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Abstract. Gas–particle partitioning governs the fate of oxygenated organic molecules (OOMs) and the forma-
tion of organic aerosols. We employed a Chemical Ionization Mass Spectrometer equipped with a Filter Inlet for
Gases and AEROsol (FIGAERO-CIMS) to measure the gas–particle distribution of OOMs in a winter campaign
in the urban atmosphere. The observed gas–particle (G/P) ratios show a narrower range than the equilibrium G/P
ratios predicted from saturation mass concentration C∗ and organic aerosol content. The difference between ob-
served and equilibrium G/P ratios could be up to 10 orders of magnitude, depending on the C∗ parameterization
selection. Our random forest models identified relative humidity (RH), aerosol liquid water content (LWC), tem-
perature, and ozone as four influential factors driving the deviations of partitioning from the equilibrium state.
Random forest models with satisfactory performance were developed to predict the observed G/P ratios. Intrin-
sic molecule features far outweigh meteorological and chemical composition features in the model’s predictions.
For a given OOM species, particle chemical composition features, including pH, RH, LWC, organic carbon,
potassium, and sulfate, dominate over meteorological and gaseous chemical composition features in predicting
the G/P ratios. We identified the positive or negative effects as well as the sensitive ranges of these influen-
tial features using SHapley Additive exPlanations (SHAP) analysis and curve fitting with a generalized additive
model (GAM). Our models found that temperature does not emerge as a significant factor influencing the ob-
served G/P ratios, suggesting that other factors, most likely associated with particle composition, inhibit the
gas–particle partitioning of OOMs in response to temperature change.

1 Introduction

Oxygenated organic molecules (OOMs) are ubiquitous in the
atmosphere. They are key constituents of organic aerosols
(OA) and play a critical role in particle formation and growth
(Yuan et al., 2024). The distribution of an OOM between the
gas and particle phases not only reflects its volatility or wa-
ter solubility but also governs its formation pathways, atmo-
spheric transport, and deposition. Therefore, understanding
the phase distribution of OOMs is essential for gaining in-

sights into their volatility, transformation processes, and en-
vironmental impacts in the atmosphere.

Gas–particle (G/P) ratios of OOMs measured by labo-
ratory (e.g., ozonolysis products from 13-carene, Li et al.,
2024a) or field studies (e.g., in the Hyytiälä forest, Finland,
Lutz et al., 2019) were sometimes used to derive saturation
mass concentrations (C∗) or partitioning coefficients (Ki),
assuming that the observed G/P ratios represent an equilib-
rium partitioning state (Priestley et al., 2024; Li et al., 2024a;
Lutz et al., 2019; Stark et al., 2017). However, the G/P ratio
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of an OOM under atmospheric conditions is influenced by
not only intrinsic OOM physicochemical properties but also
external factors such as meteorological shifts (Hildebrandt et
al., 2009), precursor oxidation (Pankow, 1994; Seinfeld and
Pankow, 2003), particle chemical composition, morphology,
and particle-phase reactions (Jang et al., 2002; George et al.,
2007). As a result, OOMs rarely achieve equilibrium parti-
tioning between the gas and particle phases (Roldin et al.,
2014; Li et al., 2024b).

Gas–particle partitioning kinetics have been incorporated
into many atmospheric aerosol models, such as aerosol dy-
namics models (Liu et al., 2019; Zaveri et al., 2014) and ki-
netic multilayer models (Fowler et al., 2018; Roldin et al.,
2014), which accounted for molecular transfer rates, inter-
phase interactions, and environmental variability (Shiraiwa
and Pöschl, 2021) in the gas–particle transfer process. The
development of these models has advanced our understand-
ing of the distribution and transport of organic compounds.
However, existing theories and models often rely on parame-
ter simplifications or assumptions, and there is a lack of sys-
tematic studies examining the factors influencing the phase
distribution of OOMs under real atmospheric conditions. In
recent years, machine learning methods have been applied
successfully for a variety of purposes, including compound
identification (Franklin et al., 2022; Boiko et al., 2022),
aerosol classification (Christopoulos et al., 2018; Bland et al.,
2022), precursor apportionment (Pande et al., 2022; Wang et
al., 2021), and property prediction (Gong et al., 2022; Ruiz-
Jimenez et al., 2021). Machine learning has proven to be a
powerful, data-driven approach capable of uncovering com-
plex and nonlinear relationships between variables (Lin et al.,
2022; Zhu et al., 2019). Unlike physical or chemical models,
machine learning does not rely on predefined assumptions or
simplifications, which enables it to unveil previously unrec-
ognized interactions.

In this work, we employed a Chemical Ionization Mass
Spectrometer equipped with a Filter Inlet for Gases and
AEROsol (FIGAERO-CIMS) in an urban location to mea-
sure the concentrations of OOMs in both the gas and parti-
cle phases. By building data-driven machine learning models
with the G/P ratio as the target variable, we explored the in-
fluencing factors of the gas–particle distribution of OOMs
and examined the factors that contribute to the deviations
from equilibrium gas–particle partitioning. This study of-
fered new insights and provided the foundation for future
studies on the atmospheric behavior of OOMs.

2 Methodology

2.1 OOM measurement

Hourly measurements of OOMs in both the gas and parti-
cle phases were conducted during a winter campaign from
5 December 2022 to 8 January 2023, using an iodide-based
FIGAERO-CIMS (Aerodyne Research Inc., USA) at a subur-

ban site in Wuhan, a megacity in central China (30.4577° N,
114.6157° E). The site is located on the campus of China
University of Geosciences, which is surrounded by a residen-
tial and agricultural mixed area. The nearest urban center and
industrial area are about 25 km west of the measurement site.
The nearest highways and major roads lie about 2 km north
and south of the site. The site is the only provincial super-
site operated by a local environmental authority to monitor
air quality in Wuhan and can thus be regarded as a recep-
tor site influenced by wide ranges of emission sources from
neighboring regions. We obtained valid data of 594 h, during
which meteorological parameters (e.g., relative humidity RH
and temperature T ), particulate chemical components (e.g.,
organic carbon OC and sulfate ions SO2−

4 ), and gaseous com-
ponents (e.g., sulfur dioxide SO2 and ozone O3) were rou-
tinely monitored. Detailed information about these routine
measurements is shown in the Supplement (Text S1).

The design of FIGAERO-CIMS for hourly OOM mea-
surement has been described by previous studies (Zhao et
al., 2024; Lopez-Hilfiker et al., 2014; Lee et al., 2014).
Briefly, FIGAERO operated in a measurement cycle of 1 h,
alternating between gas-phase and particle-phase modes. In
the gas-phase mode, ambient air was drawn at a flow rate
of 2 L min−1 directly into the ion–molecule reactor (IMR),
where gaseous molecules were ionized and subsequently de-
tected as adduct ions with the reagent ion I−. Simultane-
ously, another flow of ambient air was pulled through a
PM2.5 cyclone (URG-2000-30EN, URG Corp.) and then a
PTFE filter (2 µm Zefluor, 25 mm, Pall Corp.), where parti-
cles smaller than 2.5 µm were collected. During the subse-
quent particle-phase mode, the molecules on the PTFE filter
underwent thermal desorption in a heated ultrahigh-purity
(UHP) nitrogen flow, which was kept at room temperature
for 2 min, heated to 200° for 15 min, kept at 200° for an ad-
ditional 15 min to ensure the desorption of the majority of
OOMs (Lopez-Hilfiker et al., 2014), and then cooled to room
temperature within 4 min. The desorbed molecules were di-
rected into a turbulent-flow IMR. A field blank sample was
collected every 24 h. According to our earlier investigation
(Wang et al., 2024), the OOM measured with FIGAERO-
CIMS stands for only those polar and moderate-volatility or-
ganic species being desorbed below 200 °C and accounted
for only 26± 8 % of the total OA (OC× 1.4) measured with
the thermal–optical method using the IMPROVE protocol.

2.2 OOM identification and selection

OOMs were identified using a non-target strategy. Mass cal-
ibration was performed using ions such as NO−3 , C2F3O−2 ,
IC2H2O−2 , IC2F3HO−2 , IC3F5HO−2 , and I−3 , covering a mass
range from 62 to 381m/z. The spectra peaks were it-
eratively fitted with multiple peaks using a custom peak
shape until the residual was reduced to less than 5 % (Lee
et al., 2014; Stark et al., 2015). Subsequently, the ex-
act masses of these multiple peaks were matched with
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the most probable elemental formulas within the ranges of
C1−30H1−60O0−20N0−2S0−2X0−2I−0−1, where “X” stands for
halogen atoms, with mass errors smaller than 10 ppm (mass
resolution of ∼ 6000). Isotope distribution was inspected
to match the theoretical isotope pattern. The elemental ra-
tio and double-bond-equivalent (DBE) limits of the formu-
las were 0.3≤H/C≤ 3, N/C≤ 0.5, O/C≤ 3, S/C≤ 1, and
0≤DBE≤ 20 (Kind and Fiehn, 2007; Lee et al., 2018; Kind
and Fiehn, 2006).

In order to obtain reliable concentrations and thus G/P ra-
tios, only those OOMs with a unit mass peak area ratio of
> 20 % and a sample-to-blank ratio of > 2 were included
for further analysis. This filtered out the OOMs with low
concentrations in the atmosphere as well as those extremely
high- or low-volatility OOMs that are predominantly in only
one phase. Thermal desorption may cause OOM decompo-
sition in the particle phase. According to our earlier study
on the same dataset using a K-means clustering method
(Wang et al., 2024), on average, 25.1 % of the particle-bound
OOM species number and 26.8 % of the OOM mass de-
tected by FIGAERO-CIMS could be attributed to thermal
decomposition fragments (Text S2). These fragments were
excluded from the gas–particle partitioning analysis. The
overlap of non-fragment particle-bound OOM species with
those gas-phase OOM species resulted in 123 species, which
were chosen as the target species for subsequent partition-
ing analysis. Based on our previous work (Fig. S1) (Wang
et al., 2024), these 123 OOM species were classified as 41
aromatic species (33.7 %), 35 monoterpene-derived species
(28.3 %), 14 isoprene-derived species (11.4 %), 11 aliphatic
species (8.7 %), 10 biomass burning tracers (8.1 %), 3 sulfur-
containing species (2.4 %), and 9 other unknown species
(7.3 %). Notably, we cannot rule out the possibility that some
of these 123 OOMs underwent partial thermal decomposition
in the particle phase to an unknown extent. This could lead
to an underestimation of their particle-phase concentrations
and, in turn, bias the results towards higher G/P ratios.

2.3 Observed G/P ratios of OOMs

The concentrations of an OOM species in the gas phase and
particle phase are calculated as

Cg =
signalg

S× tg×Qg
× 1000, (1)

Cp =
signalp

S× tp×Qp
× 1000, (2)

where Cg (ng m−3) and Cp (ng m−3) are the average con-
centrations of a species in the gas phase and particle phase,
respectively, in a measurement interval (e.g., 1 h in our
campaign). signalg is the integrated signal (unit: counts) of
this species during the 21 min gas-phase measurement time
(tg) in a measurement interval. tp is the particle sampling
time (24 min) in a measurement interval. signalp is the in-

tegrated signal of the particle-phase species during the ther-
mal desorption (30 min) period. Qg and Qp are the sam-
pling flow rates for the gas phase and particle phase, respec-
tively (L min−1). S is the sensitivity of the species (counts
per nanogram). The observed G/P ratio

(
G
P

)
obs

can be cal-
culated as(

G
P

)
obs
=
Cg

Cp
=

signalg× tp×Qp

signalp× tg×Qg
. (3)

2.4 Comparison with the equilibrium G/P ratios

According to the modified Raoult law, the saturation ratio
of an organic species in the gas phase (i.e., Cg

C∗
) equals the

mass fraction of the species in organic aerosol with mass
concentration COA(ie Cp

COA
), under the assumptions of equi-

librium absorptive partitioning of the species over an ideal
organic solution and that the species has a molecular weight
similar to that of the organic solution (Donahue et al., 2009;
Epstein et al., 2010). The equilibrium G/P ratio

(
G
P

)
eq

can

thus be estimated from the saturated mass concentration C∗

and the mass concentration of organic aerosol COA(COA =

COC× 1.4) using Eq. (4):(
G
P

)
eq
=
C∗(T )
COA

. (4)

C∗ at 300 K of OOMs was calculated using four different
parameterizations reported by Mohr et al. (2019), Peräkylä
et al. (2020), Ren et al. (2022), and Priestley et al. (2024).
Based on the saturation concentrations of highly oxygenated
molecules (HOMs) modeled by Tröstl et al. (2016), Mohr et
al. (2019) applied an updated version of the SIMPOL-type
parameterization described by Donahue et al. (2011) to esti-
mate C∗ from the numbers of carbon, oxygen, and nitrogen
atoms of an organic species (nC, nO, and nN) but emphasiz-
ing the increased importance of OOH groups. This param-
eterization likely produces C∗ of pure compounds without
considering the effect of the particle matrix. Ren et al. (2022)
obtained the C∗ of OOMs via calibrated C∗–Tmax (the ther-
mal desorption temperature at which the maximum signal
intensity occurs) correlations in the thermal desorption pro-
cess. A similar parameterization formula between C∗ and
nC, nO, and nN was then derived using multivariate regres-
sion. Peräkylä et al. (2020) parameterized the dependence
of C∗ on nC, nO, nN, and the number of hydrogen atoms
(nH) by comparing steady-state gas-phase concentrations of
α-pinene ozonolysis products with and without seed addition
in a chamber. This parameterization predicts much lower sen-
sitivities of HOM volatility to oxygen-containing functional
groups than SIMPOL. The parameterization of Priestley et
al. (2024) was based on measured gas- and particle-phase
concentrations, at an assumed equilibrium state, in residen-
tial wood burning emissions. The C∗ values of the products
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were obtained via Eq. (4), and a parameterization was ob-
tained between C∗ and nC, nO, nN, and nH. The four C∗ pa-
rameterizations are listed in Text S3. A temperature correc-
tion was made based on Eqs. (5) and (6) to convertC∗(300K)
into C∗ (T ) at observed temperatures (Epstein et al., 2010; Li
et al., 2024a):

C∗ (T )= C∗(300K)× exp
(
1Hvap

R

(
1

300K
−

1
T

))
, (5)

1Hvap =−11× log10C
∗ (300K)+ 129, (6)

where 1Hvap is the enthalpy of vaporization. R is the gas
constant. T is the observed temperature for every hour.
C∗ (T ) was then used in Eq. (4) to estimate the equilibrium
G/P ratios.

2.5 Random forest models

2.5.1 Build random forest models

Complex interactions and potential nonlinear dependencies
exist among OOM gas–particle partitioning, atmospheric
chemistry, and environmental variables. We employed ran-
dom forest models to investigate the influencing factors of
gas–particle partitioning.

Our selection of influencing factors (i.e., features) is based
on a comprehensive literature review. We categorized 30 fea-
tures into four groups: (1) 9 molecular features of the OOMs
– nC, nO, nN, nH, molecular weight (Mw), DBE, hydrogen-
to-carbon atom ratios (H/C), oxygen-to-carbon atom ratios
(O/C), and the oxidation state of carbon (OSc); (2) seven
meteorological features – RH, T , wind speed (WS), wind
direction (represented by sine and cosine functions to pre-
serve the periodicity, denoted as WD_sin and WD_cos), ul-
traviolet A (UV-A), ultraviolet B (UV-B), and JHONO; (3) 4
gaseous composition features – SO2 concentration, O3 con-
centration, nitrogen dioxide (NO2) concentration, and am-
monia (NH3) concentration; and (4) 10 particle composi-
tion features – OC concentration, elemental carbon (EC)
concentration, SO2−

4 concentration, nitrate ion (NO3) con-
centration, chloride ion (Cl) concentration, ammonium ion
(NH+4 ) concentration, PM2.5 concentration, potassium ion
(K+) concentration, and aerosol-phase pH and liquid wa-
ter content (LWC). Calculation details of pH and LWC us-
ing the ISORROPIA-II model (Fountoukis and Nenes, 2007)
are provided in Text S4. This feature selection scheme guar-
antees a balanced representation of pertinent factors while
preserving the simplicity and predictive efficacy of the mod-
els. Unlike neural networks and other machine learning al-
gorithms, the random forest model used in this study is an
ensemble model made up of multiple decision trees. During
training, each tree splits using a randomly chosen subset of
features. Because each tree uses different feature subsets, this
randomness in feature selection reduces the model’s reliance
on any single feature, making it less likely to be severely im-
pacted by multicollinearity. To further ensure model stability,

we also conducted a 5-fold cross-validation to confirm the
robustness of the model.

First, we developed a multispecies model involving 123
OOM species to predict the

(
G
P

)
obs

of OOMs from molecule
features, meteorological features, and gas and particle com-
position features. A total of 73 062

(
G
P

)
obs

values for 123
species with hourly resolution were collected in the winter
campaign. Outliers can indeed exacerbate modeling errors
and potentially affect the model’s outcomes. Therefore, they
should be removed (Leong et al., 2020). Outlier removal is
described in Text S5. The data used for modeling were ran-
domly divided into training data (85 % of the total) for model
training and test data (15 % of the total) to evaluate the model
generalization.

Second, we selected six typical OOMs, including more
volatile (C5H8O4, C6H10O4, C6H5NO3, and C7H7NO3; C∗

range: 103.90–106.53 µg m−3) and less volatile (C10H16O4
and C12H21NO9; C∗ range: 10−4.73–101.18 µg m−3) species
according to the C∗ parameterization of Mohr et al. (2019).
C5H8O4 (glutaric acid, Lee et al., 2014; Reyes-Villegas et al.,
2018) and C6H10O4 (adipic acid, Ye et al., 2021; Lee et al.,
2014) are small dicarboxylic acids (C ≤ 6) typically formed
through photochemical degradation of reactions of alkenes,
aldehydes, longer-chain acids (Kawamura and Sakaguchi,
1999), or other low-oxygen organic compounds (Grosjean
and Friedlander, 1980) in the urban atmosphere (Kawamura
and Ikushima, 1993). C6H5NO3 (Huang et al., 2019; Cai et
al., 2022) and C7H7NO3 (Huang et al., 2019; Cai et al., 2022)
are nitrophenols directly emitted either from vehicle exhaust
(Tremp et al., 1993), coal and wood combustion (Huang et
al., 2019), or industrial processes (Harrison et al., 2005) or
formed through the nitration of phenol in the gas or liq-
uid phase (Lüttke and Levsen, 1997). C10H16O4 is primar-
ily derived from the oxidation of monoterpenes (Ye et al.,
2019; Barreira et al., 2021). C12H21NO9 is an organic ni-
trate from long-chain alkane oxidation under high-NOx con-
ditions (Wang and Ruiz, 2018).

Third, single-species models were tailored to predict the
gas–particle partitioning behaviors of these six individual
OOMs under varying meteorological and gas–particle com-
position conditions. We also built random forest models to
investigate how the

(
G
P

)
obs

values of the six OOMs devi-

ate from
(

G
P

)
eq

under varying meteorological conditions and

gas–particle compositions. In this study, we did not build
a random forest model to predict absolute gas- or particle-
phase concentrations of OOMs, due to their strong depen-
dencies on diverse emission sources from neighboring re-
gions. We lack reliable features for quantifying the variable
strengths of unknown sources and atmospheric aging pro-
cesses during transport, which are key factors influencing the
OOM concentrations.
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2.5.2 Model optimization, evaluation, and feature
importance analysis

To optimize and evaluate the model’s performance, we ap-
plied a combination of grid search and cross-validation meth-
ods. First, we employed a grid search to tune the hyper-
parameters of the random forest model. The search space
included the following hyperparameters: n_estimators (the
number of decision trees), max_depth (the maximum depth
of each tree), max_features (the number of features consid-
ered for splitting at each node), and min_samples_split (the
minimum number of samples required to split an internal
node). For each combination of hyperparameters, we used
5-fold cross-validation in the training set with a coefficient
of determination (R2) as the primary metric to assess model
performance and identify the best configuration. The specific
hyperparameter settings used in the grid search are provided
in the Supplement in Table S1.

After selecting the optimal hyperparameters, we further
evaluated the final model using 5-fold cross-validation to
assess the model’s generalization ability and ensure that it
was not overfitted. In this evaluation, both R2 and the root
mean square error (RMSE) were used as metrics: R2 indi-
cates the proportion of variance in the G/P ratio explained
by the model. The RMSE, on the other hand, quantifies the
average prediction error and is calculated as the square root
of the average squared differences between the predicted and
actual values. The final model performance was determined
by averaging the R2 and RMSE values across the five valida-
tion sets. All model tunings and evaluations were conducted
using Python (v.3.8).

To quantify the influence of each feature on the G/P ra-
tio, we computed a SHAP (SHapley Additive exPlanations)
value for each feature and sample (i.e., at each hour) using
the SHAP package (v.0.40.0) in Python (v.3.8). A positive
SHAP value indicates that the feature contributes positively
to the G/P ratio, while a negative SHAP value means that it
makes a negative contribution. The SHAP values versus fea-
ture values were then fitted with a generalized additive model
(GAM) using the pygam package (v.0.8.0) to further identify
the sensitivity ranges where the changes in feature values sig-
nificantly affect the SHAP values. For more details, please
refer to Text S6. We utilized two-way partial dependence
plots (PDPs) (Chen et al., 2024a; Shi et al., 2023; Zhang et
al., 2022) to analyze the joint effects of T and RH on the
predicted G/P ratio. This analysis yielded a comprehensive
understanding of how simultaneous changes in T and RH af-
fect the observed G/P ratio, thereby unveiling the complex
dynamics among these variables. For more details, please re-
fer to Text S7.

3 Results and discussion

Despite the overall improvement in air quality in recent
years, PM2.5 episodes still occur frequently in December and

January in most Chinese cities, contributing to the majority
of the PM2.5 exceedance days of a year. During the winter
observation period of this study, PM2.5 concentrations ranged
from 20 to 150 µg m−3, spanning both clean and severe pol-
lution conditions. Organic aerosol (COA =COC× 1.4) com-
prised 10 %–76 % of PM2.5, emerging as a critical bottleneck
when eliminating PM2.5 episodes. Time series of the other
criterion pollutants and key meteorological parameters are
presented in Fig. S2. The data collected during the obser-
vation period herein are considered representative of winter
PM2.5 pollution characteristics in Wuhan.

3.1 Observed G/P ratios of OOMs and comparison
with equilibrium partitioning

As shown in Fig. 1a, although G/P ratios generally decrease
with increasing molecular weight, the observed G/P ratios(

G
P

)
obs

show a narrower range (10−1–101.5) than the equi-

librium G/P ratios
(

G
P

)
eq

predicted from Eq. (4). The dif-

ferences could be up to 10 orders of magnitude, depend-
ing on the C∗ parameterization. Of all the methods, Mohr
et al. (2019) predicted the steepest dependence of

(
G
P

)
eq

on Mw. Their
(

G
P

)
eq

values are higher than
(

G
P

)
obs

for the

OOMs with nC = 2–5 and lower than
(

G
P

)
obs

for the OOMs
with nC > 8 (Fig. 1b). It has been recognized by Kurtén et
al. (2016) and subsequent publications that SIMPOL-derived
parameterizations predict an overly steep dependence of C∗

on Mw and oxygen content. Moreover, the parameterization
of Mohr et al. (2019) likely produces C∗ of pure compounds.
Without considering the effect of the particle matrix, it may
be unrealistic to predict G/P ratios using their C∗ parameter-
ization. On the basis of the thermal desorption temperature,
Ren et al. (2022) predicted lower equilibrium G/P ratios than
all other parameterizations and our observation. The weak-
ness of Ren et al. (2022) is that thermal desorption may result
in the formation of decomposed fragments, which could be
misidentified as OOM species. As a result, the Tmax of OOM
formulas tends to be overestimated and the C∗ tends to be
underestimated in their parameterization. Although Peräkylä
et al. (2020) also predicted lower G/P ratios, their ratios are
much closer to our observation than Ren et al. (2022). Of all
the predictions, the one by Priestley et al. (2024) is closest to
our observation. This is because their C∗ parameterization
is based on the measured gas- and particle-phase concen-
trations of OOMs in fresh or aged residential wood burning
emissions. Their predicted G/P ratio is thus inherently con-
sistent with the observed G/P ratios in our study. This also
highlights the risks of estimating volatility (C∗) using the
partitioning method, which is based on measuring equilib-
rium gas- and particle-phase concentrations of OOMs. Two
key issues arise: (1) OOMs may not achieve the assumed
equilibrium state under real atmospheric or chamber con-
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ditions, introducing substantial uncertainty into calculations
of

(
G
P

)
eq

; and (2) the method fails for compounds with ex-

tremely high or low volatility, as their gas- or particle-phase
concentrations often fall below the detection limits of mass
spectrometers. These limitations explain why the partitioning
method typically reports a narrow volatility range (Voliotis et
al., 2021; Chen et al., 2024b).

In theory, no matter which C∗ parameterization is used in
Eq. (4), the temporal variation of

(
G
P

)
eq

for an OOM species

depends solely on COA and temperature. Therefore, we are
able to obtain a normalized

(
G
P

)
eq

, which is independent

of C∗ parameterization, by dividing the
(

G
P

)
eq

of an OOM

by its maximum value. Diurnal variations of the normalized(
G
P

)
eq

of C5H8O4 and C7H7NO3 are shown in Fig. 2a, b, and

those of the other four selected OOMs are shown in Fig. S3.
We found similar diurnal variations for all six OOMs: a peak
G/P ratio appeared in the afternoon, which is attributed to
a higher temperature. In contrast, we observed different pat-
terns of

(
G
P

)
obs

diurnal variations for the six OOM species
during the campaign, as shown in Fig. 2c–h. This indicates
that the extent of the deviation of actual gas–particle parti-
tioning from the equilibrium state fluctuates randomly over
time, driven by other unknown factors. In this study, we will
first examine the influencing factors of the gas–particle dis-
tribution of OOMs in the urban atmosphere during the win-
ter campaign (Sect. 3.2), followed by an investigation into
the factors contributing to the discrepancies between the ob-
served and equilibrium G/P ratios (Sect. 3.3).

3.2 Influencing factors of the observed G/P ratios of
OOMs

3.2.1 Multispecies model performance and key features

The 5-fold cross-validation demonstrates that a predictive
multispecies model with a satisfactory generalization per-
formance was developed, achieving R2

=0.88± 0.02 and
RMSE= 1.76± 0.13 in the test set (Fig. S4). Mean abso-
lute SHAP values indicate the average importance of each
feature in predicting the observed G/P ratios (Fig. 3a). The
model highlights that intrinsic molecule features, such as nC,
Mw, nH, and DBE, far outweigh meteorological and chem-
ical composition features in the model’s predictions. Of the
nine molecular features, eight are ranked as highly important,
with nN being comparatively less influential.

Figure 3b shows the SHAP value distribution for each fea-
ture. For molecular features, such as nC, Mw,nH, and nO,
high feature values are associated with negative SHAP val-
ues, while low feature values are associated with positive
SHAP values. This suggests that large molecules with high
nC, Mw, nH, and nO and consequently lower volatility are

more likely to partition into the particle phase, thereby re-
ducing the G/P ratio.

However, the molecular features related to oxidation state
and unsaturation degree did not show consistent effects on
the observed G/P ratios. For example, OSc has a negative
effect on the G/P ratios, whereas O/C has a positive effect.
DBE has a negative effect on the G/P ratios, whereas H/C
shows a mixed positive and negative effect. This is due to the
fact that these features are dependent variables as a function
of nC, nH, nN, and nO. To isolate the effects of oxidation- and
unsaturation-related features, we utilized the trained random
forest model to predict G/P ratios of modified C10 mono-
carboxylic acid with varying numbers of the hydroxyl group
and DBE (Fig. 4b and c). Other features in the model were
fixed at average daytime or nighttime values observed dur-
ing the campaign (see Tables S2 and S3). For comparison,
the isolated effect of the carbon atom number is also plotted
(Fig. 4a).

Figure 4 demonstrates that the number of carbon atoms
exerts the most significant influence on the predicted G/P ra-
tio, which decreases sharply as the carbon atom number in-
creases from 1 to 4. Beyond this point, the ratio levels off. For
modified 10-carbon monocarboxylic acids, G/P ratios are
high when there is one or no hydroxyl group (Fig. 4b). The
G/P ratio levels off when the number of hydroxyl groups ex-
ceeds two. The G/P ratio decreases with an increasing DBE
value (Fig. 4c). When the DBE value exceeds five, the G/P
ratio change becomes minimal. In all of the subplots, the G/P
ratio during nighttime is consistently lower than that during
daytime, which could be attributed to enhanced partitioning
from gases to particles at a lower nighttime temperature.

3.2.2 Identification of the key features and sensitivity
analyses in single-species models

By excluding molecule features, single-species models focus
on the prediction of observed gas–particle partitioning be-
haviors of individual OOMs from meteorological and gas–
particle composition features. The evaluation results and op-
timal parameters of the six single-species models in the test
set are presented in Table S4. All of the models show an ac-
ceptable generalization ability (R2

= 0.51–0.88). For all six
OOMs, particle composition features dominate over meteo-
rological and gaseous composition features in predicting the
G/P ratios (Fig. 5). Particle composition features LWC, OC,
K+, SO2−

4 , and pH as well as RH consistently play important
roles in influencing the G/P ratios of these species. This is
roughly in line with the correlation analysis between the fea-
tures and the observed G/P ratios of the six selected OOMs
(Fig. S5), which show that pH, RH, LWC, and SO2−

4 ex-
hibited strong positive or negative correlations with the G/P
ratios. Below, we (1) examined the positive or negative ef-
fects of these features one by one (Fig. 6a) and (2) identified
the sensitive ranges of these features by fitting SHAP values
against feature values using a GAM (Fig. 7).
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Figure 1. Comparison of the
(

G
P

)
obs

of 123 OOMs with the corresponding
(

G
P

)
eq

predicted by Eq. (4). C∗ was estimated from the

parameterizations of Mohr et al. (2019), Peräkylä et al. (2020), Ren et al. (2022), and Priestley et al. (2024), respectively. The error bars of(
G
P

)
obs

denote the range of G/P ratios observed under varying conditions for 594 samples (i.e., 594 h). The error bars of
(

G
P

)
eq

denote the

variations with temperature and COA. The color scales in panels (b)–(e) denote the carbon numbers of the OOM species. The dashed red
lines in panels (b)–(e) denote a 1 : 1 correspondence.

Figure 2. Diurnal variations of (a–b) the normalized equilibrium G/P ratios for the selected species (C5H8O4 and C7H7NO3) and (c–h) the
observed G/P ratios during the campaign. The solid line denotes the average value, and the filled area denotes the 95 % confidence intervals
of the mean.

pH is one of the two most influential factors in the gas–
particle partitioning of five species (C5H8O4, C6H10O4,
C6H5NO3, C7H7NO3, and C10H16O4), with a sensitivity
range of 3.5–4.5 (as illustrated for C6H10O4 in Fig. 7a).
Within this range, the contribution to the G/P ratio decreases
by 0.5 from pH 3.5 to 4.5. Beyond pH 4.5, the G/P ratio
stabilizes at −0.1. An increase in pH results in a pronounced
decrease in the G/P ratio. This phenomenon can be attributed
to the enhanced partitioning of OOMs with acidic functional

groups from gases to particles with elevated pH (Su et al.,
2020).

RH has a positive effect, ranking among the top five
significant features, on the G/P ratios of the three OOMs
C6H5NO3, C7H7NO3, and C10H16O4 (Fig. 6a). The SHAP
value is sensitive to RH across the full RH range (20 %–
80 %, illustrated by the example C6H5NO3 in Fig. 7b). LWC
also has a significant positive effect for C5H8O4, C6H10O4,
C6H5NO3, and C7H7NO3. For example, in the case of
C5H8O4, a sharp increase of 0.35 in the G/P ratio is observed
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Figure 3. Multispecies model: (a) feature importance based on the mean of the absolute SHAP values calculated for 594 samples (i.e., 594 h)
for predicting the G/P ratio. (b) Distribution of SHAP values in 594 samples for the top 20 features.

Figure 4. Predicted G/P ratios using the developed multispecies model for (a) monocarboxylic acids as a function of the number of carbon
atoms, (b) modified 10-carbon monocarboxylic acids as a function of the number of additional hydroxyl groups, and (c) modified 10-carbon
monocarboxylic acids as a function of DBE values, under average daytime and nighttime environmental and gas–particle composition
conditions.

within the LWC range below 20 µg m−3. Above 20 µg m−3,
the contribution to the G/P ratio stabilizes at 0.15 (Fig. 7c).
The underlying mechanism of this behavior is unclear. One
explanation is that the low RH and LWC in particles may
facilitate the reversible formation of oligomers (Shen et al.,
2018) and suppress their hydrolysis (Liu et al., 2012), thereby
increasing the concentration of these OOMs in the particle
phase. It is also possible that the thermal desorption and sub-
sequent detection of particle-bound OOMs were inhibited in
aerosol particles with more moisture.

OC has a significant negative impact (i.e., ranking among
the top five) on the G/P ratios of all six species, consis-
tent with Eq. (4), where the equilibrium G/P ratios are in-
versely proportional to COA. Taking C12H21NO9 as an ex-
ample (Fig. 7d), the SHAP values decrease monotonically
with COA by 0.08 in the entire COA range (5–25 µg m−3).
For this compound, EC ranks as the second-most influential

factor, exerting a notable negative impact below 4 µg m−3. A
significant G/P decrease of 0.05 was observed in this range
(Fig. 7e).

SO2−
4 has a positive effect (i.e., ranking among the top

five) on the G/P ratios of C5H8O4, C6H10O4, C10H16O4, and
C12H21NO9. For example, in the case of C6H10O4, the G/P
ratio rises rapidly by 0.30, with increasing SO2−

4 concentra-
tions below 6 µg m−3 (Fig. 7f). Above 6 µg m−3, the contri-
bution to the G/P ratio stabilizes at 0.1. This may partly be
related to the fact that SO2−

4 is a highly hydrophilic compo-
nent (Thaunay et al., 2015), which makes its effect similar to
that of LWC. In addition, an increase in sulfate in aerosols is
often associated with enhanced acidity and a decrease in pH
(Zhang et al., 2007), which drives OOM from the particle to
gas phases, as we have explained above.

K+ has a negative effect on the G/P ratios of C5H8O4,
C10H16O4, C6H5NO3, and C7H7NO3. Taking C10H16O4 as
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Figure 5. SHAP value analysis of three categories of features. The mean |SHAP| denotes the mean absolute SHAP values calculated for
594 samples (i.e., 594 h): (a) glutaric acid (C5H8O4), (b) adipic acid (C6H10O4), (c) monoterpene oxidation products (C10H16O4), (d,
e) nitrophenol (C6H5NO3 and C7H7NO3), and (f) nitrated aliphatic acid (C12H21NO9).

an example, the G/P ratio decreases rapidly by 0.15, with K+

in the concentration range below 1 µg m−3. Above 1 µg m−3,
its contribution to the G/P ratio stabilizes at−0.03 (Fig. 7g).
K+ is considered a tracer of biomass burning. The increase
in K+ is generally associated with higher pollution levels and
higher OC concentrations in the study region (Zhao et al.,
2024). The effect of K+ on the G/P ratio is thus similar to
that of OC.

In general, temperature is supposed to be an important in-
fluential factor in the G/P ratio, because the saturation vapor
pressure of OOMs increases with temperature. Temperature
ranged from −1.6 to 14.9 °C during the winter campaign.
Although temperature increase tends to elevate the G/P ra-
tios, as expected (Fig. 6a), the models show that temperature
did not rank as an important feature for five of the six OOM
species. We evaluated the effect of temperature on G/P ra-
tios using two-way partial dependence plots (Fig. S6). The
G/P ratio is sensitive to temperature change only for two
dicarboxylic acids (C5H8O4 and C6H10O4, Fig. S6a–b) and
for C12H21NO9 in a narrow temperature range of 10–13 °C
(Figs. S6f and 7h). The G/P ratios of C6H5NO3, C7H7NO3,
and C10H16O4 are not sensitive to temperature across most
of the RH range. This behavior may be attributed to the
aerosol coating of inorganic salts and other aerosol compo-
nents that hinder the rapid equilibrium partitioning of OOMs
when temperature changes. In addition, the influence of tem-
perature may be obscured due to the dominant effect of par-
ticle composition features (e.g., LWC, pH, OC, SO2−

4 , and
K+), as discussed above.

As shown in Fig. 6a, wind speed and direction rank rela-
tively low in terms of feature importance for the six OOMs.
This suggests that, while wind direction and speed might in-
fluence the source areas of OOMs, they have a minimal im-
pact on the G/P ratios of OOMs.

3.3 Identifying key factors driving the deviations of
gas–particle partitioning from the equilibrium state

To investigate the deviations of the observed gas–particle
partitioning from the equilibrium state, we first calculate the
ratios of

(
G
P

)
obs

to the normalized
(

G
P

)
eq

for every hour for

the six selected OOM species. The normalized
(

G
P

)
eq

was

used here in order to offset the effect of the C∗ parame-
terization selection. We then developed new random forest
models to investigate the effects of meteorological and gas–
particle composition features on the

(
G
P

)
obs
/
(

G
P

)
eq

ratios.

All of the models show an acceptable generalization perfor-
mance (R2

= 0.52–0.83) (Table S5) in the test set.
Figure 6b presents the SHAP analysis results for the(

G
P

)
obs
/( G

P )eq ratios of the six OOMs. The models identify
RH, LWC, O3, and temperature as four influential factors
driving the deviations from equilibrium partitioning. Posi-
tive correlations are observed between the SHAP values of(

G
P

)
obs
/( G

P )eq and the RH and LWC for all six compounds.
This indicates that RH and LWC have a stronger positive ef-
fect on

(
G
P

)
obs

than their effect on
(

G
P

)
eq

, which should be

negligible according to Eq. (4). Temperature is shown to be a
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Figure 6. SHAP summary plots for feature importance based on the random forest model for glutaric acid (C5H8O4), adipic acid (C6H10O4),
the monoterpene oxidation product (C10H16O4), nitrophenol (C6H5NO3 and C7H7NO3), and nitrated aliphatic acid (C12H21NO9). Features
are prioritized in descending order based on their importance. (a) SHAP summary for the observed G/P ratios

(
G
P

)
obs

. (b) SHAP summary

for the
(

G
P

)
obs
/( G

P )eq ratios.

Atmos. Chem. Phys., 25, 9601–9615, 2025 https://doi.org/10.5194/acp-25-9601-2025



X. Wang et al.: Influencing factors of the gas–particle distribution of oxygenated organics 9611

Figure 7. Curve fitting of SHAP values versus features using a GAM, illustrating the sensitivity ranges where the changes in feature values
significantly affect the SHAP values. Only those OOM species most affected by the eight features are shown. (a) pH for C6H10O4. (b) RH
for C6H5NO3. (c) LWC for C5H8O4. (d) OC for C12H21NO9. (e) EC for C12H21NO9. (f) SO2−

4 for C6H10O4. (g) K+ for C10H16O4.
(h) Temperature for C12H21NO9. The blue line denotes the GAM fit. The shaded area indicates the 95 % confidence interval. The dots are
the SHAP values for 594 samples (i.e., 594 h). The red dashed line denotes a SHAP value of 0.

negative factor driving the deviation from equilibrium parti-
tioning, suggesting that temperature has a stronger influence
on

(
G
P

)
eq

than
(

G
P

)
obs

. This is consistent with our earlier

result that
(

G
P

)
obs

is not sensitive to temperature. Surpris-
ingly, O3 is identified as an important influential factor with
a negative effect, particularly for the three nitrophenols and
the monoterpene oxidation product C10H16O4. Since O3 is
not expected to change

(
G
P

)
eq

, the negative impact of O3 on

the
(

G
P

)
obs
/( G

P )eq ratio could be explained by the specula-
tion (Kaur Kohli et al., 2023) that high O3 concentrations
are likely to deplete gas-phase OOMs at a faster rate than
particle-phase OOMs, thereby reducing

(
G
P

)
obs

.

4 Conclusions

We measured the G/P ratios of OOM species using
FIGAERO-CIMS in the urban atmosphere during a winter
campaign. The observed G/P ratios show a narrower range
than the equilibrium G/P ratios predicted from C∗ and COA.
The difference between the observed and equilibrium G/P
ratios could be up to 10 orders of magnitude, depending on
the C∗ parameterization. Our observed G/P ratio is inher-
ently closer to the equilibrium G/P ratios predicted from the
C∗ parameterization by Priestley et al. (2024), which was de-
rived from measured G/P ratios in wood burning emissions.
Our random forest models identified RH, LWC, O3, and tem-
perature as four influential factors driving the deviations of
gas–particle partitioning from the equilibrium state.
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Random forest models with satisfactory performance were
developed to predict observed G/P ratios. Intrinsic molecule
features, such as nC, Mw, nH, and DBE, far outweigh mete-
orological and chemical composition features in the model’s
predictions. Large molecules with high nC, Mw, nH, nO, and
consequently lower volatility are more likely to partition into
the particle phase, thereby reducing the G/P ratio. As depen-
dent variables, oxidation state and unsaturation do not show
consistently positive or negative effects on the observed G/P
ratios. If other variables are fixed, the model predicts that
G/P ratios generally decrease with the addition of oxygen
atoms and the DBE.

Particle composition features dominate over meteorologi-
cal and gaseous composition features in predicting the G/P
ratio of a given OOM species. Among these particle features,
pH, RH, LWC, OC, K+, and SO2−

4 consistently play impor-
tant roles in influencing the G/P ratios of the six selected
OOM species, showing either positive or negative effects.
We also identified the sensitivity ranges where the changes
in these features significantly affect the SHAP values and
provided valuable insights for future research in atmospheric
chemistry. It is surprising that temperature does not emerge
as an important factor influencing the G/P ratios for five of
the six selected OOM species. Our model suggests that other
factors, most likely associated with the particle composition,
inhibit the gas–particle partitioning of OOMs in response to
temperature change.

Finally, the random forest models developed in this study
have certain limitations. (1) Aerosol particle coating may
serve as an inhibitory factor in gas–particle partitioning.
However, the mixing state and morphology of aerosol par-
ticles were not considered in the model due to the challenges
in quantifying these features with high resolution. (2) The
OOMs with extremely high or low volatility might be un-
derrepresented in this study, because their gas- or particle-
phase concentrations often fall below the limit of quantifica-
tion of FIGAERO-CIMS. (3) Isomers were not differentiated
in the measurement of FIGAERO-CIMS in this study. The
observed G/P ratio was contributed by isomers sharing the
same chemical formula. The machine learning model built in
this study did not account for the effect of isomerization on
the gas–particle distribution of OOMs. (4) The model was
based solely on the data collected during the winter season
and for specific groups of OOM species present in the urban
atmosphere. To enhance the robustness of the gas–particle
partitioning model, future data collection under a broader
range of atmospheric conditions is recommended.
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