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S1. MethaneAIR quantification of total regional emissions 

 
The MethaneAIR emissions quantification approach uses a hybrid framework consisting of a discrete point 

source detection and quantification algorithm, and an inverse model of dispersed area sources to estimate the total 

regional methane emissions at the time of observation. This framework is made possible by the instrument’s ability 

to produce a detailed map of methane emissions at a snapshot in time with high spatial resolution, wide spatial 

coverage, and high precision.  

 

For each MethaneAIR flight, discrete point source emissions (with methane emission rates > ~200 kg/hr), are 

detected using an automated threshold-based method with manual QA/QC prior to their inclusion in our analysis and 

subsequently quantified using a divergence integral (DI) method (Chulakadabba et al., 2023; Warren et al., 2025). 

The plume detection method first calculates the flux divergence for 600 m x 600 m squares tiled across the scene, 

using High-Resolution Rapid Refresh (HRRR) wind fields and the divergence integral method (Chulakadabba et al., 

2023) to calculate the flux through each square. In the gridded flux product, hotspots were identified with a 

thresholding method as potential plume origins. At each flux hotspot, we found XCH4 clumps with a given number 

of contiguous pixels above a threshold value to create a mask of the plume. We calculated the major axis of the 

XCH4 mask and took the upwind end of the major axis (using the HRRR wind direction) to be the plume origin 

(Warren et al., 2025). This system has been validated with controlled release experiments (Chulakadabba et al., 

2023; El Abbadi et al., 2024), and is explained in greater detail in Chulakadabba et al., 2023 and Warren et al., 2025. 

 
With discrete sources (𝑠𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒) fixed, the inverse model fits a gridded field of dispersed area source emission 

rates (𝑠𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑) to account for the balance of the methane enhancement. A gridded field of emission rates in the 

domain of interest, (𝑠𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 = 𝑠𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 + 𝑠𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑), and “pseudo-emission” rates in the upwind boundary inflow 

region (𝑠𝑖𝑛𝑓𝑙𝑜𝑤) are fitted to observed column-averaged dry-air mole fractions of methane (XCH4), 𝑧, linked by a 

Jacobian (𝐻) plus a field of background concentrations (𝑏) (Equation S1). 

 
𝑧  =  𝐻(𝑠𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 + 𝑠𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑 + 𝑠𝑖𝑛𝑓𝑙𝑜𝑤)  +  𝑏                         (Eq. S1) 

 

The inversion enforces non-negative fluxes and exact conservation of the observed methane mass to maintain 

physical realism and applies Tikhonov regularization to promote spatial smoothness and mitigate the sensitivity of 

the hybrid framework to transport errors and measurement noise. We solve for the non-negative emission field (𝑠 =
𝑠𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 + 𝑠𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑 + 𝑠𝑖𝑛𝑓𝑙𝑜𝑤) that reproduces the MethaneAIR enhancements: 

 

𝐽(𝑠) = ‖𝐻(𝑠) − (𝑧 − 𝑏)‖2 + λ2‖𝐿(𝑠)‖2,                   (Eq. S2) 

st.  s ≥ 0, 𝑤𝑇(𝐻 𝑠) = 𝑀,  

 

where: 

L – first-order spatial difference operator enforcing smoothness 

λ – Tikhonov regularization strength (0.5) 

M – total methane mass enhancement in the domain (kg CH₄) 

w – air-mass weights converting ppb to methane mass 

 

XCH4 observations were aggregated to 0.01° x 0.01° while preserving their location in time (allowing for 

overlapping observations from successive flight tracks). Aggregated grid cells at least 50% covered with data that 

passed all QA/QC flags were included in the analysis. 

 

The Jacobian was computed using the Stochastic Time-Inverted Lagrangian Transport (STILT) model (Fasoli et 

al., 2018; Lin et al., 2003), which simulates the sensitivity of XCH4 observations to sources on the ground by 

propagating air parcel trajectories backwards in time. The Jacobian was computed on a 0.01° x 0.01° grid over a 10° 

x 10° domain around the center of the flight with trajectories long enough to fully exit the domain or include the 

previous day’s boundary layer (28 hours backtime). Where possible, the Jacobian was computed twice, 1) with 

STILT driven by meteorological data from the operational Global Forecast System (GFS) model and 2) with STILT 

driven by meteorology from the High-Resolution Rapid Refresh (HRRR) model. Meteorological data was provided 

by the NOAA ARL meteorological archives in ARL format (https://www.ready.noaa.gov/archives.php). STILT was 

run as a column receptor, with a receptor placed at every layer of the meteorological input from the surface to 3x the 
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planetary boundary layer height (above which we assume the footprint is always 0). STILT footprints for every layer 

are integrated with weights representing the fraction of the total atmospheric column of dry air represented, with the 

mean averaging kernel for MethaneAIR. 

 

The background concentration field represents the synoptic-scale, topographically varying component of the 

XCH4 observations. We fit a field of background XCH4 concentrations given by the MethaneAIR L2 prior (Chan 

Miller et al., 2024) from below, such that the reflected distribution of concentrations below background have a 

variance that matches the instrument precision. The MethaneAIR L2 prior forms a surface that varies realistically 

with topography in accordance with the vertical distribution of methane in the atmosphere from GEOS-FP 

Reanalysis (Rienecker et al., 2008) and the high-resolution digital elevation map tiles from Amazon Web Services 

(Larrick et al., 2020). Emissions are reported in a truncated domain of interest within the concave hull of the 

observations. 

 

Boundary inflow “pseudo-emissions” are the component of the dispersed area source emissions inside the full 

10° x 10° domain but outside the domain of interest. We refer to them as “pseudo-emissions” since they represent 

any source of sub-synoptic scale variation in the inflowing methane field, whether from mesoscale background 

variation or inflow of sources just outside the domain of interest. 

 

Discrete sources are fixed in the area source inversion, fixing emissions in a 0.01° x 0.01° area, which 

approximates the effective representative area of the DI. This places trust in the well-tested point-source specific 

algorithm to do the best job at quantifying point source emissions and uses the Jacobian to ensure the complete mass 

of methane from the point sources are accounted for. The alternative method of plume-masking is inconsistent 

between methodologies and inevitably undercounts the contribution of the point sources when they fall below 

detectable concentrations. We acknowledge that this approach may attribute some fraction of discrete-source plume 

tails to the diffuse component, but this does not affect the basin-integrated emission total, which is constrained by 

the hard mass constraint. The same observations can influence both the discrete-source estimates and the dispersed-

source solution, without explicit propagation of uncertainty from the discrete-source step into the dispersed 

inversion. A fully Bayesian treatment would require either (i) joint inference of discrete and dispersed emissions 

within a single probabilistic framework, or (ii) propagation of uncertainty from the discrete-source estimates into the 

dispersed inversion. Because neither is done here, interpreting the dispersed solution as a Bayesian posterior would 

be incomplete. Therefore, we deliberately adopt a non-Bayesian framing and report only the deterministic optimal 

solution of the constrained optimization, rather than probabilistic confidence intervals or posterior distributions.  

 

The inverse problem is then solved numerically using projected, limited memory, bounded Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS-B) algorithm. The solution is initialized to a flat field that satisfies the mass constraint. 

Subsequent proposals are constrained to be non-negative and satisfy the mass constraint. The two constraints 

regularize the solution to prevent overfitting. The non-negativity constraint mediates the “dipole effect” where 

adjacent large positive and negative emissions are generated by the inverse model to fit variations in concentrations 

that cannot be explained by positive emissions alone (e.g., large plumes in areas where the meteorological product 

has wind direction errors, or variations due to eddies that cannot be modeled by STILT). The mass-balance 

constraint prevents the emergence of bias when there are high frequency variations that cannot be fit by the model, 

which may lead the model to over-predict the total emissions. The non-negativity and mass-balance constraint are 

complementary to the Tikhonov term such that non-negativity enforces physical feasibility, the hard mass constraint 

enforces domain-scale consistency, and λ controls spatial roughness and suppresses fitting of retrieval/transport 

noise at small scales. A value of λ=0.5 was selected using an L-curve criterion computed over a set of representative 

scenes. 
 

The resulting analysis of MethaneAIR data produces a high resolution, spatially explicit quantification of 

methane emissions at approximately 1 km by 1 km resolution, as well as the specific location and quantification of 

individual point sources emitting above ~200 kg/hr. 

 

Uncertainty in the MethaneAIR total area emissions estimation is contributed by several factors including (i) 

uncertainty in the meteorological product used to generate the STILT Jacobian that links emissions with 

concentrations, (ii) correlated uncertainty in the observations, (iii) uncertainty in the background concentration, (iv) 

uncertainty in the allocation of signal between emissions in the reported domain and the boundary inflow, and (v) 

uncertainty in the retrieval of emissions as expressed by the variability in samples in the Markov Chain Monte Carlo 
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(MCMC) simulation. We use a bootstrap resampling of the MCMC samples to estimate uncertainty, with 

propagation of uncertainty from each of the above effects by either sweeping across values of input parameters (for 

example, recomputing the optimization with high and low estimates of the mean background concentration) or 

modifying each sample (for example, error in the wind speed may increase or decrease all emissions by ±20%). 

Uncertainty at each grid-level emissions is the 95% confidence interval of samples for that pixel. Uncertainty on the 

total area emissions is the 95% confidence interval on the total across all samples. The uncertainty estimates for 

majority of MethaneAIR’s individual flight-level observation domains range from ±30% to ±45%, as indicated in 

Table S4. 

S2. Estimating the relative sector contributions of methane emissions quantified by MethaneAIR 

 

S2.1 Data sources used to estimate non-oil and gas methane emissions for each MethaneAIR domain 

 

Table S1 below lists all the publicly available measurement-based and bottom-up data used to estimate the 

relative contributions of non-oil and gas methane emissions in regions measured by MethaneAIR. The year in 

brackets next to each referenced study corresponds to the year that the reported emissions estimates are for. 

 
Table S1: Data sources used to estimate contributions of non-oil and gas methane emissions for MethaneAIR 

measured regions in major oil and gas producing basins. 

Sub-Basin Input data [reference year] 

Anadarko Crippa et al. [2022]; Lu et al. [2019]; Maasakkers et al. [2020]; Nesser et al. [2019] 

Appalachian (NE) Barkley et al. [2017]; Crippa et al. [2022]; Maasakkers et al. [2020] 

Appalachian (SW) Crippa et al. [2022]; Maasakkers et al. [2020] 

Arkoma Fayetteville 
Crippa et al. [2022]; Lu et al. [2019]; Maasakkers et al. [2020]; Nesser et al. [2019]; 

Schwietzke et al. [2015] 

Bakken Crippa et al. [2022]; Maasakkers et al. [2020]; Peischl et al. [2015] 

Barnett 
Crippa et al. [2022]; Lu et al. [2019]; Maasakkers et al. [2020]; Nesser et al. [2019]; 

Peischl et al. [2015] 

Denver Fried and Dickerson, [2021]; Maasakkers et al. [2020]; Peischl et al. [2015] 

Eagle Ford 
Crippa et al. [2022]; Lu et al. [2019]; Maasakkers et al. [2020]; Nesser et al. [2019]; 

Peischl et al. [2015] 

Greater Green River Crippa et al. [2022]; Maasakkers et al. [2020] 

Haynesville-Bossier 
Crippa et al. [2022]; Lu et al. [2019]; Maasakkers et al. [2020]; Nesser et al. [2019]; 

Peischl et al. [2015] 

Permian (Delaware) Crippa et al. [2022]; Maasakkers et al. [2020]; Nesser et al. [2019] 

Permian (Midland) Crippa et al. [2022]; Lu et al. [2019]; Maasakkers et al. [2020]; Nesser et al. [2019] 

Piceance Crippa et al. [2022]; Lu et al. [2019]; Maasakkers et al. [2020]; Nesser et al. [2019] 

Uinta Crippa et al. [2022]; Maasakkers et al. [2020] 

 

S2.2. Description of additional method for disaggregation of non-oil and gas sources 

 

As an alternative methodology to the simple subtraction of literature-based non-oil and gas estimates and non-

oil and gas point sources quantified by MethaneAIR, we also tested a ratio-based approach that leverages prior 

estimates of spatially explicit oil and gas and non-oil and gas methane emission inventories. For this approach, we 

utilize the gridded (0.1° x 0.1°) oil and gas emissions inventory provided in Omara et al., 2024 (EI-ME) which is 

updated with 2023 activity data, coupled with non-oil and gas emissions from a gridded (0.1° x 0.1°) inventory 

available from the EPA GHGI inventory for 2020 (Maasakkers et al., 2023), and persistence adjusted methane point 

source detections from Carbon Mapper (Carbon Mapper, 2025). Both the EI-ME and GHGI methane inventories use 

the location/density/type of infrastructure data to inform the spatial allocation of methane emissions. The EI-ME is a 

measurement-based inventory whereas the GHGI is a bottom-up inventory based on reported emissions. These 

inventories differ from observations gathered from satellite-based studies where we can expect the spatial 

distribution of emissions to vary over time, despite these emissions estimates being based on prior observations in 

some cases. We include point sources of methane emissions from Carbon Mapper to account for any additional 

sources of methane emissions that may not be captured within the EI-ME and GHGI inventories, with the 
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assumption that potential double-counting of methane sources would occur equally between non-oil and gas and oil 

and gas methane sources. 

 

Using these spatially explicit methane emissions inventories, we calculate the expected methane emissions for 

individual grid cells from the area emissions estimates provided by MethaneAIR at their native resolution (1 km x 1 

km, or 0.01° x 0.01°). The compiled oil and gas and non-oil and gas emissions from both inventories are then used 

to calculate a ratio of expected oil and gas emissions, which is then multiplied by the estimated grid-level emissions 

from MethaneAIR to produce spatially explicit area emissions estimates for oil and gas and non-oil and gas sources 

(Figure S1). As an additional constraint on uncertainty related to this method, we ascribe area emissions as 

“unknown” if the measured grid-level estimates from MethaneAIR are more than 100-times higher than the 

combined emissions from both EI-ME and the GHGI. 

 

Figure S1: Maps showing disaggregation of oil and gas and non-oil and gas methane emissions from a single 

MethaneAIR flight in the Arkoma-Fayetteville oil and gas basin as an example. Note that point source emissions are 

not shown in this figure and are incorporated into total methane emissions using the detailed point source 

attribution process (Warren et al., 2025). A) Area emissions heatmap from MethaneAIR showing diffuse area source 

emissions. B) Estimated percentages of oil and gas emissions based on spatially explicit methane emissions data for 

oil and gas sources (EI-ME: 2023, Omara et al. 2024) and non-oil and gas sources (GHGI inventory: 2020, 

Maasakkers et al. 2023). C) Heat map of oil and gas emissions from MethaneAIR. D) Heat map of non-oil and gas 

emissions from MethaneAIR. 

 

S2.3 Comparison of estimated MethaneAIR oil and gas methane emissions across different sector 

disaggregation methods 

 

We compared total basin-level estimated oil and gas methane emissions using two different methods to 

disaggregate oil and gas from non-oil and gas area emissions for our MethaneAIR retrievals: the simple subtraction 

method as presented in the main text, and a ratio-based approach based on a combination of measurement-based and 

bottom-up estimates (Figure S2). The simple subtraction method estimated an oil and gas total (12 basin sum) of 898 

t/hr, whereas the ratio-based method estimated 841 t/hr. We found good agreement (within ~2 t/hr) across both 

methods in six basins, and moderate agreement (within ~3 – 7 t/hr) in four basins. The biggest discrepancies across 

methods were in the Greater Green River and Piceance basins, where the ratio-based method produced lower 

estimates of oil and gas emissions (Figure S2).  

 

In general, the ratio-based method assigns a higher contribution of non-oil and gas emissions due to the spatially 

widespread presence of agricultural methane emissions whereas other sources of methane emissions (i.e., landfills, 

oil and gas infrastructure, coal mines) emit at higher amounts per area but are spatially isolated in the prior methane 

emissions inventories. As such, in areas where MethaneAIR observes dispersed methane emissions without the 

presence of landfills, oil and gas infrastructure, or coal mines to account for these emissions, they are usually 
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assigned to agricultural sources, which in turn leads to agricultural emissions that are greater than the total sum 

contained within the prior estimates. Ultimately, the ratio-based approach incorporates the spatially explicit methane 

emissions data into the disaggregation process, which provides valuable insights into the presence and location of 

sector specific methane emissions. In contrast, the simple subtraction method subtracts these values directly from the 

total methane emissions estimated by MethaneAIR, and therefore the total non-oil and gas emissions match those 

from the corresponding literature-based estimates from which the value is calculated. While the simple subtraction 

method does preserve the total non-oil and gas emissions from the literature-based estimates, it does not produce any 

spatially explicit data on the disaggregated methane emissions. 

 

Figure S2: Comparison of estimates of oil and gas emissions for basins measured by MethaneAIR using two 

different methods: the ratio-based approach, and the simple subtraction method (as presented in the main text). 

S3. Methods for basin- and national-level aggregation of MethaneAIR emission estimates – total emissions 

and associated uncertainties 

 

Two separate approaches for aggregation of overlapping MethaneAIR flights were explored, which we defined 

as 1) unique overflown area (UOA) averaging, and 2) area-normalized averaging. Results from the UOA averaging 

method are presented in the main text, and the other method as well as a comparison of results across both 

approaches are discussed below. 

 

S3.1 Unique overflown area averaging 

 

For the unique overflown area (UOA) averaging method, we start by mapping the spatial domains of each 

MethaneAIR retrieval to identify areas that were uniquely overflown by the same combination of flights, which 

creates a subset of smaller spatial domains (Figure S3). Next, we iterated through the subset of smaller spatial 

domains (i.e., denoted as UOA, or unique overflown areas) and averaged both the point source and area emissions 

from the corresponding flights. The resulting averages of all UOAs are then summed to produce a total estimate of 

methane emissions for the aggregated flight domains. 
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Figure S3: Maps of MethaneAIR flights domains in the Midland portion of the Permian oil and gas basin showing 

A) the number of times specific areas were overflown by MethaneAIR and B) areas that were overflown by a unique 

combination of flights (i.e., unique overflown areas or UOA). In this example, six UOAs are created from a 

combination of three flights in the Midland portion of the Permian basin. 

 

S3.2 Area-normalized averaging approach 

 

For the area-normalized averaging approach, we first normalize the total area and point source methane 

emissions quantified from each unique flight by the respective area (km2) covered during the flight to produce an 

area-normalized flux rate (kg/hr/km2). Then, we compute the total combined area (km2) covered by all flights for 

each oil and gas basin. Finally, we calculate the average area normalized flux rates for both area and point source 

emissions from all flights within a basin and multiply those averages by the total combined area to produce an 

estimate of the total basin-level emissions.  

 

 

S3.3 Comparisons of basin-level emissions across different aggregation methods 

 

We compared two different methods used to aggregate multiple MethaneAIR flights to produce basin-level 

estimates of total methane emissions (Figure S4). Overall, both methods produce similar results across basins, 

although the differences were larger for the Permian basin with the unique overflown areas method producing 59 

t/hr higher estimates compared to the area-averaging method.  

 

The area-normalized method involves dividing total flight-level methane emissions by the total area covered by 

a given flight, which produces area-normalized methane emission rates. Then, the average area-normalized 

emissions across all flights are multiplied by the total area covered by the dissolved spatial boundaries of all 

MethaneAIR flights in a basin which produces a total basin-level emissions estimate. This approach differs from the 

unique overflow areas approach which weighs emissions by the respective areas covered by individual flights and 

accounts for areas that have been overflown multiple times. Therefore, we see greater differences in regions where 

we have multiple flights that have fragmented overlaps with high variability in emission rates by flight (i.e., the 

Permian basin). Ultimately, the unique overflown areas approach that we use in this work better accounts for the 

spatial heterogeneity of emissions observed across unique MethaneAIR flights. A more simplistic approach like the 

area-normalized method is easy to implement but likely carries more uncertainty due to the inherent assumption that 

the average area-normalized emissions from multiple flights are representative of the entire dissolved spatial 

domain. 
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Figure S4: Comparison of the two different methods used to aggregate multiple MethaneAIR flights into basin-level 

methane emission estimates (kg/hr). Results from the “unique overflown areas” method are presented throughout 

the main text. 

S4. Basin-specific gas compositions used in loss rate calculations 

 

Table S2 shows the basin-specific methane compositions for each basin or sub-basin that were used to calculate 

the gas-normalized methane loss rates presented in the main text. The methane compositions are applied to the gross 

natural gas produced in each area measured by MethaneAIR to estimate the gross methane production. The assumed 

methane compositions are consistent with those reported for each basin in previous literature. 

 

Table S2: Assumed basin specific methane composition of produced gas used in methane loss rate estimates.  

Sub-Basin Assumed methane composition of produced gas 

Permian 0.80 

Appalachian - NE 0.95 

Appalachian - SW 0.90 

Anadarko 0.93 

Eagle Ford 0.73 

Haynesville-Bossier 0.86 

Barnett 0.89 

Bakken 0.47 

San Juan 0.83 

Denver-Julesburg 0.79 

Uinta 0.89 

Arkoma Fayetteville 0.96 

Piceance 0.89 

Powder River 0.90 
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Greater Green River 0.92 

 

S5. Energy-normalized methane intensities for measured oil and gas basins 

 

In addition to the gross gas production normalized methane loss rates presented in the main text, we also 

computed energy-normalized methane intensities (kg CH4/GJ) for the 12 oil and gas basins measured by 

MethaneAIR. The main difference between these two metrics is that the energy-normalized methane intensities 

consider both gross oil and gas produced in each region (Eq. S3), whereas methane loss rates are based on gross gas 

production only. For energy-normalized methane intensity calculations, gross oil and gas energy production is 

estimated using 2023 production data (Enverus: Prism, 2024) and a conversion factor of 1 barrel of oil equivalent 

(boe) = 6 gigajoules (GJ) and 1 boe = 6000 cubic feet of natural gas. 

 

𝑀𝑒𝑡ℎ𝑎𝑛𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (
𝑘𝑔𝐶𝐻4

𝐺𝐽
) =  

𝑂𝑖𝑙 𝑎𝑛𝑑 𝑔𝑎𝑠 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (kg)

(𝐺𝑟𝑜𝑠𝑠 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (GJ)+𝐺𝑟𝑜𝑠𝑠 𝑜𝑖𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝐺𝐽))
                      (Eq. S3) 

 

Table S3 shows the MethaneAIR gross gas-normalized loss rates (%) and energy-normalized methane 

intensities (kg CH4/GJ) for all measured basins. Since methane intensities are based on combined oil and gas 

production, the basins with the lowest intensities are primarily oil-dominant or mixed basins (e.g., Bakken, Denver-

Julesburg), rather than gas-dominant basins (e.g., Appalachian, Haynesville) which have the lowest loss rates. 

Mature basins with low producing wells rank high across both metrics. 

 

Table S3: Gross gas production normalized methane loss rates (%) and gross energy-normalized (oil + gas) 

methane intensities (kgCH4/GJ) estimated for basins measured by MethaneAIR. 

Basin Methane loss rate (%) Methane intensity (kg CH4/GJ) 

Anadarko 1.4 0.20 

Appalachian 0.9 0.15 

Arkoma Fayetteville 3.1 0.57 

Bakken 2.1 0.06 

Barnett 1.6 0.26 

Denver-Julesburg 1.3 0.11 

Eagle Ford 2.0 0.13 

Greater Green River 5.2 0.88 

Haynesville-Bossier 0.9 0.15 

Permian 2.4 0.15 

Piceance 7.9 1.29 

Uinta 7.7 0.55 

 

S6. Reported methane emissions for MethaneAIR measured regions based on EPA’s 2020 GHGI 

 

Table S4 shows total methane emissions and total oil and gas methane emissions from the EPA GHGI 

(Maasakkers et al., 2023) for the combined regions measured by MethaneAIR in each basin (as shown in Figure 1 in 

the main text). Note that these estimates are for the year 2020, which was the most recently available year at the time 

of writing. 

 

Table S4: EPA 2020 reported total methane emissions and oil and gas methane emissions for MethaneAIR 

measured regions. 

Basin 

EPA total methane emissions in 

MethaneAIR measured regions 

(kg/hr) 

EPA oil and gas methane emissions 

in MethaneAIR measured regions 

(kg/hr) 
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Anadarko 18,200 13,880 

Appalachian 49,280 21,630 

Arkoma Fayetteville 7,380 5,860 

Bakken 5,640 5,210 

Barnett 21,700 16,380 

Denver-Julesburg 18,200 8,010 

Eagle Ford 17,280 14,250 

Greater Green River 5,430 5,270 

Haynesville-Bossier 31,700 24,760 

Permian 52,000 49,030 

Piceance 12,300 10,690 

Uinta 7,970 7,290 

 

S7. Comparisons of MethaneAIR quantification to literature-based estimates 

 

Table S5 shows total quantified methane emission rates for all MethaneAIR flights included in our analysis, 

and the corresponding literature-based ranges of total methane emissions for each MethaneAIR flight domain, 

calculated using bootstrap resampling described in Section 3.3.1. 

 

The MethaneAIR quantification shows generally good agreement with previous literature estimates across all 

flights, with only four flights (MX031, MX042, MX035, MX037-01) having emission rates that fall more than a 

factor of two outside the upper/lower bounds. The ranges for MX031, MX035, and MX037-01 are based on limited 

data which may be why we see the disagreement with the MethaneAIR quantification. During MX042, the largest 

point source across all flights was detected (69,900 kg/hr), resulting in a total emission rate that is likely higher than 

what is typical for this region since the point source detection was likely a short-lived emission event. If the point 

source is removed, the MethaneAIR total emissions for MX042 reduces to 13,500 kg/hr, which is just outside the 

literature-based range. 

 

Table S5: Total emissions quantified by MethaneAIR for all individual flights included in our analysis and 

corresponding ranges of total methane emissions for each flight domain based on previous literature estimates. 

Basin Flight ID 

MethaneAIR 

total emissions 

(kg/hr) and 

uncertainty 

Literature-based 

range of total 

methane emissions 

(kg/hr) 

Studies used to 

develop literature-

based ranges 

Anadarko MX059 29,500 (±37%) 18,800 - 38,100 

Crippa et al., 2024; 

Lu et al., 2023; 

Maasakkers et al., 

2023; Nesser et al., 

2024; Omara et al., 

2024; Shen et al., 

2022 

Anadarko MX060 34,400 (±52%) 17,800 - 31,300 

Crippa et al., 2024; 

Lu et al., 2023; 

Maasakkers et al., 

2023; Nesser et al., 

2024; Omara et al., 

2024; Shen et al., 

2022 
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Appalachian (SW) MX031 104,500 (±31%) 23,400 - 36,100 

Crippa et al., 2024; 

Cusworth et al., 

2022; Maasakkers et 

al., 2023; Omara et 

al., 2024 

Appalachian (NE) MX042 83,400 (±54%) 14,400 - 22,100 

Alvarez et al., 2018; 

Barkley et al., 2023, 

2017; Crippa et al., 

2024; Cusworth et 

al., 2022; 

Maasakkers et al., 

2023; Omara et al., 

2024 

Appalachian (SW) MX045 67,100 (±35%) 36,100 - 65,200 

Crippa et al., 2024; 

Cusworth et al., 

2022; Maasakkers et 

al., 2023; Omara et 

al., 2024 

Arkoma Fayetteville MX010 23,600 (±37%) 9,300 - 26,500 

Alvarez et al., 2018; 

Crippa et al., 2024; 

Lu et al., 2023; 

Maasakkers et al., 

2023; Nesser et al., 

2024; Omara et al., 

2024; Schwietzke et 

al., 2017 

Bakken MX005 12,500 (±46%) 24,200 - 29,000 

Alvarez et al., 2018; 

Crippa et al., 2024; 

Maasakkers et al., 

2023; Omara et al., 

2024; Peischl et al., 

2018 

Barnett MX015 38,100 (±41%) 38,400 - 62,300 

Alvarez et al., 2018; 

Crippa et al., 2024; 

Lu et al., 2023; 

Maasakkers et al., 

2023; Nesser et al., 

2024; Omara et al., 

2024; Peischl et al., 

2018; Shen et al., 

2022 

Denver-Julesburg MX013 32,700 (±51%) 23,900 - 30,800 

Alvarez et al., 2018; 

Cusworth et al., 

2022; Fried and 

Dickerson, 2023; 

Maasakkers et al., 

2023; Omara et al., 

2024; Peischl et al., 

2018; Sherwin et al., 

2023 

Denver-Julesburg MX036 28,700 (±32%) 23,700 - 26,600 

Alvarez et al., 2018; 

Cusworth et al., 

2022; Fried and 

Dickerson, 2023; 

Maasakkers et al., 
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2023; Omara et al., 

2024; Peischl et al., 

2018; Sherwin et al., 

2023 

Denver-Julesburg MX050 31,200 (±34%) 23,900 - 30,100 

Alvarez et al., 2018; 

Cusworth et al., 

2022; Fried and 

Dickerson, 2023; 

Maasakkers et al., 

2023; Omara et al., 

2024; Peischl et al., 

2018; Sherwin et al., 

2023 

Denver-Julesburg MX051 24,500 (±37%) 24,000 - 31,000 

Alvarez et al., 2018; 

Cusworth et al., 

2022; Fried and 

Dickerson, 2023; 

Maasakkers et al., 

2023; Omara et al., 

2024; Peischl et al., 

2018; Sherwin et al., 

2023 

Denver-Julesburg MX061 28,800 (±33%) 23,700 - 29,700 

Alvarez et al., 2018; 

Cusworth et al., 

2022; Fried and 

Dickerson, 2023; 

Maasakkers et al., 

2023; Omara et al., 

2024; Peischl et al., 

2018; Sherwin et al., 

2023 

Eagle Ford (N) MX012 28,400 (±49%) 22,400 - 39,200 

Crippa et al., 2024; 

Lu et al., 2023; 

Maasakkers et al., 

2023; Nesser et al., 

2024; Omara et al., 

2024; Peischl et al., 

2018; Shen et al., 

2022 

Eagle Ford (S) MX018 36,400 (±50%) 16,700 - 34,600 

Crippa et al., 2024; 

Lu et al., 2023; 

Maasakkers et al., 

2023; Nesser et al., 

2024; Omara et al., 

2024; Peischl et al., 

2018; Shen et al., 

2022 

Greater Green River (S) MX039-South 14,000 (±34%) 3,800 - 7,900 

Crippa et al., 2024; 

Maasakkers et al., 

2023; Omara et al., 

2024 

Greater Green River (E) MX039-East 28,700 (±33%) 8,300 - 16,900 

Crippa et al., 2024; 

Maasakkers et al., 

2023; Omara et al., 

2024 
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Haynesville MX004 35,200 (±35%) 33,000 - 49,300 

Crippa et al., 2024; 

Lu et al., 2023; 

Maasakkers et al., 

2023; Nesser et al., 

2024; Omara et al., 

2024; Peischl et al., 

2018; Shen et al., 

2022 

Haynesville MX016 37,500 (±40%) 32,100 - 51,700 

Crippa et al., 2024; 

Lu et al., 2023; 

Maasakkers et al., 

2023; Nesser et al., 

2024; Omara et al., 

2024; Peischl et al., 

2018; Shen et al., 

2022 

Haynesville MX017 88,100 (±35%) 40,000 - 56,900 

Crippa et al., 2024; 

Lu et al., 2023; 

Maasakkers et al., 

2023; Nesser et al., 

2024; Omara et al., 

2024; Peischl et al., 

2018; Shen et al., 

2022 

Permian (Delaware) MX023 136,400 (±32%) 53,700 - 76,800 

Crippa et al., 2024; 

Cusworth et al., 

2022; Maasakkers et 

al., 2023; Nesser et 

al., 2024; Omara et 

al., 2024; Shen et al., 

2022; Varon et al., 

2023; Veefkind et al., 

2023; Zhang et al., 

2020 

Permian (Delaware) MX024 73,200 (±35%) 66,500 - 76,900 

Crippa et al., 2024; 

Cusworth et al., 

2022; Maasakkers et 

al., 2023; Nesser et 

al., 2024; Omara et 

al., 2024; Shen et al., 

2022; Varon et al., 

2023; Veefkind et al., 

2023; Zhang et al., 

2020 

Permian (Delaware) MX025 40,800 (±35%) 59,600 - 67,200 

Crippa et al., 2024; 

Cusworth et al., 

2022; Maasakkers et 

al., 2023; Nesser et 

al., 2024; Omara et 

al., 2024; Shen et al., 

2022; Varon et al., 

2023; Veefkind et al., 

2023; Zhang et al., 

2020 

Permian (Midland) MX026 66,600 (±39%) 52,900 - 73,100 
Crippa et al., 2024; 

Cusworth et al., 
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2022; Lu et al., 2023; 

Maasakkers et al., 

2023; Nesser et al., 

2024; Omara et al., 

2024; Shen et al., 

2022; Varon et al., 

2023; Veefkind et al., 

2023; Zhang et al., 

2020 

Permian (Midland) MX027 23,100 (±57%) 39,800 - 50,500 

Crippa et al., 2024; 

Lu et al., 2023; 

Maasakkers et al., 

2023; Nesser et al., 

2024; Omara et al., 

2024; Shen et al., 

2022; Varon et al., 

2023; Veefkind et al., 

2023; Zhang et al., 

2020 

Permian (Delaware) MX056 44,100 (±32%) 46,800 - 60,500 

Crippa et al., 2024; 

Cusworth et al., 

2022; Maasakkers et 

al., 2023; Nesser et 

al., 2024; Omara et 

al., 2024; Shen et al., 

2022; Varon et al., 

2023; Veefkind et al., 

2023; Zhang et al., 

2020 

Permian (Delaware) MX062 129,100 (±31%) 50,400 - 75,000 

Crippa et al., 2024; 

Cusworth et al., 

2022; Maasakkers et 

al., 2023; Nesser et 

al., 2024; Omara et 

al., 2024; Shen et al., 

2022; Varon et al., 

2023; Veefkind et al., 

2023; Zhang et al., 

2020 

Permian (Midland) MX063 60,000 (±51%) 46,400 - 64,900 

Crippa et al., 2024; 

Cusworth et al., 

2022; Lu et al., 2023; 

Maasakkers et al., 

2023; Nesser et al., 

2024; Omara et al., 

2024; Shen et al., 

2022; Varon et al., 

2023; Veefkind et al., 

2023; Zhang et al., 

2020 

Piceance MX035 49,800 (±31%) 9,300 - 16,600 

Crippa et al., 2024; 

Lu et al., 2023; 

Maasakkers et al., 

2023; Nesser et al., 

2024; Omara et al., 
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2024; Shen et al., 

2022 

Piceance MX037-01 15,800 (±33%) 3,400 - 5,400 

Crippa et al., 2024; 

Lu et al., 2023; 

Maasakkers et al., 

2023; Nesser et al., 

2024; Omara et al., 

2024; Shen et al., 

2022 

Uinta MX022 31,600 (±33%) 53,700 - 76,800 

Crippa et al., 2024; 

Cusworth et al., 

2022; Lin et al., 

2021; Maasakkers et 

al., 2023; Omara et 

al., 2024; Shen et al., 

2022; Sherwin et al., 

2023 

Uinta MX037-02 11,700 (±34%) 8,900 - 9,500 

Crippa et al., 2024; 

Maasakkers et al., 

2023; Omara et al., 

2024; Shen et al., 

2022 

 

S8. Observed vs modeled XCH4 enhancement for all MethaneAIR data used in analysis 

 
Figure S5: Observed vs modeled XCH4 enhancement for all MethaneAIR flights. The black dashed line shows the 

major axis regression, showing a good fit (r = 0.8). The 1:1 relationship is shown as the red dashed line. 
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