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Abstract. Organic aerosols (OA) are key components of wintertime urban haze, but the relationship between
their oxidation state and volatility – critical for understanding aerosol evolution and improving model predictions
– remains poorly constrained. While oxidation–volatility decoupling has been observed in laboratory studies,
field-based evidence under real-world conditions is scarce, particularly during severe haze episodes. This study
presents a field-based investigation of OA sources and their volatility characteristics in Seoul during a winter
haze period, using a thermodenuder coupled with a high-resolution time-of-flight aerosol mass spectrometer
(HR-ToF-AMS).

Positive matrix factorization resolved six OA factors: hydrocarbon-like OA, cooking, biomass burning,
nitrogen-containing OA (NOA), less-oxidized oxygenated OA (LO-OOA), and more-oxidized OOA (MO-OOA).
Despite having the highest oxygen-to-carbon ratio (∼ 1.15), MO-OOA exhibited unexpectedly high volatility,
indicating a decoupling between oxidation state and volatility. We attribute this to fragmentation-driven ag-
ing and autoxidation under stagnant conditions with limited OH exposure. In contrast, LO-OOA showed lower
volatility and more typical oxidative behavior.

Additionally, NOA – a rarely resolved factor in wintertime field studies – was prominent during cold, humid,
and stagnant conditions and exhibited chemical and volatility features similar to biomass burning OA, suggesting
a shared combustion origin and meteorological sensitivity.

These findings provide one of the few field-based demonstrations of oxidation–volatility decoupling in am-
bient OA and highlight how source-specific properties and meteorology influence OA evolution. The results
underscore the need to refine OA representation in chemical transport models, especially under haze conditions.

1 Introduction

Atmospheric aerosols affect both human health and the en-
vironment by reducing visibility (Ghim et al., 2005; Zhao
et al., 2013) and contributing to cardiovascular and respira-
tory diseases (Hamanaka and Mutlu, 2018; Manisalidis et al.,
2020). In addition, aerosols play a significant role in climate
change by scattering or absorbing solar radiation and mod-
ifying cloud properties (IPCC, 2021). Among the various

aerosol components – including sulfate, nitrate, ammonium,
chloride, crustal materials, and water – organic aerosols (OA)
are particularly important to characterize, as they account for
20 %–90 % of submicron particulate matter (Zhang et al.,
2007). Identifying OA sources and understanding their be-
havior are critical for effective air quality management; how-
ever, this is particularly challenging due to the vast diver-
sity and dynamic nature of OA compounds, which originate
from both natural and anthropogenic sources. Unlike inor-
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ganic aerosols, organic aerosols (OAs) evolve continuously
through complex atmospheric reactions, influenced by emis-
sion sources, meteorological conditions, and aerosol proper-
ties (Jimenez et al., 2009; Hallquist et al., 2009; Robinson et
al., 2007; Donahue et al., 2006; Ng et al., 2010; Cappa and
Jimenez, 2010).

Volatility is a key parameter for characterizing or-
ganic aerosol (OA) properties, as it governs gas-to-
particle partitioning behavior and directly influences par-
ticle formation yields (Sinha et al., 2023). The classifica-
tion of OA species based on their volatility – from ex-
tremely low-volatility (ELVOC) to semi-volatile (SVOC)
and intermediate-volatility (IVOC) compounds – is central
to the conceptual framework of secondary OA (SOA) for-
mation and growth (Donahue et al., 2006). It also affects
atmospheric lifetimes and human exposure by determining
how long aerosols remain suspended in the atmosphere (Gla-
sius and Goldstein, 2016). Therefore, accurately capturing
OA volatility is essential for improving predictions of OA
concentrations and their environmental and health impacts.
However, chemical transport models often significantly un-
derestimate OA mass compared to observations (Jiang et al.,
2012; Li et al., 2017), largely due to incomplete precursor
inventories and simplified treatment of processes affecting
OA volatility. For instance, aging – through oxidation re-
actions such as functionalization and fragmentation – can
significantly alter volatility by changing OA chemical struc-
ture (Robinson et al., 2007; Zhao et al., 2016). Early volatil-
ity studies primarily utilized thermal denuders (TD) coupled
with various detection instruments to investigate the thermal
properties of bulk OA (Huffman et al., 2008). The subse-
quent coupling of TD with the Aerosol Mass Spectrome-
ter allowed for component-resolved volatility measurements,
providing critical, quantitative insight into the properties of
OA factors (e.g., SV-OOA vs. LV-OOA) across different re-
gions (Paciga et al., 2016; Cappa and Jimenez, 2010). These
component-resolved volatility data are often used to con-
strain the Volatility Basis Set (VBS) – the current state-of-
the-art framework for modeling OA partitioning and evolu-
tion (Donahue et al., 2006). However, a limitation in many
field studies is that the TD-AMS thermogram data are rarely
translated into quantitative VBS distributions for individual
OA factors, which limits their direct use in chemical trans-
port models. Furthermore, the volatility of OOA during ex-
treme haze conditions, where the expected inverse correla-
tion between oxidation (O : C) and volatility can break down
(Jimenez et al., 2009), remains poorly characterized, partic-
ularly in East Asia’s highly polluted winter environments. A
recent study in Korea further highlighted the importance of
accounting for such processes when interpreting OA volatil-
ity under ambient conditions (Kang et al., 2022). Given its
central role in OA formation, reaction, and atmospheric per-
sistence, volatility analysis is critical for bridging the gap be-
tween measurements and model performance.

Traditionally, due to the complexity and variability of OA,
the oxygen-to-carbon (O : C) ratio has been used as a proxy
for estimating volatility. In general, higher O : C values in-
dicate greater oxidation and lower volatility (Jimenez et al.,
2009). Accordingly, many field studies classify oxygenated
OA (OOA) into semi-volatile OOA (SV-OOA) and low-
volatility OOA (LV-OOA) based on their O : C ratios (Ng et
al., 2010; Huang et al., 2010; Mohr et al., 2012). However,
this relationship is not always straightforward. Fragmenta-
tion during oxidation can increase both O : C and volatility
simultaneously, disrupting the expected inverse correlation
(Jimenez et al., 2009). In laboratory experiments, yields of
highly oxidized SOA have been observed to decrease due
to fragmentation (Xu et al., 2014; Grieshop et al., 2009).
These findings suggest that while O : C can offer useful in-
sights, it is insufficient alone to represent OA volatility. Di-
rect volatility measurements, especially when paired with
chemical composition data, are necessary to improve our un-
derstanding of OA sources and aging processes.

In this study, we investigate the sources and volatility
characteristics of OA in Seoul during winter. Wintertime
OA presents additional challenges due to its high complex-
ity. During winter, emissions from combustion sources such
as biomass burning and residential heating significantly in-
crease, contributing large amounts of primary OA (Kim et
al., 2017). Meanwhile, low ambient temperatures and re-
duced photochemical activity affect the formation and evo-
lution of secondary OA (SOA). Frequent haze events fur-
ther complicate the aerosol properties by extending aging
times and increasing particle loadings. These overlapping
sources and atmospheric conditions make winter OA particu-
larly difficult to characterize and predict. Despite Seoul’s sig-
nificance for air quality management, comprehensive stud-
ies on OA volatility during winter remain limited. To ad-
dress these goals, we conducted real-time, high-resolution
measurements using a high-resolution time-of-flight aerosol
mass spectrometer (HR-ToF-AMS) coupled with a thermod-
enuder (TD). The objectives of this study are to: (1) improve
the understanding of wintertime OA in Seoul, (2) character-
ize the volatility of OA associated with different sources, and
(3) explore the relationship between OA volatility and chem-
ical composition.

2 Experimental methods

2.1 Sampling site and measurement period

We conducted continuous real-time measurements in Seoul,
South Korea, from 28 November to 28 December 2019. The
sampling site was located in the northeastern part of the city
(37.60° N, 127.05° E), approximately 7 km from the city cen-
ter, surrounded by major roadways and mixed commercial–
residential land use. Air samples were collected at an eleva-
tion of approximately 60 m above sea level, on the fifth floor
of a building. A detailed site description has been reported

Atmos. Chem. Phys., 26, 1145–1161, 2026 https://doi.org/10.5194/acp-26-1145-2026



H. Kim et al.: Source-resolved volatility and oxidation state decoupling in wintertime OAs in Seoul 1147

previously for winter Seoul (Kim et al., 2017). During this
period, the average ambient temperature was 1.76± 4.3 °C,
and the average relative humidity (RH) was 56.9± 17.5 %,
based on data from the Korea Meteorological Administration
(http://www.kma.go.kr, last access: 15 January 2026).

2.2 Instrumentation and measurements

The physico-chemical properties of non-refractory PM1
(NR-PM1) species – including sulfate, nitrate, ammonium,
chloride, and organics – were measured using an Aero-
dyne high-resolution time-of-flight aerosol mass spectrom-
eter (HR-ToF-AMS) (DeCarlo et al., 2006). PM1 mass in
this study is taken as NR-PM1 (from AMS)+ black carbon
(BC; measured by MAAP), which is appropriate for winter
Seoul where refractory PM1 (metal/sea-salt/crustal) is mi-
nor and dust events were excluded (e.g., Kim et al., 2017;
Nault et al., 2018; Kang et al., 2022; Jeon et al., 2023).Data
were acquired at 2.5 min intervals, alternating between V
and W modes. The V mode provides higher sensitivity but
lower resolution, suitable for mass quantification, whereas
the W mode offers higher mass resolution but lower sensitiv-
ity, used here for OA source apportionment. Simultaneously,
black carbon (BC) concentrations were measured at 1 min in-
tervals using a multi-angle absorption photometer (MAAP;
Thermo Fisher Scientific, Waltham, MA, USA). Total PM1
mass was calculated as the sum of NR-PM1 and BC.

Hourly trace gas concentrations (CO, O3, NO2, SO2) were
obtained from the Gireum air quality monitoring station
(37.61° N, 127.03° E), managed by the Seoul Research Insti-
tute of Public Health and Environment. Meteorological data
(temperature, RH, wind speed/direction) were collected from
the nearby Jungreung site (37.61° N, 127.00° E). All data are
reported in Korea Standard Time (UTC+9).

To examine aerosol volatility, a thermodenuder (TD; Enva-
lytix LLC) was installed upstream of the HR-ToF-AMS. De-
tails are provided in Sect. S1 in the Supplement (Kang et al.,
2022). Briefly, ambient flow alternated every 5 min between
a TD line and a bypass line at 1.1 L min−1. Residence time
in the TD line was ∼ 6.3 s. The TD setup included a 50 cm
heating section followed by an adsorption unit. Heated parti-
cles were stripped of volatile species, while the downstream
carbon-packed section prevented recondensation. TD tem-
perature cycled through 12 steps (30 to 200 °C), with each
step lasting 10 min (total cycle= 120 min). AMS V and W
modes were alternated during the same cycle. The heater was
pre-adjusted to the next temperature while the bypass was ac-
tive.

2.3 Data analysis

2.3.1 Data analysis and OA source apportionment

HR-AMS data were processed using SQUIRREL v1.65B
and PIKA v1.25B. Mass concentrations of non-refractory
PM1 (NR-PM1) species were derived from V-mode data,

while high-resolution mass spectra (HRMS) and the elemen-
tal composition of organic aerosols (OA) were obtained from
W-mode data. NR-PM1 quantification followed established
AMS protocols (Ulbrich et al., 2009; Zhang et al., 2011).
Both the bypass and TD streams were processed using a
time-resolved, composition-dependent collection efficiency
CE(t) following Middlebrook et al. (2012). TD heating can
modify particle water and phase state/mixing and thereby in-
fluence CE beyond composition (Huffman et al., 2009), but
prior TD–AMS studies indicate that such effects are modest
and largely multiplicative, which do not distort thermogram
shapes or T50 ordering (Faulhaber et al., 2009; Cappa and
Jimenez, 2010). In our data, the CE(t) statistics for the two
lines were similar (campaign-average CE: TD= 0.55±0.08;
bypass = 0.53± 0.04; 1= 0.02≈ 3.7 %, below the com-
bined uncertainty≈ 0.09). We therefore report volatility met-
rics with these line-specific CE(t) corrections applied and
interpret potential residual CE effects as minor. For organ-
ics,elemental ratios (O : C, H : C, and OM/OC) were cal-
culated using the Improved-Ambient (IA) method (Cana-
garatna et al., 2015). Positive Matrix Factorization (PMF)
was applied to the HRMS of organics using the PMF2 al-
gorithm (v4.2, robust mode) (Paatero and Tapper, 1994).
The HRMS and corresponding error matrices from PIKA
were analyzed using the PMF Evaluation Tool v2.05 (Ul-
brich et al., 2009). Data pretreatment followed established
protocols (Ulbrich et al., 2009; Zhang et al., 2011). A six-
factor solution (fPeak = 0; Q/Q_expected= 3.56) was se-
lected as optimal (Fig. S1). The resolved OA sources in-
cluded hydrocarbon-like OA (HOA; 14 %; O : C= 0.13),
cooking-related OA (COA; 21 %; O : C= 0.18), nitrogen-
enriched OA (NOA; 2 %; O : C= 0.22), biomass-burning
OA (BBOA; 13 %; O : C= 0.25), less-oxidized oxygenated
OA (LO-OOA; 30 %; O : C= 0.68), and more-oxidized oxy-
genated OA (MO-OOA; 20 %; O : C= 1.15) (Figs. S2 and
S3). Alternative five- and seven-factor solutions were also
evaluated. In the five-factor solution, the biomass burning
source was not clearly resolved and appeared to be dis-
tributed across multiple factors. In the seven-factor solution,
BBOA was further split into two separate factors without
clear distinction or added interpretive value, making the six-
factor solution the most physically meaningful and inter-
pretable (Figs. S4 and S5). To ensure the statistical robust-
ness of this solution, we calculated uncertainties for each
PMF factor using the bootstrap method (100 iterations) with
the PET toolkit (v2.05) (EPA, 2014; Waked et al., 2014;
Soleimani et al., 2022) (Table S2 and Fig. S13).

2.3.2 Thermogram and volatility estimation

The chemical composition dependent mass fraction remain-
ing (MFR) was derived at each TD temperature by divid-
ing the corrected mass concentration of the TD line [p] by
the average of the adjacent bypass lines [p− 1] and [p+ 1].
Thermograms were corrected for particle loss, estimated us-
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ing reference substances like NaCl, which exhibit minimal
evaporation (Huffman et al., 2009; Saha et al., 2014; Kang
et al., 2022). OA factor concentrations at each TD tempera-
ture were derived via multivariate linear regression between
post-TD HRMS and ambient OA factor HRMS profiles as
described in Zhou et al., 2017.

Volatility distributions were modeled using the thermod-
enuder mass transfer model from Riipinen et al. (2010) and
Karnezi et al. (2014), implemented in Igor Pro 9 (Kang et al.,
2022). OA mass was distributed into eight logarithmic satu-
ration concentration bins (C*: 1000 to 0.0001 µgm−3). Mod-
eled MFRs were fit to observations using Igor’s “FuncFit”
function, repeated 1000 times per OA factor to determine
best-fit results. The model assumes no thermal decomposi-
tion and includes adjustable parameters: mass accommoda-
tion coefficient (αm) and enthalpy of vaporization (1Hexp),
randomly sampled within literature-based ranges (Table S1).

3 Results and discussion

3.1 Overview of PM1 composition and OA sources

We conducted continuous measurements from 28 Novem-
ber to 28 December 2019, characterizing a winter pe-
riod with a mean PM1 concentration of 27.8± 15.3 µgm−3.
This concentration is characterized as moderate; it closely
matches historical winter PM1 means in Seoul (Kim et
al., 2017) and implies an equivalent PM2.5 concentration is
about 34.8 µgm−3 (using a Korea-specific PM1 /PM2.5 ≈

0.8 (Kwon et al., 2023), which is near the national 24 h PM2.5
standard (35 µgm−3) (AirKorea). The full co-evolution of
PM1, gaseous pollutants, and meteorological conditions is
provided in Fig. S6, showing an average ambient tempera-
ture of 1.76± 4.3 °C and average relative humidity (RH) of
56.9± 17.5 % during the study.

Figure 1 summarizes the overall non-refractory submi-
cron aerosol (NR-PM1) composition and the identified OA
factors. Organics (41 %) and nitrate (30 %) were the most
abundant chemical components of PM1, followed by am-
monium (12 %), sulfate (10 %), BC (5 %), and chloride
(3 %) (Fig. 1a). Among the organic aerosols, six OA fac-
tors were identified during the winter of 2019: hydrocarbon-
like OA (HOA; 14 %; O : C= 0.13), cooking-related OA
(COA; 21 %; O : C= 0.18), nitrogen-enriched OA (NOA;
2 %; O : C= 0.22), biomass burning OA (BBOA; 13 %;
O : C= 0.25), and two types of secondary organic aerosols
– less-oxidized oxygenated OA (LO-OOA; 30 %; O : C=
0.68) and more-oxidized oxygenated OA (MO-OOA; 20 %;
O : C= 1.15) (Figs. 1e and S2). These compositions are
consistent with previous wintertime observations in Kim et
al. (2017), with the exception of newly resolved NOA source.
In the following sections, we describe each OA factor in the
order of secondary OA (SOA), primary OA (POA) and fi-
nally introduce NOA, which – while related to combustion

POA – emerged as a distinct, nitrogen-rich factor under the
winter conditions of this study.

PM1 mass concentrations varied widely, ranging from 4.61
to 91.4 µgm−3, largely due to two severe haze episodes
that occurred between 7–12 December and 22–26 Decem-
ber (Fig. 1). During these episodes, average concentrations
increased significantly, driven primarily by elevated levels
of nitrate and organic aerosols – particularly MO-OOA and
NOA (Fig. 1f, g). Back-trajectory clustering shows frequent
short-range recirculation over the Seoul Metropolitan Area
during haze (Cluster 1; Fig. S8), and the time series indi-
cates persistently low surface wind speeds during these peri-
ods (1.73±0.89 vs. 2.34±1.18 (clean)) (Fig. S6). These pat-
terns indicate stagnation-driven accumulation of local emis-
sions, consistent with the simultaneous increase of MO-OOA
and NOA that are examined in detail in subsequent sections.
Such haze episodes, characterized by local emission buildup
and secondary aerosol production, are a typical wintertime
feature, as also reported in Kim et al. (2017).

3.1.1 Secondary organic aerosols (SOA)

In this study, two OOA factors – more-oxidized OOA (MO-
OOA) and less-oxidized OOA (LO-OOA) – were identified,
together accounting for approximately half of the total or-
ganic aerosol (OA) mass. This fraction is notably higher than
that reported in previous wintertime urban studies (Kim et
al., 2017; Zhang et al., 2007). Both OOAs exhibited char-
acteristic mass spectral features, including prominent peaks
at m/z 44 (CO+2 ) and m/z 43 (C2H3O+), which are widely
recognized as markers of oxygenated organics (Figs. S2e,
S3f). The oxygen-to-carbon (O : C) ratios for MO-OOA and
LO-OOA were 1.15 and 0.68, respectively, indicating both
factors are highly oxidized relative to the primary OA fac-
tors (HOA, COA, BBOA) and that MO-OOA is substantially
more oxidized than LO-OOA. The O : C ratio of MO-OOA
was especially elevated, exceeding those reported in previous
Seoul campaigns – 0.68 in winter 2015 (Kim et al., 2017),
0.99 in spring 2019 (Kim et al., 2020), and 0.78 in fall 2019
(Jeon et al., 2023) – while the LO-OOA ratio was within a
similar range.

MO-OOA showed strong correlations with secondary in-
organic species such as nitrate (r = 0.90), ammonium (r =
0.92), and sulfate (r = 0.81), consistent with its formation
through regional and local photochemical aging processes
(Fig. S3). In contrast, LO-OOA exhibited only modest corre-
lations with sulfate, nitrate, and ammonium (r = 0.50, 0.51,
and 0.42, respectively). This weaker coupling indicates that
LO-OOA represents a less aged oxygenated OA component
(fresh SOA), distinguishable from the more aged, highly pro-
cessed MO-OOA which tracks closely with secondary in-
organic species. Regarding potential primary influence, LO-
OOA does not exhibit a pronounced m/z 60 (levoglucosan)
signal (Figs. S2 and 9). While the levoglucosan marker (f 60)
is known to diminish with atmospheric aging and can become
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Figure 1. Compositional pie charts of PM1 species for (a) the entire study period, (b) haze period 1, (c) haze period 2, and (d) a clean
period; and of each OA source for (e) the entire study period, (f) haze period 1, (g) haze period 2, and (h) the clean period. Table: Standard
and average PM1 mass concentrations during the entire study period, haze period 1, haze period 2, and the clean period.

weak or undetectable downwind (Hennigan et al., 2010; Cu-
bison et al., 2011), the absence of a distinct peak combined
with the separation from inorganic salts suggests that LO-
OOA is best characterized as freshly formed secondary or-
ganic aerosol likely originating from the rapid oxidation of
local anthropogenic precursors.

3.1.2 Primary organic aerosols (POA)

Three primary organic aerosol (POA) factors were identified
in this study: hydrocarbon-like OA (HOA), cooking-related
OA (COA), and biomass burning OA (BBOA). These three
components exhibited mass spectral and temporal charac-
teristics consistent with previous observations in Seoul and
other urban environments. HOA was characterized by domi-
nant alkyl fragment ions (CnH+2n+1 and CnH+2n−1; Fig. S2a)
and a low O : C ratio (0.13), consistent with traffic-related
emissions (0.05–0.25) (Canagaratna et al., 2015). It showed
strong correlations with vehicle-related ions C3H+7 (r =

0.79) and C4H+9 (r = 0.86) (Kim et al., 2017; Canagaratna et
al., 2004; Zhang et al., 2005), and exhibited a distinct morn-
ing rush hour peak (06:00–08:00), followed by a decrease
likely driven by boundary layer expansion (Fig. S3a).

COA, accounting for 21 % of OA, showed higher contri-
butions from oxygenated ions than HOA, with tracer peaks at
m/z 55,84 and 98 (Fig. S2b) consistent with cooking emis-
sions (Sun et al., 2011). COA showed an enhanced signal
at m/z 55 relative to m/z 57, with a 55/57 ratio of 3.11,
substantially larger than that of HOA (1.10). This elevated
ratio is consistent with previously reported AMS COA spec-
tra in urban environments (e.g., Allan et al., 2010; Mohr et
al., 2012; Sun et al., 2011), supporting our factor assign-
ment. It correlated strongly with cooking-related ions such
as C3H3O+ (r = 0.94), C5H8O+ (r = 0.96), and C6H10O+

(r = 0.98) (Fig. S3h), and displayed prominent peaks during
lunch and dinner hours, reflecting typical cooking activity
patterns.
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BBOA was identified based on characteristic ions at
m/z 60 (C2H4O+2 ) and 73 (C3H5O+), both of which are as-
sociated with levoglucosan – a well-established tracer for
biomass burning (Simoneit, 2002). Its relatively high f 60
and low f 44 values (Fig. S9) indicate that the BBOA ob-
served in this study was relatively fresh and had not un-
dergone extensive atmospheric aging (Cubison et al., 2011).
Regarding source location, several pathways can influence
Seoul’s biomass burning signature. First, urban/peri-urban
small-scale burning (e.g., solid-fuel use in select households,
restaurant charcoal use, and intermittent waste burning) has
been reported and can enhance BBOA locally (Kim et al.,
2017). Second, nearby agricultural-residue burning in sur-
rounding provinces occurs seasonally and can episodically
impact the metropolitan area (Han et al., 2022). Third, re-
gional transport from upwind regions (e.g., northeastern Chi-
na/North Korea) can bring biomass burning influenced air
masses under northerly/northwesterly flow (Lamb et al.,
2018; Nault et al., 2018). In this dataset, the nighttime and
early-morning enhancements and trajectory clusters showing
regional recirculation indicate a predominantly local/near-
source contribution during the study period, with episodic
non-local influences remaining possible (Fig. S8).

Nitrogen-containing organic aerosol (NOA)

A distinct nitrogen-containing organic aerosol (NOA) factor
was resolved in this study, whereas earlier wintertime AMS–
PMF analyses in Seoul did not isolate such a component. The
NOA factor exhibited the highest nitrogen-to-carbon (N : C)
ratio (0.22) and the lowest oxygen-to-carbon (O : C) ratio
(0.19) among all POA factors (Fig. S2), indicating a chem-
ically reduced, nitrogen-rich composition. The NOA mass
spectrum was dominated by amine-related fragments includ-
ing m/z 30 (CH+4 N+), 44 (C+2 H+6 N+), 58 (C+3 H+8 N+), and
86 (C+5 H+12N+) (Fig. 3a). The spectral signature of the fac-
tor is defined by the characteristic dominance of the m/z 44
fragment, which typically serves as the primary marker for
dimethylamine (DMA)-related species, closely followed by
m/z 58 (trimethylamine, TMA) and m/z 30 (methylamine,
MA). This profile is in strong agreement with NOA factors
resolved via PMF in other polluted environments. For in-
stance, the dominance of m/z 44 and m/z 30 aligns with
amine factors reported in New York City (Sun et al., 2011)
and Pasadena, California (Hayes et al., 2013). This DMA-
dominated signature is also consistent with seasonal charac-
terization of organic nitrogen in Beijing (Xu et al., 2017) and
Po Valley, Italy (Saarikoski et al., 2012), reinforcing the com-
mon chemical signature of reduced organic nitrogen across
diverse urban and regional environments.

In this study, NOA contributed approximately 2 % of
total OA, comparable to urban contributions reported in
Guangzhou (3 %; Chen et al., 2021), Pasadena (5 %; Hayes
et al., 2013), and New York (5.8 %; Sun et al., 2011). These
similarities suggest that the NOA factor observed in Seoul

reflects a broader class of urban wintertime reduced-nitrogen
aerosols rather than a site-specific anomaly. Furthermore, the
presence of non-negligible signals atm/z 58 andm/z 86 sup-
ports the contribution of slightly larger alkylamines, a pattern
that aligns well with established AMS laboratory reference
spectra (Ge et al., 2011a; Silva et al., 2008). In most urban
environments, the detectability of NOA appears to depend
strongly on the interplay between emission strength, stagna-
tion, and humidity – which together govern the particle-phase
partitioning of volatile amines.

These amines are commonly emitted during the combus-
tion of nitrogen-rich biomass and proteinaceous materials
and are frequently associated with biomass-burning emis-
sions (Ge et al., 2011a). Previous molecular analyses in
Seoul also indicate DMA, MA, and TMA as the dominant
amine species in December (Baek et al., 2022). While other
amines such as triethylamine (TEA), diethylamine (DEA),
and ethylamine (EA) may contribute via industrial/solvent
pathways (e.g., chemical manufacturing, petrochemical cor-
ridors, wastewater treatment), our HR-AMS spectra are dom-
inated by small alkylamine fragments (m/z 30, 44, 58, 86)
and the diurnal behavior co-varies with combustion markers
(Fig. 2), indicating a primarily combustion-linked influence.
Nevertheless, recent urban measurements and sector-based
analyses show that industrial activities can contribute mea-
surable amines in cities (Tiszenkel et al., 2024; Zheng et al.,
2015; Mao et al., 2018; Shen et al., 2017; Liu et al., 2023).
Accordingly, a minor NOA contribution from solvent/indus-
trial amines cannot be excluded. NOA exhibited a nighttime–
early-morning enhancement (Fig. 2a), similar to BBOA, in-
dicating that both factors are influenced by wintertime com-
bustion and residential heating, which are known sources of
small alkylamines and amides (You et al., 2014; Liu et al.,
2023). Strong correlations of NOA with CH4N+ (r = 0.95)
and C2H6N+ (r = 0.91) (Fig. 2) further support the presence
of reduced-nitrogen species associated with these combus-
tion activities. However, the time series of NOA and BBOA
are not strongly correlated (Figs. 2 and S7). This contrast re-
flects their differing behaviors: BBOA follows a relatively
regular daily emission pattern, whereas NOA appears pre-
dominantly during stagnant haze periods (Fig. 1) when cold,
humid, and low-wind conditions allow semi-volatile amines
to partition to the particle phase and form low-volatility
aminium salts. Thus, NOA in wintertime Seoul likely reflects
a combination of shared primary combustion influences and
enhanced secondary processing of amine-containing precur-
sors under meteorological conditions that favor partitioning
and accumulation.

Detection of particulate NOA using real time measure-
ment has been challenging due to its low concentration
and high volatility. Although Baek et al. (2022) identified
nitrogen-containing species in Seoul via year-round filter-
based molecular analysis, PMF-based resolution of NOA
in real time has not been previously reported. The success-
ful identification in this study is likely attributable to favor-
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Figure 2. (a) Diurnal mean profiles of NOA and BBOA. Whiskers denote the 90th and 10th percentiles; box edges represent the 75th and
25th percentiles; the horizontal line indicates the median, and the colored marker shows the mean. The diurnal correlation between NOA and
BBOA mean values is 0.63. (b) Relative humidity (RH)-binned nighttime (19:00–05:00) profile of NOA. Box and whisker definitions are the
same as in panel (a). (c) Time series of NOA, BBOA, and amine-related ions (CH4N+, C2H6N+, C3H8N+, C5H12N+), along with their
correlations with NOA and BBOA.

able winter meteorological conditions – specifically low tem-
peratures (−0.24 °C) and persistently high relative humidity
(∼ 57 %) compared to the 2017 winter season (Kim et al.,
2017) – that enhanced gas-to-particle partitioning of semi-
volatile amines, thereby enabling their detection (Fig. S2).
NOA concentrations frequently exceeded 1 µgm−3 when RH
surpassed 60 % (Fig. 2), supporting the importance of RH-
driven partitioning and the subsequent formation of low-
volatility aminium salts (Rovelli et al., 2017). Although ex-
tremely low temperatures may inhibit NOA formation due to
the transition of aerosol particles into solid phase (Ge et al.,
2011b; Srivastava et al., 2022), the combination of consis-
tently cold and humid conditions during the measurement pe-
riod likely promoted the partitioning of semi-volatile amines
into the particle phase. In addition, episodic haze events fur-
ther elevated NOA levels, increasing its contribution to OA
from 1 % during clean periods to as much as 3 % (Fig. 1f–h).
These high-concentration events likely improved the signal-
to-noise ratio, facilitating PMF resolution. Back-trajectory
clustering indicates that NOA-enhanced events were domi-
nated by short-range recirculation (Cluster 1; Fig. S7), con-
sistent with the short atmospheric lifetimes and high reactiv-
ity of alkylamines (Nielsen et al., 2012; Yu and Luo, 2014).
Overall, the factor reflects semi-volatile, reduced-nitrogen
species originating from primary urban combustion sources,
with their observed particle-phase mass amplified by rapid
secondary partitioning and salt formation under seasonally
favorable conditions.

3.2 Volatility of non-refractory species

Figure 4 presents thermograms of non-refractory (NR)
species measured by HR-ToF-AMS. The mass fraction re-
maining (MFR) after thermodenuder (TD) treatment follows
the typical volatility trend reported in previous studies (Xu
et al., 2016; Kang et al., 2022; Jeon et al., 2023; Huffman
et al., 2009): nitrate was the most volatile, followed by chlo-
ride, ammonium, organics, and sulfate. Nitrate showed the
steepest decline with increasing temperature, with a T 50
of ∼ 67 °C – substantially higher than that of pure ammo-
nium nitrate (∼ 37 °C; Huffman et al., 2009). At 200 °C,
∼ 2 % of the initial nitrate signal remained (Fig. 4). Since
pure ammonium nitrate fully evaporates well below this tem-
perature (Huffman et al., 2009), this small residual frac-
tion likely represents the least volatile portion of organic ni-
trates. Compared to previously reported fall conditions (T 50
∼ 73 °C, incomplete evaporation), winter nitrate appeared
more volatile, indicating relatively fewer non-volatile nitrate
forms (e.g., Kang et al., 2022; Jeon et al., 2023). Sulfate
exhibited the highest thermal stability among the measured
species. The thermogram showed a relatively stable mass
fraction (MFR > 0.8) up to ∼ 130 °C, followed by a sharp
decline at temperatures above 140 °C (Fig. 4). This profile
is consistent with the typical volatilization behavior of am-
monium sulfate in TD-AMS, which requires higher temper-
atures to evaporate compared to nitrate or organics (Huffman
et al., 2009). At 200 °C, approximately 25 % of the sulfate
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Figure 3. Mass spectra of (a) the NOA factor resolved by PMF analysis in this study, and reference spectra of amines from the NIST library:
(b) dibutylamine (DBA), (c) dimethylamine (DMA), (d) methylamine (MA), and (e) trimethylamine (TMA). In panels (b)–(e), the left y axis
indicates the contribution of CHN-containing ions in the NOA factor (% of total), while the right y axis shows the relative intensity of each
compound’s mass spectrum from the NIST library.

mass remained. This residual suggests the presence of a sul-
fate fraction with lower volatility than pure ammonium sul-
fate, likely associated with organosulfates or low-volatility
mixtures, whereas refractory metal sulfates are not efficiently
detected by the AMS (Canagaratna et al., 2007). Ammonium
showed intermediate volatility, with T 50 between nitrate and
sulfate. Its slightly lower winter T 50 suggests stronger ni-
trate association. Residual ammonium at 200 °C was consis-

tent (∼ 4 %) in previously reported spring/fall measurements
(Kang et al., 2022; Jeon et al., 2023). Chloride volatility was
broadly consistent with prior AMS studies, with T 50 val-
ues comparable across seasons (e.g., Xu et al., 2016; Jeon et
al., 2023). The near-complete evaporation observed in winter
(∼ 4 % residual at 200 °C, Fig. 4) indicates that the chloride
measured here was dominated by volatile inorganic chloride,
specifically ammonium chloride (NH4Cl), which fully evap-
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Figure 4. Mass fraction remaining (MFR) of non-refractory (NR)
aerosol species measured in Seoul using a thermodenuder coupled
to a high-resolution time-of-flight aerosol mass spectrometer (HR-
ToF-AMS). Winter 2019 (this study; dashed) is compared with fall
2019 (previously reported; solid) (Jeon et al., 2023).Species in-
clude organics (magenta), nitrate (blue), sulfate (orange), ammo-
nium (green), and chloride (red).

orates at relatively low temperatures (Huffman et al., 2009).
By contrast, metal chlorides (e.g., NaCl, KCl) are refractory
and far less volatile; they are also poorly detected by the
AMS (Canagaratna et al., 2007). The lower residual in win-
ter compared to fall (∼ 10 %) therefore suggests that win-
tertime chloride consisted almost exclusively of pure ammo-
nium chloride, whereas the fall samples may have contained
a minor fraction of less volatile or refractory chloride species.
Organics exhibited moderate volatility (T 50∼ 120 °C), and
their thermogram showed a gradual, continuous decrease in
mass fraction with increasing TD temperature. This smooth
profile reflects the presence of a broad distribution of or-
ganic compounds spanning SVOC to LVOC ranges, in con-
trast to inorganic species such as nitrate or ammonium chlo-
ride, which often show more abrupt losses at characteristic
temperatures (Huffman et al., 2009; Xu et al., 2016). This
behavior is consistent with previous TD-AMS observations
in Seoul during spring and fall (Kang et al., 2022; Jeon et al.,
2023).

Volatility profiles of organic sources

Figure 5 presents the volatility distributions of six OA
sources within the volatility basis set (VBS) framework.
Volatility is expressed as the effective saturation concentra-
tion (C*, µgm−3), where higher C* values correspond to
higher volatility. Following Donahue et al. (2009), C* values
are categorized into four bins: extremely low-volatility or-
ganic compounds (ELVOCs, log C∗ <−4.5), low-volatility
organic compounds (LVOCs, −4.5< logC∗ <−0.5), semi-
volatile organic compounds (SVOCs, −0.5< logC∗ < 2.5),

Figure 5. Two-dimensional volatility basis set (2D-VBS) rep-
resentation of organic aerosol (OA) sources identified in winter
2019 in Seoul. The plot illustrates the relationship between the
oxygen-to-carbon (O : C) ratio and the effective saturation con-
centration (C*) for each OA source resolved via positive ma-
trix factorization (PMF). Solid circles represent the volatility dis-
tribution across C* bins, with marker size proportional to the
mass fraction within each bin for the given source. Shaded re-
gions correspond to different volatility classes: extremely low-
volatility organic compounds (ELVOCs), low-volatility organic
compounds (LVOCs), semi-volatile organic compounds (SVOCs),
and intermediate-volatility organic compounds (IVOCs), delineated
by their C* values.

and intermediate-volatility organic compounds (IVOCs,
2.5< logC∗ < 6.5).

Among the primary OA (POA) sources, hydrocarbon-like
OA (HOA) exhibited the highest volatility, with mass pre-
dominantly distributed in the SVOC and IVOC ranges, con-
sistent with its chemically reduced nature (O : C= 0.13) and
direct combustion origin. Mass fraction remaining (MFR)
results (Fig. S9) further support this, showing rapid mass
loss at lower temperatures. Biomass burning OA (BBOA)
and nitrogen-containing OA (NOA) also showed high volatil-
ity, peaking in the SVOC–IVOC range (logC∗ = 1–3), but
displayed slightly higher O : C ratios (0.25 and 0.19, re-
spectively). This modest enhancement in O : C reflects their
source composition – biomass combustion produces par-
tially oxygenated organic species (e.g., levoglucosan, phe-
nols), and NOA contains nitrogen-bearing functional groups
– rather than enhanced atmospheric oxidation. Cooking-
related OA (COA) showed a more moderate volatility pro-
file, with mass more evenly distributed across the LVOC
and SVOC bins. This behavior differs from that of BBOA,
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which is slightly more oxidized yet more volatile. This ap-
parent decoupling between oxidation state and volatility is a
characteristic feature of COA reported in previous volatility
studies (Paciga et al., 2016; Kang et al., 2022). These stud-
ies attribute the lower volatility of COA to its abundance of
high-molecular-weight fatty acids (e.g., oleic, palmitic, and
stearic acids) and glycerides (Mohr et al., 2009; He et al.,
2010). Unlike the smaller, fragmented molecules typical of
biomass burning, these lipid-like compounds possess high
molar masses that suppress volatility, even though their long
alkyl chains result in low O : C ratios.

For secondary OA (SOA), less-oxidized oxygenated OA
(LO-OOA) exhibited the lowest volatility, with substantial
mass in the LVOC and ELVOC bins (C∗ ≈ 10−3–10−4). This
is in agreement with previous findings in Seoul during spring
(Kang et al., 2022). In contrast, more-oxidized OOA (MO-
OOA), despite its higher oxidation state (O : C= 1.15), dis-
played greater volatility, with a peak at C∗ ≈ 101. This dis-
crepancy likely reflects differences in formation and aging
processes, as discussed further in Sect. 3.3.

Overall, the volatility characteristics across OA factors
suggest that oxidation state alone does not fully explain
volatility. Rather, volatility is shaped by a combination of
emission source, emission timing, temperature, and atmo-
spheric processing. These findings highlight the importance
of integrating both chemical and physical characterization to
better understand OA formation and aging across seasons.

3.3 Aging effect on volatility from 2D VBS

Generally, the oxygen-to-carbon (O : C) ratio of organic
aerosols (OA) is inversely related to their volatility. As O : C
increases through aging, the effective saturation concentra-
tion (C*) typically decreases, resulting in lower volatility
(Donahue et al., 2006; Jimenez et al., 2009). This relation-
ship arises because oxidative functionalization introduces
polar groups (e.g., hydroxyl, carboxyl) that increase molec-
ular weight and enhance intermolecular hydrogen bonding,
thereby reducing the effective saturation concentration (C*)
and promoting particle-phase retention (Jimenez et al., 2009;
Kroll and Seinfeld, 2008; Donahue et al., 2011). However, in
this study, the most oxidized OA factor – MO-OOA, with a
high O : C ratio of 1.15 – exhibited unexpectedly high volatil-
ity. Its volatility distribution was skewed toward SVOCs and
IVOCs (Fig. 5), and its rapid mass loss in MFR thermo-
grams (Fig. S9) further indicated low thermal stability. This
observation appears to contradict the usual inverse O : C–
volatility relationship; however, under winter haze conditions
– with suppressed O3/low OH, particle-phase autoxidation
and fragmentation can yield higher-O : C yet more volatile
products, with enhanced condensation on abundant particle
surface area (details below).

Figure 6. Scatterplot of f 44 (CO+2 ) versus f43 (C2H3O+). for
the measured organic aerosol. The data points are color-coded by
date to illustrate the temporal variation in OA composition through-
out the observation period. The separated OA factors (HOA, COA,
BBOA, NOA, LO-OOA, and MO-OOA) are also shown to enable
comparison of source contributions and oxidation characteristics.
The dashed line represents the typical f 60 threshold associated with
biomass-burning influence, while the triangular boundary indicates
the conventional oxidative aging trend in the f 44–f 60 space.

Viewed against prior TD-AMS results, the volatility of
Seoul’s winter MO-OOA presents a unique case, particu-
larly in the nature of its O : C-volatility relationship. Prior ur-
ban studies have commonly reported substantial SVOC-OA,
consistent with high photochemical activity or elevated load-
ings; for example, prior TD-AMS studies in Mexico City,
Los Angeles, Beijing, and Shenzhen have all reported sub-
stantial SVOC–IVOC contributions during polluted periods,
indicating that high OA volatility is a common feature of ur-
ban environments across seasons (Cappa and Jimenez, 2010;
Xu et al., 2019; Cao et al., 2018). While these comparisons
establish that volatile OA is common, they generally did
not report the factor-level inversion observed here, where
the highly-oxidized OOA component (MO-OOA) was more
volatile than a less-oxidized OOA (LO-OOA). This behav-
ior is distinct from findings in colder, lower-loading regimes;
wintertime Paris, for instance, maintained the conventional
hierarchy where the more-oxidized OOA was comparatively
less volatile (Paciga et al., 2016). Furthermore, seasonal con-
text within Seoul showed springtime OA with lower oxida-
tion levels than our winter MO-OOA despite similar SVOC
contributions (Kang et al., 2022). This comprehensive com-
parison underscores the unusual nature of the O : C-volatility
relationship observed under the specific winter haze condi-
tions in Seoul.
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Figure 7. Time series plots of (a) MO-OOA concentration, (b) ozone (O3) and solar radiation, (c) f 44 and f 43 (indicative of oxidation
state), and (d) total PM1 concentration. The period characterized by elevated MO-OOA levels is highlighted in bright yellow. Panels (e)–
(f) present comparative distributions of these variables – MO-OOA, O3 and solar radiation, f 44 and f 43, and PM1 – between the high
MO-OOA period (shaded in blue) and the entire measurement period (indicated by gray hatching).

High-volatility nature of MO-OOA in Seoul wintertime

MO-OOA exhibited high O : C ratios and high apparent
volatility, characteristics that were further amplified during
haze episodes – periods marked by reduced ozone levels,
low solar radiation, and elevated aerosol mass concentrations
(Figs. 7 and S6, yellow shading). Spectrally, MO-OOA was
defined by a consistently high f 44 (CO+2 ) signal and a com-
paratively stable f 43 (C2H3O+) signal relative to LO-OOA
(Fig. 6). Notably, when MO-OOA concentrations intensified
during haze, only f 44 was significantly enhanced, while f 43
remained nearly unchanged (Fig. 6). This trend is corrob-
orated by the haze–non-haze comparison (Fig. S12), where
haze periods (including high MO-OOA intervals) showed el-
evated contributions from oxygenated fragments (m/z 28,
29, 44) and higher O : C ratios. In contrast, non-haze periods
were characterized by larger fractional contributions from
hydrocarbon-like fragments (m/z 41, 43, 55, 57). The ob-
served temporal pattern – elevated f 44 without correspond-
ing changes in f 43 – is a typical signature of highly oxidized
and fragmented organic aerosol (Figs. 6 and 7), suggesting
that aging was dominated by fragmentation rather than func-
tionalization (Kroll et al., 2009). These spectral patterns col-
lectively indicate that MO-OOA is highly oxidized yet re-
mains relatively volatile compared to LO-OOA.

The elevated volatility of MO-OOA despite its high O : C
(∼ 1.15) indicates that oxidation under these haze condi-
tions did not follow the classical multi-generational OH-

driven aging pathway, which typically increases molecu-
lar mass and reduces volatility. Instead, the data align with
fragmentation-dominated aging, where highly oxygenated
but lower-molecular-weight compounds (e.g., small acids or
diacids) are formed. Prior field and laboratory studies using
online AMS/FIGAERO-CIMS and EESI-TOF have similarly
reported high-O : C yet volatile product distributions charac-
terized by high f 44 and stable f 43 (Kroll et al., 2009; Ng et
al., 2010; Chhabra et al., 2011; Lambe et al., 2012; López-
Hilfiker et al., 2016; D’Ambro et al., 2017).

While direct mechanistic measurements were not avail-
able in this study, we hypothesize that the formation of
this volatile, high-O : C component may be driven by spe-
cific low-light oxidation pathways consistent with the ob-
served environmental conditions. The suppressed ozone lev-
els during haze likely indicate a low-OH oxidation regime
(Fig. 7). Under such conditions, radical chemistry involving
NO3 (which is longer-lived in low light) or particle-phase
autoxidation could preferentially produce highly oxygenated
but relatively small organic fragments (Ehn et al., 2014; Zhao
et al., 2023). Although haze suppresses photolysis, HONO
concentrations – maintained via heterogeneous conversion
or surface emissions – could still provide a non-negligible
source of OH (Gil et al., 2021; Kim et al., 2024; Slater et al.,
2020). Furthermore, the high aerosol mass loadings during
haze (Coa) provide abundant surface area for absorptive parti-
tioning (Pankow, 1994; Donahue et al., 2006). This increased
partitioning mass allows even relatively volatile, oxidized
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compounds to condense into the particle phase, contributing
to the high apparent volatility and oxidation state observed
(Jimenez et al., 2009; Ng et al., 2017). Consequently, these
results underscore the need for SOA models to incorporate
fragmentation-dominated pathways to accurately represent
wintertime haze evolution.

4 Conclusions

This study provides a comprehensive characterization of
wintertime submicron aerosols (PM1) in Seoul, integrating
chemical composition, volatility measurements, and source
apportionment to reveal critical insights into urban OA evo-
lution. The two most significant findings are the robust real-
time identification of a nitrogen-containing organic aerosol
(NOA) factor and the observation of unexpected volatility
behavior in highly oxidized OA. The NOA factor, spectrally
dominated by low-molecular-weight alkylamine fragments,
was successfully resolved primarily due to the accumula-
tion of pollutants during wintertime stagnation, which suf-
ficiently enhanced the spectral signals of these semi-volatile
species for identification. Its temporal and chemical charac-
teristics point to a mixed primary/secondary origin: driven
by direct combustion emissions (e.g., residential heating) but
significantly enhanced by the rapid gas-to-particle partition-
ing of semi-volatile amines under cold, humid conditions.
Concurrently, the volatility analysis revealed a notable de-
coupling between oxidation state and volatility for the More-
Oxidized Oxygenated OA (MO-OOA). Despite its high O : C
ratio (∼ 1.15), MO-OOA exhibited elevated volatility, a de-
viation from classical aging models that typically associate
high oxidation with low volatility. This behavior is attributed
to the specific conditions of winter haze – reduced photolysis
and high aerosol mass loadings – which favor fragmentation-
dominated aging pathways and the absorptive partitioning of
volatile oxygenated products.

These results revise our understanding of wintertime
aerosol dynamics and underscore the limitations of cur-
rent models in representing reduced-nitrogen species and
non-canonical oxidation pathways. To address the remain-
ing uncertainties, future research should prioritize evaluat-
ing the seasonal variability of NOA to better disentangle
the influence of meteorological drivers from specific emis-
sion sources. Concurrently, there is a critical need to directly
probe radical oxidation mechanisms, such as RO2 autoxida-
tion and NO3 chemistry, particularly under haze conditions.
Integrating these field inquiries with laboratory studies and
advanced molecular-level measurements (e.g., FIGAERO-
CIMS, EESI-TOF) will be essential for constraining the for-
mation, lifetime, and climate impacts of these complex or-
ganic aerosol components in polluted megacities.
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