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Text S1 Routine measurement of gaseous and particulate components 

In this study, we measured the chemical composition of PM2.5, including water-soluble ions 

(sulfate (SO4
2−), nitrate (NO3

−), ammonium (NH4
+), chloride (Cl−), and potassium ion (K+)) over 

594 hours using an Online Ion Chromatography Monitoring System (MARGA-1S, Metrohm AG, 

Switzerland) for the water-soluble ions. The system is designed to collect and analyze PM2.5 in 

ambient air in real-time. Air samples are first passed through a cutter and sampling tubes into the 

instrument, where aerosol particles are captured and mixed with water vapor in a high-temperature 

steam generator. This process causes the particles to grow by absorption, after which they condense 

and are directed to the sample collection unit. The collected samples are then separated and analyzed 

using ion chromatography for their water-soluble ion content, including both cations and anions. 

The carbonaceous materials were analyzed using an OCEC Analyzer (RT-4, Sunset Laboratory 

Inc., USA), which employs a stepwise heating pyrolysis-oxidation method. The sample is first 

heated under helium (He) gas, causing the OC to volatilize and partially convert to pyrolyzed carbon 

(PC). The sample is then further heated in a helium/oxygen (He/O2) mixture, where EC is oxidized 

and decomposed into gaseous oxidation products. All decomposition products flow through a carrier 

gas into an oxidation furnace, where the carbon products are converted to CO2 and quantitatively 

detected using non-dispersive infrared (NDIR) methods. During this process, laser transmittance is 

used to monitor the OC/EC separation point, with OC volatilization and pyrolysis causing a decrease 

in transmittance intensity and EC oxidation leading to an increase. When the transmittance intensity 

returns to its initial level, the OC/EC separation point is defined, allowing for the precise 

determination of OC and EC content in the sample. 

PM2.5 concentrations were measured using an air particulate monitor (TH-2000PM, Wuhan 

Tianhong Technology Co., Ltd.), utilizing a dual-channel beta-ray method coupled with a dynamic 

compensation system. The air flow, set to 33.34 L/min, is first passed through a PM10-cutting device 

to separate the larger particles. The flow is then evenly split into two streams: one stream directly 

measures PM10, while the other is passed through a PM2.5-cutting device for the measurement of 

PM2.5. This approach reduces measurement errors and ensures accurate quantification of both PM10 

and PM2.5 concentrations. 

Hourly concentrations of nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and 

ammonia (NH3) were detected using gas analyzers (42i/43i/49i/17i, Thermo Fisher Scientific, USA). 

SO2 was measured via pulsed fluorescence technology, in which SO₂ molecules absorb ultraviolet 

light at a specific wavelength and re-emit fluorescent light. The intensity of the emitted fluorescence 

is directly proportional to the SO2 concentration. O3 was quantified using ultraviolet photometry, as 

ozone absorbs ultraviolet light at a specific wavelength (254 nm). The O3 concentration is 

determined by measuring the intensity of the absorbed light. For NH3 measurement, the method 

involves its reaction with oxygen at high temperatures (750°C), converting NH3 into nitrogen 

monoxide (NO). The NO concentration is directly proportional to the NH3 concentration, which is 

then calculated accordingly. The concentration of NO2 is measured using chemiluminescence: the 

sample first passes through a molybdenum catalyst at 325°C to convert NO2 into NO, which then 

reacts with O3 generated by a silent discharge ozone generator, producing chemiluminescence 

detected by a photomultiplier tube (PMT). By measuring in NO and NOₓ modes—recording the NO 

concentration without catalysis and the total NO (including converted NO from NO2) with 

catalysis—the NO2 concentration is calculated as the difference between the two measurements. 
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Meteorological parameters, including relative humidity (RH), temperature (T), wind speed 

(WS), and wind direction (WD), were collected using an automatic weather station. Photolysis 

frequencies of HONO (JHONO) were measured with a PFS-100 photolysis spectrometer (Focused 

Photonics Inc., China). The spectrometer uses a quartz receiver head to collect solar radiation from 

various directions and transmits the light through optical quartz fibers to the spectrometer. The 

spectrometer then transmits the spectral data to an industrial computer, which calculates the 

photolysis flux. By integrating this flux with known absorption cross-sections and quantum yields, 

the photolysis rate constant is determined. 

Text S2 Determination of thermal decomposition fragments 

 Some studies, like Stark et al. (2017), suggested that a fraction of oxygenated organic 

molecules (OOMs) detected by Chemical Ionization Mass Spectrometer equipped with a Filter Inlet 

for Gases and AEROsol (FIGAERO-CIMS) may be due to thermal decomposition. To explore this 

issue, we employed a K-means algorithm (Faxon et al., 2018) , which is an unsupervised machine 

learning approach, to cluster the OOMs to 5 groups High-Volatility Low-Mw OOMs, and Low-

Volatility Low-Mw OOMs, High-Volatility Median-Mw OOMs, Low-Volatility Median-Mw 

OOMs, High-Mw OOMs and decomposition fragment on the basis of thermal desorption 

temperature Tmax, molecular weight (Mw), carbon number (nC) and concentration measured at the 

urban supersite during the winter campaign. Here the concentration of an OOM is the average 

concentration during the campaign (Wang et al., 2024). The input variables of the K-means 

algorithm were scaled to values between 0 and 1, based on their respective numerical ranges, to 

prevent any bias associated with the relative magnitude of each variable. The clustering results can 

be seen in Figure S7. 

Text S3 Parameterizations of saturated mass concentration C* 

 The C* parameterizations from Mohr et al. (2019) and Ren et al. (2022) are given by Equation 

(S1): 

 log10 𝐶∗ = (𝑛𝐶
0 − 𝑛𝐶)𝑏𝐶 − (𝑛𝑂 − 3𝑛𝑁)𝑏𝑂 − 2 ×

(𝑛𝑂−3𝑛𝑁)𝑛𝐶

(𝑛𝐶+𝑛𝑂−3𝑛𝑁)
𝑏𝐶𝑂 − 𝑛𝑁𝑏𝑁    (S1) 

 where 𝑛𝐶
0 is the reference carbon number; 𝑛𝐶, 𝑛𝑂, and 𝑛𝑁 are the numbers of carbon, oxygen, 

and nitrogen atoms in an organic species, respectively; 𝑏𝐶 , 𝑏𝑂, and 𝑏𝑁 denote the contribution of each 

kind of atoms to log10 𝐶∗, respectively, and 𝑏𝐶𝑂 represents the carbon-oxygen nonideality. 

the carbon–oxygen nonideality，The coefficients from the studies of Mohr et al. and Ren et al. are shown 

in Table S6. 

 The parameterizations from Peräkylä et al. (2020) and Priestley et al. (2024) are given by 

Equations S2 and S3, respectively: 

log10 𝐶∗ = 0.18 × 𝑛𝐶 − 0.14 × 𝑛𝐻 − 0.38 × 𝑛𝑂 + 0.8 × 𝑛𝑁 + 3.1     (S2) 

   

log10 𝐶∗ = −0.03 × 𝑛𝐶 − 0.08 × 𝑛𝐻 − 0.14 × 𝑛𝑂 − 0.14 × 𝑛𝑁 + 4.26   (S3) 
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Text S4 Calculation of aerosol pH and liquid water content (LWC) 

To calculate pH and LWC, the ISORROPIA-II model in forward mode was used in this study 

(Fountoukis and Nenes, 2007). Input parameters included RH (0-1 scale), temperature (K), and 

concentrations (mol m-3) of K+, Ca2+, Mg2+, total ammonia (NH4
+ in the particulate phase and NH3 

in the gas phase), total sulfate (SO4
2- in the particulate), total sodium (Na+), total chloride (Cl- in the 

particulate phase and HCl in the gas phase), and total nitrate (NO3
- in the particulate phase and 

HNO3 in the gas phase). 

The model calculates aerosol pH using Equation S4 (Guo et al., 2016): 

𝑝𝐻 = −𝑙𝑜𝑔10(
[𝐻+]𝑎𝑖𝑟×𝛾𝐻+

𝐿𝑊𝐶𝑚𝑜𝑙 𝑚−3×0.018
)      (S4) 

 where 𝛾𝐻+  is the hydronium ion activity coefficient (assumed = 1), [𝐻+]𝑎𝑖𝑟 represents the 

concentration of free H⁺ ions per unit air volume (mol m-3), and 𝐿𝑊𝐶𝑚𝑜𝑙 𝑚−3 is the aerosol liquid 

water content (mol m-3). The 0.018 corresponds to the volume occupied by 1 mol of water, with 

units of L mol-1. Both [𝐻+]𝑎𝑖𝑟  and 𝐿𝑊𝐶𝑚𝑜𝑙 𝑚−3  are obtained from thermodynamic model 

calculations.  

Text S5 Outlier removal 

 The criterion for outlier removal is based on the Interquartile Range (IQR) rule, which involves 

the following steps: (1) Calculate the interquartile range for the data, (2) Multiply the interquartile 

range by 1.5, (3) Subtract 1.5 × the interquartile range from the first quartile—any value less than 

this threshold is considered an outlier and is removed, and (4) Add 1.5 × the interquartile range to 

the third quartile—any value greater than this threshold is considered an outlier and is removed from 

the original data.  

Text S6 SHAP analysis 

 Complex machine learning models, such as the random forest model, often achieve higher 

predictive accuracy compared to simpler models like linear models, but this comes at the cost of 

reduced interpretability. Properly interpreting the outputs of these complex models is crucial, as it 

allows for better application and trust in the model’s predictions (Ribeiro et al., 2016). 

 SHAP is a unified framework for post hoc model interpretation based on cooperative game 

theory (Lundberg, 2017; Jia et al., 2024). The core idea of SHAP is to calculate the marginal 

contribution of features to the model’s output, thereby explaining the "black box" model. SHAP can 

interpret model outputs at both the global and local levels, meaning it can explain the average 

importance of each feature across the entire model as well as the specific impact of each feature on 

individual predictions . For each prediction sample i, the output of the random forest model can be 

expressed as: 

𝑦𝑖 = 𝑦𝑏𝑎𝑠𝑒 + ∑ 𝑓(𝑥𝑖𝑗)𝑘
𝑗=1        (S5) 

Where:𝑦𝑖is the predicted value for sample i, 𝑦𝑏𝑎𝑠𝑒 is the baseline value for the model, typically the 
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mean prediction across all samples, k represents the number of features used by the model, 𝑥𝑖𝑗 is 

the j-th feature for sample i, 𝑓(𝑥𝑖𝑗) is the SHAP value of feature 𝑥𝑖𝑗, which represents its marginal 

contribution to the prediction. 

 SHAP values are calculated by evaluating the marginal contribution of each feature to the 

model’s output. In the SHAP framework, each feature’s contribution can be positive or negative, 

depending on whether it increases or decreases the prediction. SHAP values not only quantify the 

importance of features but also reflect the positivity or negativity of the influence of features. 

 We used the SHAP method to quantify the importance of influential features and to calculate 

the marginal effects of a single feature on the Gas-to-Particle (G/P) ratios of OOMs. SHAP values 

measure the marginal contribution of a feature to the model’s prediction, considering the 

contributions of all other features. A positive SHAP value indicates a feature's positive contribution 

to enhancing the prediction, while a negative value indicates a negative contribution. The magnitude 

of the SHAP value indicates the feature's impact on the prediction. SHAP results aid in assessing 

the model's decision-making process, identifying important features, and discovering underlying 

data patterns. The SHAP values were computed using the shap package (v.0.40.0) in Python (v.3.8). 

The data were then fitted with a Generalized Additive Model (GAM) using the pygam package 

(v.0.8.0). 

Text S7 Partial Dependence Plots 

 The partial dependence plots (PDP) is a method for interpreting black-box models (Shi et al., 

2023). Mathematically, the partial dependence function for the j-th feature is defined as: 

𝑓𝑗̂(𝑥𝑗) = 𝔼𝑥¬𝑗
[𝐹(𝑥𝑗 , 𝑥¬𝑗)] = ∫ 𝐹(𝑥𝑗 , 𝑥¬𝑗) 𝑑𝑃(𝑥¬𝑗)      (S6) 

 where 𝑥𝑗  represents the j-th feature of interest, and 𝑥¬𝑗  denotes all other features. The 

function 𝐹(𝑥𝑗 , 𝑥¬𝑗) refers to the black-box model’s prediction based on both 𝑥𝑗 and the remaining 

features. The partial dependence 𝑓𝑗̂(𝑥𝑗) is calculated by taking the expected value of the model’s 

output over the distribution of all other features, 𝑥¬𝑗, effectively marginalizing their effects. 

 For a two-way PDP, this process is extended by combining two features, 𝑥𝑗 and 𝑥𝑘, where 

both are simultaneously varied while marginalizing the remaining features. This allows for the 

visualization of how the combined values of these two features (e.g., temperature and humidity) 

affect the G/P ratio prediction. 
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Table S1. Hyperparameters for grid search in random forest model optimization 

Hyperparameter Values 

n_estimators 50, 100, 150, 200 

max_depth 10, 20, 30, None 

min_samples_split 2, 5, 10 

min_samples_leaf 1, 2, 4 

max_features sqrt, log2 

 

Table S2. Daytime environmental and gas/particle composition conditions used for predicting G/P 

ratios of modified monocarboxylic acid in Figure 4 

Environmental Conditions Value 

Wind Direction_cos -0.32 

Wind Direction_sin 0.63 

Wind Speed (m/s) 1.31 

Temperature (°C) 8.74 

Humidity (%) 44.81 

UV Radiometer A Channel (W m-2) 7.18 

UV Radiometer B Channel (W m-2) 0.12 

Photolysis Rate (HONO)(s-1) 5.01×10-4 

SO2 (μg m-3) 9.55 

O3 (μg m-3) 54.48 

NO2 (μg m-3) 33.30 

NH3 (μg m-3) 2.70 

PM2.5 (μg m-3) 63.07 

Cl- (μg m-3) 2.46 

SO4
2- (μg m-3) 8.09 

NO3
- (μg m-3) 25.11 

OC (μg m-3) 10.04 

EC (μg m-3) 3.55 

NH4
+ (μg m-3) 12.54 

K+ (μg m-3) 1.42 

pH 4.52 

LWC (μg m-3) 19.30 

 

Table S3. Nighttime environmental gas/particle composition conditions used for predicting G/P 

ratios of modified monocarboxylic acid in Figure 4 

Environmental Conditions Value 

Wind Direction_cos -0.19 

Wind Direction_sin 0.63 

Wind Speed (m/s) 0.93 

Temperature (°C) 5.62 

Humidity (%) 56.55 

UV Radiometer A Channel (W m-2) 0 

UV Radiometer B Channel (W m-2) 0 
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Photolysis Rate (HONO)(s-1) 0 

SO2 (μg m-3) 7.55 

O3 (μg m-3) 24.80 

NO2 (μg m-3) 48.98 

NH3 (μg m-3) 2.84 

PM2.5 (μg m-3) 66.87 

Cl- (μg m-3) 2.73 

SO4
2- (μg m-3) 7.48 

NO3
- (μg m-3) 24.84 

OC (μg m-3) 11.85 

EC (μg m-3) 4.14 

NH4
+ (μg m-3) 12.25 

K+ (μg m-3) 1.62 

pH 4.40 

LWC (μg m-3) 28.61 

 

Table S4. Evaluation results of the six single-species models and the selected optimal model 

parameters 

OOMs R2 RMSE n_estimators max_depth max_features min_samples_split 

C5H8O4 0.88 0.34 200 30 sqrt 2 

C6H10O4 0.85 0.10 50 30 sqrt 2 

C6H5NO3 0.80 0.03 150 20 sqrt 2 

C7H7NO3 0.78 0.02 150 30 sqrt 2 

C10H16O4 0.54 0.23 200 10 sqrt 2 

C12H21NO9 0.51 0.15 100 20 sqrt 10 

 

Table S5. Evaluation results of the six deviation-from-equilibrium G/P ratio models and the 

selected optimal model parameters 

OOMs R2 RMSE n_estimators max_depth max_features min_samples_split 

C5H8O4 0.83 0.26 50 30 sqrt 2 

C6H10O4 0.79 0.38 100 10 sqrt 2 

C6H5NO3 0.62 0.40 150 20 sqrt 2 

C7H7NO3 0.61 0.41 200 10 sqrt 2 

C10H16O4 0.53 0.95 100 20 sqrt 2 

C12H21NO9 0.52 2.97 200 20 sqrt 5 

 

Table S6. Coefficients in the parameterizations of Mohr et al. (2019) and Ren et al. (2022) 

 𝑛𝐶
0 𝑏𝐶  𝑏𝑂 𝑏𝐶𝑂 𝑏𝑁 Suggested O/C range 

Mohr et al. (2019) 25 0.475 0.2 0.9 2.5 - 

Ren et al. (2022) 25 0.0700 0.6307 -0.0615 2.3962 0.25–1 

Ren et al. (2022) 25 0.2075 2.8276 -1.0744 1.8223 0–0.25 
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Figure S1. Classification of 123 species used in multi-species model. Sulfur-containing species 

were directly assigned according to elemental formula. Biomass burning tracer were selected 

based on literature review. The remaining species were categorized into four precursor types 

(monoterpene-derived, isoprene-derived, aromatic, and aliphatic) using a random forest model 

developed by our previous paper (Wang et al., 2024).  
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Figure S2. Time series of partial features. (a) Wind direction and wind speed (reference vector: west 

2 m s-1). (b) PM2.5 and organic carbon (OC) concentrations. (c) Ozone (O3) and sulfur dioxide (SO₂) 

concentrations. (d) Ambient temperature and relative humidity (RH). 
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Figure S3. Diurnal variations of normalized equilibrium G/P ratios for(a) Adipic acid C6H10O4, (b) 

Nitrophenol C6H5NO3, (c) Monoterpene oxidation product C10H16O4 and (d) Nitrated aliphatic acid 

C12H21NO9. Blue shade denotes 95% confidence interval. 
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Figure S4. RMSE and R2 values across five-fold cross-validation for the multi-species model, 

with RMSE (left axis) and R² (right axis) shown for each fold. 
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Figure S5. The correlation between the observed G/P ratios of the 6 selected species and various 

features. 
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Figure S6. Two-way partial dependence plots showing the impact of temperature and humidity on 

the predicted G/P ratio for (a) Glutaric acid (C5H8O4), (b) Adipic acid (C6H10O4), (c) Monoterpene 

oxidation product (C10H16O4), (d) Nitrophenol (C6H5NO3), (e) Nitrophenol (C7H7NO3), and (f) 

Nitrated aliphatic acid (C12H21NO9). The numbers on the contour lines denote the predicted G/P 

ratios. 
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Figure S7. Groups of OOMs identified using K-means clustering analysis, showing the three-

dimensional distribution of these species by Tmax, molecular weight, carbon number, and 

concentration. The size of each circle is proportional to the concentration of the corresponding 

OOMs. 
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