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S1. Descriptions of Fisher r-to-z transformation. 

The Pearson correlation coefficient r is widely used to quantify the strength and direction of linear relationships between two 

variables. However, the sampling distribution of r is not normally distributed, especially when the true correlation is far from zero or 

the sample size is small. To address this issue, Fisher (1921) proposed a transformation of r to a variable z, known as the Fisher r-to-z 

transformation, defined as: 

 𝑧 =  
1

2
𝑙𝑛

1+𝑟

1−𝑟
   (S1) 

This transformation converts r into an approximately normal distribution, allowing for more accurate estimation of confidence intervals 

and hypothesis testing. The standard error of z is given as: 

 𝑆𝐸 =  1/√𝑛 − 3   (S2) 

where n is the sample size. After calculating the confidence interval in the 𝑧-space, it can be back-transformed to the original r scale, 

providing a robust measure of uncertainty for correlation estimates. 

Furthermore, the Fisher r-to-z transformation can also be used to test whether two correlation coefficients from independent 

samples differ significantly. For two correlations r1 and r2 with sample sizes n1 and n2, their corresponding z values are calculated as 

above, and the standard error of the difference is calculated as: 

 𝑆𝐸 =  1/√
1

𝑛1−3
+ 

1

𝑛2−3
   (S3) 

The difference is then standardized as: 

 𝑧 =  
𝑧1−𝑧2

𝑆𝐸
   (S4) 

A two-tailed p value can be derived from the standard normal distribution to determine whether the difference between r1 and r2 is 

statistically significant. This approach provides a rigorous method for comparing correlation strengths across independent datasets. 
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Table S1. Concentrations of DCA and C2 (ng m-3) at different types of sampling sites. 

Site type Site Sample type Period DCA C2 Reference 

Urban 

China, Shangdong 

PM2.5 January to February, 2017 1415 ± 899 817 ± 544 (Meng et al., 2020) 

PM2.5 January to February, 2020 369 ± 112 210 ± 88 (Meng et al., 2023) 

China, Xi'an TSP 

2009 summer 1350 ± 247 1291 ± 120 

(Wang et al., 2012) 

2009 winter 2053 ± 1097 1887 ± 586 

China, Beijing PM2.5 

January 2017 1068.7 440.9 

(Yu et al., 2021) 

April 2017 601.5 228.2 

July 2017 1471.7 756 

October 2017 1046.9 519.4 

14 cities of China PM2.5 

2003 summer 892 ± 457 513 ± 285 

(Ho et al., 2007) 

2003 winter 904 ± 480 558 ± 351 

Mongolia, Ulaanbaatar PM2.5 November 2007 to January 2008 536 ± 156 107 ± 28 (Jung et al., 2010) 

India, Raipur PM2.1 2012-2013 winter 1072 ± 375 545 ± 231 (Deshmukh et al., 2016) 

USA, Fairbanks PM2.5 June to September, 2009 73.6 ± 70.4 36.6 ± 35.6 (Deshmukh et al., 2018) 

Coast 

China, Shanghai PM2.5 May to August 2018 359 ± 277 213 ± 177 (Ding et al., 2021) 

China, Shanghai PM2.5 December 2018 to January 2019 360 ± 233 199 ± 151 (Du et al., 2022) 

East China Sea PM2.5 2002 winter 193 ± 164 92.6 ± 94.5 (Zhang et al., 2016) 

Mountain 

China, MT. Hua PM10 

2019 winter 638 ± 377 399 ± 261 

(Meng et al., 2014) 

2019 summer 744 ± 340 522 ± 261 

China, MT. Tai PM2.5 July to August, 2016 354 ± 239 213±162 (Meng et al., 2018) 

Japan, Fuji TSP July to August, 2009 308 ± 102 160 ± 37 (Kunwar et al., 2019) 

Marine 

Bay of Bengal PM2.5 December 2008 to January 2009 154 ± 84 116 ± 65 (Bikkina et al., 2017) 

North Pacific TSP 

August to September 2008 (MBA) 58 ± 45 26.1 ± 15.9 

(Bikkina et al., 2014) 

August to September 2008 (LBA) 15 ± 6 10.3 ± 4.8 
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Table S2. Information of PM2.5 samples. 

Year Duration Number of samples 

2007 October to November 32 

2008 November to December 45 

2009 November to December 25 

2010 October to December 69 

2011 November to December 28 

2012 November to December 39 

2013 November to December 29 

2014 October to November 20 

2015 October to November 37 

2016 October to November 33 

2017 October to December 55 

2018 October to December 50 
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Table S3. Information on target organic compounds and internal standards 

 Compounds Standards Internal standards 

Dicarboxylic 

acid 

Succinic acid (C4) C4 Lauric acid-D23 

Glutaric acid (C5) C5 Lauric acid-D23 

Adipic acid (C6) C6 Lauric acid-D23 

Pimelic acid (C7) C7 Lauric acid-D23 

Suberic acid (C8) C8 Lauric acid-D23 

Azelaic acid (C9) C9 Lauric acid-D23 

Sebacic acid (C10) C10 Lauric acid-D23 

Phthalic acid (Ph) Ph Phthalic acid 3,4,5,6-D4 

Terephthalic acid (tPh) Ph Phthalic acid 3,4,5,6-D4 

Hopanes 

17α(H)-22,29,30-trisnorhopane (C27α) C27α C24D50 

17α(H),21β(H)-30-norhopane (C29αβ) C29αβ C24D50 

17α(H),21β(H)-30-hopane (C30αβ) C30αβ C24D50 

17α(H),21β(H)-22R-homohopane (C31αβR) C31αβR C24D50 

17α(H),21β(H)-22S-homohopane (C31αβS) C31αβS C24D50 

Other 

Levoglucosan Levoglucosan Levoglucosan-13C6 

Octadecanoic acid Octadecanoic acid Hexadecanoic acid-D31 

Picene Benzo(ghi)perylene Perylene-D12 

Citramalic acid Citramalic acid Lauric acid-D23 

Malic acid Malic acid Lauric acid-D23 
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Table S4. Response factors (RFs) derived from the annual calibration curves. 

 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

Succinic acid 1.79 3.66 0.90 0.93 0.93 1.47 2.11 1.47 1.47  1.65 2.41 1.52 

Glutaric acid 2.88 4.07 3.31 2.30 2.30 2.93 2.70 2.93 0.81  3.95 5.53 2.38 

Adipic acid 2.64 3.87 2.82 2.81 2.81 3.70 3.66 3.76 1.54  5.86 3.76 3.24 

Pimelic acid 2.16 2.53 2.30 2.19 2.19 3.97 3.90 3.97 3.96  5.78 3.76 4.54 

Suberic acid 2.23 2.47 2.70 2.68 2.68 4.6 3.06 4.60 5.41  7.36 4.39 6.45 

Azelaic acid 2.03 2.03 2.42 2.41 2.41 3.99 3.12 3.98 5.07  6.37 3.44 6.87 

Sebacic acid 3.13 3.27 4.31 4.29 4.29 5.79 5.54 5.79 5.79  4.83 4.93 4.45 

Phthalic acid 1.01 1.07 0.86 0.66 0.98 1.92 1.86 1.93 1.88 1.88 1.98 1.91 

Terephthalic acid 1.01 1.07 0.86 0.66 0.98 1.92 1.86 1.93 1.88 1.88 1.98 1.91 

17α(H)-22,29,30-trisnorhopane 0.79 0.79 0.70 0.79 0.55 0.83 0.99 0.82 0.91 0.53 0.67 0.76 

17α(H),21β(H)-30-norhopane 0.73 0.73 0.63 0.73 0.53 0.74 0.87 0.75 0.78 0.46 0.62 0.78 

17α(H),21β(H)-30-hopane 0.78 0.78 0.74 0.78 0.52 0.78 0.88 0.76 0.42 0.70 0.59 0.97 

17α(H),21β(H)-22R-homohopane 1.26 1.26 0.72 1.26 0.45 1.11 1.50 1.12 0.42 0.73 0.91 1.75 

17α(H),21β(H)-22S-homohopane 1.55 1.55 0.72 1.55 1.33 1.25 1.90 1.19 0.42 1.83 1.01 1.79 

Levoglucosan 1.35 1.30 1.22 0.92 1.04 0.93 0.97 0.93 0.97 0.96 0.95 0.96 

Octadecanoic acid 0.50 0.56 0.66 0.68 0.96 0.89 1.29 0.89 1.22 0.71 0.89 1.09 

Picene 0.84 0.80 0.84 0.77 0.78 0.66 0.80 0.66 0.79 1.11 0.81 1.06 

Citramalic acid 1.35 1.95 1.30 3.70 3.56 2.60 2.10 2.59 2.63 2.07 2.04 2.09 

Malic acid 1.46 1.46 1.16 0.95 0.91 0.87 0.86 1.02 1.15 0.85 0.76 1.05 
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Table S5. Meteorological parameters, PM2.5 main components, organic molecular tracers, diacids, pH, and ALWC in the PRD (2007–2018). 

 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

Ⅰ. Meteorological parameters              

Temperature (℃) a 22.2 ± 2.1 17.2 ± 2.9 17.0 ± 3.1 19.7 ± 3.2 19.9 ± 3.8 22.1 ± 1.4 20.9 ± 1.1 20.2 ± 4.4 25.1 ± 2.4 23.8 ± 3.8 21.3 ± 3.2 22.4 ± 2.9 

Relative humidity (%) a 57 ± 11 47 ± 12 67 ± 13 64 ± 11 57 ± 11 61 ± 7 50 ± 13 57 ± 14 63 ± 8 67 ± 7 56 ± 13 63 ± 12 

Solar radiation (W m−2) a 161.3 ± 41.3 156.5± 28.3 135.2 ± 36.3 141.8 ± 51.4 134.7 ± 36.9 101.2 ± 40.4 125.2 ± 46.2 95.3 ± 49.1 149.0 ± 36.2 122.4 ± 44.0 128.9 ± 53.1 122.2 ± 39.9 

Boundary layer height (m) b 624 ± 124 572 ± 141 633 ± 105 635 ± 183 555 ± 167 550 ± 121 515 ± 88 586 ± 146 591 ± 115 577 ± 165 540 ± 142 532 ± 107 

Ⅱ. Molecular tracers (ng m-3)             

Levoglucosan 203 ± 77 422 ± 301 333 ± 259 264 ± 170 208 ± 152 48 ± 43 257 ± 140 205 ± 131 110 ± 66 92 ± 44 143 ± 63 63 ± 33 

Hopanes 2.81 ± 1.05  6.20 ± 3.30  3.38 ± 2.57 2.69 ± 2.36 2.61 ± 1.53 0.86 ± 0.65 1.09 ± 0.64 1.11 ± 0.59 0.70 ± 0.39 1.08 ± 0.74 0.86 ± 0.47 0.71 ± 0.30 

Octadecanoic acid 38.5 ± 8.1 41.8 ± 29.6 30.8 ± 11.1 28.4 ± 17.3 24.3 ± 14.2 23.9 ± 10.1 53.1 ± 20.8 26.8 ± 13.8 23.6 ± 10.6 16.3 ± 15.0 14.6 ± 7.8 17.9 ± 14.7 

Picene 0.13 ± 0.07 0.29 ± 0.25 0.19 ± 0.15 0.21 ± 0.17 0.29 ± 0.20 0.19 ± 0.10 0.22 ± 0.11 0.18 ± 0.11 0.17 ± 0.08 0.24 ± 0.11 0.26 ± 0.14 0.12 ± 0.07 

Terephthalic acid (tPh) 32.9 ± 23.6 58.9 ± 30.5 22.7 ± 12.0 34.4 ± 17.6 26.1 ± 35.6 39.1 ± 30.3 103.1 ± 59.5 62.3 ± 31.3 52.8 ± 29.1 51.8 ± 43.6 31.3 ± 16.4 17.4 ± 8.7 

Phthalic acid (Ph) 51.9 ± 14.9 36.9 ± 10.9 23.6 ± 12.1 24.1 ± 10.0 18.3 ± 12.1 22.4 ± 12.1 47.6 ± 18.1 53.3 ± 21.0 31.1 ± 15.7 28.3 ± 16.6 20.5 ± 8.0 16.7 ± 5.7 

2,3-dihydroxy-4-oxopentanioic acid (DHOPA) 1.85 ± 1.35 2.30 ± 2.50 1.15 ± 1.25 2.10 ± 1.70 2.11 ± 2.16 0.44 ± 0.41 2.15 ± 1.59 2.64 ± 2.37 2.42 ± 2.53 1.21 ± 1.02 2.07 ± 1.57 1.05 ± 0.88 

Malic acid 24.2 ± 19.4 14.1 ± 17.8 2.5 ± 2.7 9.4 ± 7.3 15.6 ± 18.9 4.57 ± 3.4 14.3 ± 12.9 17.9 ± 16.8 27.9 ± 21.7 10.7 ± 8.3 15.2 ± 10.0 5.9 ± 4.9 

Ⅲ. Aliphatic Diacids (ng m-3)             

Oxalic acid (C2) 692 ± 243 460 ± 171 NA 386 ± 168 357 ± 161 317 ± 191 526 ± 274 432 ± 200 468 ± 205 361 ± 208 404 ± 208 274 ± 114 

Succinic acid (C4) 106.8 ± 51.5 47.3 ± 61.3 29.8 ± 34.1 20.5 ± 12.9 18.4 ± 14.6 13.4 ± 10.7 34.8 ± 20.4 41.0 ± 25.3 23.8 ± 16.7 30.0 ± 22.0 22.1 ± 13.8 10.9 ± 5.8 

Glutaric acid (C5) 24.9 ± 11.2 6.6 ± 9.4 5.8 ± 5.3 6.2 ± 3.7 5.1 ± 3.5 1.9 ± 1.7 9.6 ± 5.1 9.8 ± 5.6 1.4 ± 1.3 9.7 ± 7.9 6.3 ± 4.6 3.5 ± 1.9 

Adipic acid (C6) 8.7 ± 3.6 4.3 ± 4.5 3.8 ± 2.7 4.8 ± 2.9 3.8 ± 2.6 2.3 ± 1.8 9.9 ± 4.4 7.2 ± 3.5 2.2 ± 1.3 5.5 ± 2.9 4.8 ± 2.8 4.1 ± 2.4 

Pimelic acid (C7) 2.0 ± 0.5 1.5 ± 1.3 1.3 ± 0.9 0.9 ± 0.5 1.0 ± 0.7 1.1 ± 0.6 2.8 ± 1.7 2.2 ± 1.0 1.5 ± 0.8 1.9 ± 1.5 1.2 ± 0.5 1.1 ± 0.4 

Suberic acid (C8) 2.7 ± 0.5 2.0 ± 1.5 3.4 ± 2.4 1.5 ± 2.8 1.8 ± 1.3 1.9 ± 1.0 5.1 ± 2.8 3.1 ± 1.7 2.4 ± 0.9 3.4 ± 2.2 1.7 ± 0.8 2.4 ± 0.9 
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 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

Azelaic acid (C9) 8.5 ± 1.8 8.6 ± 6.1 18.7 ± 13.2 6.7 ± 3.7 7.3 ± 5.5 9.6 ± 4.8 27.3 ± 14.3 16.8 ± 8.6 11.6 ± 4.9 17.8 ± 10.9 7.5 ± 3.1 11.4 ± 4.0 

Sebacic acid (C10) 1.1 ± 0.2 1.1 ± 0.8 2.8 ± 2.3 1.1 ± 0.8 1.1 ± 0.9 1.7 ± 0.8 3.6 ± 2.1 2.2 ± 1.3 2.0 ± 0.8 2.9 ± 2.1 1.2 ± 0.6 1.5 ± 0.5 

Subtotal 864 ± 283 532 ± 202 NA 427 ± 156 396 ± 181 352 ± 194 610 ± 305 527 ± 173 529 ± 227 416 ± 238 452 ± 226 307 ± 122 

Ⅳ. Other species             

pH a 1.51 ± 1.07  2.60 ± 0.71 1.94 ± 0.29 1.97 ± 1.00 2.54 ± 0.37 2.55 ± 0.43 2.69 ± 0.42 2.29 ± 0.33 2.13 ± 0.33 2.05 ± 0.46 2.60 ± 0.45 2.66 ± 0.37 

ALWC (μg m-3) a 20.6 ± 10.0 11.3 ± 7.9 28.8 ± 11.4 22.0 ± 10.8 19.3 ± 9.9 13.5 ± 5.6 12.0 ± 7.5 10.8 ± 5.4 12.5 ± 6.2 12.0 ± 7.3 9.9 ± 6.5 11.0 ± 6.7 

Ox (μg m-3) 113 ± 31 136 ± 29 123 ± 39 119 ± 29 113 ± 26 NA NA  125 ± 24 128 ± 46 100 ± 43 127 ± 44 114 ± 32 

 a These data were reported by our previous study (He et al., 2025). b The boundary layer height (BLH) data used in this study were obtained from the ERA5 reanalysis dataset provided by the European Centre for 

Medium-Range Weather Forecasts (ECMWF) via the Copernicus Climate Data Store (CDS, https://cds.climate.copernicus.eu/datasets/). The dataset has a spatial resolution of 0.25° × 0.25° and an hourly temporal 5 

resolution. BLH represents the height of the planetary boundary layer, defined as the atmospheric layer affected by surface friction and turbulence. ‘NA’ means the data are not available in this study. 

Table S5. (continued) 
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Table S6. Meteorological parameters, PM2.5 main components, organic molecular tracers, diacids, pH, and ALWC in the PRD (IT0-IT4). 

 IT0 

N=129 

IT1 

N=144 

IT2 

N=72 

IT3 

N=84 

IT4 

N=33 

Ⅰ. Meteorological parameters      

Temperature (℃) 20.2 ± 2.9 21.5 ± 3.6 21.6 ± 3.4 22.8 ± 3.1 20.8 ± 4.8 

Relative humidity (%) 56 ± 12.4 56 ± 13 62 ± 10 67 ± 9 66 ± 7 

Solar radiation (W m−2) 148.0 ± 43.9 145.6 ± 42.6 118.0 ± 46 115.5 ± 43.4 112.0 ± 50.5 

Boundary layer height (m) 578 ± 159 578 ± 134 613 ± 167 583 ± 142 626 ± 154 

Ⅱ. Molecular tracers (ng m-3)      

Levoglucosan 333 ± 225 194 ± 131 114 ± 79 96 ± 74 63 ± 34 

Hopanes 3.4 ± 2.6  2.0 ± 1.6 1.3 ± 1.9 0.88 ± 0.70 0.54 ± 0.30 

Octadecanoic acid 37.5 ± 21.0 28.4 ± 17.2 22.3 ± 14.8 17.3 ± 8.7 11.3 ± 0.93 

Picene 0.26 ± 0.20 0.22 ± 0.15 0.18 ± 0.11 0.17 ± 0.10 0.10 ± 0.04 

Terephthalic acid  50.0 ± 46.8 48.9 ± 30.7 32.1 ± 31.3 27.9 ± 27.1 14.5 ± 12.4 

Phthalic acid  40.3 ± 17.8 29.2 ± 16.0 22.7 ± 10.2 19.6 ± 10.1 14.1 ± 8.8 

DHOPA 2.52 ± 2.28 2.27 ± 2.07 1.42 ±1.06  1.05 ± 1.01 0.78 ± 0.43 

Malic acid 19.0 ± 19.0 16.6 ± 16.4 9.6 ± 8.3 7.4 ± 6.1 3.9 ± 2.3 

Ⅲ. Aliphatic Diacids (ng m-3)      

Oxalic acid (C2) 619 ± 290 483 ± 200 329 ± 158 293 ± 125 189 ± 102 

Succinic acid (C4) 55.0 ± 49.5 29.3 ± 28.5 18.5 ± 14.2 16.7 ± 12.7 12.9 ± 12.1 

Glutaric acid (C5) 12.5 ± 10.5 6.4 ± 5.9 4.8 ± 2.7 4.2 ± 4.2 4.5 ± 5.6 

Adipic acid (C6) 7.1 ± 4.2 4.9 ± 3.4 4.0 ± 2.7 3.4 ± 2.5 2.9 ± 2.6 

Pimelic acid (C7) 1.9 ± 1.3 1.4 ± 0.8 1.1 ± 0.7 1.1 ± 0.9 0.7 ± 0.5 

Suberic acid (C8) 3.0 ± 2.2 2.5 ± 1.5 2.2 ± 1.3 2.0 ± 1.3 1.4 ± 1.0 

Azelaic acid (C9) 13.5 ± 12.3 11.9 ± 8.3 10.4 ± 7.0 9.6 ± 6.1 6.7 ± 3.8 

Sebacic acid (C10) 2.0 ± 1.8 1.7 ± 1.2 1.6 ± 1.3 1.5 ± 1.1 1.0 ± 0.9 

Subtotal 734 ± 337 540 ± 218 358 ± 163 325 ± 135 208 ± 67 

Ⅳ. Other species      

pH  2.04 ± 0.96 2.40 ± 0.61 2.48 ± 0.43 2.36 ± 0.58 2.11 ± 0.71 

ALWC (μg m-3)  20.9 ± 11.0 15.1 ± 9.9 13.1 ± 6.9 13.1 ± 8.0 7.2 ± 3.0 

Ox (μg m-3) 136.7 ± 31.7 134.9 ± 34.4 111.9 ± 27.1 98.5 ± 25.0 72.7 ± 19.1 
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Table S7. Correlations between C2 and various factors under different pollution levels. 

 IT0 IT1 IT2 IT3 IT4 

Levoglucosan 0.17 (-0.05, 0.37) -0.03 (-0.22, 0.16) -0.10 (-0.36, 0.16) 0.01 (-0.23, 0.26) -0.29 (-0.61, 0.11) 

Hopanes -0.04 (-0.25, 1.08)  -0.21 (-0.38, -0.01) * -0.05 (-0.31, 0.22) 0.29 (0.05, 0.49) * 0.41 (-0.01, 0.70) * 

Octadecanoic acid 0.54 (0.36, 0.68) ** -0.03 (-0.22, 0.16) 0.01 (-0.26, 0.27) -0.03 (-0.26, 0.22) 0.17 (-0.23, 0.52) 

Picene 0.06 (-0.17, 0.28) -0.28 (-0.46, -0.07) * -0.18 (-0.45, 0.12) 0.08 (-0.25, 0.39) 0.02 (-0.62, 0.64) 

Terephthalic acid  0.40 (0.20, 0.57) ** 0.23 (0.04, 0.40) * 0.43 (0.19, 0.62) ** 0.34 (0.11, 0.54) * 0.41 (0.04, 0.69) * 

Phthalic acid 0.63 (0.47, 0.74) ** 0.28 (0.01, 0.45) ** 0.44 (0.20, 0.63) ** 0.34 (0.11, 0.54) ** 0.31 (0.01, 0.54) ** 

DHOPA 0.19 (-0.13, 0.30) * 0.49 (0.29, 0.60) ** 0.45 (0.21, 0.64) ** 0.42 (0.20, 0.61) ** 0.32 (-0.01, 0.65) ** 

Malic acid 0.33 (0.13, 0.52) * 0.53 (0.38, 0.66) ** 0.66 (0.48, 0.77) ** 0.69 (0.44, 0.75) ** 0.72 (0.45, 0.87) ** 

Ox 0.28 (0.05, 0.48) * 0.54 (0.37, 0.68) ** 0.56 (0.25, 0.70) ** 0.51 (0.42, 0.75) ** 0.68 (0.39, 0.84) ** 

J(O1D) 0.366 (0.15, 0.53) **  0.17 (-0.03, 0.36) 0.33 (0.05, 0.56) * 0.13 (-0.12, 0.37) -0.09 (-0.49, 0.34) 

J(NO2) 0.29 (0.08, 0.48) ** 0.14 (-0.07, 0.33) 0.49 (0.24, 0.68) ** 0.22 (-0.03, 0.45) 0.02 (-0.40, 0.44) 

Sulfate 0.49 (0.28, 0.62) ** 0.29 (0.12, 0.46) ** 0.60 (0.43, 0.74) ** 0.42 (0.21, 0.59) ** 0.55 (0.24, 0.76) ** 

ALWC 0.48 (0.31, 0.65) ** 0.36 (0.19, 0.50) ** 0.32 (0.09, 0.53) ** 0.30 (0.08, 0.49) ** 0.15 (-0.01, 0.31) 

pH -0.19 (-0.39, 0.03) -0.15 (-0.32, 0.03) -0.38 (-0.57, -0.16) ** -0.01 (-0.24, 0.22) -0.19 (-0.54, 0.21) 

Temperature 0.24 (0.02, 0.43) * 0.42 (0.27, 0.56) ** 0.50 (0.30, 0.67) ** 0.40 (0.19, 0.58) ** 0.63 (0.35, 0.81) ** 

RH 0.15 (-0.06, 0.36) 0.28 (0.11, 0.44) ** -0.03 (-0.21, 0.26) -0.03 (-0.19, 0.26) -0.03 (-0.39, 0.33) 

SR -0.01 (-0.23, 0.21) 0.13 (-0.06, 0.30) 0.43 (0.21, 0.61) ** 0.42 (0.21, 0.59) ** 0.53 (0.22, 0.75) ** 

The values in brackets indicate the 95% confidence intervals (CIs) of the correlation coefficients. One, two asterisks denote p values less than 10 

0.05, 0.01, respectively. No asterisk denotes the correlations are not statistically significant. 
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Table S8. Significance (p values) of the difference between correlation coefficients in different categories (C2-

ALWC). 

 IT0 IT1 IT2 IT3 

IT1 0.25    

IT2 0.21 0.76   

IT3 0.15 0.64 0.89  

IT4 < 0.05 0.22 0.37 0.43 

 15 

Table S9. Significance (p values) of the difference between correlation coefficients in different categories (C2-

Ox). 

 IT0 IT1 IT2 IT3 

IT1 < 0.01    

IT2 < 0.05 0.84   

IT3 < 0.01 0.47 0.65  

IT4 < 0.01 0.22 0.33 0.55 
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Table S10. Impact factor (IF, %) of individual factor under different pollution conditions 20 

 IT0 IT1 IT2 IT3 IT4 

Levoglucosan 3 ± 3 2 ± 3 2 ± 1 1 ± 1 1 ± 0 

Hopanes 2 ± 2 3 ± 2 3 ± 2 3 ± 1 2 ± 1 

Octadecanoic acid 3 ± 2 1 ± 1 1 ± 1 1 ± 1 1 ± 0 

Picene 1 ± 1 1 ± 1 1 ± 1 1 ± 1 0 ± 0 

Terephthalic acid 6 ± 6 7 ± 6 8 ± 5 9 ± 8 6 ± 3 

Ox 28 ± 15 37 ± 13 35 ± 11 36 ± 12 44 ± 3 

J(O1D) 8 ± 5 10 ± 7 6 ± 3 8 ± 6 9 ± 7 

J(NO2) 1 ± 1 2 ± 1 1 ± 1 1 ± 1 2 ± 2 

ALWC 8 ± 6 7 ± 6 6 ± 3 7 ± 5 3 ± 2 

pH 6 ± 7 3 ± 2 3 ± 3 3 ± 5 1 ± 1 

SO4
2- 28 ± 10 20 ± 8 28 ± 8 24 ± 9 25 ± 6 

Temp 5 ± 4 5 ± 3 4 ± 3 3 ± 1 3 ± 2 

RH 1 ± 1 1 ± 1 1 ± 1 0 ± 0 0 ± 0 

SR 2 ± 2 2 ± 2 2 ± 2 2 ± 3 1 ± 1 
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Figure S1. PRD region (golden line) consists of Guangzhou, Shenzhen, Zhuhai, Dongguan, Foshan, Huizhou, 

Zhongshan, Zhaoqing, Jiangmen, Hong Kong, and Macao. The measurement station (red star) is located in 

the central area of the PRD. The map background is based on NASA Blue Marble imagery. NASA (public 25 

domain). 
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Figure S2. Observations and simulations of DCA. 
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Figure S3. The concentrations of DCA and C2 normalized by carbon monoxide (CO, ppm). Due to the lack of 

in situ CO measurements at the sampling site, monthly CO data were obtained from the Copernicus 

Atmosphere Monitoring Service (CAMS) global reanalysis product (EAC4), provided by the European 

Centre for Medium-Range Weather Forecasts (ECMWF, https://cds.climate.copernicus.eu/datasets). The 35 

dataset has a horizontal resolution of approximately 0.75° × 0.75°.  

 

https://cds.climate.copernicus.eu/datasets
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Figure S4. The ratio of C2 to PM2.5 under different pollution conditions. 40 
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Figure S5. The variations in ALWC from 2007 to 2018 in the PRD (He et al., 2025). 
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