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S1. MethaneAIR quantification of total regional emissions

The MethaneAIR emissions quantification approach uses a hybrid framework consisting of a discrete point
source detection and quantification algorithm, and an inverse model of dispersed area sources to estimate the total
regional methane emissions at the time of observation. This framework is made possible by the instrument’s ability
to produce a detailed map of methane emissions at a snapshot in time with high spatial resolution, wide spatial
coverage, and high precision.

For each MethaneAlIR flight, discrete point source emissions (with methane emission rates > ~200 kg/hr), are
detected using an automated threshold-based method with manual QA/QC prior to their inclusion in our analysis and
subsequently quantified using a divergence integral (DI) method (Chulakadabba et al., 2023; Warren et al., 2025).
The plume detection method first calculates the flux divergence for 600 m x 600 m squares tiled across the scene,
using High-Resolution Rapid Refresh (HRRR) wind fields and the divergence integral method (Chulakadabba et al.,
2023) to calculate the flux through each square. In the gridded flux product, hotspots were identified with a
thresholding method as potential plume origins. At each flux hotspot, we found XCH4 clumps with a given number
of contiguous pixels above a threshold value to create a mask of the plume. We calculated the major axis of the
XCH4 mask and took the upwind end of the major axis (using the HRRR wind direction) to be the plume origin
(Warren et al., 2025). This system has been validated with controlled release experiments (Chulakadabba et al.,
2023; El Abbadi et al., 2024), and is explained in greater detail in Chulakadabba et al., 2023 and Warren et al., 2025.

With discrete sources (Sgiserere) fixed, the inverse model fits a gridded field of dispersed area source emission
rates (Sgisperseq) t0 account for the balance of the methane enhancement. A gridded field of emission rates in the
domain of interest, (Sreported = Saiscrete T Saispersea)> and “pseudo-emission” rates in the upwind boundary inflow
region (Sif10w) are fitted to observed column-averaged dry-air mole fractions of methane (XCHa4), z, linked by a
Jacobian (H) plus a field of background concentrations (b) (Equation S1).

z = H(Sdiscrete + Sdispersed + Sinflow) + b (Eq Sl)

The inversion enforces non-negative fluxes and exact conservation of the observed methane mass to maintain
physical realism and applies Tikhonov regularization to promote spatial smoothness and mitigate the sensitivity of
the hybrid framework to transport errors and measurement noise. We solve for the non-negative emission field (s =
Saiscrete t Saispersed + Sinfiow) that reproduces the MethaneAIR enhancements:

J(s) = |H(s) = (z = b)|I* + A||L(s)II?, (Eq. S2)
st. >0, wi(Hs)=M,

where:

L — first-order spatial difference operator enforcing smoothness
A — Tikhonov regularization strength (0.5)

M - total methane mass enhancement in the domain (kg CHa)
W — air-mass weights converting ppb to methane mass

XCHys4 observations were aggregated to 0.01° x 0.01° while preserving their location in time (allowing for
overlapping observations from successive flight tracks). Aggregated grid cells at least 50% covered with data that
passed all QA/QC flags were included in the analysis.

The Jacobian was computed using the Stochastic Time-Inverted Lagrangian Transport (STILT) model (Fasoli et
al., 2018; Lin et al., 2003), which simulates the sensitivity of XCH4 observations to sources on the ground by
propagating air parcel trajectories backwards in time. The Jacobian was computed on a 0.01° x 0.01° grid over a 10°
x 10° domain around the center of the flight with trajectories long enough to fully exit the domain or include the
previous day’s boundary layer (28 hours backtime). Where possible, the Jacobian was computed twice, 1) with
STILT driven by meteorological data from the operational Global Forecast System (GFS) model and 2) with STILT
driven by meteorology from the High-Resolution Rapid Refresh (HRRR) model. Meteorological data was provided
by the NOAA ARL meteorological archives in ARL format (https://www.ready.noaa.gov/archives.php). STILT was
run as a column receptor, with a receptor placed at every layer of the meteorological input from the surface to 3x the
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planetary boundary layer height (above which we assume the footprint is always 0). STILT footprints for every layer
are integrated with weights representing the fraction of the total atmospheric column of dry air represented, with the
mean averaging kernel for MethaneAIR.

The background concentration field represents the synoptic-scale, topographically varying component of the
XCHs observations. We fit a field of background XCH4 concentrations given by the MethaneAIR L2 prior (Chan
Miller et al., 2024) from below, such that the reflected distribution of concentrations below background have a
variance that matches the instrument precision. The MethaneAIR L2 prior forms a surface that varies realistically
with topography in accordance with the vertical distribution of methane in the atmosphere from GEOS-FP
Reanalysis (Rienecker et al., 2008) and the high-resolution digital elevation map tiles from Amazon Web Services
(Larrick et al., 2020). Emissions are reported in a truncated domain of interest within the concave hull of the
observations.

Boundary inflow “pseudo-emissions” are the component of the dispersed area source emissions inside the full
10° x 10° domain but outside the domain of interest. We refer to them as “pseudo-emissions” since they represent
any source of sub-synoptic scale variation in the inflowing methane field, whether from mesoscale background
variation or inflow of sources just outside the domain of interest.

Discrete sources are fixed in the area source inversion, fixing emissions in a 0.01° x 0.01° area, which
approximates the effective representative area of the DI. This places trust in the well-tested point-source specific
algorithm to do the best job at quantifying point source emissions and uses the Jacobian to ensure the complete mass
of methane from the point sources are accounted for. The alternative method of plume-masking is inconsistent
between methodologies and inevitably undercounts the contribution of the point sources when they fall below
detectable concentrations. We acknowledge that this approach may attribute some fraction of discrete-source plume
tails to the diffuse component, but this does not affect the basin-integrated emission total, which is constrained by
the hard mass constraint. The same observations can influence both the discrete-source estimates and the dispersed-
source solution, without explicit propagation of uncertainty from the discrete-source step into the dispersed
inversion. A fully Bayesian treatment would require either (i) joint inference of discrete and dispersed emissions
within a single probabilistic framework, or (ii) propagation of uncertainty from the discrete-source estimates into the
dispersed inversion. Because neither is done here, interpreting the dispersed solution as a Bayesian posterior would
be incomplete. Therefore, we deliberately adopt a non-Bayesian framing and report only the deterministic optimal
solution of the constrained optimization, rather than probabilistic confidence intervals or posterior distributions.

The inverse problem is then solved numerically using projected, limited memory, bounded Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS-B) algorithm. The solution is initialized to a flat field that satisfies the mass constraint.
Subsequent proposals are constrained to be non-negative and satisfy the mass constraint. The two constraints
regularize the solution to prevent overfitting. The non-negativity constraint mediates the “dipole effect” where
adjacent large positive and negative emissions are generated by the inverse model to fit variations in concentrations
that cannot be explained by positive emissions alone (e.g., large plumes in areas where the meteorological product
has wind direction errors, or variations due to eddies that cannot be modeled by STILT). The mass-balance
constraint prevents the emergence of bias when there are high frequency variations that cannot be fit by the model,
which may lead the model to over-predict the total emissions. The non-negativity and mass-balance constraint are
complementary to the Tikhonov term such that non-negativity enforces physical feasibility, the hard mass constraint
enforces domain-scale consistency, and A controls spatial roughness and suppresses fitting of retrieval/transport
noise at small scales. A value of A=0.5 was selected using an L-curve criterion computed over a set of representative
scenes.

The resulting analysis of MethaneAIR data produces a high resolution, spatially explicit quantification of
methane emissions at approximately 1 km by 1 km resolution, as well as the specific location and quantification of
individual point sources emitting above ~200 kg/hr.

Uncertainty in the MethaneAlR total area emissions estimation is contributed by several factors including (i)
uncertainty in the meteorological product used to generate the STILT Jacobian that links emissions with
concentrations, (ii) correlated uncertainty in the observations, (iii) uncertainty in the background concentration, (iv)
uncertainty in the allocation of signal between emissions in the reported domain and the boundary inflow, and (v)
uncertainty in the retrieval of emissions as expressed by the variability in samples in the Markov Chain Monte Carlo



(MCMC) simulation. We use a bootstrap resampling of the MCMC samples to estimate uncertainty, with
propagation of uncertainty from each of the above effects by either sweeping across values of input parameters (for
example, recomputing the optimization with high and low estimates of the mean background concentration) or
modifying each sample (for example, error in the wind speed may increase or decrease all emissions by +£20%).
Uncertainty at each grid-level emissions is the 95% confidence interval of samples for that pixel. Uncertainty on the
total area emissions is the 95% confidence interval on the total across all samples. The uncertainty estimates for
majority of MethaneAIR’s individual flight-level observation domains range from +30% to +45%, as indicated in
Table S4.

S2. Estimating the relative sector contributions of methane emissions quantified by MethaneAIR
S2.1 Data sources used to estimate non-oil and gas methane emissions for each MethaneAIR domain
Table S1 below lists all the publicly available measurement-based and bottom-up data used to estimate the

relative contributions of non-oil and gas methane emissions in regions measured by MethaneAIR. The year in
brackets next to each referenced study corresponds to the year that the reported emissions estimates are for.

Table S1: Data sources used to estimate contributions of non-oil and gas methane emissions for MethaneAIR
measured regions in major oil and gas producing basins.

Sub-Basin Input data [reference year]

Anadarko Crippa et al. [2022]; Lu et al. [2019]; Maasakkers et al. [2020]; Nesser et al. [2019]
Appalachian (NE) Barkley et al. [2017]; Crippa et al. [2022]; Maasakkers et al. [2020]

Appalachian (SW) Crippa et al. [2022]; Maasakkers et al. [2020]

Crippa et al. [2022]; Lu et al. [2019]; Maasakkers et al. [2020]; Nesser et al. [2019];

Arkoma Fayetteville Schwietzke et al. [2015]

Bakken Crippa et al. [2022]; Maasakkers et al. [2020]; Peischl et al. [2015]

Crippa et al. [2022]; Lu et al. [2019]; Maasakkers et al. [2020]; Nesser et al. [2019];

Barnett Peischl et al. [2015]

Denver Fried and Dickerson, [2021]; Maasakkers et al. [2020]; Peischl et al. [2015]

Crippa et al. [2022]; Lu et al. [2019]; Maasakkers et al. [2020]; Nesser et al. [2019];
Eagle Ford Peischl et al. [2015]
Greater Green River Crippa et al. [2022]; Maasakkers et al. [2020]
Crippa et al. [2022]; Lu et al. [2019]; Maasakkers et al. [2020]; Nesser et al. [2019];
Peischl et al. [2015]

Haynesville-Bossier

Permian (Delaware) Crippa et al. [2022]; Maasakkers et al. [2020]; Nesser et al. [2019]

Permian (Midland) Crippa et al. [2022]; Lu et al. [2019]; Maasakkers et al. [2020]; Nesser et al. [2019]
Piceance Crippa et al. [2022]; Lu et al. [2019]; Maasakkers et al. [2020]; Nesser et al. [2019]
Uinta Crippa et al. [2022]; Maasakkers et al. [2020]

S2.2. Description of additional method for disaggregation of non-oil and gas sources

As an alternative methodology to the simple subtraction of literature-based non-oil and gas estimates and non-
oil and gas point sources quantified by MethaneAIR, we also tested a ratio-based approach that leverages prior
estimates of spatially explicit oil and gas and non-oil and gas methane emission inventories. For this approach, we
utilize the gridded (0.1° x 0.1°) oil and gas emissions inventory provided in Omara et al., 2024 (EI-ME) which is
updated with 2023 activity data, coupled with non-oil and gas emissions from a gridded (0.1° x 0.1°) inventory
available from the EPA GHGI inventory for 2020 (Maasakkers et al., 2023), and persistence adjusted methane point
source detections from Carbon Mapper (Carbon Mapper, 2025). Both the EI-ME and GHGI methane inventories use
the location/density/type of infrastructure data to inform the spatial allocation of methane emissions. The EI-ME is a
measurement-based inventory whereas the GHGI is a bottom-up inventory based on reported emissions. These
inventories differ from observations gathered from satellite-based studies where we can expect the spatial
distribution of emissions to vary over time, despite these emissions estimates being based on prior observations in
some cases. We include point sources of methane emissions from Carbon Mapper to account for any additional
sources of methane emissions that may not be captured within the EI-ME and GHGI inventories, with the



assumption that potential double-counting of methane sources would occur equally between non-oil and gas and oil
and gas methane sources.

Using these spatially explicit methane emissions inventories, we calculate the expected methane emissions for
individual grid cells from the area emissions estimates provided by MethaneAlIR at their native resolution (1 km x 1
km, or 0.01° x 0.01°). The compiled oil and gas and non-oil and gas emissions from both inventories are then used
to calculate a ratio of expected oil and gas emissions, which is then multiplied by the estimated grid-level emissions
from MethaneAIR to produce spatially explicit area emissions estimates for oil and gas and non-oil and gas sources
(Figure S1). As an additional constraint on uncertainty related to this method, we ascribe area emissions as
“unknown” if the measured grid-level estimates from MethaneAIR are more than 100-times higher than the
combined emissions from both EI-ME and the GHGI.
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Figure S1: Maps showing disaggregation of oil and gas and non-oil and gas methane emissions from a single
MethaneAIR flight in the Arkoma-Fayetteville oil and gas basin as an example. Note that point source emissions are
not shown in this figure and are incorporated into total methane emissions using the detailed point source
attribution process (Warren et al., 2025). A) Area emissions heatmap from MethaneAIR showing diffuse area source
emissions. B) Estimated percentages of oil and gas emissions based on spatially explicit methane emissions data for
oil and gas sources (EI-ME: 2023, Omara et al. 2024) and non-oil and gas sources (GHGI inventory: 2020,
Maasakkers et al. 2023). C) Heat map of oil and gas emissions from MethaneAIR. D) Heat map of non-oil and gas
emissions from MethaneAIR.

S2.3 Comparison of estimated MethaneAIR oil and gas methane emissions across different sector
disaggregation methods

We compared total basin-level estimated oil and gas methane emissions using two different methods to
disaggregate oil and gas from non-oil and gas area emissions for our MethaneAlIR retrievals: the simple subtraction
method as presented in the main text, and a ratio-based approach based on a combination of measurement-based and
bottom-up estimates (Figure S2). The simple subtraction method estimated an oil and gas total (12 basin sum) of 8§98
t/hr, whereas the ratio-based method estimated 841 t/hr. We found good agreement (within ~2 t/hr) across both
methods in six basins, and moderate agreement (within ~3 — 7 t/hr) in four basins. The biggest discrepancies across
methods were in the Greater Green River and Piceance basins, where the ratio-based method produced lower
estimates of oil and gas emissions (Figure S2).

In general, the ratio-based method assigns a higher contribution of non-oil and gas emissions due to the spatially
widespread presence of agricultural methane emissions whereas other sources of methane emissions (i.e., landfills,
oil and gas infrastructure, coal mines) emit at higher amounts per area but are spatially isolated in the prior methane
emissions inventories. As such, in areas where MethaneAIR observes dispersed methane emissions without the
presence of landfills, oil and gas infrastructure, or coal mines to account for these emissions, they are usually



assigned to agricultural sources, which in turn leads to agricultural emissions that are greater than the total sum
contained within the prior estimates. Ultimately, the ratio-based approach incorporates the spatially explicit methane
emissions data into the disaggregation process, which provides valuable insights into the presence and location of
sector specific methane emissions. In contrast, the simple subtraction method subtracts these values directly from the
total methane emissions estimated by MethaneAIR, and therefore the total non-oil and gas emissions match those
from the corresponding literature-based estimates from which the value is calculated. While the simple subtraction
method does preserve the total non-oil and gas emissions from the literature-based estimates, it does not produce any
spatially explicit data on the disaggregated methane emissions.
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Figure S2: Comparison of estimates of oil and gas emissions for basins measured by MethaneAIR using two
different methods: the ratio-based approach, and the simple subtraction method (as presented in the main text).

S3. Methods for basin- and national-level aggregation of MethaneAIR emission estimates — total emissions
and associated uncertainties

Two separate approaches for aggregation of overlapping MethaneAIR flights were explored, which we defined
as 1) unique overflown area (UOA) averaging, and 2) area-normalized averaging. Results from the UOA averaging
method are presented in the main text, and the other method as well as a comparison of results across both
approaches are discussed below.

S3.1 Unique overflown area averaging

For the unique overflown area (UOA) averaging method, we start by mapping the spatial domains of each
MethaneAlR retrieval to identify areas that were uniquely overflown by the same combination of flights, which
creates a subset of smaller spatial domains (Figure S3). Next, we iterated through the subset of smaller spatial
domains (i.e., denoted as UOA, or unique overflown areas) and averaged both the point source and area emissions
from the corresponding flights. The resulting averages of all UOAs are then summed to produce a total estimate of
methane emissions for the aggregated flight domains.
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Figure §3: Maps of MethaneAIR flights domains in the Midland portion of the Permian oil and gas basin showing
A) the number of times specific areas were overflown by MethaneAIR and B) areas that were overflown by a unique
combination of flights (i.e., unique overflown areas or UOA). In this example, six UOAs are created from a
combination of three flights in the Midland portion of the Permian basin.

S3.2 Area-normalized averaging approach

For the area-normalized averaging approach, we first normalize the total area and point source methane
emissions quantified from each unique flight by the respective area (km?) covered during the flight to produce an
area-normalized flux rate (kg/hr/km?). Then, we compute the total combined area (km?) covered by all flights for
each oil and gas basin. Finally, we calculate the average area normalized flux rates for both area and point source
emissions from all flights within a basin and multiply those averages by the total combined area to produce an
estimate of the total basin-level emissions.

S3.3 Comparisons of basin-level emissions across different aggregation methods

We compared two different methods used to aggregate multiple MethaneAIR flights to produce basin-level
estimates of total methane emissions (Figure S4). Overall, both methods produce similar results across basins,
although the differences were larger for the Permian basin with the unique overflown areas method producing 59
t/hr higher estimates compared to the area-averaging method.

The area-normalized method involves dividing total flight-level methane emissions by the total area covered by
a given flight, which produces area-normalized methane emission rates. Then, the average area-normalized
emissions across all flights are multiplied by the total area covered by the dissolved spatial boundaries of all
MethaneAlIR flights in a basin which produces a total basin-level emissions estimate. This approach differs from the
unique overflow areas approach which weighs emissions by the respective areas covered by individual flights and
accounts for areas that have been overflown multiple times. Therefore, we see greater differences in regions where
we have multiple flights that have fragmented overlaps with high variability in emission rates by flight (i.e., the
Permian basin). Ultimately, the unique overflown areas approach that we use in this work better accounts for the
spatial heterogeneity of emissions observed across unique MethaneAIR flights. A more simplistic approach like the
area-normalized method is easy to implement but likely carries more uncertainty due to the inherent assumption that
the average area-normalized emissions from multiple flights are representative of the entire dissolved spatial
domain.



350,000

300,000 Area-averaging
® Unique overflown areas
250,000
200,000
150,000
100,000
50,000 I I I

Total methane emissions

o o @ ' Q N
N R N () () ‘( . \ X
b’b‘ (:(\\ Q?\\ @\!3" 'b((‘ éo‘)' Qo QS‘ o,"'ﬂ ((Q\ J '0 o\
(i X R ¢ N4 o Q° X
v{s‘ 2 ) 3\) @9 & o R
SAR 3 S 8 ©
V‘ 2D 40( < 6‘\\
& e M ¢
N Q @ B
v o

Figure S4: Comparison of the two different methods used to aggregate multiple MethaneAIR flights into basin-level
methane emission estimates (kg/hr). Results from the “unique overflown areas” method are presented throughout
the main text.

S4. Basin-specific gas compositions used in loss rate calculations

Table S2 shows the basin-specific methane compositions for each basin or sub-basin that were used to calculate
the gas-normalized methane loss rates presented in the main text. The methane compositions are applied to the gross
natural gas produced in each area measured by MethaneAlIR to estimate the gross methane production. The assumed

methane compositions are consistent with those reported for each basin in previous literature.

Table S2: Assumed basin specific methane composition of produced gas used in methane loss rate estimates.

Sub-Basin Assumed methane composition of produced gas
Permian 0.80
Appalachian - NE 0.95
Appalachian - SW 0.90
Anadarko 0.93
Eagle Ford 0.73
Haynesville-Bossier 0.86
Barnett 0.89
Bakken 0.47
San Juan 0.83
Denver-Julesburg 0.79
Uinta 0.89
Arkoma Fayetteville 0.96
Piceance 0.89
Powder River 0.90




Greater Green River 0.92

S5. Energy-normalized methane intensities for measured oil and gas basins

In addition to the gross gas production normalized methane loss rates presented in the main text, we also
computed energy-normalized methane intensities (kg CH4/GJ) for the 12 oil and gas basins measured by
MethaneAIR. The main difference between these two metrics is that the energy-normalized methane intensities
consider both gross oil and gas produced in each region (Eq. S3), whereas methane loss rates are based on gross gas
production only. For energy-normalized methane intensity calculations, gross oil and gas energy production is
estimated using 2023 production data (Enverus: Prism, 2024) and a conversion factor of 1 barrel of oil equivalent
(boe) = 6 gigajoules (GJ) and 1 boe = 6000 cubic feet of natural gas.

kgCHy
GJ

Oil and gas methane emissions (kg)

Methane lntenSlty ( ) - (Gross natural gas production (G])+Gross oil production (GJ)) (Eq 83)
Table S3 shows the MethaneAIR gross gas-normalized loss rates (%) and energy-normalized methane
intensities (kg CH4/GJ) for all measured basins. Since methane intensities are based on combined oil and gas
production, the basins with the lowest intensities are primarily oil-dominant or mixed basins (e.g., Bakken, Denver-
Julesburg), rather than gas-dominant basins (e.g., Appalachian, Haynesville) which have the lowest loss rates.

Mature basins with low producing wells rank high across both metrics.

Table S3: Gross gas production normalized methane loss rates (%) and gross energy-normalized (oil + gas)
methane intensities (kgCH4/GJ) estimated for basins measured by MethaneAIR.

Basin Methane loss rate (%) Methane intensity (kg CH4/GJ)
Anadarko 1.4 0.20
Appalachian 0.9 0.15
Arkoma Fayetteville 3.1 0.57
Bakken 2.1 0.06
Barnett 1.6 0.26
Denver-Julesburg 1.3 0.11
Eagle Ford 2.0 0.13
Greater Green River 52 0.88
Haynesville-Bossier 0.9 0.15
Permian 2.4 0.15
Piceance 7.9 1.29
Uinta 7.7 0.55

S6. Reported methane emissions for MethaneAIR measured regions based on EPA’s 2020 GHGI

Table S4 shows total methane emissions and total oil and gas methane emissions from the EPA GHGI
(Maasakkers et al., 2023) for the combined regions measured by MethaneAIR in each basin (as shown in Figure 1 in
the main text). Note that these estimates are for the year 2020, which was the most recently available year at the time
of writing.

Table S4: EPA 2020 reported total methane emissions and oil and gas methane emissions for MethaneAIR
measured regions.

EPA total methane emissions in [EPA oil and gas methane emissions
Basin MethaneAIR measured regions | in MethaneAIR measured regions
(kg/hr) (kg/hr)




Anadarko 18,200 13,880
Appalachian 49,280 21,630
Arkoma Fayetteville 7,380 5,860
Bakken 5,640 5,210
Barnett 21,700 16,380
Denver-Julesburg 18,200 8,010
Eagle Ford 17,280 14,250
Greater Green River 5,430 5,270
Haynesville-Bossier 31,700 24,760
Permian 52,000 49,030
Piceance 12,300 10,690
Uinta 7,970 7,290

S7. Comparisons of MethaneAIR quantification to literature-based estimates

Table S5 shows total quantified methane emission rates for all MethaneAIR flights included in our analysis,
and the corresponding literature-based ranges of total methane emissions for each MethaneAIR flight domain,
calculated using bootstrap resampling described in Section 3.3.1.

The MethaneAIR quantification shows generally good agreement with previous literature estimates across all
flights, with only four flights (MX031, MX042, MX035, MX037-01) having emission rates that fall more than a
factor of two outside the upper/lower bounds. The ranges for MX031, MX035, and MX037-01 are based on limited
data which may be why we see the disagreement with the MethaneAIR quantification. During MX042, the largest
point source across all flights was detected (69,900 kg/hr), resulting in a total emission rate that is likely higher than
what is typical for this region since the point source detection was likely a short-lived emission event. If the point
source is removed, the MethaneAIR total emissions for MX042 reduces to 13,500 kg/hr, which is just outside the
literature-based range.

Table S5: Total emissions quantified by MethaneAIR for all individual flights included in our analysis and
corresponding ranges of total methane emissions for each flight domain based on previous literature estimates.

Basin

Flight ID

MethaneAIR
total emissions
(kg/hr) and
uncertainty

Literature-based
range of total
methane emissions
(kg/hr)

Studies used to
develop literature-
based ranges

Anadarko

MX059

29,500 (£37%)

18,800 - 38,100

Crippa et al., 2024;
Luetal., 2023;
Maasakkers et al.,
2023; Nesser et al.,
2024; Omara et al.,
2024; Shen et al.,
2022

Anadarko

MXO060

34,400 (£52%)

17,800 - 31,300

Crippa et al., 2024;
Luetal., 2023;
Maasakkers et al.,
2023; Nesser et al.,
2024; Omara et al.,
2024; Shen et al.,
2022
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Crippa et al., 2024;
Cusworth et al.,
23,400 - 36,100 2022; Maasakkers et
al., 2023; Omara et
al., 2024
Alvarez et al., 2018;
Barkley et al., 2023,
2017; Crippa et al.,
o 2024; Cusworth et
83,400 (£54%) 14,400 - 22,100 al.. 2022:
Maasakkers et al.,
2023; Omara et al.,
2024
Crippa et al., 2024;
Cusworth et al.,
MX045 67,100 (£35%) 36,100 - 65,200 2022; Maasakkers et
al., 2023; Omara et
al., 2024
Alvarez et al., 2018;
Crippa et al., 2024;
Luetal., 2023;
o Maasakkers et al.,
MX010 23,600 (£37%) 9,300 - 26,500 2023: Nesser et al.,
2024; Omara et al.,
2024; Schwietzke et
al., 2017
Alvarez et al., 2018;
Crippa et al., 2024;
0 Maasakkers et al.,
12,500 (+46%) 24,200 - 29,000 2023: Omara et al.,
2024; Peischl et al.,
2018
Alvarez et al., 2018;
Crippa et al., 2024;
Luetal., 2023;
Maasakkers et al.,
38,400 - 62,300 2023; Nesser et al.,
2024; Omara et al.,
2024; Peischl et al.,
2018; Shen et al.,
2022
Alvarez et al., 2018;
Cusworth et al.,
2022; Fried and
Dickerson, 2023;
23,900 - 30,800 Maasakkers et al.,
2023; Omara et al.,
2024; Peischl et al.,
2018; Sherwin et al.,
2023
Alvarez et al., 2018;
Cusworth et al.,
23,700 - 26,600 2022; Fried and
Dickerson, 2023;
Maasakkers et al.,

Appalachian (SW) MXO031 104,500 (£31%)

Appalachian (NE) MX042

Appalachian (SW)

Arkoma Fayetteville

Bakken MXO005

Barnett MXO015 38,100 (+41%)

Denver-Julesburg MXO013 32,700 (£51%)

MXO036 28,700 (£32%)

Denver-Julesburg
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2023; Omara et al.,
2024; Peischl et al.,
2018; Sherwin et al.,
2023
Alvarez et al., 2018;
Cusworth et al.,
2022; Fried and
Dickerson, 2023;
Maasakkers et al.,
2023; Omara et al.,
2024; Peischl et al.,
2018; Sherwin et al.,
2023
Alvarez et al., 2018;
Cusworth et al.,
2022; Fried and
Dickerson, 2023;
Denver-Julesburg MXO051 24,500 (£37%) 24,000 - 31,000 Maasakkers et al.,
2023; Omara et al.,
2024; Peischl et al.,
2018; Sherwin et al.,
2023
Alvarez et al., 2018;
Cusworth et al.,
2022; Fried and
Dickerson, 2023;
Denver-Julesburg MXO061 28,800 (£33%) 23,700 - 29,700 Maasakkers et al.,
2023; Omara et al.,
2024; Peischl et al.,
2018; Sherwin et al.,
2023
Crippa et al., 2024;
Luetal., 2023;
Maasakkers et al.,
2023; Nesser et al.,
22,400 - 39,200 2024; Omara et al.,
2024; Peischl et al.,
2018; Shen et al.,
2022
Crippa et al., 2024;
Luetal., 2023;
Maasakkers et al.,
2023; Nesser et al.,
16,700 - 34,600 2024; Omara et al.,
2024; Peischl et al.,
2018; Shen et al.,
2022
Crippa et al., 2024;
Maasakkers et al.,
3,800 - 7,900 2023; Omara et al.,
2024
Crippa et al., 2024;
Maasakkers et al.,
8,300 - 16,900 2023; Omara et al.,
2024

MX050 31,200 (+34%) 23,900 - 30,100

Denver-Julesburg

Eagle Ford (N) MXO012 28,400 (x49%)

Eagle Ford (S) MXO018 36,400 (£50%)

Greater Green River (S) MXO039-South 14,000 (£34%)

MXO039-East 28,700 (£33%)

Greater Green River (E)
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Haynesville

MX004

35,200 (+35%)

33,000 - 49,300

Crippa et al., 2024;
Luetal., 2023;
Maasakkers et al.,
2023; Nesser et al.,
2024; Omara et al.,
2024; Peischl et al.,
2018; Shen et al.,
2022

Haynesville

MXO016

37,500 (£40%)

32,100 - 51,700

Crippa et al., 2024;
Luetal., 2023;
Maasakkers et al.,
2023; Nesser et al.,
2024; Omara et al.,
2024; Peischl et al.,
2018; Shen et al.,
2022

Haynesville

MXO017

88,100 (£35%)

40,000 - 56,900

Crippa et al., 2024;
Luetal., 2023;
Maasakkers et al.,
2023; Nesser et al.,
2024; Omara et al.,
2024; Peischl et al.,
2018; Shen et al.,
2022

Permian (Delaware)

MX023

136,400 (£32%)

53,700 - 76,800

Crippa et al., 2024;
Cusworth et al.,
2022; Maasakkers et
al., 2023; Nesser et
al., 2024; Omara et
al., 2024; Shen et al.,
2022; Varon et al.,
2023; Veefkind et al.,
2023; Zhang et al.,
2020

Permian (Delaware)

MX024

73,200 (+35%)

66,500 - 76,900

Crippa et al., 2024;
Cusworth et al.,
2022; Maasakkers et
al., 2023; Nesser et
al., 2024; Omara et
al., 2024; Shen et al.,
2022; Varon et al.,
2023; Veefkind et al.,
2023; Zhang et al.,
2020

Permian (Delaware)

MX025

40,800 (£35%)

59,600 - 67,200

Crippa et al., 2024;
Cusworth et al.,
2022; Maasakkers et
al., 2023; Nesser et
al., 2024; Omara et
al., 2024; Shen et al.,
2022; Varon et al.,
2023; Veefkind et al.,
2023; Zhang et al.,
2020

Permian (Midland)

MX026

66,600 (£39%)

52,900 - 73,100

Crippa et al., 2024;
Cusworth et al.,
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2022; Lu et al., 2023;
Maasakkers et al.,
2023; Nesser et al.,
2024; Omara et al.,
2024; Shen et al.,
2022; Varon et al.,

2023; Veefkind et al.,
2023; Zhang et al.,

2020

Permian (Midland)

MX027

23,100 (£57%)

39,800 - 50,500

Crippa et al., 2024;
Luetal., 2023;
Maasakkers et al.,
2023; Nesser et al.,
2024; Omara et al.,
2024; Shen et al.,
2022; Varon et al.,
2023; Veefkind et al.,
2023; Zhang et al.,
2020

Permian (Delaware)

MX056

44,100 (£32%)

46,800 - 60,500

Crippa et al., 2024;
Cusworth et al.,
2022; Maasakkers et
al., 2023; Nesser et
al., 2024; Omara et
al., 2024; Shen et al.,
2022; Varon et al.,
2023; Veefkind et al.,
2023; Zhang et al.,
2020

Permian (Delaware)

MX062

129,100 (£31%)

50,400 - 75,000

Crippa et al., 2024;
Cusworth et al.,
2022; Maasakkers et
al., 2023; Nesser et
al., 2024; Omara et
al., 2024; Shen et al.,
2022; Varon et al.,
2023; Veefkind et al.,
2023; Zhang et al.,
2020

Permian (Midland)

MX063

60,000 (+51%)

46,400 - 64,900

Crippa et al., 2024;
Cusworth et al.,
2022; Lu et al., 2023;
Maasakkers et al.,
2023; Nesser et al.,
2024; Omara et al.,
2024; Shen et al.,
2022; Varon et al.,
2023; Veefkind et al.,
2023; Zhang et al.,
2020

Piceance

MXO035

49,800 (£31%)

9,300 - 16,600

Crippa et al., 2024;
Luetal., 2023;
Maasakkers et al.,
2023; Nesser et al.,
2024; Omara et al.,
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2024; Shen et al.,
2022
Crippa et al., 2024;
Luetal., 2023;
Maasakkers et al.,
Piceance MX037-01 15,800 (£33%) 3,400 - 5,400 2023; Nesser et al.,
2024; Omara et al.,
2024; Shen et al.,
2022
Crippa et al., 2024;
Cusworth et al.,
2022; Lin et al.,
2021; Maasakkers et
al., 2023; Omara et
al., 2024; Shen et al.,
2022; Sherwin et al.,
2023
Crippa et al., 2024;
Maasakkers et al.,
Uinta MX037-02 11,700 (+34%) 8,900 - 9,500 2023; Omara et al.,
2024; Shen et al.,
2022

Uinta MX022 31,600 (+33%) 53,700 - 76,800

S8. Observed vs modeled XCHs enhancement for all MethaneAIR data used in analysis
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Figure S5: Observed vs modeled XCH4 enhancement for all MethaneAIR flights. The black dashed line shows the
major axis regression, showing a good fit (r = 0.8). The 1:1 relationship is shown as the red dashed line.
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