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S1. WRF-Chem configuration 

WRF-Chem V3.7 provides multiple choices for physics parameterization and 

atmospheric chemistry to supports different solution schemes for different modeling 

scenario simulations. Of which, WRF provides meteorology, including winds, air 

temperature, humidity turbulent diffusion and dispersion, atmospheric radiation, and 

clouds evolution, to drive O3 chemical transformation, transport, and mixing in the 

atmosphere (https://www2.acom.ucar.edu/wrf-chem). The physical parameterization 

and chemistry schemes chosen in the present study and the model vertical levels are 

presented in Tables S1 and S2. The Regional Acid Deposition Model version 2 

(RADM2) and the MADE/SORGAM aerosol modules were adopted in chemistry and 

aerosol simulations (Ackermann et al., 1998; Stockwell et al., 1990; Zhou et al., 2017). 

The FAST-J photolysis scheme was used to calculate photolysis rates for complex 

photochemical reactions, accounting for the intricate interplay between atmospheric 

particulates and solar irradiance (Chen and Dudhia, 2001). The modeling adopted a 

robust array of physical schemes, including the Noah land surface model (Schell et al., 

2001), the Mellor-Yamada-Janjic (MYJ) boundary layer scheme (Janjić, 1994), the 

Grell-Devenyi ensemble convective parameterization (Grell and Dévényi, 2002), the 

Lin microphysics scheme, the Goddard shortwave radiation scheme (Lin et al., 1983), 

and the Rapid Radiative Transfer Model (RTTM) for longwave radiation (Chou et al., 

1998). These schemes have been used in extensive WRF-Chem simulations of 

tropospheric O3 activities in China and demonstrated to be reliable in O3 modeling 

exercises (Jiang et al., 2008, 2012; Li et al., 2020; Xiang et al., 2020; Zhang et al., 2020, 

2022). The aerosol feedback mechanism was also considered to account for the 

interactions between aerosols and solar radiation, leading to potentially more accurate 

simulations of atmospheric processes.   

The model input emissions include gridded annual emission data for BC, OC, NH3, 

NMVOC, NOx, CO, SO2, and primary PM10 and PM2.5 at a resolution of 0.1° × 0.1o 

lat/lon, collected from the EDGAR version 4.3 (The Emissions Database for Global 

Atmospheric Research). A simple grid-mapping program was used to process 

EDGAR’s data (https://ruc.noaa.gov/wrf/wrf-chem/Emission_guide.pdf). The program 

maps the global anthropogenic emissions data to the WRF-forecasting domain using a 

Mercator, polar stereographic or Lambert conformal projection. It is worth noting that 

a recent study suggests that temperature can alter precursor emissions, thereby 

influencing ozone formation in some regions (Pfannerstill et al., 2024). Unfortunately, 

the present study is not able to identify the impacts of humidification and warming on 

precursor emissions because we implemented available well-known precursor emission 

inventories, such as MEIC and EDGAR, into the WRF-Chem model. To account for 

https://edgar.jrc.ec.europa.eu/
https://edgar.jrc.ec.europa.eu/
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the influences of humidity and temperature on precursor emissions, regional or global 

emission inventories have to be dynamically updated based on altering humidity and 

temperature in future.  

The model domain covers entire mainland China and is not nested because this 

model study focused on a national scale. The model was integrated during each summer 

(June, July, and August) from 1998 to 2017. In the WRF-Chem model, the stratosphere-

troposphere exchange (STE) parameterization is typically included as part of the 

model's default configuration. This means that the model is designed to automatically 

account for the exchange of ozone between the stratosphere and troposphere through 

the STE process. To account for the annual cycle of summer meteorology and chemical 

equilibrium, three-days spin-up time is selected for every summer. We did not use any 

data assimilation techniques in O3 simulations because the model integration was 

repeated on a daily basis with daily initial condition input. However, the nudging option 

(FDDA) in WRF simulations was switched in our modeling exercises to avoid the drift 

of meteorology from the global reanalysis. 

 

S2. Model evaluation 

Extensive model evaluations were conducted by comparing simulated ozone 

concentrations, with measured data. The CNEMC (China National Environmental 

Monitoring Center, https://air.cnemc.cn:18007/) datasets were used for modeled O3 

evaluation. The CNEMC provided monitored hourly near-surface ozone concentrations 

since 2013 across China but the CNEMC air quality data were most reliable since 2016. 

The selected eight validation cities' latitudes and longitudes are shown in Table S3. 

Figures S2-S7 shows modeled and sampled hourly O3 concentrations during the period 

of summer 2019 under SSP2-4.5 and SSP5-8.5 scenarios, respectively. Modeled O3 

concentrations capture, to some extent, the fluctuations of sampled concentrations with 

the correlation coefficients >0.55. For the evaluation of modeled meteorology, readers 

are referred to refs. Zhang et al. (2020 and 2022). It should be noted that simulated O3 

concentrations in Northwestern China do not match well compared to eastern China. 

Likely higher background O3 concentrations in Northwestern China than Eastern China 

due to topography, featured by mountainous regions and plateaus that can influence 

local atmospheric circulation patterns and the trapping of pollutants, stronger sunshine, 

scarce precursor emission sources, and dry condition. WRF model often could not 

predict well meteorology in complex terrains.     

 

S3. Shared socioeconomic pathway in conjunction with representative 

concentration pathways from 2019 to 2060 
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First, we selected the CMIP6 SSP2-RCP4.5 pathway, which reflects a middle-of-

the-road pathway regarding socioeconomic factors (SSP2) and a moderate level of 

efforts to combat climate change. RCP4.5 is a stabilization scenario where the increase 

in radiative forcing is stabilized shortly after 2100 through various technologies and 

strategies for reducing greenhouse gas emissions. The SSP2-RCP4.5 (hereafter referred 

to as SSP2-4.5) is the pathway that reasonably approximates the strategies to achieve 

GHG emission mitigation goals in Northwestern China. Under SSP2-4.5, the growth in 

the duration and intensity of droughts tends to be slow and steady (Zhou et al., 2023; 

Zhu et al., 2020). Meteorology and precursor emissions subject to SSP2-4.5 in China 

were collected from the DPEC in 2019, 2030, and 2060, respectively. To compare, we 

also performed model simulations subject to the SSP5-RCP8.5 scenario (hereafter 

referred to as SSP5-8.5). The SSP5-RCP8.5 represents a scenario where socioeconomic 

trends focus on economic growth reliant on fossil fuels without significant efforts to 

mitigate climate change, leading to high greenhouse gas emissions and substantial 

global warming by the end of the 21st century. This scenario projects a higher drought 

risk than other SSP-RCP pathways (Nooni et al., 2021; Zhu et al., 2020). Like the SSP2-

RCP4.5 scenario setup, the meteorology and precursor emissions subject to SSP5-8.5 

in 2019, 2030, and 2060 were also collected from the DPEC. 

 

S4. Projected future climate impacts on summer Ozone 

Figure 6 illustrates WRF-Chem modeled fractions of gridded O3 concentration and 

RH of 2030 and 2060 to 2019 under SSP2-4.5 scenario (Fig. 6a-6d) in Northwestern 

and mainland China (the left-low corner of Fig. 6), respectively. The results show a 

widespread decline in O3 concentrations from 2019 to 2030 in Northwestern China. 

Most areas in mainland China featured negative O3 fractions, except for Xinjiang and 

Eastern Inner Mongolia (Fig. 6a). However, O3 concentrations in those southern 

provinces of Northwestern China, namely Eastern Qinghai, Eastern Gansu, and Shaanxi, 

will rise in 2060 relative to 2019 (Fig. 6b), which is consistent with widespread 

enhancement of O3 levels in Central and Eastern China (inner figure on the low-left 

corner). Opposite to the wetting during the past two decades (Figs. 2 and 3 in main text), 

we observe a drying trend extending from Xinjiang to Western Gansu and Qinghai, 

illustrated by negative RH fractions in 2030 and 2060 relative to 2019 (Figs. 6c and 6d). 

The drying trend seems, to some extent, consistent with increasing O3 concentrations 

in Xinjiang. Although we can also observe negative associations between O3 and RH, 

such as in Ningxia, Shaanxi, and Inn Mongolia from 2019 to 2030, such negative 

associations are not applicable in many places of Northwestern and mainland China 

subject to the SSP2-4.5 scenario, particularly in 2060. This can be attributed to strong 
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artificial interventions in O3 mitigation in China since the early 2020s 

(https://www.gov.cn/zhengce/content/2022-01/24/content_5670202.htm), typically in 

Eastern, Southern, and Central China. Since SSP2-4.5 projects a moderate development 

pathway where trends do not shift markedly from historical patterns, artificial 

interventions may overwhelm natural climate factors' influences on O3 evolution. The 

strong signals in RH and O3 associations were identified before the artificial 

interventions were implemented, as discussed in section 3.2. 

Figure 6e compares modeled fractions of mean summer RH, SAT, and O3 

concentrations between 2030 and 2060 relative to 2019 under the SSP2-4.5 scenario 

averaged over each of the six provinces in Northwestern China. SAT (green bars) in all 

six provinces tends to decline from 2019, as shown by the negative SAT fractions, 

ranging from -2.9% in Inner Mongolia to -12.2% in Qinghai. Declining O3 levels seem 

to correspond to falling SATs in Ningxia (-12.9%), Shaanxi (-10.3%), Gansu (-8.8%), 

and Qinghai (-3.8%) but not in Xinjiang and Inner Mongolia, where declining SATs 

align with growing O3 levels. Detailed data can be found in Table S7. Among the six 

provinces, RH (yellow bars) tends to incline in Ningxia by 10.8% from 2019 to 2030, 

during which mean O3 concentration reduces about 13%, but decline in rest of five 

provinces with most significant drop in Xinjiang by -47.8% in 2030, which 

accompanies with a weak increase of O3 level, featured by the positive O3 fraction. By 

2060, RH and SAT fractions between 2019 and 2060 show identical fluctuations as 

those between 2019 and 2030 but differ in magnitudes. However, O3 fractions illustrate 

opposite fluctuations compared to 2030, turning from negative to positive in Ningxia, 

Shaanxi, Gansu, and Qinghai, suggesting that growing O3 concentrations in 2060 

relative to 2019 and 2030, respectively. The negative correlations between O3 and RH 

fractions occur in Shaanxi, Gansu and Qinghai. Overall, the changes in O3 

concentrations subject to SSP2-4.5 are not markedly associated with RH variations. The 

results can be partly attributed to O3 mitigation campaigns and strategies from the late 

2010s (http://english.craes.cn/), aiming to reduce and eliminate O3 precursor emissions 

effectively. These anthropogenic activities overwhelmed the climate effect on the O3 

trend, so we did not discern good associations of O3 concentrations with STA and RH 

(Fig. 6).  

The SSP5-8.5 scenario projects the most robust warming trends among all SSP-

RCP scenarios in China, resulting in different patterns in the fractions of O3 

concentrations and RH in Northwestern China from 2019 to 2030 (Fig. 7a and 7c), 

showing a wetting trend extending from Xinjiang, western Gansu, to entire Inn 

Mongolia (positive RH fractions, Fig. 7c). Accordingly, we observe negative O3 

fraction in these regions, indicating falling O3 levels from 2019 to 2030 (Fig. 7a). We 

can also discern growing O3 concentrations (positive O3 fractions) in the southern part 

https://www.gov.cn/zhengce/content/2022-01/24/content_5670202.htm?eqid=b9daeafe0016efa600000006648baa0f
http://english.craes.cn/
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of Northwestern China across Qinghai, Eastern Gansu, and Shaanxi (Fig. 7a), 

corresponding to decreasing RH, featured by negative RH fractions (Fig. 7c). In the 

next three decades to 2060, the negative associations between O3 and RH fractions still 

remain in the northern part of Northwestern China, but O3 concentrations in the 

southern part of Northwestern China during 2019 to 2060 will decline (negative O3 

fractions, Fig. 7b), corresponding to increasing RH (positive fraction, Fig. 7d). The 

good associations between O3 and RH fractions suggest that, given strong climate 

fluctuations projected by the SSP5-8.5, the artificial interventions play a weaker role in 

O3 evolution than SSP2-4.5. 

Significant differences between the SAT, RH, and O3 fractions of 2030 and 2060 

to 2019 (Table S8 and Fig. 7e), subject to SSP5-8.5 from SSP2-4.5 (Fig. 6e), can be 

readily identified. SAT fractions become very small and less than ±5%, though 

fluctuating positively (meaning warming) and negatively (indicating cooling), in most 

provinces (inner figure on the central bottom of Fig. 7e), implying weak changes in 

SAT or climate in Northwestern China. From 2019 to 2030, Inner Mongolia, Gansu, 

and Xinjiang will experience wetting with growing positive RH fractions ranging from 

9.0% (Gansu) to 34.9% (Xinjiang). Accordingly, we can observe falling O3 levels 

characterized by their negative fractions, though not very significant (Fig. 7e), except 

for Gansu. For the next three decades to 2060, RH fractions in these three provinces 

turn to negative, suggesting drying, corresponding to increasing O3 (positive fraction), 

except for Gansu. The RH fractions from 2019 to 2030 and 2060 in the other three 

provinces (Shaanxi, Ningxia, and Qinghai) are also opposite, showing the transition of 

drying (negative fractions) from 2019 to 2030 to wetting (positive fraction) from 2019 

to 2060. These results indicate that the northern part of Northwestern China will 

become further humidified by 2030 relative to 2019. Meanwhile, the southern part will 

experience a transition from drying to wetting from 2030 to 2060, corresponding to 

declining O3 levels. 

Modeled RH (%) and SAT(Co) summer month time series under SSP2-4.5 and SSP 

5-8.5 scenarios in 2019, 2030, and 2060 over Northwestern China are illustrated in Fig. 

S15. 
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Table S1. Physical and chemical parametrization scheme used in WRF-Chem model 

 WRF-Chem 

microphysics scheme Lin 

shortwave radiation scheme Goddard 

longwave radiation scheme RRTM 

surface layer scheme MYJ 

boundary layer scheme MYJ TKE 

cumulus scheme Grell-3 

photolysis scheme Fast-J 

chemical mechanisms RADM2 

aerosols module MADE/SORGAM 

 

 

 

Table S2. The eta levels and corresponding heights above the sea level of WRF-Chem 

model setup. 

layer eta-value Height(m) layer eta-value Height(m) 

1 0.000 20580 16 0.493 4368 

2 0.015 19019 17 0.566 3437 

3 0.026 17995 18 0.645 2441 

4 0.040 15948 19 0.711 1370 

5 0.057 14924 20 0.760 1020 

6 0.076 13899 21 0.808 757 

7 0.098 12879 22 0.856 568 

8 0.125 11880 23 0.895 405 

9 0.154 10918 24 0.921 268 

10 0.189 9973 25 0.944 157 

11 0.226 9033 26 0.962 125 

12 0.269 8096 27 0.977 95 

13 0.317 7162 28 0.988 62 

14 0.370 6230 29 0.997 32 

15 0.428 5298 30 0.998 5 
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Table S3. The Location of eight cities in Figures S2-S4 

Cite longitude latitude 

Tongchuan 108.9°E-109.1°E 34.9°N-35.1°N 

Shizuishan 106.3°E-106.5°E° 38.9°N-39.1°N 

Turpan 89.2°E-90.1°E 43.0°N-43.9°N 

Lanzhou 103.5°E-104.3°E 35.4°N-36.1°N 

Karamay 84.9°E-85.1°E 45.5°N-45.7°N 

Changchun 125.0°E-126.7°E 43.5°N-44.1°N 

Jinan 116.9°E-117.9°E 36.4°N-37.4°N 

Zhengzhou 113.3°E-113.8°E 34.5°N-34.9°N 

 

 

Table S4. Statistics MRM prediction of O3 concentration in Gansu 

Linear Regression Analysis Results n=60 

 

Unstandardized 

Coefficients 

Standardized 

Coefficients t P VIF R² 
Adjusted 

R² 
F 

B Standard Error Beta 

Constant 15.554 4.883 - 3.185 0.002*** - 

 0.143 0.113 
F=4.762 

P=0.012** 
lnRH -0.089 0.047 -0.236 -1.913 0.061* -1.009 

lnSAT -1.92 0.859 -0.275 -2.234 0.029** 1.009 

Dependent Variable：lnO3 

Note: ***, **, and * indicate significance levels of 1%, 5%, and 10%. 

 

 

Table S5. Statistics MRM prediction of O3 concentration in Xinjiang 

Linear Regression Analysis Results n=60 

 

Unstandardized 

Coefficients 

Standardized 

Coefficients t P VIF R² 
Adjusted 

R² 
F 

B Standard Error Beta 

Constant 11.324 1.977 - 5.728 0.000*** - 

0.696 0.686 
F=65.367 

P=0.000*** 
lnRH -1.148 0.346 -0.257 -3.316 0.002*** 1.130 

lnSAT -0.16 0.014 -0.886 -11.419 0.029** 1.009 

Dependent Variable：lnO3 

Note: ***, **, and * indicate significance levels of 1%, 5%, and 10%. 
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Table S6. Statistics MRM prediction of O3 concentration in Qinghai 

 

Linear Regression Analysis Results n=60 

 

Unstandardized 

Coefficients 

Standardized 

Coefficients t P VIF R² 
Adjusted 

R² 
F 

B Standard Error Beta 

Constant -24.482 9.028 - -2.712 0.009*** - 

0.493 0.476 
F=27.762 

P=0.000*** 
lnRH 5.373 1.582 0.343 3.397 0.001*** 1.15 

lnSAT -0.38 0.077 -0.501 -4.957 0.000*** 1.15 

Dependent Variable：lnO3 

Note: ***, **, and * indicate significance levels of 1%, 5%, and 10%. 
 

 

 

Table S7. Modeled fractions of mean summer RH, SAT, and O3 concentrations between 

2030 and 2060 relative to 2019 under the SSP2-4.5 scenario 

 RH24530(%) RH24560(%) T24530(%) T24560(%) O3_24530(%) O3_24560(%) 

Inner Mongolia -14.23  -10.42  -2.92  -3.24  4.72  -11.67  

Ningxia 10.80  29.90  -5.53  -6.13  -12.87  5.22  

Shaanxi -6.36  -4.40  -4.02  -4.51  -10.32  11.00  

Gansu -14.98  -17.08  -6.54  -6.86  -8.77  0.42  

Xinjiang -47.82  -54.59  -5.30  -5.55  0.99  -4.64  

Qinghai -10.32  -5.56  -12.18  -12.53  -3.83  7.01  

Note: 24530 means the fraction from 2019 to 2030 under the SSP2-4.5 scenario; 24560 means the fraction from 

2019 to 2060 under the SSP2-4.5 scenario. 

 

 

Table S8. Modeled fractions of mean summer RH, SAT, and O3 concentrations between 

2030 and 2060 relative to 2019 under the SSP5-8.5 scenario 

 RH58530(%) RH58560(%) T58530(%) T58560(%) O3_58530(%) O3_58560(%) 

Inner Mongolia 11.44  -4.46  -0.55  0.10  21.87  11.44  

Ningxia -23.53  29.00  0.21  0.31  2.58  -23.53  

Shaanxi -7.28  20.11  0.14  0.39  -1.51  -7.28  

Gansu 8.97  -2.55  -0.72  -0.15  -2.79  8.97  

Xinjiang 34.92  -13.95  -0.50  0.03  2.72  34.92  

Qinghai -16.59  8.37  -0.50  -0.42  -0.20  -16.59  

Note: 58530 means the fraction from 2019 to 2030 under the SSP5-8.5 scenario; 58560 means the fraction from 

2019 to 2060 under the SSP5-8.5 scenario. 
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Fig. S1. Locations of six provinces in Northwest China (NW) and WRF-Chem domain 

(20 km resolution, red rectangle). 
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Fig. S2. Measured (solid blue line) and modeled (solid green line) ozone concentrations 

in eight cities in summer 2019 under SSP2-4.5 scenario. Correlation coefficient (R), 

mean bias (MB), root mean square errors (RMSE) and p-value are highlighted in each 

figure.  

 

 



11 

 

 

Fig. S3. Measured (solid blue line) and modeled (solid green line) ozone concentrations 

in eight cities in summer 2019 under SSP5-8.5 scenario. Correlation coefficient (R), 

mean bias (MB), root mean square errors (RMSE) and p-value are highlighted in each 

figure. 
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Fig. S4. Measured (solid blue line) and modeled (solid green line) ozone concentrations 

in eight cities in summer 2016. Correlation coefficient (R), mean bias (MB), root mean 

square errors (RMSE) and p-value are highlighted in each figure. 
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Fig. S5. A correlation diagram between modeled and measured six hourly (0200, 0800, 

1400, S7 2000 LST) O3 concentrations at the 38 CNEMC stations across China from 

June 1st to August 31st 2016. The number of total samples is 13984. R is correlation 

coefficient and CV is the coefficient of variation. FA1, FA2, and FA5 are the fractions 

of model values within factors of one to five of measure O3 concentrations. 

 

 

 

Fig. S6. A correlation diagram between modeled and measured six hourly (0200, 0800, 

1400, S7 2000 LST) SAT (a) and RH (b) at the 38 CNEMC stations across China from 

June 1st to August 31st 2016. The number of total samples is 13984. R is correlation 

coefficient and CV is the coefficient of variation. FA1, FA2, and FA5 are fractions of 

model values within factors of one to five of measure values. SAT (a) and RH (b). 
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Fig. S7. A correlation diagram between modeled and measured hourly O3 

concentrations at the 38 CNEMC stations across China 2019. The number of total 

samples is 7526. R is correlation coefficient and CV is the coefficient of variation. FA1, 

FA2, and FA5 are the fractions of model values within factors of one to five of measure 

O3 concentrations. (a) SSP2-4.5 scenario, (b) SSP5-8.5 scenario. 

 

 

 

Fig. S8. WRF-Chem simulated O3 concentration in 2004, (a) baseline scenario, (b) 

model S3 scenario (fixed meteorology in 1998), (c) fixed RH and SAT only in 1998. 
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Fig. S9. Differences of planetary boundary layer height (PBLH, m) between model 

scenario 4 (fixed RH and SAT in 1998) and model scenario 3 (fixed meteorology in 

1998), estimated by PBLH under scenario 4 minus PBLH under scenario 3.    

 

 

Fig. S10. NOx (a) and NMVOC (b) emission trends in China from 1998 to 2017 

estimated by the MK test, the trends are well within the statistically significant range at 

95% confidence level between -1.96 and 1.96. NOx (c) and NMVOC (d) mean emission 

in China averaged from 1998 to 2017. 
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Fig. S11. Summer O3 concentrations under S1 (red solid line, CS1) and S3 (blue solid 

line, CS3) scenarios scaled on the left-Y axis, and their difference (ΔC = CS1 – CS3, grey 

solid line) in Inner Mongolia scaled on the right-Y axis. The red and blue dotted lines 

represent the trend of O3 concentrations under S1and S3, respectively. 

 

 

Fig. S12. O3 attribution to meteorology between 1998 and 2017 in six provinces of NW 

under the S2 scenario. 
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Fig. S13. Summer OH concentration trend from 1998 to 2017. 

 

 

 

 

 

Fig. S14. WRF-Chem simulated O3 concentration fractions between the model scenario 

with fixed LUC and baseline scenario S1 with varying LUC from 1998 to 2017. 
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Fig. S15. Modeled RH(a) and SAT(b) time series under SSP2-4.5 and SSP 5-8.5 

scenarios 

 

 

 

 

References 

Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., and 

Shankar, U.: Modal aerosol dynamics model for Europe: Development and first 

applications, Atmos. Environ., 32, 2981–2999, https://doi.org/10.1016/S1352-

2310(98)00006-5, 1998. 

Chen, F., and Dudhia, J.: Coupling an Advanced Land Surface–Hydrology Model with 

the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and 

Sensitivity, Mon. Weather Rev., 129, 569–585, https://doi.org/10.1175/1520-

0493(2001)129<0569:CAALSH>2.0.CO;2, 2001. 

Chou, M., Suarez, M. J., Ho, C., Yan, M., and Lee, K.: Parameterizations for Cloud 

Overlapping and Shortwave Single-Scattering Properties for Use in General 

Circulation and Cloud Ensemble Models, J. Clim., 11, 202–214, 

https://doi.org/10.1175/1520-0442(1998)011<0202:PFCOAS>2.0.CO;2, 1998. 



19 

 

Grell, G. A., and Dévényi, D.: A generalized approach to parameterizing convection 

combining ensemble and data assimilation techniques, Geophys. Res. Lett., 29, 

38-1-38-4, https://doi.org/10.1029/2002GL015311, 2002. 

Janjić, Z. I.: The Step-Mountain Eta Coordinate Model: Further Developments of the 

Convection, Viscous Sublayer, and Turbulence Closure Schemes, Mon. Weather 

Rev., 122, 927–945, https://doi.org/10.1175/1520-

0493(1994)122<0927:TSMECM>2.0.CO;2, 1994. 

Jiang, F., Wang, T. J., Wang, T. T., Xie, M., and Zhao, H.: Numerical modeling of a 

continuous photochemical pollution episode in Hong Kong using WRF-chem, 

Atmos. Environ., 42, 8717–8727, https://doi.org/10.1016/j.atmosenv.2008.08.034, 

2008. 

Jiang, F., Zhou, P., Liu, Q., Wang, T. J., Zhuang, B. L., and Wang, X. Y.: Modeling 

tropospheric ozone formation over East China in springtime, J. Atmos. Chem., 69, 

303–319, https://doi.org/10.1007/s10874-012-9244-3, 2012. 

Li, J. X., Wang, Z. X., Chen, L. L., Lian, L. L., Li, Y., Zhao, L. Y., Zhou, S., Mao, X. 

X., Huang, T., Gao, H., and Ma, J. M.: WRF-Chem simulations of ozone pollution 

and control strategy in petrochemical industrialized and heavily polluted Lanzhou 

City, Northwestern China, Sci. Total Environ., 737, 139835, 

https://doi.org/10.1016/j.scitotenv.2020.139835, 2020. 

Lin, Y., Farley, R. D., and Orville, H. D.: Bulk Parameterization of the Snow Field in a 

Cloud Model, J. Appl. Meteorol. Clim., 22, 1065–1092, 

https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2, 1983. 

Nooni, I. K., Hagan, D. F. T., Wang, G. J., Ullah, W., Lu, J., Li, S. J., Dzakpasu, M., 

Prempeh, N. A., and Sian, K.: Future Changes in Simulated Evapotranspiration 

across Continental Africa Based on CMIP6 CNRM-CM6, Int. J. Environ. Res. 

Public Health, 18, 6760, https://doi.org/10.3390/ijerph18136760, 2021.  

Pfannerstill, E. Y., Arata, C., Zhu, Q. D., Schulze, B. C., Ward, R., Woods, R., Harkins, 

C., Schwantes, R. H., Seinfeld, J. H., Bucholtz, A., Cohen, R. C., and Goldstein, 

A. H.: Temperature-dependent emissions dominate aerosol and ozone formation 

in Los Angeles, Science, 384, 1324–1329, 

https://doi.org/10.1126/science.adg8204, 2024. 

Schell, B., Ackermann, I. J., Hass, H., Binkowski, F. S., and Ebel, A.: Modeling the 

formation of secondary organic aerosol within a comprehensive air quality model 

system, J. Geophys. Res-Atmos., 106, 28275–28293, 

https://doi.org/10.1029/2001JD000384, 2001. 

Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X.: The second generation 

regional acid deposition model chemical mechanism for regional air quality 

modeling, J. Geophys. Res-Atmos., 95, 16343–16367, 

https://doi.org/10.1029/JD095iD10p16343, 1990. 

Xiang, S. L., Liu, J. F., Tao, W., Yi, K., Xu, J. Y., Hu, X. R., Liu, H. Z., Wang, Y. Q., 



20 

 

Zhang, Y. Z., Yang, H. Z., Hu, J. Y., Wan, Y., Wang, X. J., Ma, J. M., Wang, X. 

L., and Tao, S.: Control of both PM2.5 and O3 in Beijing-Tianjin-Hebei and the 

surrounding areas, Atmos. Environ., 224, 117259, 

https://doi.org/10.1016/j.atmosenv.2020.117259, 2020. 

Zhang, X. D., Du, J., Zhang, L. M., Huang, T., Gao, H., Mao, X. X., and Ma, J. M.: 

Impact of afforestation on surface ozone in the North China Plain during the three-

decade period, Agr. Forest Meteorol., 287, 107979, 

https://doi.org/10.1016/j.agrformet.2020.107979, 2020. 

Zhang, X. D., Jian, X. H., Zhao, Y., Liu, X. R., Chen, K. J., Wang, L. F., Tao, S., Liu, 

J. F., Huang, T., Gao, H., Liu, Y. J., Zhugu, R. R., and Ma, J. M.: Tropospheric 

Ozone Perturbations Induced by Urban Land Expansion in China from 1980 to 

2017, Environ. Sci. Technol., 56, 6978–6987, 

https://doi.org/10.1021/acs.est.1c06664, 2022. 

Zhou, G. Q., Xu, J. M., Xie, Y., Chang, L. Y., Gao, W., Gu, Y. X., and Zhou, J.: 

Numerical air quality forecasting over eastern China: An operational application 

of WRF-Chem, Atmos. Environ., 153, 94–108, 

https://doi.org/10.1016/j.atmosenv.2017.01.020, 2017. 

Zhou, Z. L., Zhang, L. P., Chen, J., She, D. X., Wang, G. S., Zhang, Q., Xia, J., and 

Zhang, Y. J.: Projecting Global Drought Risk Under Various SSP-RCP Scenarios, 

Earth's Future, 11, e2022EF003420, https://doi.org/10.1029/2022EF003420, 2023. 

Zhu, H., Jiang, Z., Li, J., Li, W., Sun, C., and Li, L.: Does CMIP6 Inspire More 

Confidence in Simulating Climate Extremes over China? Adv. Atmos. Sci., 37, 

1119–1132, https://doi.org/10.1007/s00376-020-9289-1, 2020. 


