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Abstract. Three groups of intense concentric gravity waves (CGWs) lasting over 10h were observed by an
airglow imager at the Southern Space Observatory (SSO) in Sdo Martinho da Serra (29.44°S, 53.82° W) in
southern Brazil on 17-18 September 2023. These CGW events were simultaneously captured by spaceborne
instruments, including the Atmospheric Infrared Sounder (AIRS) aboard Aqua, the Visible Infrared Imaging
Radiometer Suite (VIIRS) on board Suomi NPP, and the Sounding of the Atmosphere using Broadband Emis-
sion Radiometry (SABER) instrument operating on the Thermosphere-Ionosphere-Mesosphere Energetics and
Dynamics (TIMED) satellite. The CGWs caused significant airglow radiation perturbations exceeding 24 %, and
the distance of the wave centre movement exceeded 400 km. These CGW events were caused by fast-moving
deep convection observed by the Geostationary Operational Environmental Satellite-16 (GOES-16). The weaker
background wind field during the spring season transition provides the necessary conditions for CGWs to prop-
agate from the lower atmosphere to the mesopause region. The 630 nm emission images were significantly
contaminated by specific OH emission bands. The same CGW event was observed propagating from the OH air-
glow layer (~ 87 km) to the thermospheric OI 630.0 nm airglow layer (~ 250 km). The asymmetric propagation
of CGWs in the thermosphere may be due to the vertical wavelength changes caused by the Doppler-shifting
effect of the background wind field. This multilayer ground-based and satellite joint detection of CGWs offers
an excellent perspective for examining the coupling of various atmospheric layers.

et al., 2017; Liu et al., 2019; Heale et al., 2020; Geldenhuys

Atmospheric gravity waves (AGWs) are disturbances in the
atmosphere caused by various sources, such as convection
(Fovell et al., 1992; Piani et al., 2000; Heale et al., 2022;
Franco-Diaz et al., 2024), front/jet streams (Fritts and Nas-
trom, 1992; Plougonven and Zhang 2014; Dalin et al., 2016;
Wrasse et al., 2024), wind shear (Fritts, 1982; Pramitha et al.,
2015), orography forcing (Nastrom and Fritts, 1992; Wright

et al., 2021; Inchin et al., 2024), and air-sea interaction (Li
et al., 2024). AGWs are generated when strong updraughts
and downdraughts displace the stable stratification of the at-
mosphere. As AGWs propagate vertically from the lower at-
mosphere, their amplitude grows markedly owing to reduced
density. When they reach mesosphere—lower-thermosphere
(MLT) altitudes, they become unstable and break, dissipat-
ing momentum and energy into the surrounding atmosphere
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(Cao and Liu, 2016; Ern et al., 2022b). This energy depo-
sition makes AGWs crucial drivers of the momentum and
energy budgets in the MLT region, fundamentally governing
the general circulation, thermal structure, chemical composi-
tion distribution, and transport regimes (Fritts and Alexander,
2003; Plane et al., 2023).

Among the many sources of AGWs, convective sources
are particularly significant (Alexander and Holton, 2004).
They can generate concentric gravity waves (CGWs), the
source location of which can be readily determined by the
centre position. The backward ray-tracing method, employed
for source location determination, can also be applied to
circular gravity wave patterns (Ern et al., 2022a). This en-
ables point-to-point studies of their propagation characteris-
tics. The release of latent heat in deep convection acts as a
forcing mechanism (Lane et al., 2001), creating CGWs that
can propagate upward into the middle and upper atmosphere.

All-sky airglow imagers provide a large field of view and
high-resolution observations, making them particularly suit-
able for observing short-period AGWs in the mesosphere and
thermosphere. Through the observational data from airglow
imagers, researchers can analyse the propagation characteris-
tics of AGWs, including parameters such as horizontal wave-
lengths, observed periods, horizontal phase velocities, and
momentum fluxes (Swenson and Liu, 1998).

Although the observation of AGWs by airglow imagers
has been widely documented in previous studies (Dalin et al.,
2024; Nyassor et al., 2021, 2022; Suzuki et al., 2007a; Vadas
et al., 2012; Vargas et al., 2021; Wiist et al., 2019; Xu
et al., 2015; Yue et al., 2009), dual-layer airglow observa-
tions, which involve observing airglow emissions from a hy-
droxyl radical (OH) layer (~ 87 km) in the mesosphere and
an atomic oxygen emission layer at 630 nm (OI 630.0 nm)
(~250km) in the thermosphere, offer a unique opportunity
to simultaneously investigate CGWs in both the mesosphere
and the thermosphere. This configuration enables compre-
hensive studies of gravity wave vertical propagations and
their role in vertical atmospheric coupling. However, due to
past limitations in observational capabilities, simultaneous
detection of CGWs across both the OH and the OI 630.0 nm
layers was rare.

In this study, we observed multiple strong CGW events
using airglow measurements in southern Brazil on 17—
18 September 2023, with a maximum amplitude reaching
24 %, which is far higher than previously reported events
with average amplitudes of 2 %-3 % (Li et al., 2016; Tang
et al., 2014; Suzuki et al., 2007a). Through ground-based
dual-layer and multi-satellite joint observations, we con-
ducted a comprehensive analysis of these events to reveal
their role in vertical energy transfer and atmospheric cou-

pling.
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Figure 1. The location of the airglow imager station at SMS (red tri-
angle). The circle on the map gives the effective observation ranges
of the OH airglow imager with a 164° field of view. The red asterisks
and blue asterisks denote the TIMED/SABER ascending and de-
scending track footprints passing over SMS on 18 September 2023,
respectively.

2 Ground-based airglow imager and satellite
observation

2.1 Airglow imager

The airglow imager used to observe CGWs is installed at
the Southern Space Observatory (SSO), the National Insti-
tute for Space Research, in Sdo Martinho da Serra (SMS)
(29.44° S, 53.82° W), Brazil. Figure 1 shows the location of
the airglow imager station at SMS. The imager has a cooled
charge-coupled device (CCD) camera with a Mamiya (fo-
cal length of 24 mm) fish-eye lens with a 180° field of view
(FOV) and a resolution of 512 pixels x 512 pixels. The im-
ager is equipped with a filter wheel, and the wheel rotates to
observe OH (Wiist et al., 2023) broadband emissions (715-
930 nm, with a notch at 865.5nm to suppress the O2(0, 1)
emission) and O(!D) (630.0 nm, 2.0 nm). The time resolution
of the OH airglow image is 112 s, while that of the OI 630 nm
airglow image is 225s. The exposure times of the OH air-
glow image and the OI 630nm airglow image are 20 and
90 s, respectively. Airglow observations are conducted when
the solar depression angle is less than —12°.

Before effectively extracting the wave parameters, the raw
airglow images need to be processed through the following
steps. First, a median filter with a kernel size of 17 pix-
els x 17 pixels was employed to eliminate stars from the raw
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images (Li et al., 2011). We also removed the CCD dark
noise, which was estimated from dark-frame images captured
with the shutter closed prior to observations. Second, we cor-
rected for the van Rhijn effect and atmospheric extinction us-
ing the approach described in Kubota et al. (2001). The ob-
served airglow intensity /(6) from the ground is not uniform
across different zenith angles. This non-uniformity is due to
the van Rhijn effect. Additionally, the observed airglow in-
tensity is influenced by atmospheric extinction, which results
from absorption and scattering along the line of sight.

Since airglow observations are subject to the van Rhijn ef-
fect, the measured emission intensity at a specific zenith an-
gle (@) follows the relation (Kubota et al., 2001)

10)=1(0)-V(H,0),
-1/2

R \* .,
V(H,9)=|:1—(R+H> sin (9):| , (1)

where 7(0) is the emission intensity at zenith, V(H, 0) is the
van Rhijn correction factor, R is the earth radius, and H is the
height of the OH airglow layer. The relationship between the
observed emission intensity /(0) — affected by atmospheric
extinction — and the true emission intensity /i(0) at the air-
glow layer is described by Kubota et al. (2001):

1(0) = Liye() - 107042 FO)

0\ ~12537"
F@)= |:cose +0.15- (93.885—9~7> ] , (@
where a is the atmospheric extinction coefficient, and F(0) is
an empirical equation.
Consequently, the image correction factor, obtained from
the combination of Egs. (1) and (2), takes the following form:

K =V(H,0)-10704aFO) (3)

The parameter a depends on the atmospheric observing
conditions. For the observed CGW events, we treat a as tem-
porally constant. By averaging the images over the obser-
vation period, we derive the zenith-angle-dependent airglow
intensity profile. The optimal value of a is determined by
matching this observed profile with theoretical K profiles
across varying a. The fitted value of parameter a is approx-
imately 0.42. Finally, we apply the flat-field correction by
dividing the raw images by the corresponding K factor.

Third, we eliminated atmospheric background counts from
the images. For background emission, Swenson and Mende
(1994) used simultaneous infrared measurements to demon-
strate that the background contributes approximately 30 % of
the total OH airglow image signal. Similarly, Suzuki et al.
(2007b) confirmed this ratio (~ 30 %) through concurrent
OH intensity observations with a spectral airglow tempera-
ture imager. In this study, we adopt the same assumption that
background emissions account for ~ 30 % of the total signal.
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Then, the original airglow images were spatially cali-
brated using stars as reference points. Each pixel loca-
tion (7, j) in the original image was first mapped to a posi-
tion ( f, g) in a standardised coordinate system. Subsequently,
the point (f, g) was transformed into geographic coordi-
nates (x, y) using azimuth (az) and elevation (el) angles.

The conversion between original image coordinates (i, j)
and standard coordinates ( f, g) is defined by a linear trans-
formation (Hapgood and Taylor, 1982):

Flofw @ @), @
g | [bo b1 b j’

where the coefficients a and b are calculated by applying a
least-squares fitting using the observed location of the stars
in the original image and their locations in the standard coor-
dinate (Garcia et al., 1997):

ao by 1M1 1% 1% |t
|:a] b } =1 i Ty it [f ¢g]. ©®
a b2 it G LT
where the column vectors i and j contain observed star loca-
tions in the original image, while f and g hold their com-
puted normalised coordinates. The vector 1 is a constant-
valued column vector with length matching these vectors.
Through a georeference procedure, the standard coordi-
nate images were projected onto geographic coordinates, as-
suming peak emission heights of 87 km for the OH layer
and 250 km for the OI 630.0 nm layer. The spatial resolution
of the imager varies significantly with zenith angle. For the
OH channel, it is 0.53 km per pixel at the centre of the image
and degrades to 39.8 km per pixel at the edge of the image.
For the 630 channel, the resolution is 1.53 km per pixel at the
centre of the image and decreases to 40.8 km per pixel at the
edge of the image.

2.2 GOES, Aqua, Suomi NPP, and TIMED satellite
observations

2.2.1 GOES satellite observations

The Geostationary Operational Environmental Satellite-16
(GOES-16) (Schmit et al., 2005), launched in November
2016, is part of the GOES-R Series. The Advanced Baseline
Imager (ABI) is the primary instrument on GOES-16, pro-
viding high-resolution imagery in 16 spectral bands, includ-
ing 2 visible channels (0.47 and 0.64 uym), 4 near-infrared
channels (0.86, 1.37, 1.6, and 2.2 um), and 10 infrared chan-
nels (3.9-13.3 um), with a temporal resolution of 10 min and
a spatial resolution of 0.5-2km (Schmit et al., 2017). The
brightness temperature (BT), derived from 10.3 um infrared
images from channel 13, is used to study the convection ac-
tivities during the CGW events.

Atmos. Chem. Phys., 25, 9719-9736, 2025
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2.2.2 Agua satellite observations

The Atmospheric Infrared Sounder (AIRS) (Aumann et al.,
2003; Chahine et al., 2006) is an infrared spectrometer
and sounder on board the NASA Aqua satellite (Parkin-
son, 2003). AIRS performs continuous across-track scan-
ning, acquiring data footprints sequentially. The collected
data are then organised into 6 min granules. The footprint
size of AIRS is approximately 13—14 km in diameter at nadir
view, and the scan swath width is around 1765 km (Hoff-
mann et al., 2014). AIRS is capable of detecting air ther-
mal perturbations induced by GWs with vertical wavelengths
longer than 10-15km and horizontal wavelengths ~ 50—
500 km (Hoffmann and Alexander, 2010). The radiance mea-
surements at the 4.3 um CO, fundamental emission band
are particularly sensitive at altitudes of around 30—40 km. In
this study, the CO; radiance emission band with frequencies
ranging between 2299.80 and 2422.85cm ™! (Rothman et al.,
2013) is utilised to measure stratospheric air temperature per-
turbations.

2.2.3 Suomi NPP satellite observations

The Visible Infrared Imaging Radiometer Suite (VIIRS) in-
strument, on board the Suomi NPP satellite (Lee et al., 2010;
Lewis et al., 2010), is a multispectral scanner capable of cap-
turing high-resolution images in both visible and infrared
wavelengths. The day—night band (DNB) of the VIIRS sen-
sor operates in the visible/near-infrared (NIR) range, cover-
ing wavelengths from 500 to 900 nm (Miller et al., 2012),
which includes three key mesospheric airglow emissions: the
O(1S) line at 557.7 nm, the Na doublet at 589.0/589.6 nm,
and the OH Meinel band (~ 600-900 nm). The sensor has
a high spatial resolution of 0.375 km at nadir for its imagery
bands and 0.75 km for its moderate-resolution bands. The VI-
IRS sensor has a wide across-track swath width of 3000 km.

2.2.4 TIMED satellite observations

Sounding of the Atmosphere using Broadband Emission Ra-
diometry (SABER) is one of four instruments on NASA’s
Thermosphere-Ionosphere-Mesosphere Energetics and Dy-
namics (TIMED) satellite (Russell et al., 1999), launched on
7 December 2001. TIMED focuses on exploring the energy
properties and redistribution in the MLT region, providing
data to define the basic states and thermal balance of this
area. SABER is a 10-channel broadband limb-scanning in-
frared radiometer (1.27-17 um). It measures kinetic temper-
ature through CO; emissions (15 um local thermodynamic
equilibrium (LTE) below 90km; 4.3 um non-LTE above
90 km) with &+ 2-5 K accuracy. Simultaneously observing O3
(9.6 um), OH (1.6-2.0 um), and Oy (1.27 um) emissions, it
quantifies radiative cooling (up to 150 Kd~!) and chemical
heating (~8Kd~!) in the MLT region with 2—4 km vertical
resolution.

Atmos. Chem. Phys., 25, 9719-9736, 2025
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3 Observations

3.1 Double-layer all-sky airglow imager observations

3.1.1  Mesospheric concentric gravity waves from OH
all-sky imaging observation

Three groups of intense CGWs (wave packet nos. 1-3) were
captured by the OH emission channel of the airglow im-
ager at the Southern Space Observatory (SSO) in Sdo Mart-
inho da Serra (29.44° S, 53.82° W) in southern Brazil on 17—
18 September 2023. These events initially emerged within
the imager’s field of view at 22:25:02UT on 17 Septem-
ber and remained continuously detectable until the cessation
of observational recording at 08:35:15UT on 18 Septem-
ber, thereby spanning an extended duration in excess of 10 h.
For more detailed information on the wave propagation sta-
tus, refer to the Supplement (https://doi.org/10.5446/69990,
Li, 2025a). Figure 2 shows the time sequence of CGW
no. 1 from 22:49:23 UT on 17 September to 03:39:31 UT on
18 September. CGW no. 1 first appeared in the southwest
direction of the station.

The distinct visible concentric wavefronts radiating out-
ward from the centre (red dot in each panel) are indica-
tive of the atmospheric response to disturbances caused by
strong convection in the lower atmosphere. Interestingly,
the centre of CGW no. 1 continues to move eastward. Be-
tween 22:45:38 UT on 17 September and 05:26:13 UT on
18 September, the centre moved approximately 436 km east-
ward, with an average speed reaching ~65kmh~!. This
eastward drift of the wave’s centre could be indicative of the
influence of prevailing wind patterns and the eastward move-
ment of the convective system itself. The horizontal wave-
lengths of the GWs at radii of 0-300km (denoted by the
red line in Fig. 2 at 23:39:55 UT) are measured to be (30-
82) = 3km. The observed period is 9.0 £ 3.5 min, and the
observed phase speed is 80-110ms~!. In the northwest di-
rection (denoted by the red line in Fig. 2 at 00:49:11 UT),
we detected larger-scale waves with a wavelength of about
160 km, a period of approximately 16 min, and a phase speed
of about 167 ms~!.

From 02:00 UT, clouds began forming in the southwestern
and western sectors of the station (see Fig. 2). By 04:00 UT,
cloud formation extended to the zenith and northern sec-
tors, persisting until ~05:30 UT. Figure 3 shows the time
sequence of CGW no. 2 and CGW no. 3 from 03:58:14 UT
on 17 September to 07:59:42 UT on 18 September. Despite
cloud cover, CGW no. 2 and CGW no. 3 were observed in
cloud gaps over the western sector at approximately 03:45:08
and 05:13:06 UT, respectively. For CGW no. 2, horizon-
tal wavelengths range from 22 to 38 km, with a period of
74 1.5min and a phase speed of 60-78 ms~'. CGW no. 3
exhibits wavelengths of 24-36 km, a period of 6.5 &+ 1.0 min,
and a phase speed of 72-81 ms~!.

https://doi.org/10.5194/acp-25-9719-2025
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Figure 2. All-sky OH images projected onto an area of 1000km x 1000 km showing the CGW no. 1 event at half-hour intervals in the
SMS station on 17-18 September 2023. The red dots mark the estimated centres of the CGW. The presented images display the corrected

OH emission intensity.

3.1.2 Thermospheric concentric gravity waves from
all-sky 630.0 nm imaging observation

The 630.0nm filter used in the imager is a narrowband
interference filter with a central wavelength of 630.0 nm
and a full width at half maximum (FWHM) spectral width
of 2.0nm. Three spectral lines from the OH (9-3) band
lie within the bandwidth of the 630.0 nm filter: the P2(3)
line at 629.7903 nm, the P1(3) doublet at 630.6869 and
630.6981 nm, and the P1(2) line at 628.7434 nm (Hernandez,
1974; Burnside et al., 1977; Smith et al., 2013). To deter-
mine whether the OI 630 nm airglow image is contaminated
by OH airglow emission, we project both the OH airglow im-
age and the OI 630 nm airglow image onto the height of the
OH airglow layer. We can clearly see that the OI 630 nm air-
glow image is contaminated by OH emission, with the CGWs
observed in the OH airglow layer being superimposed onto
the OI 630nm airglow image denoted by the dashed yel-
low boxes in Fig. 4. Thus, we must exercise extreme caution
when interpreting disturbances in the thermosphere observed

https://doi.org/10.5194/acp-25-9719-2025

at the 630 nm wavelength, particularly in the absence of con-
current OH airglow measurements, to differentiate whether
these disturbances are genuinely thermospheric phenomena
or merely artefacts resulting from OH airglow radiation con-
tamination. Notably, thermospheric CGW nos. 1 and 2 (top
panel of Fig. 4) were unambiguously observed. Their spatial
mapping onto OH images confirms these signals originate
from the thermosphere (bottom panel of Fig. 4), excluding
OH contamination. Regarding the contamination of 630 nm
images by OH emissions and the actual propagation situa-
tions of CGWs in the thermosphere, refer to the Supplement
(https://doi.org/10.5446/69989, Li, 2025b).

Figure 5 presents a series of OI 630nm airglow emis-
sion images projected onto an altitude of 250 km. The ring-
shaped arc (thermospheric CGW no. 1) (indicated by red ar-
rows) propagating towards the northwest was identified, with
a wavelength of approximately 165 km and a horizontal ob-
served phase speed of about 183 ms~!. There are also ob-
served curved wave structures (thermospheric CGW no. 2)

Atmos. Chem. Phys., 25, 9719-9736, 2025


https://doi.org/10.5446/69989

9724

Q. Li et al.: Multilayer CGW observat

Group CGW nos. 2 and 3
04:30:03 UT
N WY 0/

.'l ¥, AR

N

% 4 /4 f M
7 Y/ N
7, A il A

ions from ground and space

05:59:54

uT :51
MR 1

AMN N
uT
1

N T

Figure 3. All-sky OH images projected onto an area of 1000 km x 1000 km showing the CGW no. 2 and CGW no. 3 events at half-hour
intervals in the SMS station on 18 September 2023. The red dot marks the estimated centre of CGW no. 1, while the green and light blue
dots indicate the estimated centres of CGW no. 2 and CGW no. 3, respectively. The presented images display the corrected OH emission

intensity.

(indicated by green arrows) whose wave fronts are perpen-
dicular to those of the contaminating OH wave fronts. The
optical signatures of medium-scale travelling ionospheric
disturbances (MSTIDs) in the Southern Hemisphere, as ob-
served in OI 630.0nm emission images, typically mani-
fest as alternating dark and bright bands aligned along the
northeast—southwest direction, propagating in a northwest-
ward direction (Candido et al., 2008). The MSTIDs gener-
ally exhibit full FOV coverage, traversing the entire imaging
region during their propagation. However, our observations
revealed that the thermospheric disturbances first emerged
in the zenith region, exhibiting distinctively arcuate phase
fronts, suggesting that they were excited by a quasi-point
source in the lower atmosphere. The fitted centre of the arc
(indicated by a red dot) is located ~ 320 km to the southwest
of the station.

Atmos. Chem. Phys., 25, 9719-9736, 2025

3.2 AIRS and Suomi NPP

Figure 6 shows the AIRS 4.3um BT perturbation map
over southern Brazil at 05:05:21 UT on 18 September 2023.
The AIRS observation reveals large-scale waves propagating
northwestward and westward, with a horizontal wavelength
of approximately 160km. The limited spatial resolution of
AIRS restricts its detection capability for GWs with short
horizontal wavelengths. The relatively weak brightness tem-
perature fluctuations observed by AIRS may result from the
instrument’s limited sensitivity to short vertical wavelengths
(Hoffmann et al., 2014). Consequently, the observed bright-
ness temperature amplitudes are typically much lower than
the actual stratospheric temperature fluctuations, especially
for convective wave events with short vertical wavelengths.
Based on the stratospheric CGW'’s central position and prop-
agation characteristics, we infer that this wave shares the

https://doi.org/10.5194/acp-25-9719-2025
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Figure 4. All-sky 630.0nm images (a—c) and OH images (d-f) were both projected onto an altitude of 87km with an area of
1000 km x 1000 km. The northeastward-propagating CGW (marked with a dashed yellow box) shows contamination from OH airglow emis-
sion. Thermospheric CGWs propagating northwestward confirmed in 630.0 nm images (a—c). The phase fronts of thermospheric CGW nos. 1
(red lines) and 2 (green lines) are superimposed onto the OH images (bottom panel).

Figure 5. All-sky 630.0 nm images projected onto an area of 2000 km x 2000 km showing thermospheric CGW nos. 1 (indicated by red
arrows) and 2 (indicated by green arrows) at approximately 4 min intervals in the SMS station on 18 September 2023. The red dots mark the
estimated centres of the thermospheric CGW. The northeastward-propagating CGW (marked with a dashed yellow box) exhibits artefacts
influenced by OH airglow emission.
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respectively.

same source with mesospheric CGW no. 1 identified in the
OH all-sky images.

The Suomi NPP satellite flew over the southern Brazil re-
gion during the progression of the CGW events. Figure 7
shows CGWs from the Suomi NPP VIIRS band/DNB mea-
surements at 03:59:54 UT on 18 September 2023. The hori-
zontal wavelengths are primarily distributed within the range
of (38-52) £3km (indicated by a dashed red box). In the
eastern direction of the small-scale wave region, large-scale
waves located at 34-39° S and 43-46° W were detected with
a horizontal wavelength of approximately 154 + 5 km. Due
to the interference of urban lighting, the CGW structures
were not visible over land.

3.3 GOES observations of convective plumes

Figure 8 shows GOES-16 10.3 um BT over southern Brazil
from 21:00 to 05:30 UT on 17-18 September 2023. The first
convective system initially appeared in the southwest direc-
tion of the station (indicated by the red arrow) at around
21:00 UT. This convective system continued to move east-
ward over time and had travelled approximately 400km
by 05:30 UT. This eastward motion explains the observed
~ 436 km displacement of CGW no. 1 in the mesopause re-
gion. The second and third convective systems appeared at
approximately 02:30 and 04:30 UT, respectively, and also
moved eastward. By 06:30 UT, the three convective sys-
tems had merged together. A detailed evolution process
of thunderstorm systems is provided in the Supplement
(https://doi.org/10.5446/69993, Li, 2025¢). The spatial prox-
imity of the three CGW centres to the initiation points of
the convective systems strongly suggests that these systems
served as excitation sources for the CGWs detected by the
airglow imager.

Atmos. Chem. Phys., 25, 9719-9736, 2025

4 Results and discussion

4.1 The characteristics of mesopause CGWs

We analysed the background wind field above the station us-
ing a composite dataset: the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERAS5 (Hersbach et al.,
2020) for 0-70km altitude and the Horizontal Wind Model
2014 (HWM14; Drob et al., 2015) for 70-87 km altitude.
Figure 9a and b show the zonal wind and meridional wind
fields, respectively. Figure 9c presents a critical-level filtering
diagram, demonstrating how gravity waves from the lower
atmosphere are prevented from reaching the mesopause re-
gion when their phase velocities fall within the prohibited
range. The diagram reveals a maximum blocking amplitude
of approximately 44 ms~!. The results indicate that weaker
background winds (producing smaller blocking amplitudes)
enhance the vertical propagation of CGWs from the lower
atmosphere to the mesosphere. Apart from the moving con-
vective system mentioned above, which is a primary cause of
the eastward displacement of the CGW centre observed at the
mesopause, the prevailing winds near 10 and 55 km in Fig. 9a
also significantly contribute to the eastward movement of the
CGW centre.

Figure 10 shows sequential cross sections of OH emis-
sion intensity perturbations perpendicular to the CGW no. 1
fronts. The wave amplitudes observed in this study exhibit
significantly stronger perturbations, with a maximum rela-
tive amplitude of 24 %. In contrast, previous studies have
reported average amplitudes that are approximately 2 % (Li
etal.,2016; Tang et al., 2014; Suzuki et al., 2007a). Addition-
ally, Smith et al. (2020) reported mean-to-peak wave bright-
ness amplitudes of 10 %.
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VIIRS-NPP-Day Night Band 18 September 2023 at 03:59:54 UT
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Figure 7. Suomi NPP satellite day—night band radiance observations of CGWs at 03:59:54 UT on 18 September 2023. The red triangle
represents the SMS station, and the red dot represents the position of the fitted centre of the CGW.
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Figure 8. GOES-16 10.3 um brightness temperature from 21:00 to 05:30 UT on 17-18 September 2023. The brightness temperature is
derived from 10.3 um infrared radiance data from channel 13. The red triangle represents the SMS station.
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Figure 10. OH emission intensity perturbations perpendicular to
the CGW no. 1 fronts (denoted by the red line in Fig. 2 at
23:39:55UT) from 23:34:18 to 23:49:17UT on 17-18 September
2023.

During the generation and propagation of CGWs, two
SABER orbits passed over the station and happened to be
within the field of view of the airglow imager, as shown in
Fig. 11. The first orbit passes over the station at approx-
imately 00:26 UT, followed by a second orbit ~7h later
at 07:18 UT (Fig. 1). Figure 12 presents seven OH airglow
emission and temperature profiles from TIMED/SABER. We
observed that the CGWs caused strong disturbances to the

Atmos. Chem. Phys., 25, 9719-9736, 2025

airglow layer. We found that the intensity of airglow emis-
sion during the first orbit (Fig. 12a) was much stronger than
that during the second orbit (Fig. 12c¢), which may suggest
that the intensity of the fluctuations during the first orbit was
much stronger than that during the second orbit. In addition
to this, we also observed a double-peaked structure in the air-
glow emission layer. There are weak double-peak structures
during the first overpass at 00:24:10 and 00:28:15 UT. In con-
trast, the double-peak structure is more prominent during the
second overpass in the 07:18:23 UT profile.

We can use airglow imaging observations to estimate grav-
ity wave flux (Fv). Fm (Swenson and Liu, 1998; Swenson
et al., 1999) is expressed as

1g2mae? [T\ 1 s o
FM=-2——|=| — =), 6
M= oN2 ke N2\ T CF2m 59 ©)

where CF = 3.5 — (3.5 — 0.1)exp[—0.0055(); — 6km)?]is a
cancellation factor. A, is the vertical wavelength. I’ is the
perturbed airglow intensity. I is the averaged airglow in-
tensity. g is the gravitational acceleration. N is the Brunt—
Viisdld frequency derived from TIMED/SABER observa-
tions. k = i—’; is the horizontal wavenumber. Aj, is the hori-

zontal wavelength derived from airglow images. w = 2’;;" is

the intrinsic frequency (where ¢; is the intrinsic phase speed).
m= i—” is the vertical wavenumber derived from the GW dis-

persion relation (Hines, 1960):

2
2 N 2 1

=(c—u)2_ 4H? )

where c is the observed horizontal phase speed of the wave,
u is the wind speed in the wave direction derived from
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Figure 11. Simultaneous observations of mesopause CGWs using the OH channel ground-based all-sky airglow imager and TIMED/SABER
satellite measurements. The red triangle marks the location of the SMS station. The instantaneous field of view of TIMED/SABER is 0.7 mrad

by 10 mrad.

HWM14, and H is the scale height from the SABER tem-
perature profile.

Figure 13 shows the calculated vertical flux of the hori-
zontal momentum flux of mesopause CGWs in the altitude
of the OH layer from 22:00 to 09:00 UT on 17-18 Septem-
ber 2023. We found that CGW no. 1 produced substantially
stronger momentum flux (peak value >450m?s~2) com-
pared to CGW no. 2 and CGW no. 3, which showed sim-
ilar but weaker magnitudes. These values markedly exceed
previous measurements (typically 1-17m?s~2 in Li et al.,
2016, and Tang et al., 2014) and even surpass the intense
event (decaying from 300 to 150 m?s~2) reported by Smith
et al. (2020). Ern et al. (2018) studied the climatology mo-
mentum flux determined from SABER satellite limb sound-
ing data. They find that the GW absolute momentum flux is
approximately 1-4 m?s~2 in the mesopause region. The re-
sults reveal that the fast-moving thunderstorm systems gener-
ated exceptionally powerful wave activity, transporting sub-
stantial momentum and energy into the MLT region. This
demonstrates remarkable wave coupling between the lower
and upper atmosphere.

We use the following vertical group velocity equation to
estimate the time required for the CGWs generated by the
convective systems to propagate to the MLT region:

Az Nkm
Co = A = TGy ®
where Az and At are the vertical distance and propagation
time of the CGWs from the troposphere to the airglow layer,
respectively. The horizontal wavenumber k is derived from
airglow images. The Brunt—Viisild frequency N and verti-
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cal wavenumber m are calculated as the mean value over the
atmospheric layer spanning the tropopause to the mesopause.
Notably, the background wind and temperature may exhibit
significant altitudinal variations, resulting in substantial vari-
ations in the CGW vertical group velocity.

The background temperature for calculating the vertical
group velocity of CGW no. 1, no. 2, and no. 3 was derived
from TIMED/SABER profiles within an effective FOV of
the OH imager during the first orbit (Fig. 12b), the average
of the first and second orbits (Fig. 12d), and the second or-
bit, respectively, while wind field data combined ERAS (0—
70 km) and HWM 14 (70-87 km). The vertical group veloc-
ities of CGW no. 1, CGW no. 2, and CGW no. 3 are es-
timated to be 27-42, 21-32, and 24-31 ms~!, respectively.
This implies that the time taken for CGW no. 1, CGW no. 2,
and CGW no. 3 to reach the OH airglow layer (87 km) is
approximately 28-44, 37-57, and 38-50 min, assuming the
excitation height of CGWs is 15km. Yue et al. (2013) con-
ducted multilayer observations of convective gravity waves
over the western Great Plains of North America and esti-
mated that the time from the convective source to the airglow
layer was ~ 45 min.

4.2 The characteristics of thermospheric CGWs

We further investigated the propagation characteristics of
thermospheric CGW no. 1. The vertical group velocity of the
thermospheric gravity waves can be estimated using the fol-
lowing approximate relationship: Cg, ~ —%cosza sina. o is
the zenith angle between the vertical altitude and propagation
direction of the CGW phase fronts. The zenith angle « is ap-

Atmos. Chem. Phys., 25, 9719-9736, 2025
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Figure 12. TIMED/SABER (a) OH 1.6 um emission and (b) temperature profiles (descending track) and (¢) OH 1.6 um emission and
(d) temperature profiles (ascending track) on 18 September 2023. Boxed profiles correspond to the satellite’s passage through the airglow

imager’s effective FOV (see Fig. 11).

proximately 61° from Fig. 14a. The buoyancy frequency N
is estimated to be 27 /10.35min at the thermosphere height
of 250 km, which is derived from the empirical neutral at-
mosphere model (NRLMSISE-00) (Picone et al., 2002). The
horizontal wavenumber k = 27 /165km. The estimated ver-
tical group velocity is about 54 + 6 ms~!. Based on the verti-
cal group velocity, we find that the time taken for the gravity
waves to propagate from the OH layer and the tropopause
region to the thermosphere is approximately 50+ 5 and

Atmos. Chem. Phys., 25, 9719-9736, 2025

73 £ 8 min, respectively. As discussed above, the OH images
and OI images were captured nearly simultaneously to illus-
trate the contamination effect in Fig. 4. Some of the wave pat-
tern mismatches in Fig. 4 are due to the propagation time re-
quired for CGWs to travel from the OH altitude to the OI al-
titude. Given the thermospheric arrival time of 01:41:57 UT
(Fig. 14a), the CGWs were likely excited near the tropopause
(~ 15 km altitude) at approximately 00:28:57 UT (Fig. 14c)
and passed through the OH layer (~87km altitude) be-
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Figure 13. Temporal evolution of vertical flux of horizontal momentum from 22:00 to 09:00 UT on 17-18 September 2023.

tween approximately 00:46:57 and 00:56:57 UT. Notably,
GWs with comparable scales were observed in the OH layer
at around 00:54:48 UT (Fig. 14b), which suggests that they
might be the same wave.

As mentioned above, the observed thermospheric CGWs
exhibit an asymmetric structure, appearing as arc-shaped
waves only in the western and northwestern directions. This
asymmetry can be attributed to the Doppler effect of the
background wind field, which influences gravity wave de-
tection through wave cancellation. GWs propagating against
background wind are Doppler shifted to a larger vertical
wavelength and have an increased chance of observation (Li
et al., 2016). These GWs suffer little cancellation and can
be easily detected by airglow imager GW observations. GWs
propagating along background wind are Doppler shifted to
a smaller vertical wavelength, causing the wave amplitude
to become invisible. As illustrated in Fig. 14d, the east-
ward zonal wind at 250km altitude reaches ~90ms~!.
This strong eastward wind likely suppresses the visibility of
eastward-propagating thermospheric CGWs in airglow imag-
ing. We use Eq. (5) to estimate that the vertical wavelength of
thermospheric CGWSs propagating in the northwest direction
is approximately 236 km, while that of thermospheric CGWs
propagating eastward is approximately 62 km. The Doppler
shift reduces their vertical wavelengths, causing them to fall
below the detection threshold of the vertically integrated air-
glow observations, which is approximately 100 km from 200
to 300 km during nighttime (Chiang et al., 2018).

5 Conclusions

In this study, we investigated intense CGWs using coordi-
nated dual-channel airglow observations (630.0 nm and OH
bands) from the Southern Space Observatory (SSO) in Sao
Martinho da Serra, Brazil, complemented by multi-satellite
measurements during 17-18 September 2023. The key find-
ings are summarised as follows.

https://doi.org/10.5194/acp-25-9719-2025

These unprecedented CGWs exhibited remarkable persis-
tence (> 10h), extreme amplitude perturbations (> 24 %),
and substantial wave centre movement (> 400km). These
wave events were unambiguously linked to fast-moving con-
vective systems observed by GOES-16. The weaker back-
ground wind field during the spring season transition was
identified as a crucial factor that allowed CGWs to propagate
from the lower atmosphere to the MLT region.

The OI 630nm airglow observations were substantially
contaminated by overlapping OH Meinel band emissions
(715-930 nm). This contamination leads to spurious apparent
vertical coupling, as mesospheric gravity waves (CGWs) are
artificially projected onto the thermospheric OI 630 nm emis-
sion layer. This cross-layer aliasing effect necessitates rigor-
ous validation protocols when interpreting putative thermo-
spheric disturbances at 630 nm, particularly requiring spatio-
temporally collocated OH airglow measurements (e.g. OH
(9-3) bands) to discriminate genuine dynamical processes
from lower-atmospheric contamination artefacts.

The asymmetric propagation of CGWs in the thermo-
sphere was attributed to variations in vertical wavelength in-
duced by the Doppler effect of background winds. Specifi-
cally, the eastward zonal wind at 250 km altitude, reaching
approximately 90 ms~!, reduced the vertical wavelength of
eastward-propagating CGWs, making them undetectable in
airglow imaging observations due to vertical integration ef-
fects.

This study reveals intense CGWs originating from deep
convective systems that play a dominant role in transferring
wave energy and momentum from the troposphere to the
MLT region. These waves exhibited exceptional characteris-
tics, including prolonged persistence, extreme amplitude per-
turbations, and significant horizontal movement, demonstrat-
ing their substantial impact on atmospheric dynamics and
space weather by (1) seeding travelling ionospheric distur-
bances (TIDs) that disrupt communications/GPS, (2) trigger-
ing plasma instabilities, and (3) altering thermospheric den-
sity, affecting satellite drag.

Atmos. Chem. Phys., 25, 9719-9736, 2025
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Figure 14. (a) All-sky 630.0 nm imaging observation of thermospheric CGW (dashed red lines) at 01:41:57 UT on 18 September 2023. The
yellow dot marks the estimated centre of the thermospheric CGW. (b) All-sky OH imaging observation of mesospheric CGW at 00:54:48 UT
on 18 September 2023. The dashed red lines mark the mesospheric CGW with the same scale as the thermospheric CGW. The red dot marks
the estimated centre of the mesospheric CGW. (¢) GOES-16 10.3 um brightness temperature at 00:20:20 UT on 17-18 September 2023. The
red triangle marks the location of the SMS station. (d) Wind profiles from ERAS (0-70km) and HWM14 (70-250 km) averaged between

01:00 and 02:00 UT on 18 September 2023.

Our coordinated multi-instrument approach, combining
dual-channel airglow observations with satellite measure-
ments, provides crucial insights into wave propagation while
addressing the challenges of cross-layer contamination in
OI 630nm emissions. These findings significantly advance
our understanding of gravity wave dynamics in the upper
atmosphere and establish an improved observational frame-
work for studying atmospheric coupling processes.

Atmos. Chem. Phys., 25, 9719-9736, 2025

Data availability. The airglow data are available from the web
page of the Estudo e Monitoramento Brasileiro do Clima Es-
pacial (EMBRACE/INPE) at http://www2.inpe.br/climaespacial/
portal/en (EMBRACE, 2024). TIMED/SABER data are acces-
sible from http://saber.gats-inc.com/data.php (Mlynczak et al.,
2023). The ERAS reanalysis data are available for download from
the Copernicus Climate Change Service Climate Data Store at
https://doi.org/10.24381/cds.bd0915¢c6 (Hersbach et al., 2023). The
GOES-16 ABI L1b radiance data are accessible from https://www.
ncdc.noaa.gov/airs-web/search (Schmit et al., 2017). AIRS radiance
data are accessible from https://doi.org/10.5067/YZEXEVN4IGGJ
(AIRS project, 2007). VIIRS DNB data are distributed by the
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NOAA Comprehensive Large Array-data Stewardship System
(CLASS) (https://www.aev.class.noaa.gov/saa/products/welcome;
jsessionid=C3562F228661BE845B176C9AE2714AE6, Miller et
al., 2012).

Video supplement. Extreme mesospheric concentric gravity
waves from OH airglow observations over southern Brazil
are available to view (https://doi.org/10.5446/69990, Li, 2025a).
Thermospheric concentric gravity waves from OI 630nm air-
glow observations over southern Brazil are available to view
(https://doi.org/10.5446/69989, Li, 2025b). Fast-moving severe
thunderstorms over southern Brazil from GOES-16 observations are
available to view (https://doi.org/10.5446/69993, Li, 2025¢).
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