learning’s nonlinear combinations, yielding
comparable CBLH estimates. This approach could also fa-
cilitate future heat flux data assimilation. This implicit ther-
modynamic physically constrained Auto-ML approach se-

lects the best-performing machine learning model based on
the dataset, improving the accuracy and generalizability of
CBLH predictions across diverse sites. By providing a scal-
able framework for boundary layer parameterization, it of-
fers valuable insights for refining atmospheric models and
advancing the integration of machine learning in operational
weather forecasting.

It should be noted that, although this study consistently
refers to Auto-ML as “predicting” the CBLH, in the context
of PBL schemes, it is more accurately described as “diag-
nosing” CBLH, given that the model uses a full day of data
as both input and output. To enhance the model’s applicabil-
ity, it is critical to align it with the conventions of traditional
PBL schemes by incorporating the CBLH output from the
previous time step as an input for predicting the subsequent
CBLH. Preliminary application of the model at the C1 site
produces results consistent with those reported in this study
(R2
= 0.82; MAE= 0.20 km). The next step involves further

optimization to meet additional requirements: extracting pa-
rameters from the CCPP-SCM PBL framework (Li et al.,
2025) to predict the CBLH by the Auto-ML, and then feeding
this output back into the PBL parameterization framework to
forecast the CBLH at the subsequent time step.

The Auto-ML PBL model has broad applications due to
its accuracy and efficiency. It can support air quality fore-
casting by better predicting pollutant dispersion within the
PBL, which is crucial for urban and industrial areas (Garratt,
1992; Stensrud, 2007). Additionally, its lightweight design
makes it ideal for integration into local data-driven weather
forecasting systems, providing accurate CBLH inputs to sup-
port low-altitude economic activities (Ben Bouallègue et al.,
2024). The Auto-ML driven scalability further enables its use
in data assimilation, integrating diverse observations for im-
proved model initialization (Arcucci et al., 2021; Arcomano
et al., 2023). As observational networks like ARM expand,
this model offers a versatile tool for global atmospheric re-
search.

The lightweight Auto-ML PBL model exhibits limitations
in predicting peak MLH values near the PBL top, primar-
ily due to two interrelated factors. First, its reliance on lidar-
derived training data introduces uncertainties at higher alti-
tudes, where a reduced SNR obscures sharp inversion lay-
ers. Second, although the ML model captures energy balance
constraints to some extent, it does not fully represent other
critical physical processes, such as entrainment at the top
of the CBL. These processes are especially important during
the peak CBL development phase of the boundary layer. At
this stage, shear-driven turbulence and buoyancy fluxes play
a dominant role in promoting vertical mixing and facilitating
the entrainment of free-atmosphere air into the CBL. Without
explicitly incorporating these mechanisms, the model may
underrepresent key drivers of boundary layer growth, partic-
ularly under conditions of strong surface heating or elevated
wind shear. This limitation highlights the need for physi-
cally informed hybrid models that can integrate data-driven
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Figure 9. Diurnal variation comparison of multi-site trained models evaluated through site-specific testing. Results are grouped by heat flux
measurement system: (Top) ECOR sites (a) C1 (E14), (b) E37, (c) E39; (Bottom) EBBR sites (d) C1 (E13), (e) E32, (f) E39.

approaches with boundary-layer process understanding. Un-
like traditional schemes that parameterize these through TKE
budgets or non-local mixing, the Auto-ML model lacks such
dynamic constraints, reducing its sensitivity to abrupt inver-
sion layer changes or synoptic-scale forcings (e.g., advec-
tive momentum fluxes) (Stevens, 2002; Cuxart et al., 2006;
Fernando, 2010; Shin et al., 2021;). The IQR for predicted
CBLH is consistently narrower than those for DL-derived
CBLH across all seasons, reflecting lower variability in pre-
dicted CBLH (based on thermodynamic parameters) com-
pared to DL-derived CBLH, which is influenced by addi-
tional factors such as wind and low-level jets. Despite these
limitations, a follow-up work is underway to develop an
AI/ML-based emulator for parameterizing PBL, which will
be applied to real-case simulations to assess its performance
against conventional PBL schemes. To enhance the model,
future work will integrate additional boundary-layer param-
eters, such as wind speed, direction, shear, veer, surface up-
welling and downwelling longwave and shortwave radiation,
as well as ceilometer-derived cloud fraction and base height,
utilizing data from ARM sites. High-resolution observations
(e.g., uncrewed aircraft systems or airborne lidar) will also
be explored to directly sample the entrainment zone, enhanc-
ing physical understanding of entrainment. Additionally, in-
tegrating parameters like turbulent dissipation rate (Chu et
al., 2025b) could refine predictions of PBL variables, en-
abling a more comprehensive parameterization scheme.

Code and data availability. The Doppler Lidar (DLFPT)
data from the Southern Great Plains (C1, E32, E37, E39)
ARM sites are available from the ARM Data Center at
https://doi.org/10.5439/1025185 (ARM, 2024). The MLH

date sets can get from https://doi.org/10.5439/2997130 (Chu and
Wang, 2025).
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