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S1. Estimation of L/S/IVOC Emissions

The L/S/IVOC emission inventory was developed based on VOC and POA emissions from
MEICv1.4, considering the strong correlation between IVOC and VOC emissions and similar
definitions of POA and S/LVOCs. In MEICv1.4, emissions are classified into five major source
categories (power plants, industry, residential, transportation, and agriculture) and further di-
vided into 22 subcategories. IVOC emissions for each subcategory were estimated using
source-specific scaling factors (fyoc,i,j) applied to total VOC emissions, as expressed in Equa-
tion S1. S/LVOC emissions resulted from the semi-volatile fraction of POA were estimated
using the corresponding scaling factor (fs/Lvoc,; ;) relative to POA, as shown in Equation S2.
IVOC and S/LVOC emissions were then distributed into four volatility bins: 10* pg m™ to 10°
pug m for IVOCs and 1072 ug m™ to 10? pg m™ for S/LVOCs, with an interval of one order of

magnitude per bin. The equations are as follows:
Ewoc,ij = Evoc,ij * fivoc,i,j (S1)

Esivoc,i,j = Epoa,ij * fs/Lvoc,i,j (S2)

Here, i represents the emission source category, j denotes the volatility bin, and Ejygc;; and
Esivoc,,j are the estimated [IVOC and S/LVOC emissions (in tons) for each source i and bin ;.

The scaling factors f were obtained from the literature, with more details provided in Table S3.

S2. Calculation of glass transition temperature (7,) and viscosity

The glass transition temperature of OA under dry conditions (Ty org) is calculated by the Gor-
don-Taylor equation (Gordon and Taylor, 1952) by assuming the Gordon-Taylor constant (kgr)
of 1 (Dette et al., 2014):

Tgorg = i wj T (S3)

where w; represents the mass fraction of each OA species in CMAQ.

The glass transition temperature of the organic-water mixture (Ty (org) is determined using the

Gordon-Taylor equation, as expressed in Equation (S4):
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1
(1“*’org)Tg.w+m‘*’orng.org

T

gworg =

(S4)

(1_worg)+$worg

where kgr = 2.5 is assumed, and Ty, (the glass transition temperature of water) is set to 136
K (Kohl et al., 2005). The mass fraction of OA in the particulate phase (worg) is given by

Equation S5:

_ moa
Worg = o tmmo (S5)

The mass concentration of water (my, o) can be determined from the effective hygroscopicity

parameter (x) of OA:

_ dw |\ KPwilpga
MH0 = (1—aw) poa (56)
Korgi = 01155 — 0.10 (S7)

Here, the xor, of each species was parameterized as a function of OM/OC (Pye et al., 2017). pyy
(water density) and pga (OA density) are assumed to be 1 and 1.44 g cm 3, respectively, based
on observational experiments in DY. The water activity (a,y) is derived from the relative hu-

midity (RH) as a,, = RH/100.



49  Supplementary Tables

50  Table S1 Statistical metrics of meteorological parameters in DY and GZ.

Parameter Metrics DY GZ Benchmark
OBS 12.99 24.34
SIM 13.00 24.32
T2 (°C) MB 0.01 0.01 <£0.5
ME 2.00 1.79 <2
RMSE 2.55 2.39
OBS 49.14 68.07
SIM 46.91 64.20
RH (%) MB -2.23 -3.87
ME 9.79 8.66
RMSE 12.87 11.22
OBS 3.82 2.45
SIM 5.17 3.19
WS (m/s) MB 1.34 0.74 <£0.5
ME 1.98 1.27 <2
RMSE 2.45 1.59 <2
OBS 159.33 94.64
SIM 151.39 66.41
WD (°) MB 155.51 63.97 <£10
ME 155.52 64.03 <430
RMSE 181.78 107.52

1

51 *MB =3 (M; - 0;); ME =% |M; — 0;]; RMSE = |- XX, (M; - oi)Z]E, where M;
52 and Oj represent model predictions and observations, respectively, and N is the number of data.
53  The benchmarks refer to Emery and Tai (2001).

54

55



56  Table S2 Statistical metrics of predicted O3, NO,, SO, and PM; s in DY and GZ.

Site Pollutant Case NMB NME r
1D-VBS -0.09 0.18 0.82
1D-VBS E -0.09 0.18 0.82
MDAS O3
ID-VBS EY -0.08 0.18 0.82
2D-VBS -0.09 0.18 0.82
1D-VBS -0.26 0.49 0.53
1D-VBS E -0.27 0.50 0.53
NO;
ID-VBS EY -0.27 0.49 0.53
2D-VBS -0.27 0.49 0.53
DY
1D-VBS -0.41 0.51 0.47
1D-VBS E -0.41 0.51 0.47
SO,
ID-VBS EY -0.41 0.51 0.47
2D-VBS -0.41 0.51 0.47
1D-VBS -0.58 0.58 0.82
1D-VBS E -0.50 0.50 0.84
PMa s
ID-VBS EY -0.46 0.46 0.84
2D-VBS -0.46 0.46 0.83
1D-VBS 0.26 0.49 0.38
1D-VBS E 0.25 0.49 0.38
MDAS O3
ID-VBS EY 0.25 0.48 0.38
2D-VBS 0.26 0.49 0.38
1D-VBS -0.42 0.53 0.33
GZ 1D-VBS E -0.42 0.53 0.33
NO;
1D-VBS EY -0.42 0.53 0.33
2D-VBS -0.42 0.53 0.33
1D-VBS -0.46 0.78 0.48
SO, 1D-VBS E -0.46 0.78 0.48
1D-VBS EY -0.46 0.78 0.48
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2D-VBS -0.46 0.78 0.48

1D-VBS -0.48 0.50 0.33
1D-VBS E -0.35 0.40 0.37
PM:s
1D-VBS EY -0.19 0.32 0.37
2D-VBS -0.31 0.38 0.45

*Benchmark values are NMB<+0.15, NME<0.25, and R>0.5 for MDA8 O;, NMB<=0.3,

2:?]:1 0; 2:?]:1 0; ’

N —0; N 0
NME<0.5, and R>0.4 for 24-hr average PMys, NMB = £=tMi=00. yppp — 2= MO, .

L [(Mi—M)x(0;=0)]

P 0oy

, where M; and O; represent model predictions and observations, M

and O represent the mean of predictions and observations, and N is the number of data (Emery

etal., 2017).
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Table S3 Source-specific scaling factors for emissions of L/SVOCs (logioC"(ug m)<2) derived from POA emissions, and IVOCs (3<logioC"(ng m>)<6)

derived from VOC emissions in this study.

Fractions for logC*(ug m=, at 298K) bins

Sector Subsector fL/SVOC,i,j fIVOC,i,j
Ref.
<2 -1 0 1 2 3 4 5 6
Power Power plants 0.2443  0.1304 0.0727 0.1454 0.4071 0.1880 0.1500 0.2260 0.1130
industrial boiler
0.2443  0.1304 0.0727 0.1454 0.4071 0.1880 0.1500 0.2260 0.1130
heat supply
Chang et
Cement
al. (2022)
Coking
0.2355 0.1742 0.0805 0.0806 0.4291 0.0082 0.0075 0.0025 0.0017
Iron and steel
Industry Petrochemicals
Oil and gas storage 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.12 2
Industrial Painting 0.0025¢ 0.0127 0.0329 0.0405 0.1645 Mcdonald
architectural coating 0.0000  0.0000 0.0000 0.0000 0.0022° 0.0119 0.0290 0.0358 0.1455 et al.
printing 0.0021°¢ 0.0103  0.0269 0.0331 0.1346 (2018)
Other industrial sectors 0.5430 0.0958 0.0468 0.0614 0.2531 0.0385 0.0410 0.0563 0.1132 b




65

66

67

68

Domestic combustion 0.1072  0.2914 0.0377 0.0708 0.4928 0.0390 0.3170 0.2540  0.1200
Chang et
Domestic biomass combustion 0.4395 0.1923 0.0680 0.1387 0.1615 0.0690 0.1710 0.0480 0.0700
Residential al. (2022)
Domestic VCP 0.0000  0.0000  0.0000 0.0000 0.0030° 0.0156 0.0383 0.0469 0.1926
Other domestic sources 05156  0.1612 0.0352 0.0698 0.2181 0.0412 0.1754 0.1163  0.1275 b
Tang et al.
Gasoline Vehicles 0.9869  0.0000 0.0031 0.0051 0.0045 0.0061 0.0206 0.0568 0.0943
(2021)
Diesel Vehicles 0.1321  0.0546 0.0858 03641 03633 0.0540 0.1490 0.1870  0.1590 d
Transportation
Tang et al.
Motorcycles 0.9869  0.0000 0.0031 0.0051 0.0045 0.0061 0.0206 0.0568 0.0943
(2021)
Non-Road transportation 0.7801  0.0307 0.0399 0.0645 0.0849 0.0147 0.0344 0.0684 0.0787 f
Fertilizer Application Chang et
Agriculture 0.0000  0.0000  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Livestock Farming al. (2022)

2 Data from the California Air Resources Board’s 2015 Consumer and Commercial Products Survey (CARB, 2019);

® Average values of subsectors under the same sector;

¢ Since volatile chemical product emissions are closely correlated with VOC emissions, the SVOC emissions for this sector were estimated based on VOC

emissions.
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4 The IVOC scaling factors for diesel vehicles were referenced from Lu et al. (2020) , while the SVOC scaling factors were based on the work of An et al.
(2023).
fFor non-road mobile sources, scaling factors for agricultural machinery (Che et al., 2023) , road construction machinery (Shen et al., 2023), and ships (An et

al., 2023), were used. The contributions of different sources to non-road mobile sources were obtained from Huang et al. (2018) and Zhao et al. (2022).



73  Table S4 Annual emissions of IVOCs and SVOCs (Unit: Tg) from different emission sources

74 in China in 2018.

Sector IVOCs SVOCs
Industry and Power 1.17 0.34
Residential 1.91 2.69
Transportation 0.90 0.15
Solvent use 2.69 /

Total 6.68 3.18

75



76  Table S5 Mole-based SOA yields for aromatics and PAHs used in this study.

Precur- High NOx
Case Ref
sor 10E-06 0.01 0.1 1 10 100
Benzene 0.0000 0.0000 0.0000 0.0340 0.0000 0.3920
Qin et
Toluene 0.0000 0.0000 0.0000 0.0160 0.0510 0.0470
al.
Xylene 0.0000 0.0000 0.0000 0.0150 0.0230 0.0600
(2021)
PAHs 0.0000 0.0000 0.0000 0.0280 0.0225 0.0280
Precur- Low NOx
1D-VBS Ref
sor 10E-06 0.01 0.1 1 10 100
Benzene 0.0000 0.1460 0.0000 0.0000 0.0000 0.0000
Qin et
Toluene 0.0000 0.1400 0.0000 0.0000 0.0000 0.0000
al.
Xylene 0.0000 0.1930 0.0000 0.0000 0.0000 0.0000
(2021)
PAHs 0.0000 0.0473 0.0000 0.0000 0.0000 0.0000
Precur- High NOx
Case Ref
sor 10E-06 0.01 0.1 1 10 100
Benzene 0.0000 0.0000 0.1874 0.1559 0.0000 0.0000
Bilsback
Toluene 0.0000 0.0000 0.1358 0.0967 0.0000 0.0000
et al.
Xylene 0.0000 0.0000 0.0284 0.0049 0.0040 0.1581
(2023)
PAHs?* 0.0000 0.1183 0.0988 0.1269 0.2110 0.0000
1D-
Precur- Low NOx
VBS E Ref
sor 10E-06 0.01 0.1 1 10 100
Y
Benzene 0.0017 0.0131 0.0000 0.0592 0.1732 0.0000
Bilsback
Toluene 0.0007 0.0299 0.0000 0.0703 0.1584 0.0000
et al.
Xylene 0.0106 0.0000 0.1452 0.0000 0.0422 1.3439
(2023)
PAHs? 0.0230 0.0600 0.0381 0.0572 0.1753 0.0000

77  *The parameters for PAHs adopted naphthalene SOA yields from Bilsback et al. (2023).

78



79  Table S6 Summary of O/C ratios for POA factors in eastern China reported in prior measure-

80  ments.
Site HOA BBOA CCOA COA NOA Ref
Feng et
Dongying 0.55 0.37 / / /
al. (2023)
Chen et
Guangzhou 0.2 / / 0.19 0.5
al. (2021)
Zhang et
Gucheng 0.13 0.44 0.15 / /
al. (2022)
Xu et al.
Beijing 0.16 0.29 0.19 0.16 /
(2021)
Xian et
Nanjing 0.12 / / 0.27 /
al. (2023)
Gu et al.
Nanjing 0.17 0.49 / / /
(2022)
Zhu et al.
Shanghai 0.15 / / 0.29 /
(2021)
Lietal.
Hangzhou 0.07 / / 0.18/ /
(2018)
(Geetal.,
Yangzhou 0.25 0.45 / 0.36 /
2017)
Average 0.2 0.41 0.17 0.24 0.5

81



82  Table S7 OA surrogate species in the 1D-VBS and their physicochemical properties at 298K,
83  including saturated vapor pressure (Cy), organic matter to organic carbon ratio (OM/OC), mo-

84  lecular weight (M), and oxygen to carbon ratio (O/C).

Species Description Co OM/OC M o/C Ref
AAVBI 0.01 2.7 198.0 1.227
AAVB2 1 2.35 179.0 0.947
Qin et al. (2021)
AAVB3 10 2.17 169.0 0.803
ASOA
AAVB4 100 1.99 158.0 0.659
AAVB5*® 0.1 2.53 189.0 1.091
Newly added
AAVB6* 1E-06  3.41 229.0 1.797
Oligomers derived
AOLGA 1E-10  2.50 206.0 1.067 Pye et al. (2017)
from ASOA
2-methyltetrols
AIETET 1E-10  2.27 136.15  0.833
(2-MT)
IEPOX-derived
AIEOS 1E-10  3.60 216.2 1.947
organic sulfates
2-methylglyceric Pye et al. (2013)
AIMGA 1E-10  2.50 120.1 1.067
acid (2-MQG)
MPAN-derived
AIMOS 1E-10  4.17 200.16  2.403
organic nitrates
ADIM Dimers 1E-10  2.07 248.23  0.723
AISO1 Semi-volatile iso- 116.01  2.20 132.0 0.827
AISO2 prene SOA 0.617 2.23 133.0 0.857
Semi-volatile
SOA from iso-
AISOPNN  prene  dinitrates 8.9 3.80 226.0 2.107 Pye et al. (2015)
produced  from
NOs reaction
AMTI1 0.01 1.67 300.0 0.4
AMT?2 0.1 1.67 200.0 0.4
Monoterpene
AMT3 1 1.72 186.0 0.444
SOA from OH/Os- Xu et al. (2018)
AMT4 10 1.53 184.0 0.3
initiated oxidation
AMTS5 100 1.57 170.0 0.333
AMT6 1000 1.40 168.0 0.2

Semi-volatile
AMTNO3 12.0 1.90 231.0 0.587 Pye et al. (2015)
SOA from



&5

monoterpene  ni-
trates (excluding
a-pinene)

Nonvolatile  or-

ganic  hydrolysis

AMTHYD  product of 1E-10 1.54 186.0 0.299
MTNO3 and
ISOPNN*
Sesquiterpene Carlton et al. (2010);
ASQT 24984 1.52 273.0 0.283
SOA Pye et al. (2017)
oligomers derived Carlton et al. (2010);
AOLGB 1E-10  2.10 248.0 0.747
from BSOA Pye et al. (2017)
OA from glyoxal
and methylglyoxal
AGLY uptake onto accu- 1E-10 2.13 66.4 0.771 Pye et al. (2015)
mulation-mode
particles
OA from aqueous-
phase oxidation of
AORGC glyoxal and 1E-10  2.00 177.0 0.677 Carlton et al. (2008)
methylglyoxal in
cloud droplets
Non-carbon frac-
APNCOM
tion of POA Simon and Bhave
1E-10 1.60 220.0 0.347
Carbon fraction of (2012)
APOC
POA
ALVPO1 0.1 1.39 218.0 0.185
ASVPOI1 1 1.32 230.0 0.123
ASVPO2 10 1.26 241.0 0.073
ASVPO3 100 1.21 253.0 0.032
AIVPO1 Semi-volatile 1000 1.17 266.0 0.00
Murphy et al. (2017)
ALVOO1 POA 0.01 2.27 136.0 0.886
ALVOO2 0.1 2.06 136.0 0.711
ASVOO1 1 1.88 135.0 0.567
ASV0O02 10 1.73 135.0 0.477
ASVOO03 100 1.60 134.0 0.345

® The parameters were calculated based on the methodology in Qin et al. (2021).



86  ® MTNO3: Monoterpene-derived organic nitrates.
87  °ISOPNN: Second generation isoprene dinitrate from NOj3 reaction

88



89  Table S8 OA surrogate species in the 2D-VBS and their physicochemical properties at 298 K
90  (Zhao et al., 2015; Chang et al., 2022), including saturated vapor pressure (Co"), organic matter

91  to organic carbon ratio (OM/OC), molecular weight (M), and oxygen to carbon ratio (O/C).

Species C OM/OC M o/C
AM120 0.01 3.667 152.30 2.0
A0020 1 3.667 141.00 2.0
A0120 10 3.667 129.70 2.0
A0220 100 3.667 118.50 2.0
A0320 1000 3.667 107.20 2.0
A0420 1.0E+04 3.667 95.90 2.0
A0520 1.0E+05 3.667 84.60 2.0
A0620 1.0E+06 3.667 73.30 2.0
A0720 1.0E+07 3.667 62.10 2.0
AMI115 0.01 3.041 161.60 1.5
A0015 1 3.041 149.60 1.5
AO0115 10 3.041 137.60 1.5
A0215 100 3.041 125.70 1.5
A0315 1000 3.041 113.70 1.5
A0415 1.0E+04 3.041 101.70 1.5
A0515 1.0E+05 3.041 89.80 1.5
A0615 1.0E+06 3.041 77.80 1.5
A0715 1.0E+07 3.041 65.80 1.5
AMI110 0.01 2417 178.00 1.0
A0010 1 2417 164.80 1.0
A0110 10 2417 151.60 1.0
A0210 100 2417 138.40 1.0
A0310 1000 2417 125.20 1.0
A0410 1.0E+04 2.417 112.00 1.0
A0510 1.0E+05 2.417 98.90 1.0
A0610 1.0E+06 2.417 85.70 1.0
A0710 1.0E+07 2.417 72.50 1.0
AM107 0.01 2.042 195.70 0.7
A0007 1 2.042 181.20 0.7
A0107 10 2.042 166.70 0.7
A0207 100 2.042 152.20 0.7

A0307 1000 2.042 137.70 0.7



A0407
A0507
A0607
A0707
AM104
A0004
A0104
A0204
A0304
A0404
A0504
A0604
A0704
AM102
A0002
A0102
A0202
A0302
A0402
A0502
A0602
A0702
AM101
A0001
A0101
A0201
A0301
A0401
A0501
A0601
A0701
AM100
A0000
A0100
A0200
A0300
A0400

1.0E+04
1.0E+05
1.0E+06
1.0E+07
0.01
1
10
100
1000
1.0E+04
1.0E+05
1.0E+06
1.0E+07
0.01
1
10
100
1000
1.0E+04
1.0E+05
1.0E+06
1.0E+07
0.01
1
10
100
1000
1.0E+04
1.0E+05
1.0E+06
1.0E+07
0.01
1
10
100
1000
1.0E+04

2.042
2.042
2.042
2.042
1.667
1.667
1.667
1.667
1.667
1.667
1.667
1.667
1.667
1.417
1.417
1.417
1.417
1.417
1.417
1.417
1.417
1.417
1.292
1.292
1.292
1.292
1.292
1.292
1.292
1.292
1.292
1.167
1.167
1.167
1.167
1.167
1.167

123.20
108.70
94.20
79.70
228.80
211.90
194.90
178.00
161.00
144.10
127.10
110.20
93.20
273.20
253.00
232.70
212.50
192.30
172.00
151.80
131.50
111.30
312.30
289.20
266.00
242.90
219.80
196.60
173.50
150.40
127.20
378.00
350.00
322.00
294.00
266.00
238.00

0.7
0.7
0.7
0.7
0.4
04
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.0
0.0
0.0
0.0
0.0
0.0



A0500 1.0E+05 1.167 210.00 0.0

A0600 1.0E+06 1.167 182.00 0.0

A0700 1.0E+07 1.167 154.00 0.0

ADIM 1E-10 2.07 248.23 0.723
AGLY 1E-10 2.13 66.4 0.771
AIEOS 1E-10 3.60 216.2 1.947
AIETET 1E-10 2.27 136.15 0.833
AIMGA 1E-10 2.50 120.1 1.067
AIMOS 1E-10 4.17 200.16 2.403
AISOL1 116.01 2.20 132.0 0.827
AISO2 0.617 2.23 133.0 0.857
AISO3 1E-10 2.80 168.2 1.307
AISOPNN 8.9 3.80 226.0 2.107
AMTNO3 12.0 1.90 231.0 0.587
AMTHYD 1E-10 1.54 186.0 0.299
AOLGB 1E-10 2.10 248.0 0.747

92  Note: While ASOA, BSOA, and POA are separately represented in the model, species with
93  identical volatility and O/C are assumed to share physicochemical properties and are not listed

94  individually in this table.



95 Table S9 Contribution of SOA to OA in different simulations.

Site Case SIM OBS
1D-VBS 59%
1D-VBS E 62%

DY 72%
1D-VBS_EY 67%
2D-VBS 82%
1D-VBS 78%
1D-VBS E 72%

GZ 64%
1D-VBS_EY 77%
2D-VBS 84%

96



97  Table S10 CMAQ performance in hourly OA, SOA and POA simulations.

Pollu-
Site Case NMB NME r
tant
1D-VBS -0.67 0.67 0.87
1D-VBS E -0.37 0.39 0.85
OA
1D-VBS _EY -0.27 0.36 0.84
2D-VBS -0.24 0.38 0.83
1D-VBS -0.72 0.72 0.78
1D-VBS E -0.45 0.49 0.74
DY SOA
1D-VBS EY -0.30 0.43 0.75
2D-VBS -0.11 0.41 0.75
1D-VBS -0.55 0.55 0.80
1D-VBS E -0.20 0.30 0.84
POA
1D-VBS EY -0.21 0.30 0.84
2D-VBS -0.54 0.54 0.86
1D-VBS -0.72 0.72 0.34
1D-VBS E -0.44 0.48 0.33
OA
1D-VBS EY -0.34 0.41 0.33
2D-VBS -0.24 0.36 0.39
1D-VBS -0.71 0.71 0.46
1D-VBS E -0.47 0.48 0.44
GZ SOA
1D-VBS EY -0.33 0.39 0.43
2D-VBS -0.14 0.33 0.43
1D-VBS -0.76 0.76 0.05
1D-VBS E -0.40 0.60 0.06
POA
1D-VBS EY -0.41 0.61 0.07
2D-VBS -0.53 0.60 0.35

98



99  Supplementary Figures
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101  Figure S1 Modeling domains and locations of observational sites Dongying (DY) and Guang-
102 zhou (GZ).

103
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113 Figure S3 Volatility distribution of L/S/IVOC emissions in the 1D-VBS Y and 2D-VBS sim-

114  ulations. The green area shows L/S/IVOC emission estimates. The blue and orange areas rep-
115  resent allocation of these emissions across volatility bins in the 1D-VBS_E and 2D-VBS sim-

116  ulations, respectively. Grey boxes denote aerosol phase, and white boxes indicate gas phase.
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120 Figure S4 Comparison of annual emissions of (a) [IVOC and (b) S/LVOC emissions in China
121 in 2018 from this study with the estimates from Chen et al. (2024) and Zheng et al. (2023).
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124 Figure S5 Comparison of the volatility distributions of (a) IVOC and (b) S/LVOC emissions
125  across all volatility bins in China in 2018 between this study and estimates from Chen et al.
126 (2024).
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129  Figure S6 SOA mass yield from aromatic hydrocarbons (a, b: benzene; ¢, d: toluene; ¢, f: xylene;

130 g, h: PAHs) under high-NOx and low-NOx conditions.
131



I BSOA|  |ASOA

00 2D-VBS 20 1D-VBS_EY
(30)
= @) (b)
216- 161
C 121 12
E O
T 8 8-
o
[
8 0 0
0 4 8 12 16 20 0 4 8 12 16 20
& 20 20
e |©) (d)
D 16- 164
=2
C 12
(ND Ke)
g s
o
o 4
5
0
O " 4 8 12 16 20 0 4 8 12 16 20
132 Hour Hour

133 Figure S7 Diurnal variations of SOA compositions (ASOA and BSOA) from 1D-VBS_EY and

134  2D-VBS simulations in DY (a-b) and GZ (c-d).
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Figure S8 Simulated diurnal variations of OA, POA, and SOA at DY (a—) and GZ (d—f) com-
pared with observations. Blue lines represent the 1D-VBS_EY case, and green lines represent
the sensitivity case (1D-VBS_EY_A) with scaled POA emissions. Black dots denote observa-
tions. The light grey shading indicates the standard deviations (+1c) from the mean concentra-

tions in the observations.
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C’ ranging from <10~ to 10> ug m™, compared to observations in DY (a-c) and GZ (d-f).
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Figure S11 Simulated OA, POA, and SOA volatility distributions across volatility bins with C*

ranging from 107'° to 10? pg m, compared to the observations in DY (a-c) and GZ (d-f).
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158  Figure S12 Simulated volatility distributions of BSOA and ASOA in DY (a-b) and GZ (c-d).
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173 Figure S16 O/C distributions of L/SVOC emissions from gasoline/diesel vehicles or off-road
174  mobile sources (GV/DV/OF), and power plants or industrial sources (PI) in the 2D-VBS sim-
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Figure S18 Estimated T, values for OA surrogate species. Solid circles represent Tgors calcu-
lated using both volatility and O/C ratios, with colors indicating the O/C ratio, while open cir-
cles represent Ty calculated using volatility alone and solid triangles represent Tgor calcu-
lated using volatility and molar mass (see Table S6 for a more detailed description of the CMAQ

OA species).
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