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Details on the in situ tower sites

Tower Site D Lat Long  Elevation (masl) Intake Height (magl)
Abbotsford ABT 49.0°N 122.3°W 60 33
Bratt’s Lake BRA 50.2°N  104.7°W 595 35

Barrow Atmospheric

Baseline Observatory BRW 71.3°N  156.6°W 11 16
Behchoko BCK 62.8°N 115.9°W 160 60
Cambridge Bay CBY 69.1°N  105.1°W 35 12
Churchill CHL 58.7°N  93.8°W 29 60
CARVE CRV  65.0°N  147.6°W 611 32
Chapais CPS 49.8°N  75.0°W 391 40
Egbert EGB 44.2°N  79.8°W 251 25
Estevan Point ESP 49.4°N 126.5°W 7 40
Esther EST 51.7°N 110.2°W 707 50
East Trout Lake ETL 54.4°N 104.9°W 493 105
Fort Nelson FNE 58.8°N 122.6°W 361 15
Fraserdale FSD 49.9°N  81.6°W 210 40
Hanlan’s Point HNP 43.6°N  79.4°W 87 10
Inuvik INU 68.3°N 133.5°W 113 10
Park Falls LEF 45.9°N  90.3°W 472 396
Lac La Biche LLB 55.0°N 112.5°W 540 50
Toronto Atmospheric Observatory TAO  43.7°N  79.4°W 100 174
Turkey Point TPD 42.6°N  80.6°W 231 35
Sable Island WSA  43.9°N  60.0°W 5 25

Table S1. Summary of 21 in-situ tall tower sites across Canada and the US, detailing their names,
site codes, longitudes, latitudes, elevation (surface elevation in meters above sea level (masl)), and
intake height (sample intake height in meters above ground level (magl)). Note that the abbreviation
“CARVE” is short for “Carbon in Arctic Reservoirs Vulnerability Experiment.”



Details on the GCP models

Model Spatial Resolution (Rows X Columns) References
CH4MODyet1and 360 x 720 Li et al., 2010
CLASSIC 53 x 128 Arora et al., 2018
DLEM 360 x 720 Tian et al., 2010
ELM-ECA 360 x 720 Zhu et al., 2019
ISAM 360 x 720 Shu et al., 2020
JSBACH 96 x 192 Kleinen et al., 2020
JULES 360 x 720 Clark et al., 2011
LPJ-GUESS 360 x 720 McGQGuire et al., 2012; Wania et al., 2010
LPJ-MPI 360 x 720 Kleinen et al., 2012
LPJ-wsl 360 x 720 Zhang et al., 2016
LPX-Bern 360 x 720 Spahni et al., 2011
ORCHIDEE 180 x 360 Ringeval et al., 2010
SDGVM 360 x 720 Singarayer et al., 2011
TEM-MDM 360 x 720 Liu et al., 2020
TRIPLEX-GHG 582 x 1440 Zhu et al.; 2014
VISIT 360 x 720 Ito and Inatomi, 2012

Table S2. The 16 GCP global wetland flux models that we use in the study, including the number of
global latitude and longitude grid cells in each model.



Details on the wetland to anthropogenic ratios at each in-situ tower site

Tower Site ID Biome Type Wetland to Anthropogenic Ratios
ABT Temperate Forests 1.06
BRA Temperate Grasslands 0.26
BRW Tundra 0.85
BCK Boreal Forests/Taiga 8.79
CBY Tundra 7.56
CHL Boreal Forests/Taiga 14.00
CRV Tundra 5.09
CPS Boreal Forests/Taiga 2.51
EGB Temperate Forests 0.52
ESP Temperate Forests 3.57
EST Temperate Grasslands 0.34
ETL Boreal Forests/Taiga 1.31
FNE Boreal Forests/Taiga 1.43
FSD Boreal Forests/Taiga 3.93
HNP Temperate Forests 0.18
INU Boreal Forests/Taiga 9.17
LEF Temperate Forests 0.78
LLB Temperate Grasslands 0.62
TAO Temperate Forests 0.21
TPD Temperate Forests 0.31
WSA Temperate Forests 1.07

Table S3. The 21 in-situ tall tower sites with biome types and wetland to anthropogenic ratios.
The ratios represent averages computed from prognostic and diagnostic model outputs, calculated as
the modeled CAMS-derived CHy mixing ratios divided by the modeled mixing rations using the GCP
models. In this study, we define sites with ratios greater than 1.3 as wetland-dominated. The sites in
bold are the wetland-dominated sites used in our analysis, and we exclude other sites because they are
more influenced by anthropogenic emissions.



Detailed groupings of prognostic GCP models based on their R? values

GCP Wetland Models R? Values Group
VISIT 0.5 High
CLASSIC 0.47 High
LPJ-wsl 0.46 High
LPJ-MPI 0.42 High
SDGVM 0.41 High
JSBACH 0.35 Average
LPX-Bern 0.34 Average
ORCHIDEE 0.32 Average
JULES 0.22 Low
ISAM 0.22 Low
ELM 0.21 Low

Table S4. Detailed groupings of prognostic GCP models based on their R? values.

The table

presents each GCP wetland model alongside its R? value and assigned group (High, Average, or Low)

as determined by the performance criteria (High > 0.4; Average > 0.3; Low > 0.2).

Detailed groupings of diagnostic GCP models based on their R? values

GCP Wetland Models R? Values Group
LPJ-wsl 0.53 High
VISIT 0.5 High
LPJ-MPI 0.43 High
ISAM 0.42 High
CLASSIC 0.40 Average
JSBACH 0.39 Average
JULES 0.39 Average
SDGVM 0.37 Average
ORCHIDEE 0.34 Average
LPX-Bern 0.27 Low
ELM 0.22 Low

Table S5. Detailed groupings of diagnostic GCP models based on their R? values. The table presents
each GCP wetland model alongside its R? value and assigned group (High, Average, or Low) as

determined by the performance criteria (High > 0.4; Average > 0.3; Low > 0.2).



Monthly average percentage of WETCHIMP flux models (May-October)
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Figure S1. The seasonal cycles of the WETCHIMP models (a) and a comparison with the GCP
models (b). In panel a, each colored line represents the percentage of fluxes that occurred in a specific
model in that month compared to the total fluxes from that model for the months of May through
October. Panel b displays the same quantity but also includes the GCP models. Each model is color-
coded blue, green, or red lines to represent the GCP models that have the high, average, and low R?
values, respectively, in the comparisons with atmospheric CH, observations. The yellow lines in this
panel represent the WETCHIMP models.



High latitude North America biomes
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Figure S2. Biome map of high-latitude North America highlighting the three out of seven biome types
examined in this study: Tundra and Boreal Forests/Taiga, and Temperate Forests. Red dots indicate
wetland-dominated measurement sites, comprising a total of ten locations—nine across Canada and one
in Alaska. Six sites (FNE, BCK, CHL, ETL, FSD, CPS) are located within the Boreal Forests/Taiga
biome, three sites (CRV, INU, CBY) are within the Tundra biome, and one site (ESP) is located in
the Temperate Forests biome. The biome map comes from the “Terrestrial Ecoregions of the World”
product created by World Wildlife Fund (Olson et al., 2001).



Correlation coefficients

CH,4 comparison at wetland-dominated sites: observed vs modeled (GCP) using CAMS
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CH4 comparison at wetland-dominated sites: observed vs modeled (GCP) using EPA
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Figure S3. The correlation coefficients and R? values between the observed CH, increments and
the predicted values derived from the GCP models using a multiple linear regression approach. The
regression results are shown in panel (a) using CAMS as the anthropogenic flux product. In panel (b),
we use the CarbonTracker anthropogenic flux product. And in panel (c), we use the combination of
the gridded U.S. EPA CHy4 inventory and Scarpelli’s anthropogenic CH4 flux products covering the
regions of Canada and Alaska (Maasakkers et al., 2023; Scarpelli et al., 2021). The blue dots represent
the regression results using the prognostic GCP models, and the orange dots represent the regression
results using the diagnostic models. The black line in each panel is a 1:1 line, and the colored lines show
estimated regression lines. The shaded colors represent the 95% confidence intervals of the regression
lines.



Comparisons between GCP models and atmospheric observations by biome

CH4 model-measurement comparisons for boreal forests/taiga using CAMS
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Figure S4. A time series of the mean modeled CH4 mixing ratios using the STILT model with
anthropogenic fluxes from CAMS and wetland fluxes set at the mean of the GCP ensemble across
different biomes at ten wetland dominated sites between 2007 and 2017. The two panels correspond to:
a) Boreal Forests and Taiga and b) Tundra. The dashed gray line represents the boundary conditions,
while the solid gray line shows the sum of the boundary conditions and modeled anthropogenic mixing
ratios using CAMS. The green line indicates the total modeled mixing ratios from prognostic models,
and the blue line represents those from diagnostic models.
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Annual CH, flux total using the WETCHIMP models

WETCHIMP model annual wetland (Tg CHg/year) flux total by region
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Figure S5. Averaged annual CH4 flux totals by region and biome type using the WETCHIMP models,
averaged across years 1993-2004. There are seven total models included (shown on the x-axis), and
the y-axis represents the total annual fluxes in Tg CHy per year. The uncertainty bars represent the
standard deviations of the annual CH, flux totals across different years.

Annual CH, flux total using the GCP (diagnostic) models

GCP (diagnostic) model annual wetland (Tg CHy/year) flux total by region
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Figure S6. Averaged annual CHy flux totals by region and biome type using the GCP models,
averaged across years 2007-2017. There are sixteen total models included (shown on the x-axis), and
the y-axis represents the total annual fluxes in Tg CHy per year. The uncertainty bars represent the
standard deviations of the annual CH, flux totals across different years.
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Mean R? and RMSE for the 16 GCP models

Mean R2 and mean RMSE for 16 GCP CH4 flux models (prognostic vs diagnostic)
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Figure S7. On the left panel, the y-axis lists all the prognostic and diagnostic GCP models, and x-axis
shows the R? range for these GCP models. And on the right panel, the y-axis lists all the prognostic
and diagnostic GCP models, and x-axis shows the RMSE between modeled CH,4 mixing ratios using the
GCP models and atmospheric observations. Blue dots represent R? and RMSE values for prognostic
models across different climate forcing data and anthropogenic products. Orange dots represent R? and
RMSE values for diagnostic models across different climate forcing data and anthropogenic products.
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Seasonal cycle of the anthropogenic fluxes

33; Seasonality of modeled anthropogenic mixing ratios
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Figure S8. The seasonal cycles of modeled CH4 mixing ratios using three different anthropogenic
flux products from May to October between 2007 and 2017.
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Differences in inter-model uncertainty between the shared WETCHIMP and
GCP models

Spatial distribution of CH4 flux inter-model std difference (May-0Oct)

~0.02 —0.01 0.00 0.01
A std = std(WETCHIMP) — std(GCP) (umol m=2 s71)

Figure S9. The difference of inter-model standard deviation for each individual model grid box (Fig 3b
- Fig 3a), calculated using the 4 overlapping prognostic GCP models and WETCHIMP models (LPX-
Bern, SDGVM, ORCHIDEE, LPJ-wsl). Positive values in each grid means that the WETCHIMP
models have larger inter-model uncertainty than the GCP models. The inter-model uncertainty in
Canada is higher for the WETCHIMP models than the GCP models, but lower for the WETCHIMP
models than the GCP models in Alaska. All fluxes have units gmol m~=2 s~1.
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Mean R? and RMSE for WETCHIMP and GCP model ensembles

WETCHIMP vs GCP ensembles — R2 and RMSE (sub)
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Figure S10. A comparison between the WETCHIMP and GCP model ensembles, including only the
models that are common to both ensembles (LPX-Bern, ORCHIDEE, LPJ-wsl, and SDGVM). The
left y-axis represents R? range for each model ensemble, and the right y-axis represents RMSE range
for each model ensemble. The x-axis lists each of the model ensemble: WETCHIMP, prognostic GCP,
and diagnostic GCP. The gray and black bars denote WETCHIMP model ensemble, the blue bars
denote GCP prognostic ensemble, and the organge bars denote GCP diagnostic ensemble.
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Figure S11. A comparison between the WETCHIMP and GCP model ensembles, including all
models. The left y-axis represents R? range for each model ensemble, and the right y-axis represents
RMSE range for each model ensemble. The x-axis lists each of the model ensemble: WETCHIMP,
prognostic GCP, and diagnostic GCP. The gray and black bars denote WETCHIMP model ensemble,
the blue bars denote GCP prognostic ensemble, and the organge bars denote GCP diagnostic ensemble.
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Analysis of estimated Qo values

We assess the relationship between wetland CH,4 fluxes from the GCP models and temperatures by
fitting Q1o curves for each GCP model. The Q¢ factor illustrates how CH, wetland fluxes change
with a per 10-degree change in temperatures, and a higher Q19 means that wetland fluxes are more
sensitive to temperature changes (e.g., James, 1953; Mundim et al., 2020; van Hulzen et al., 1999).
Several of the GCP models explicitly include a Qo function within the model equations, whereas
other models use different functions or modeling schemes to parameterize the relationships between
CH,4 fluxes and temperature. Even though not all of the GCP models explicitly use a Q1o function,
we nevertheless fit each of the flux estimates to a Q¢ function. Doing so allows us to directly compare
the apparent temperature relationships in the different GCP models. Furthermore, to account for
the impact of inundation dynamics, we adjust the fluxes by multiplying them by the corresponding
inundation fraction at each grid cell. This adjustment normalizes the fluxes to a standard wetland
area, demonstrating a more consistent comparison of how wetland CH, fluxes respond to temperature
variations.

The following formula represents the Q1o function (e.g., Mundim et al., 2020; Zhang et al., 2025):

(T=Tyef)

R(T) = Ry - Qi (S1)

where R(T) are monthly wetland CHy fluxes at near-surface air temperature T (°C) based on

the same meteorological products used to generate the GCP models, and R}, is the baseline flux

at a reference temperature. In this study, we set the reference temperature 7,5 at 15°C, and the

exponential term shows the difference between an ambient temperature and the reference temperature

of 15°C, capturing the proportional change in wetland CH, flux with temperature. We use the Nelder-

Mead method to simultaneously optimize the parameters R, and Q19 by minimizing the sum of squared

errors between the predicted fluxes R(T) and the actual wetland CHy fluxes from the GCP models
(Gao & Han, 2012).

We do not find any correlation between wetland CH,4 fluxes from the GCP models and Q¢ values,
meaning that models with the highest wetland CH,4 fluxes do not always have the highest temperature
sensitivity (Fig. S12). ELM has the lowest Q1o value of all models at 1.77, suggesting that CH, fluxes in
ELM are relatively insensitive to temperature changes compared to other models. In contrast, most of
the other prognostic and diagnostic GCP models exhibit Q19 values greater than 2, with the prognostic
ISAM model showing the highest Q19 of 11.92; suggesting a stronger temperature dependence.
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Figure S12. The plot shows the Q1o factors estimated for each of the GCP models. Each colored
shape represents an unique GCP model, and prognostic and diagnostic values are plotted separately
for each model. The plot also shows the relationship between the magnitude of fluxes estimated by
each model for the study domain and the Qg value estimated for each model.
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Mean R? vs Q1
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Figure S13. The y-axis represents the mean R? values for each GCP model, and the x-axis represents
the range of Q1¢ factors estimated for each of the GCP models. Each colored shape represents an unique
GCP model, where blue shapes represent prognostic GCP models and orange shapes denote diagnostic
GCP models.
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