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Abstract. Atmospheric CO; concentrations in urban areas reflect a combination of fossil fuel emissions and
biogenic fluxes, offering a potential approach to assess city climate policies. However, atmospheric models used
to simulate urban CO; plumes face significant uncertainties, particularly in complex urban environments with
dense populations and vegetation. This study addresses these challenges by analyzing CO; dynamics in the
Metropolitan Area of Sdo Paulo (MASP) using the Weather Research and Forecasting model with Chemistry
(WRF-Chem). Simulations were evaluated against ground-based observations from the METROCLIMA net-
work, the first greenhouse gas monitoring network in South America, and column concentrations (XCO,) from
the OCO-2 satellite spanning February to August 2019. To improve biogenic fluxes, we optimized parameters in
the Vegetation Photosynthesis and Respiration Model (VPRM) using eddy covariance flux measurements for key
vegetation types, including the Atlantic Forest, Cerrado, and sugarcane. Results show that at the urban site (IAG),
the model consistently underestimated CO; concentrations, with a negative mean bias of —9 ppm throughout the
simulation period, likely due to the complexity of vehicular emissions and urban dynamics. In contrast, at the
vegetated site (PDJ), simulations showed a consistent positive mean bias of 5 ppm and closely matched obser-
vations. Seasonal analyses revealed higher CO; concentrations in winter, driven by greater atmospheric stability
and reduced vegetation uptake estimated by VPRM, while summer exhibited lower levels due to increased mix-
ing and higher agricultural productivity. A comparison of biogenic and anthropogenic scenarios highlights the
need for integrated emission modeling and improved representation of biogenic fluxes, anthropogenic emissions,
and boundary conditions for high-resolution modeling in tropical regions.
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1 Introduction

Urban areas, although occupying only a small fraction of the
Earth’s surface, exert an outsized influence on global carbon
emissions. Accounting for a staggering 70 % of CO; emis-
sions from fossil fuel burning while covering just 2 % of the
planet’s landmass (Seto et al., 2014; IPCC, 2014), cities have
become focal points for climate action. The relentless pace of
urbanization has further exacerbated this phenomenon, driv-
ing up energy consumption and emissions levels (Seto et al.,
2012). Consequently, combating climate change necessitates
a targeted approach, with policies increasingly tailored to ad-
dress urban emissions. In response to the growing need for
climate action, initiatives like the International Council for
Local Environmental Initiatives (ICLEI), the C40 Cities Cli-
mate Leadership Group (C40), and the Covenant of May-
ors (CoM) have emerged to coordinate global efforts and
share best practices among cities. These initiatives high-
light the crucial role cities play in the fight against climate
change and the importance of localized mitigation strate-
gies. Sao Paulo, Brazil’s largest municipality (IBGE, 2021),
is a member of C40 and focuses on reducing greenhouse
gas emissions, with transportation accounting for 58 % of
its total emissions (SEEG, 2019). The city is working to-
wards carbon neutrality through projects in green infrastruc-
ture, urban planning, public transportation improvements,
energy efficiency, and waste management (Caetano et al.,
2021). These efforts aim to reduce emissions and enhance
Sdo Paulo’s resilience, fostering a more sustainable urban
environment. Central to these efforts is the need for accu-
rate data and robust modeling frameworks to inform policy
decisions effectively. Urban atmospheric networks, such as
MASP, in Brazil, provide vital insights into greenhouse gas
concentrations and emission patterns. By leveraging these
datasets alongside sophisticated atmospheric transport mod-
els and statistical techniques, policymakers gain tools for de-
signing targeted interventions and monitoring their efficacy.
However, the complexity of urban CO, dynamics presents
significant challenges for modeling and analysis. Process-
driven biosphere models and inverse modeling techniques
offer complementary approaches for capturing the intricate
spatiotemporal variabilities inherent in urban environments
(Kaiser et al., 2021; Che et al., 2022; Zhang et al., 2023;
Wilmot et al., 2024). Despite advancements in modeling ca-
pabilities, gaps remain in our understanding of CO, dynam-
ics, particularly at regional and national scales. South Amer-
ica, in particular, suffers from limited data availability, and
research focusing on this region is scarce. Additionally, veg-
etation models in tropical regions often exhibit poor perfor-
mance due to inaccuracies in simulating seasonality, over-
simplified representations of biodiversity, and errors in car-
bon and water cycle interactions. These models struggle to
capture the complex dynamics of tropical ecosystems, lead-
ing to underestimations of productivity and poor predictions
of vegetation responses to climate variability (De Pue et al.,
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2023; He et al., 2024). This study aims to address these gaps
by conducting a comprehensive analysis of anthropogenic
and biospheric CO, dynamics near the MASP. To achieve
this, we employed the WRF-Chem model, offline-coupled
with the VPRM model (Mahadevan et al., 2008). Vehicular
emissions were incorporated using the Vehicle Emission In-
ventory (VEIN) model (Ibarra-Espinosa et al., 2018), while
emissions from the industrial, energy, residential, and refin-
ery sectors were derived from the EDGAR inventory. This in-
tegrated modeling framework enables a detailed assessment
of the main drivers of CO, variability in the region. In addi-
tion, we utilized data from the OCO-2 satellite to cover the
study domain, comparing WRF-Chem-simulated X CO; con-
centrations (considering biogenic and anthropogenic emis-
sions) post-processed using OCO-2 averaging kernels (i.e.,
smoothed XCO»). Through a combination of model simula-
tions, field observations, and satellite data analysis, this study
seeks to provide an understanding of CO; dynamics in urban
environments. This is the first study in this field conducted
in any city in the Global South, making it an innovative ef-
fort with significant implications. By setting a precedent, this
research paves the way for future studies, contributing to a
more comprehensive global picture of CO, dynamics in ur-
ban environments.

2 WRF-Chem

2.1 Model setup

A set of high-resolution simulations of atmospheric Green-
house Gas concentrations were performed with the WRF-
Chem model version 4.0. The WRF-Chem was used to sim-
ulate the transport of the mole fraction of CO;, and no chem-
ical processes or reactions were used. The period simulated
was from 1 February to 31 August 2019. This period was
selected due to available data from monitoring stations from
the METROCLIMA network for CO,. The simulations were
made for each month. For each run, the simulation was ini-
tiated 5d before, and this period of 5d was discarded as
spin-up time. The single modeling domain was centered at
23.5°S and 46.3° W with a horizontal grid spacing of 3 km
as shown in Fig. 1, projected on a Lambert plane and con-
sists of 166 grid points in the west—east direction, 106 grid
points in the north—south direction, and 34 vertical levels
that extend from the surface up to 50 hPa (20 km), as used
in previous studies for this same area (Andrade et al., 2015;
Vara-Vela et al., 2016; Gavidia-Calderén et al., 2023; Be-
navente et al., 2023). The meteorological conditions used
to drive the simulations were obtained from the European
Centre for Medium-Range Weather Forecasts (ECMWF)
ERAS reanalysis dataset, with a horizontal resolution of
0.25° x 0.25° and 6-hourly intervals (Hersbach, 2016). For
COa, initial and boundary conditions were provided by Car-
bonTracker, which offers data at a horizontal resolution of
3° in longitude and 2° in latitude, with 25 vertical layers
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Figure 1. Panel (a) shows the terrain height and urban boundaries of the MASP region within the WRF-Chem model domain (DO1).
Station classifications are indicated using different symbols: Urban (gray star), Urban Park (gray cross), and Park (gray triangle). Panel
(b) presents the land use category map for the same domain (DO1), which was used by the VPRM model to calculate CO, fluxes. The colors
of the station markers represent the type of measurements conducted at each location: red indicates stations measuring both meteorological
variables (Met) and CO, concentrations, green indicates stations measuring only Met, dark yellow denotes stations measuring both Met and
CO concentrations, and black indicates stations measuring only CO, concentrations. The IAG station is marked as a black cross, the PDJ
station is a red triangle, the Pinheiros station is a yellow star, and Guarulhos and Parque D. Pedro II are green stars.

Table 1. WRF-Chem simulation design.

(http://carbontracker.noaa.gov, last access: 20 April 2024).

Atmosphere schemes

Scheme Type Description/reference

Microphysics Two-moment Morrison scheme (Morrison et al., 2009)
Longwave radiation = RRTMG Tacono et al. (2008)

Shortwave radiation ~RRTMG Tacono et al. (2008)

Boundary layer YSU Hong et al. (2006)

Land surface Noah LSM Unified scheme (Tewari et al., 2007)

Initial and lateral boundary conditions

Meteorological ERAS
CO,p CarbonTracker

0.25°, 34 pressure levels
25 vertical layers

Emissions inventories/model

EDGAR v6.0
VPRM

Anthropogenic
Biogenic

Crippa et al. (2021) and VEIN (Ibarra-Espinosa et al., 2018)

Mahadevan et al. (2008)

211

This global dataset was interpolated to provide lateral bound-

ary conditions for the simulations and ensure consistency
with the WRF-Chem. The main physics and chemistry op-

tions used in this study are listed in Table 1.

https://doi.org/10.5194/acp-25-9803-2025

Anthropogenic emissions

In the MASP, the vehicular fleet is the primary source of CO;
emissions (CETESB, 2019). For this study, we employed the

VEIN model, a tool designed to estimate emissions from mo-
bile sources. VEIN accounts for both exhaust and evapora-
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tive emissions performs speciation, and includes functions to
generate and spatially allocate emissions databases (Ibarra-
Espinosa et al., 2018). The model enables the use of cus-
tomized emission factors, which in this study were derived
from experimental campaigns conducted in traffic tunnels
within Sdo Paulo (Nogueira et al., 2021). VEIN processes ve-
hicle fleet age distributions, extrapolates hourly traffic data,
and estimates emissions with high temporal and spatial reso-
lution. For consistency with the WRF-Chem model domain,
VEIN emissions were aggregated to a 3 km spatial resolu-
tion. Additionally, we included Fig. B1, which illustrates the
spatial distribution of average daily CO, emissions for Au-
gust 2019, the total monthly emissions from February to Au-
gust, and the diurnal profile of vehicular CO, emissions as
estimated by the VEIN model. Emissions from the indus-
try, refinery, residential, and energy sectors were obtained
from the EDGAR v6.0 GHG inventory for 2018 (Crippa
et al., 2021). EDGAR provides global annual emissions at
0.1° x 0.1° spatial resolution, which we regridded to 3km
using bilinear interpolation to match the WRF-Chem model
domain. EDGAR does not provide hourly temporal pro-
files; these emissions were assumed constant over the day
(Fig. B2). To evaluate the relative contribution of each sector
to total emissions in the MASP, Fig. B3 presents the aver-
age daily CO, emissions in August 2019. Transport emis-
sions represented the dominant share, accounting for 76.1 %,
followed by industry (10.0 %), refinery (7.6 %), residential
(3.8 %), and energy (2.5 %) sectors.

2.1.2 Biogenic fluxes

Biogenic CO; fluxes were simulated offline using the VPRM
model (Mahadevan et al., 2008) and incorporated as flux
input data in the WRF-Chem simulations. This model es-
timates net ecosystem exchange (NEE) by calculating the
difference between gross ecosystem exchange (GEE) and
ecosystem respiration (R), where negative fluxes indicate
CO; absorption by ecosystems (Eq. 1).

NEE = GEE — R N

The meteorological variables 2 m air temperature (72 ,) and
downward shortwave radiation (PAR) from WRF model sim-
ulations were used to calculate the GEE (Eq. 2) and respi-
ration (Eq. 3) fluxes. Additionally, factors such as the light
use efficiency (1), PAR saturation (PAR(), and the Enhanced
Vegetation Index (EVI), which refer to as the fraction of
shortwave radiation absorbed by leaves, were used to calcu-
late GEE. The temperature sensitivity of the photosynthesis
parameter (Tscale) and the effects of leaf age on canopy pho-
tosynthesis parameter (Pscale) were both calculated as func-
tions of the land surface water index (LSWI) to identify the
green-up (leaf expansion) and senescence phases (Mahade-
van et al., 2008). These vegetation indices were derived from
Moderate Resolution Imaging Spectroradiometer (MODIS)
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reflectance data from MODQ09A1 version 6 (Vermote, 2021).

GEE = A X Tycale X Pscale X Wecale X EVI x x PAR (2)

PAR
PAR(

Respiratory fluxes (R) were estimated using a linear model
based on air temperature and two parameters that represent
the linear sensitivity of respiration to air temperature («) and
the baseline respiration (8), as defined in Mahadevan et al.
(2008).

R=axTn+p 3)

The land cover data used by the VPRM were derived from
the MapBiomas data (Souza et al., 2020). The VPRM param-
eters (A, PARy, o, B) were optimized against flux tower NEE
for the main land cover type over the study domain described
in Sect. 2.2.2.

2.1.3 Meteorological data

Meteorological data from the Sao Paulo State Environmental
Protection Agency (CETESB) air quality network were used
to evaluate the model’s performance in simulating meteoro-
logical fields. CETESB manages automatic and manual air
quality stations over Sdo Paulo state. These stations provide
hourly information on meteorological and pollutant param-
eters, such as air temperature, wind speed, and wind direc-
tion (Table 2), as well as the concentration of air pollutants.
Monitoring follows instrumentation standards and directives
from the Environmental Protection Agency (US EPA) and
the World Health Organization (WHO), respectively, for air
pollutants and from the World Meteorological Organiza-
tion (WMO) for meteorological variables (CETESB, 2019).
The air quality and meteorological data are continuously
published on the Qualar website (https://qualar.cetesb.sp.gov.
br/qualar/, last access: 10 July 2024). This study used data
from four stations located in the MASP (Fig. 1): Parque
D. Pedro II, PDJ, Guarulhos, and Pinheiros. Table 2 provides
the location of the sites, the classification type of the stations,
the observed variables, and the data source.

2.2 (COs observational data
2.2.1 Ground-based observations

We assessed near-surface model performance using CO; ob-
servations from the METROCLIMA network in Sdao Paulo
(see Table 3 and Fig. 1), the first conventional in situ
greenhouse gas measurement network established in South
America (http://www.metroclima.iag.usp.br/, last access: 12
July 2024). The network comprises four continuously op-
erating monitoring stations, all located within the MASP
and equipped with cavity ring-down spectroscopy instru-
ments (Picarro) that measure the concentrations of CO; fol-
lowing the directives from WMO. The monitoring stations

https://doi.org/10.5194/acp-25-9803-2025


https://qualar.cetesb.sp.gov.br/qualar/
https://qualar.cetesb.sp.gov.br/qualar/
http://www.metroclima.iag.usp.br/

R. C. A. Alberti et al.: Monitoring and modeling seasonally varying anthropogenic and biogenic CO»

9807

Table 2. Location of the sites used for the model evaluation of the meteorological drivers, together with a list of the meteorological variables

included in the analysis.

Sites Location Classification  Variables Source data

Parque D. Pedro II  23.54°S,46.63°W  Urban T>m, WD, WS CETESB

PDJ 23.45°8S,46.76°W  Park T>m»> WD, WS, and CO, CETESB/METROCLIMA
Guarulhos 23.46°S, 46.52°W  Urban Trm, WD, WS CETESB

Pinheiros 23.46°S,46.70°W  Urban T>m,» WD, WS, and CO CETESB

1AG 23.55°S,46.73°W  Urban Park CO, METROCLIMA

Note: air temperature at 2m (7>, ), wind speed (WS), and wind direction (WD).

Table 3. Description of the METROCLIMA monitoring stations
utilized in this study.

Station  Instrument Inlet elevation  Altitude

(m) (m)
PDJ G2301 10 3 1079
IAG G2301 11 15 731

are located at various locations within MASP: in a vege-
tated area at the extreme west (Pico do Jaragud, PDJ); in a
suburban area in the center west, inside the campus of the
University of Sao Paulo (IAG); at the top of a 100 m build-
ing (ICESP); and in an urban area in the east zone character-
ized by heavy traffic in the neighborhood (UNICID). How-
ever, we only used data from the IAG and PDJ sites, which
are 13 km apart, as these were the only two stations monitor-
ing CO» during the selected study period, prior to the Covid-
19 pandemic (Souto et al., 2023).

2.2.2 COgq flux data and VPRM optimization

In this study, the VPRM model computed the biosphere
fluxes for five different plant functional types (PFTs), rep-
resenting different vegetation land covers, and for that re-
quired a set of four model parameters for each vegetation
class, dependent on the region of interest. Ideally, these pa-
rameters are optimized using a network of eddy flux tow-
ers for each PFT over the domain. The VPRM parameters
were optimized for only three PFTs corresponding to the
three ecosystems observed by eddy-covariance flux towers.
However, these three PFT's represent almost 60% of land cov-
ers over the domain (i.e., sugarcane — 23.86 %, Atlantic For-
est — 34.86 %, and Cerrado — 0.91 %). We used a set of pa-
rameters optimized by Botia et al. (2022) for the remaining
PFTs, such as grasses and mixed forest, based on measure-
ments from sites in the Amazon region in Brazil, deployed
in the context of the Large Scale Biosphere-Atmosphere Ex-
periment (LBA-ECO) (Botia et al., 2022). The methodology
for optimizing the VPRM parameters for the Atlantic For-
est used data from the Serra do Mar State Park in Sdo Paulo
state, Brazil (23°17’S, 45°03’' W, at 900 m altitude), for the

https://doi.org/10.5194/acp-25-9803-2025

period from January 2015 to December 2015 (Freitas, 2012).
For Cerrado, we used observed data from Pé Gigante, in
Sao Paulo, Brazil (21°36’S, 47°34’ W, at 660 m), from Jan-
uary 2015 to January 2017 (Rocha et al., 2002). For sugar-
cane we used data from the municipality of Pirassununga,
in Sdo Paulo state, Brazil (21°57'S, 47°20' W, at 655 m al-
titude), for the period from November 2016 to August 2017
(Cabral et al., 2020). The VPRM parameters were optimized
separately for each PFT using half-hourly observed fluxes
from the flux towers over the entire observation periods. We
optimized the parameters for the GEE and R simultaneously,
and for the default VPRM parameters we used non-linear
least squares minimization between the modeled NEE and
the flux tower estimation of the observed NEE. In the opti-
mization, the VPRM model is driven by the meteorological
measurements of the sites and their specific land covers. The
vegetation indices (EVI and LSWI) were derived from the
product MOD09A1 of MODIS at 500 m resolution and 8-
daily frequency using Google Earth Engine.

2.2.3 XCOy satellite observations

Satellite-based XCQO, observations were utilized in addi-
tion to surface CO, measurements over the study domain.
OCO-2, NASA’s inaugural Earth remote sensing satellite
dedicated to atmospheric CO, observations, was launched
in 2014 (Crisp, 2015). Operating on a solar synchronous or-
bit, OCO-2 conducts global measurements of CO; absorp-
tion and emission at 13:30 LST (local solar time). The OCO-
2 observation data utilized were ACOS L2 Lite with oco2-
lite_fle_prefilter_b9, which were converted from Level 1
radiance to Level 2 data using the ACOS retrieval algo-
rithm developed by O’Dell et al. (2012). Data quality as-
sessment for OCO-2 observations can be performed using
the xco2_quality_flag and warn_level parameters, as detailed
in the OCO-2 Data Product User’s Guide (Osterman et al.,
2018). In this study, we considered only OCO-2 data with
a “0” xco2_quality_flag value that indicates good quality.
Initially, simulated CO; concentrations were interpolated to
match the latitude, longitude, horizontal resolution, and ver-
tical levels of OCO-2 data. Additionally, to ensure consis-
tency in the comparison, the simulated data were selected to

Atmos. Chem. Phys., 25, 9803-9829, 2025
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correspond as closely as possible to the OCO-2 overpass time
(13:30LST) over the study region. Due to the difference in
data types and units between the simulated CO; concentra-
tions and observed XCO, from satellites, a conversion was
necessary prior to comparison. Consequently, CO, concen-
trations simulated at each pressure level in the WRF-Chem
were transformed into XCO, concentrations following the
methods by Connor et al. (2008) and O’Dell et al. (2012), as
follows:

XCO,™! = XCOp + Y w] 4; (cozi“terp - COza) L@

1

i

where XCOy, is a priori XCO», wl.T is the pressure weighting
function, A; is the column averaging kernel, COIZmerp is the
interpolated simulated CO;, concentrations of WRF-Chem,

and COgy, is a priori CO;.

2.3 Evaluation metrics

Several statistical metrics are available for assessing the ef-
fectiveness of atmospheric models. These include mean bias
error (bias, Eq. Al), indicating the average difference be-
tween the simulation and the observation; root-mean-square
error (RMSE, Eq. A2), which quantifies the square root of
the average squared deviation between simulation and ob-
servation; and the correlation coefficient (R2, Eq. A3), rep-
resenting the degree and direction of the linear connection
between the simulation and the observation. To evaluate the
model performance, we calculated the bias, RMSE, and R2,
with the corresponding equations provided in Appendix A.

3 Results

Hourly simulations were conducted from 1 February to
31 August 2019, with each month simulation including a 5d
spin-up period. In the following sections, the performance of
meteorological drivers will first be presented, followed by the
terrestrial surface CO; fluxes and atmospheric CO, concen-
trations from the IAG and PDJ stations. These measurements
were used to evaluate the model performances and to assess
the local impacts of the main CO, sources and sinks on at-
mospheric CO; concentrations.

3.1 Model performance for meteorological drivers

The assessment of the meteorological model performances
is essential for accurately simulating greenhouse gas con-
centrations. In this study, the model represented the tem-
poral variability and trends of 2m temperature (T2 ,), 10m
wind speed (WS), and direction (WD) throughout the sim-
ulation period, as illustrated in Fig. 2 and in Appendix B
(see Figs. B4, BS5, and B6). The WRF-Chem model ef-
fectively captured significant changes in the observed vari-
ables, although it failed to accurately represent the maxi-
mum and minimum peaks, particularly for wind speed. The
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simulated 2 m temperature tended to overestimate values at
specific sites, such as Parque D. Pedro II (bias=0.5°C),
Guarulhos (bias = 0.1 °C) (see Figs. B4a and B5a), and PDJ
(bias =0.7 °C) (see Fig. 2a). However, at the Pinheiros sta-
tion, the simulated surface temperature was underestimated
(bias = —0.7 °C) (Fig. B6a).

In terms of biases, the model overestimated the wind speed
at all sites (bias < 1.5ms~!), with PDJ exhibiting the high-
est mean bias (1.4 ms~1). This overestimation could be at-
tributed to the model’s misrepresentation of land use, lead-
ing to elevated wind speeds in areas classified as urban rather
than vegetated. Notably, numerical models tend to lack sensi-
tivity in simulating very low-velocity speeds due to imperfec-
tions in land surface processes and the model’s ability to ac-
curately resolve topographical features (Shimada et al., 2011;
Zhang et al., 2009; Vara-Vela et al., 2018, 2021). The model’s
wind directions showed sufficient sensitivity, aligning accu-
rately with observed values. Both the model and observations
indicated that prevailing winds were predominantly from the
southeast. In summary, the WRF model showed proficiency
in reproducing atmospheric conditions in the study area, par-
ticularly concerning air temperature and wind direction, with
similar performances to previous studies (Feng et al., 2016;
Deng et al., 2017).

3.2 The VPRM model: evaluation with flux tower data

The optimization results are shown in Table 4. Substituting
alpha and beta back into the respiration equation led to a bet-
ter model representation of NEE compared to NEE values
simulated with default parameters (Mahadevan et al., 2008)
for the main PFT across the domain.

The optimized VPRM parameters for the Atlantic For-
est exhibited the greatest discrepancies compared to other
vegetation classes. The geomorphological characteristics of
the Atlantic Forest differ from those of the evergreen for-
est studied by (Mahadevan et al., 2008), where the default
parameters (VPRM_default, represented by the red curve
in Fig. 3) were used. The optimized VPRM parameters
(VPRM_optimized, shown as the green curve in Fig. 3) more
accurately captured the seasonal cycle in the daily average
NEE for the three PFTs optimized in this study. The model
was particularly successful in capturing the seasonal profile
for the agricultural ecosystem, which can be attributed to the
more pronounced seasonal transitions of sugarcane (as indi-
cated by the EVI), even though the low-resolution satellite
indices do not fully capture the onset of the growing sea-
son. However, this allowed the model to better represent the
GEE equation for this ecosystem. For the Cerrado, the model
smoothed the NEE peaks, and the GEE and respiration equa-
tions were also smoothed with the optimization. Optimizing
the VPRM parameters improved the representation of the
growing season, especially for the Atlantic Forest and sug-
arcane, while using optimized or default parameters for the
Cerrado resulted in similar NEE simulation.

https://doi.org/10.5194/acp-25-9803-2025
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Figure 2. Panels (a) and (b) show scatter plots comparing model outputs and observations at the PDJ station for hourly values of 2m air
temperature (7> ,) and 10 m wind speed (WS), respectively. Panel (c¢) presents the daily averages from February to August 2019 for 2m
air temperature (75 ), 10m wind speed (WS), and wind direction (WD). The black line represents observational data, while the red line
indicates model simulations.
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Table 4. Default (Mahadevan et al., 2008) and optimized VPRM parameters (highlighted) for Atlantic Forest, Cerrado, and sugarcane and
for mixed forest and grasses from Botia et al. (2022).
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Figure 3. Daily variability of NEE fluxes (umol m~2s~1) from the flux tower (black line), compared with NEE fluxes simulated by the
VPRM model using default (red line) and optimized (green line) parameters for the Atlantic Forest, Cerrado/savanna, and sugarcane.
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Figure 4. The top panels show the monthly mean of net ecosystem exchange (NEE) (mol km~2h~!) for February (a) and August 2019 (b).
The bottom panel (¢) presents the hourly variability of NEE (umol m~2 s_l) for the same months (February and August) at three different

PFTs: Atlantic Forest, Cerrado/savanna, and sugarcane.

The top panels in Fig. 4 show the monthly net CO; flux
simulated by the VPRM model for 2019. February represents
a summer month, while August represents a winter month.
The bottom panel shows the monthly hourly net CO, flux
simulated at the three flux tower sites used to optimize the
VPRM model parameters. In February, negative NEE values
are found in the northern part of the MASP, while the south-
ern part exhibits positive NEE fluxes in the coastal region.
During the summer, ecosystem productivity is expected to
peak across all land cover classes, typically resulting in neg-
ative NEE. This behavior was clearly observed in February
(Fig. 4a) for Cerrado, sugarcane, and pasture areas. In con-
trast, the Atlantic Forest in the southwestern portion of the
domain exhibited positive NEE values, an unexpected pattern
for a summer month. This may be linked to a combination of
structural and anthropogenic factors, as well as limitations
of the model itself. The Atlantic Forest is marked by struc-
tural heterogeneity, extreme biodiversity, and high fragmen-
tation, which can lead to significant local variation in CO,

https://doi.org/10.5194/acp-25-9803-2025

fluxes. In addition, the SEEG (2021) report highlights a pro-
gressive decline in the biome’s carbon sink function. Model
limitations also likely contribute to these discrepancies, par-
ticularly simplifications in VPRM’s equations of respiration
and phenology, which may not fully capture the complex dy-
namics of ecosystems like the Atlantic Forest (Rezende et al.,
2018; Segura-Barrero et al., 2025).

In August, the cold and dry conditions, due to reduced so-
lar radiation and a lower leaf area index, resulted in positive
fluxes across most of the domain and low negative fluxes
in only a few areas (Fig. 4b). The highest positive NEE
values are found in the southern coastal region. Generally,
larger areas with negative CO; fluxes are observed in Febru-
ary compared to August for the same dominant land cover
classes. This indicates greater CO, absorption by agricul-
ture in February compared to forested regions. Conversely,
in August, CO;, fluxes are predominantly lower and nega-
tive across most of the domain, with higher positive values in
the coastal area, especially in the south. Overall, the domain

Atmos. Chem. Phys., 25, 9803-9829, 2025
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acts as a net CO; sink during summer, while vegetation be-
comes a CO; source in winter, except for the Atlantic Forest
in the southern part of the study area. The bottom panel also
shows simulated fluxes for the same flux tower sites, with
negative net fluxes in February, particularly in the Atlantic
Forest, sugarcane, and Cerrado. This underscores the reduc-
tion in negative fluxes during winter, as seen in the August
data for all three vegetation types. Unfortunately, observed
data from these flux towers for this period were not avail-
able for statistical model evaluation. However, Fig. 4 illus-
trates the significant influence of climatic drivers on reduced
flux trends, consistent with findings by Raju et al. (2023) for
a tropical region. Note that the respiration equation in Ma-
hadevan et al. (2008) is a simple linear function of tempera-
ture and does not account for seasonal or spatial variability in
biomass and litter inputs to soil carbon pools (Gourdji et al.,
2022), which is particularly relevant for forest ecosystems
like the Atlantic Forest.

3.3 Seasonal variations in observed and modeled CO»
mixing ratios

Figure 5 and Table 5 depict the monthly mean, standard de-
viation, bias, and RMSE of CO, concentrations at two sites
in the MASP. In 2019, the IAG station recorded CO, values
ranging from 406 to 464 ppm. The seasonal variation peaked
during winter (June to August, 437.3 & 32.2 ppm), followed
by autumn (March to May, 433.0 £ 26.0 ppm), with the low-
est values observed in summer (February, 432.7+24.6 ppm).
This variation in CO; levels is primarily influenced by the
geographical location of the observation site, meteorological
conditions such as wind speed and atmospheric stability, and
seasonal patterns of photosynthesis and vehicular traffic (see
Fig. B1). The maximum and minimum monthly CO, con-
centrations at IAG were recorded in June (442.5+32.8 ppm),
during the winter season, and March (430.2+24.5 ppm), dur-
ing the autumn season, respectively. During this month, the
MASP experiences changes in synoptic circulation and at-
mospheric moisture that typically reduce atmospheric stabil-
ity and increase the dispersion of various gases and particles
(Chiquetto et al., 2024). Meanwhile, at the PDJ station, CO;
levels ranged from 414 to 417 ppm. The seasonal variation
peaked during autumn (416.8 9.5 ppm), closely followed
by summer (416.0 & 10.3 ppm), with the lowest values ob-
served in winter (414.6 &= 7.4 ppm). The maximum monthly
CO; mean at PDJ was identified in May (417.3 £9.1 ppm),
corresponding to the autumn season, while the minimum was
recorded in July (414.0 £ 6.3 ppm), during the winter sea-
son. Monthly values at PDJ exhibited less variability and a
smaller standard deviation compared to the IAG site. This
result was expected, considering that the IAG site is signifi-
cantly impacted by vehicular traffic in its vicinity. In contrast,
PDJ is located at a higher elevation in a more vegetated area,
with less influence from local anthropogenic sources. Addi-
tionally, lower CO; concentrations were expected at PDJ dur-
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ing the summer due to the stronger vegetation signal com-
pared to the IAG site. However, PDJ actually shows peak
CO; levels in summer and the lowest values in winter, in-
dicating that additional ecological and ecosystem variables
need to be considered for a better understanding of this loca-
tion.

The simulated CO; concentrations for the IAG station
ranged from 410 to 437 ppm, with a seasonal variation
peaking in winter (429.4 + 19.2 ppm), followed by autumn
(425.2 £ 15.1 ppm), and the lowest values occurring in sum-
mer (422.3 £ 12.3 ppm), mirroring the observed data. No-
tably, the highest and lowest monthly CO, concentrations at
IAG were identified in June (438.7 & 22.5 ppm) and Febru-
ary (418.1+10.0 ppm), respectively. Although the maximum
monthly value from the model coincided with the observed
data, the month with the minimum concentration was Febru-
ary, which may be attributed to gaps in measurement, which
were not considered when calculating the mean, thereby in-
fluencing the observed monthly mean. The CO, concentra-
tions at PDJ ranged from 415 to 426 ppm, with seasonal vari-
ation peaking in winter (421.8 £ 11.8 ppm), followed by au-
tumn (420.4 4+ 10.1 ppm), and the lowest values occurring
in summer (419.0 £ 8.8 ppm). The model data profile for
PDJ more closely resembles the simulated IAG profile than
the PDJ station’s observed profile, which likely stems from
model limitations, including grid resolution and insufficient
representation of localized characteristics at different sites.
However, negative biases were observed for all seasonal pe-
riods at IAG, indicating an underestimation of CO; concen-
trations and higher RMSE compared to the statistics for the
PDJ station. The PDJ station exhibited low positive biases
and smaller standard deviations between the model and ob-
servations. Its higher elevation and dense vegetation cover
simplify the representation of seasonal trends, reducing the
influence of urban emissions and resulting in lower CO; con-
centrations at this site (see Fig. B7).

3.3.1 Distribution of surface CO» concentrations

In addition to the simulations conducted for the period from
February to August 2019, using the same configurations
and input data, we performed simulations involving variable
emission scenarios for the summer (February) and winter
(August) seasons. The aim was to comprehensively under-
stand the dynamics of CO;, concentration in the metropoli-
tan region and surrounding areas during these distinct sea-
sonal periods. Figure 6 shows the monthly average spatial
distributions of simulated CO, concentrations under four
conditions: (a) background without emissions, considering
only boundary and initial conditions (BCK); (b) consider-
ing both anthropogenic emissions and biogenic fluxes (see
Table 1) (ALL); (c) considering biogenic fluxes only (BIO);
and (d) considering anthropogenic emissions (energy, indus-
try, residential, refinery, and vehicular sectors) only (ANT).

https://doi.org/10.5194/acp-25-9803-2025
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Figure 5. CO; concentration seasonality observed and simulated at IAG and PD]J stations in 2019. Error bars represent the monthly standard

deviation.

Table 5. Seasonality means and standard deviation of CO, concentrations for IAG and Pico do Jaragud (PDJ) stations.

Station Season Observed Simulated Bias RMSE
(ppm) (ppm)  (ppm)  (ppm)

Summer (February) 432.7+24.6 4223+123 —12.1 252

1AG Autumn (MAM) 433.04£26.0 4252415.1 -17.5 24.8
Winter JJA) 437.3+£32.2 429.4+19.2 -7.2 31.1

Summer (February) 416.0+10.3 419.0+8.8 3.6 11.1

PDJ Autumn (MAM) 416.8+9.5 420.44+10.1 3.6 12.0
Winter (JJA) 4146 +74 421.84+11.8 7.3 13.8

Figure 6a shows that the simulated background CO; con-
centration in February ranged around 408 ppm across most of
the domain. For biogenic simulations (Fig. 6¢), we observed
an average increase of 14 ppm across the domain compared
to the previous simulation. The increase, however, was only
6 ppm in downtown MASP. Although the VPRM model did
not explicitly calculate CO; fluxes in urban areas due to lim-
ited vegetation coverage, the transport of biogenic signals
from the surrounding vegetated regions into the urban area
is evident. The southwest region of the domain, character-
ized by the Atlantic Forest, exhibits the highest CO, con-
centrations in this scenario, ranging from 420 to 424 ppm.
This dense vegetation region and higher ecosystem respira-
tion contribute to elevated CO; levels, underscoring the in-
fluence of biogenic sources on regional concentration pat-
terns. This region has altitudes lower than 200 m, and the
CO; released to the atmosphere by the vegetation is trapped
due to the Serra do Mar, with altitudes higher than 500 m.
The Atlantic Forest present on the northern coast, on the
other hand, is concentrated on the plateau of Serra do Mar,
and thus the CO; released is better dispersed to other ar-
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eas. The simulation with anthropogenic emissions (Fig. 6d)
stands out with elevated CO, concentrations over the cen-
ter of the city of Sdo Paulo, characterized by high vehicle
emissions, as well as over other two urban areas in the north
and northeast of MASP. The monthly mean CO; concentra-
tion in these two urban areas was roughly 420 ppm, attributed
to emissions from refineries represented by the EDGAR
datasets as well as vehicles. Figure 6b shows the simulated
CO; concentration considering both vegetation fluxes and
anthropogenic emissions. As expected, this simulation com-
bines both contributions, resulting in high CO, concentra-
tions over urban areas and along the coastal region. For Au-
gust, it can be observed that the background concentrations
(Fig. 6e) were slightly higher around MASP. Additionally,
the monthly mean CO; concentration for the scenario in Au-
gust with only biogenic sources was 8 ppm higher than that
in February, which can be explained by the lower photosyn-
thetic rates in this period, as observed in Fig. 4. The At-
lantic Forest in the coastal region exhibits more positive CO»
fluxes and lower photosynthetic activities, characterized by
lower amounts of rainfall in the region that contribute to this

Atmos. Chem. Phys., 25, 9803-9829, 2025
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Figure 6. Atmospheric CO, concentrations under different emission scenarios (refer to the text). The panels in the first row represent the
monthly mean concentration for February (a—d), while the panels in the second row represent the monthly mean concentration for the August
period (e=h). Panels (a) and (e) represent the background scenario. Panels (b) and (f) represent the simulation of the total (background,
anthropogenic, and biogenic) emission scenario, panels (c) and (g) represent the simulation of only the background and biogenic scenario,
and (d) and (h) represent the simulation of only the background and anthropogenic scenario.

reduced photosynthetic production by vegetation. The sim-
ulation with only anthropogenic emissions (Fig. 6h) shows
higher CO; concentrations compared to those in February.
This increase in CO; levels in August is attributed to a lower
planetary boundary layer (PBL) height. However, it is im-
portant to point out that the EDGAR anthropogenic emis-
sion inventory generally overestimates the emissions around
local anthropogenic sources (e.g., urban areas) (Seo et al.,
2024). The higher simulated CO;, concentration for August
compared to February, in the scenario with both biogenic and
anthropogenic sources, is largely dependent on factors such
as atmospheric stability and meteorological conditions. At-
mospheric stability, along with meteorological variables such
as humidity, solar radiation, and temperature, plays a crucial
role in determining biogenic CO> concentrations. In addi-
tion, under stable atmospheric conditions, such as those of-
ten observed during winter periods, CO, concentrations tend
to accumulate near the surface, resulting in higher concen-
trations, especially in urban areas. Therefore, the compara-
tive analysis between the simulations of CO; concentrations
during summer and winter periods highlights the importance
of accurately representing not only anthropogenic emissions,
but also biogenic fluxes from vegetation.

Atmos. Chem. Phys., 25, 9803-9829, 2025

3.3.2 Evaluation of sources contribution

In Fig. 7, we applied a data selection scheme to all time series
to minimize the effects of local contributions and increase the
spatial representativeness of each record; it consists of retain-
ing daytime (09:00—17:00 LT, local time) data, when the air is
well mixed, providing a large spatial representativeness with
minimum influence from local sources (Gerbig et al., 2008;
Ramonet et al., 2020). Figure 7 shows the comparison of the
daily daytime average CO; concentrations simulated by the
model for February and August 2019, considering both bio-
genic and anthropogenic sources (see Fig. 6b and f) at both
IAG and PDJ sites. The left panels (Fig. 7a, c, e, and g) depict
the simulated CO, concentration considering both anthro-
pogenic and biogenic sources (all_sources, in gray), along-
side observed concentrations (observed, in purple) for both
sites. Conversely, the right panels (Fig. 7b, d, f, and h) dis-
play the different simulations considering anthropogenic and
biogenic sources separately from the daily concentration. In
Fig. 7a, which represents only one summer month with avail-
able observational data (February 2019), the model generally
underestimated CO» concentrations. The observed average
was 424.0 ppm, while the simulated average was 416.0 ppm
— an underestimation of approximately 8 ppm. This differ-
ence may be partially attributed to the presence of data gaps
in the observational data for this site, as only available values
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Figure 7. Daily mean CO, concentrations simulated and observed for the IAG site in February 2019 (a), for the PDJ site in February (c), for
the IAG site in August (e), and for the PDJ site in August (g). The daily mean CO, concentrations simulated under the BCK (background),
VPRM (biogenic), and ANTH (anthropogenic) scenarios for the IAG site during February (b), for the PDJ site in February (d), for the IAG
site during August (f), and for the PDJ site in August (h).
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were considered when calculating the monthly mean. For the
anthropogenic sources the simulation is aligned with the ex-
pectations that the emission is dominated by vehicular emis-
sions around this vicinity (Fig. 7b). However, on 23, 24, and
25 February there was a distinct peak in the observed CO,
concentrations. This spike is absent in both the all-source and
anthropogenic simulations, suggesting that other localized or
transient activities, not accounted for in the emissions inven-
tory, may have contributed. This discrepancy likely arises be-
cause the inventories assume identical emissions for all days
with only hourly variations. As a result, specific events or
activities that occur on these particular days are not captured
in the simulations. Furthermore, on 2 and 22 February, ob-
served CO, peaks were captured by the model with similar
magnitude only when both anthropogenic and biogenic emis-
sions were included.

At the PDJ site, the mean observed and simulated CO,
concentration in February was 414 ppm. The model captures
the overall trend and major peaks of CO, variability during
this period, with biogenic contributions more pronounced at
PDJ compared to the IAG site (Fig. 7d). This higher bio-
genic influence at PDJ is attributed to its location in a veg-
etated area and localized at a higher altitude than IAG, rel-
atively isolated from vehicular emissions and other anthro-
pogenic sources typical of urban environments, as previously
discussed.

In August, characterized by a drier, more stable boundary
layer and lower wind speed, observed data for IAG showed
an average of 426 ppm (Fig. 7e), while the model showed a
monthly average of 413 ppm, resulting in a discrepancy of
13 ppm, i.e., a higher difference compared to February. In
terms of the contributions of the sources (Fig. 7f), simula-
tions showed similar daily patterns, with a few days where
CO; contributions from biogenic fluxes exceeded those from
anthropogenic sources. In contrast, for PDJ (Fig. 7g), both
the observed and simulated monthly average concentrations
were 412 ppm. While the model slightly underestimated
some days in the month and overestimated others, it gener-
ally captured the observed variability. Regarding the source
contributions, the model simulation aligned with the ob-
served temporal profile, displaying a more pronounced bio-
genic signal than at the IAG site, which further emphasizes
the significant role of vegetation as a source of CO, emis-
sions at this location (Fig. 7h). Before late August, observed
values tended to be higher than the simulations, whereas in
the final days of the month, the model overestimated CO,
concentrations. This overestimation is associated with an in-
crease in background concentrations — a pattern also ob-
served at the IAG site during the same period.

The bias and RMSE for each simulation at the IAG
and PDJ sites for February and August 2019 are illus-
trated (see Fig. B8). At IAG, the average bias ranged from
—14.31 to —9.17 ppm, while at PDJ it ranged from —3.54 to
—0.96 ppm. RMSE values were consistently higher at IAG,

Atmos. Chem. Phys., 25, 9803-9829, 2025

R. C. A. Alberti et al.: Monitoring and modeling seasonally varying anthropogenic and biogenic CO»

exceeding 20 ppm in most scenarios, while PDJ showed
lower errors, generally below 12 ppm.

Considering that CO serves as a vehicular tracer, we ana-
lyzed CO concentrations at the Pinheiros site using data from
the CETESB network (see Fig. 1 and Table 1) to compare
with CO; concentration profiles at the IAG site for February
to August 2019, located less than 3 km away from the Pin-
heiros site. The hourly correlation between observed CO;
concentrations at the IAG site and observed CO concentra-
tions at Pinheiros was determined, along with the correlation
between simulated CO; concentrations for IAG and observed
CO concentrations. In Fig. 8, both bar graphs of the hourly
correlation between CO, and CO concentrations show val-
ues above 0.5 for observed CO; and above 0.25 for simu-
lated CO; during the early hours of the day (until 10h) and
again in the evening (after 19h). At midday, this correla-
tion decreases and even turns negative for the simulated CO»
vs. CO graph, suggesting the influence of the photosynthe-
sis process on CO, concentrations, which is also evident in
the observed data. The similarity between the trend lines of
the hourly correlation profiles for observed CO, vs. CO and
simulated CO; vs. CO is evident.

In addition to the correlation between gases, Fig. 9 indi-
cates that both the modeled and observed CO, profiles sug-
gest that a significant portion of the CO; concentrations at the
IAG site originates from vehicular sources, as carbon monox-
ide is a trace gas associated with traffic emissions (Nogueira
et al., 2021). Peaks in the CO, time series at IAG are ob-
served at the beginning, where the model fails to capture the
magnitude of these concentrations. These peaks also appear
in the observed CO profile at the beginning of the month,
confirming that a large part of the CO, concentrations at
IAG comes from vehicular sources, particularly on days with
high concentrations, which are also reflected in the CO pro-
file. However, the model struggles to simulate these high
CO, concentrations since it assumes that emissions follow
the same diurnal variation every day of the month. Addition-
ally, a distinct increase in CO concentrations without a cor-
responding rise in CO, was observed between 18 and 21 Au-
gust and 27 and 28 August, which coincided with the long-
range transport of smoke plumes from Amazon forest fires
to Sdo Paulo (Bencherif et al., 2020). While biomass burning
emits both CO and CO;, their atmospheric transport and dis-
persion differ significantly. CO is more prevalent in incom-
plete combustion and tends to be transported at altitudes that
favor long-range dispersion, whereas CO, concentrations are
more influenced by local emissions and atmospheric mixing
(Gatti et al., 2010). These transport dynamics, combined with
the long distance of the event’s origin, likely explain why the
CO peak was detected at Pinheiros but not accompanied by
a significant CO, enhancement at the IAG site.

https://doi.org/10.5194/acp-25-9803-2025
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Figure 8. Hourly correlation between CO, concentrations observed at the IAG site and CO concentrations observed at the Pinheiros site
(blue bars) and between simulated CO, concentrations at the IAG site and observed CO concentrations at the Pinheiros site (orange bars) for

the period from February to August 2019.

== {0 Observed

. *
470 i By

430

(0 Concentration (ppm)

410

55 — Co; Simulated
CO Observed
Fso

4.3
4.0
35

F30

CO Concentration (ppm)

F23

F20

F13

Figure 9. Daily mean concentrations of COy, both observed (black dashed line) and simulated (purple line), at the IAG site, along with
observed CO concentrations (red dotted line) at the Pinheiros site during August 2019.

3.3.3 Model evaluation against OCO-2 and XCO»
observations

Figure 10a shows the monthly boxplots of observed and
all_sources simulated XCO; concentrations for the period
from 1 April to 31 August 2019. However, due to insufficient
OCO-2 data over MASP during this period, the analysis cov-
ers all simulated domains rather than solely the metropolitan
area. Regarding temporal variability, a clear seasonal cycle
of XCO; is evident from its smooth month-to-month vari-
ation (green boxes in Fig. 10a). The simulated XCO, con-
centrations, i.e., the simulated profiles with smoothing, gen-

https://doi.org/10.5194/acp-25-9803-2025

erally captured this cycle, although with a less dispersion
(Iength of the box) compared to the observed XCO, concen-
trations. Notably, model-observation discrepancies are most
pronounced during the winter months, with differences in
median concentrations ranging from 0.8 to 1.5 ppm, while
they are minimized during the autumn season, with differ-
ences in median concentrations between 0.5 and 0.6 ppm.
The simulated XCO> concentrations demonstrate similar
trends within the same range but tend to slightly underesti-
mate values on most days.

When generating time-averaged modeled values, we only
take into account the measurement period as previously men-

Atmos. Chem. Phys., 25, 9803—-9829, 2025
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Figure 10. (a) Monthly boxplots of observed and simulated XCO; concentrations for the period from 1 April to 31 August 2019; (b) bias

and (¢) RMSE calculated by pixel over the study domain.

tioned. Regarding XCO;, the smoothed column concentra-
tions (depicted by red dotted lines in Fig. B9) consistently
fall below the observed values on a global scale. Figure 10b
and c depict the bias and RMSE, respectively, calculated
across the pixel-by-pixel domain. Higher RMSE values are
evident in the eastern region of MASP and along the border
of the Sao Paulo and Rio de Janeiro states. In these areas,
characterized by heavy vehicular traffic, the model tends to
overestimate XCO; concentrations. Conversely, for the cen-
tral region of the domain, we observe slightly negative bias
values accompanied by higher RMSE values, indicating an
underestimation of XCO, concentrations. The uncertainties
surrounding X CO; simulation stem from various factors, in-
cluding potential biases in the model’s wind representation,
particularly in urban areas, consideration of emissions solely
at the surface rather than at different pressure levels, and
errors in the initial and boundary conditions of concentra-
tion provided by CarbonTracker, which has also been seen in
other studies (Chen et al., 2019; Lian et al., 2021; Peiro et al.,
2022).

Atmos. Chem. Phys., 25, 9803-9829, 2025

4 Conclusions

A comprehensive assessment of atmospheric CO, concen-
trations in the MASP and its surroundings was conducted,
utilizing the WRF-Chem model using the greenhouse gas
module. Given the burgeoning demand for research in this
domain, particularly in South America, where urban areas
are marked by significant emission sources, this study aimed
to furnish a broad understanding of the key characteristics
of CO; concentrations. To ensure an accurate estimation of
CO; levels in MASP, the initial focus of the evaluation was
on the model’s capability to simulate meteorological vari-
ables. Biogenic fluxes were derived from the VPRM model,
which was fine-tuned with flux tower data. Our results show
that using these local data significantly improved simulated
biogenic CO; fluxes, highlighted the model’s capacity to
represent key seasonal dynamics, with negative NEE val-
ues predominating in February (summer) and positive val-
ues in August (winter). However, we recommend the de-
ployment of additional flux towers and targeted measurement
campaigns to improve the characterization other ecosystems.
A more comprehensive representation of PFTs is essential,

https://doi.org/10.5194/acp-25-9803-2025
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as vegetation processes play a fundamental role in shaping
CO; patterns in tropical regions. The availability of addi-
tional flux tower data would enable a more refined optimiza-
tion approach, enhancing the characterization of parameters
for each vegetation type. Anthropogenic emissions were cu-
rated from vehicular model and global inventory to provide
a comprehensive representation of urban emissions, incorpo-
rating spatial and temporal resolution for key sources such
as vehicular traffic for our domain. Boundary and initial con-
ditions were scrutinized using global products. The WREF-
Chem model demonstrated skill in simulating meteorologi-
cal variables, particularly temperature; however, discrepan-
cies in local wind speed and direction persisted. These dif-
ferences are attributed to the region’s complex topography
and the model’s resolution (3 km), which limits its ability to
capture fine-scale dynamical processes.

Simulated CO; concentrations exhibited distinct diurnal
cycles influenced by local emissions, boundary layer dynam-
ics, and vegetation fluxes. The model’s performance varied
between monitoring stations, highlighting the interplay be-
tween urban and vegetative environments. At the TAG site,
CO; concentrations were consistently underestimated, with
negative biases of —9.17 ppm in February and —12.83 ppm
in August. This underestimation was closely linked to the
model’s difficulty in capturing the impact of high vehicu-
lar emission densities, as indicated by the correlation with
CO concentrations. Conversely, at the vegetated and elevated
PDJ site, the model closely matched observational data, with
minimal biases of 0.73 ppm in February and —0.61 ppm in
August. In suburban locations such as the PDJ site, dis-
tant from urban sources, anthropogenic emissions diminish,
and the vertical gradient of CO;, concentration generated
by city emissions attenuates through atmospheric convection
and diffusion processes. However, during the growing sea-
son, the contribution of biogenic flux to CO; concentration
warrants attention, especially concerning the simulation of
nocturnal CO; concentrations and ecosystem respiration. Im-
provements in the respiration equation of the VPRM model
(Gourdji et al., 2022) could enhance the accuracy of these
simulations. Importantly, the modeled CO, concentrations
exhibited high sensitivity not only to atmospheric vertical
mixing near the surface but also to the prescribed tempo-
ral profiles of anthropogenic and biogenic emissions, high-
lighting the underestimation of vehicular emissions. These
sources of error, particularly pronounced in winter, present
challenges in accurately quantifying city emissions.
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In general, the WRF-Chem model demonstrated profi-
ciency in simulating seasonal variations, including XCO,,
with profiles akin to OCO-2 data. This study underscores the
imperative for further investigations and applications of the
WRF-Chem model in uncharted regions such as the MASP,
showcasing its prowess in simulating meteorological fields
and CO; observations.

Appendix A: Metrics evaluation

N
(pred; — obs;)
Bias = = - , (A1)
(pred; — obs,-)2
RMSE = | =1 : (A2)

N

. (pred; — pred; ) (obs; — obs;)
R? = ! , (A3)

N
\/ (pred; — predl-)2 > (obs; —obs; }2
' i=1

1

N

I™M=

where pred; is the model simulation value, obs; is the ob-
served value, and N is the number of observations.

Appendix B: Additional figures
This appendix contains figures that give some additional in-

sight to the conclusions given in the sections above and are
referenced in the text.
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Figure B1. Vehicular CO; emissions as estimated by the VEIN model over the study domain (DO1). Panel (a) represents the spatial distri-
bution of average daily CO, emissions for August 2019 over DO1. Panel (b) represents the total monthly CO; emissions from February to
August 2019 over the DO1. Panel (c) shows the diurnal profile of CO, emissions at the IAG site during August 2019.
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Figure B2. CO, emissions from energy, residential, refinery, and industry sectors by the EDGAR inventory over the study domain (DO1).
Panel (a) shows the spatial distribution of average daily CO; emissions for August 2019 over DO1. Panel (b) represents the monthly total
CO, emissions from February to August 2019 over the domain.
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Figure B3. Average daily anthropogenic CO, emissions (in tons) for August 2019 within the simulated domain, disaggregated by sector.

Bars represent the mean daily emissions per sector, while percentages indicate each sector’s relative contribution to total anthropogenic
emissions.
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Figure B4. Panels (a) and (b) show scatter plots comparing model outputs and observations at the Parque D. Pedro II station for hourly values
of 2m air temperature (75 ) and 10 m wind speed (WS), respectively. Panel (c) presents the daily averages from February to August 2019
for 2 m air temperature (73 ), 10 m wind speed (WS), and wind direction (WD). The black line represents observational data, while the red
line indicates model simulations.
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Figure B5. Panels (a) and (b) show scatter plots comparing model outputs and observations at the Guarulhos station for hourly values of
2 m air temperature (75 ,,) and 10 m wind speed (WS), respectively. Panel (c) presents the daily averages from February to August 2019 for
2 m air temperature (73 ), 10 m wind speed (WS), and wind direction (WD). The black line represents observational data, while the red line
indicates model simulations.
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Figure B6. Panels (a) and (b) show scatter plots comparing model outputs and observations at the Pinheiros station for hourly values of 2 m
air temperature (7> ;) and 10m wind speed (WS), respectively. Panel (c) presents the daily averages from February to August 2019 for 2 m
air temperature (75 ,), 10 m wind speed (WS), and wind direction (WD). The black line represents observational data, while the red line
indicates model simulations.
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Figure B7. Diurnal cycle of in situ CO, concentration and planetary boundary layer (PBL) height for the entire simulated period. The black
line represents the median hourly concentrations from WRF-Chem, while the purple line corresponds to the observed values. The shaded
areas indicate the interquartile ranges. (a) The observed and simulated surface CO, concentration at the IAG site, (b) the simulated PBL
height at the IAG site, (c) the observed and simulated surface CO, concentration at the PDJ site, and (d) the simulated PBL height at the PDJ

site.
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Figure B8. Bias (ppm) and RMSE (ppm) for each simulation at the surface CO, observation sites. Panels (a) and (b) represent the simulations
for February, while panels (¢) and (d) represent the simulations for August (ALL_*: black; ANTH_*: red; VPRM_*: green; the asterisk (*)
represents the observation sites, e.g., IAG and PDJ).

https://doi.org/10.5194/acp-25-9803-2025 Atmos. Chem. Phys., 25, 9803—-9829, 2025



9826 R. C. A. Alberti et al.: Monitoring and modeling seasonally varying anthropogenic and biogenic CO»
414 * 0OCO-2
s  WRF-Chem
L]
L] []
7 412 . . .o . * . .
S . . [ o - [
e . . i . o |
< 410 8 L} ] H l * . . HE Y R .
k=] . . . . HE ) .
= M . L | sl @ . '
E . . . ' :' ' I .
g 408 . - . : H  H . | .
5 I U N LS ol I
S : y § A . 0
~ o @ ) L]
& 406 . . . . : et . : H
B o, * . ]
. ]
a04 . . * $ . * .
| ] ® .
.
02
Apr 2019 May 2019 Jun 2019 Jul 2019 Aug 2019 Sep 2019

Figure B9. Time series of smoothed column concentrations observed (black) and modeled (red) for the period from 1 April to 31 Au-

gust 2019.

Code availability. The WRF-Chem model code version 4.0 is
freely distributed by NCAR at https://www2.mmm.ucar.edu/wrf/
users/download/get_source.html (Skamarock et al., 2019). The
VPRM code was used based on the study by Nerobelov et al.
(2021). VEIN can be installed from CRAN, and it is also avail-
able on Zenodo at https://doi.org/10.5281/zenodo.3714187 (Ibarra-
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