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Abstract. The size of windblown dust particles plays a critical role in determining their geochemical and cli-
mate impacts. This study investigates the relationship between topographic wind conditions (speed and direction
relative to land slope) and the particle size distribution (PSD) of dust emissions on a regional scale. We used the
Multiscale Online Nonhydrostatic Atmosphere Chemistry (MONARCH) dust reanalysis dataset, which assimi-
lates satellite data on coarse-mode dust optical depth (DOD¢garse). Validation against flight measurements from
the 2011 Fennec campaign confirms the effectiveness of the reanalysis in capturing coarse to super coarse dust.
A 10-year dust reanalysis underwent selective screening to identify events with fresh emissions and the fraction
of coarse dust concentrations was calculated as a surrogate for size distribution. The coarse fractions and as-
sociated meteorological and land characteristics obtained from various datasets were incorporated into multiple
linear regression and machine learning models. Results indicate that dust particle size increases with wind speed,
probably due to a higher fraction of fresh emissions and reduced deposition of coarse dust under stronger winds.
A positive correlation between dust size and uphill slope suggests that enhanced vertical transport of dust by
topography outweighs the impact of shifting emission microphysics over veering winds. Both positive correla-
tions weaken in the afternoons and summer, probably due to the turbulence during haboob storms, which can
suspend coarse dust from aged emissions, competing with the effect of uphill slopes. These findings on dust size

dependency on topographic winds could improve representation of dust cycle and its impacts.

1 Introduction

Windblown dust particles emitted from arid and semi-arid
areas are the largest terrestrial contributor to global aerosols
(Brasseur and Jacob, 2017). Understanding the size of the
airborne dust particles is crucial for assessing their impacts
on global climate and biogeochemistry. Size plays an impor-
tant role in determining the emission and deposition of dust
particles and thus the redistribution of soil nutrients around
the globe (Knippertz, 2017; Duce and Tindale, 1991; Wang
et al., 2023). In addition, particle size can affect the likeli-
hood of microorganisms’ attachment to dust aerosols (Poly-
menakou et al., 2008; Yamaguchi et al., 2012) and the dis-

tance these associated microorganisms can travel (Prospero
et al., 2005; Kellogg and Griffin, 2006). Particle size, along
with other factors such as mineralogy, chemical composition,
and shape, control the climate impacts of dust particles which
can vary drastically from warming to cooling (Adebiyi and
Kok, 2020; Kok et al., 2023; Mahowald et al., 2014). Real-
istic representation of dust particle size distribution (PSD) in
the atmosphere requires an understanding of the dependen-
cies of dust size at emission (Kok, 2011; Rosenberg et al.,
2014).

Relationships between dust PSD and various environmen-
tal factors have been extensively studied. Soil moisture has
been widely reported to increase the proportion of coarse
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dust in emissions by enhancing bonding forces among fine
particles within soil aggregates (Dupont, 2022; Gonzilez-
Florez et al., 2023; Shao et al., 2020), but one recent study
also argues that the effect is non-monotonic (Ma et al., 2023).
Another surface characteristic of interest is soil texture. Emit-
ted dust PSD during wind tunnel experiments was reported
to be significantly influenced by the fully dispersed soil size
distribution (Wang et al., 2021) and the proportion of emit-
ted submicron particles, and PMjq increased after tillage
practices which broke down soil aggregates (Fernandes et
al., 2023; Katra, 2020). The effect of atmospheric stability
on dust size is inconsistent across studies. Some reported
that an unstable atmospheric boundary is associated with
richer submicron particles (Khalfallah et al., 2020; Shao et
al., 2020), whereas others found no effect (Dupont, 2022;
Gonzélez-Flérez et al., 2023). Deposition impacts are univer-
sally acknowledged and were evaluated using characteristics
of dust events or dust measurements, including fetch length
(Gonzdlez-Florez et al., 2023), dust age (Dupont et al., 2015;
Ryder et al., 2013), and dust measurement height (Khalfal-
lah et al., 2020; Shao et al., 2020). Nevertheless, the effects
of multiple factors often intertwine during dust events, mak-
ing the overall impact on dust size obscure.

Wind speed, or the resulting friction velocity (u,) exerted
on the ground surface, as the driving force of dust emis-
sions, is one of the most essential parameters for dust emis-
sions. The relationship between wind speed and PSD of dust
emissions has been widely studied, yet consensus is lacking.
Saltation bombardment and aggregate disintegration are usu-
ally considered the primary mechanism for dust emissions
(Kok et al., 2012). Parametrization of saltation bombardment
proposed that higher u, leads to higher energy in saltating
particles and thus enhances the breaking down of soil aggre-
gates and ejection of fine particles (Shao, 2001). This the-
ory is supported by multiple wind tunnel experiments (Al-
faro et al., 2022; Wang et al., 2021) and field measurements
(Chkhetiani et al., 2021; Dupont, 2022; Khalfallah et al.,
2020). Brittle fragmentation theory, on the other hand, pos-
tulates that PSD of vertical dust flux is independent of u,,
backed by compiled data from multiple wind tunnel and field
measurements (Kok, 2011). Some also proposed that detach-
ment of submicron particles from the surface of soil aggre-
gates is more common when kinetic energy of impacting par-
ticles is low and the ejection of coarser particle from frag-
mentation becomes increasingly dominant with higher im-
paction intensity (Malinovskaya et al., 2021). These discrep-
ancies are partially due to the interplay of other factors, such
as inconsistencies in dust emission measurements (Khalfal-
lah et al., 2020; Shao et al., 2020), soil moisture (Ishizuka et
al., 2008; Shao et al., 2020; Webb et al., 2021), and whether
steady-state saltation is reached (Mahowald et al., 2014). Se-
lection of the dust emission properties (e.g., dust flux or dust
concentration; Shao et al., 2020) and the height of dust mea-
surements (Khalfallah et al., 2020) can alter the dust PSD.
The effects of soil moisture on shifting dust PSD at emission
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can get entangled with the potential effects of u,. For in-
stance, the fine fraction in dust emissions counterintuitively
increasing with decreasing u, after light rain was caused by
drying of the weakly crusted soils over time (Shao et al.,
2020). With interferences of various factors, predicting the
general dependency of PSD of dust emission on u, at re-
gional scales over longer time becomes complex.

The role of topography in altering size of dust emission
is of emerging interest. The orographic channeling of winds
can affect the dust emission or transport (Caton Harrison
et al., 2021; Rosenberg et al., 2014). Uphill winds can en-
hance the vertical transport of dust particles through flow
separation, especially increase the proportion of coarse par-
ticles in the elevated dust based on computational simula-
tions (Heisel et al., 2021). Moreover, the veering angle be-
tween wind vectors and the surface inclination can affect the
emitted dust PSD. A study over a local field observed that
compared to winds that blew more parallel to the ridges of
the slopes (i.e., tangential winds), frontal uphill winds gener-
ated a higher fraction of fine particles (0.2-2 pm) because of
more sputtering of fine particles on the windward slope due
to resistance from the secondary eolian structures, as well as
less generation of coarse particles (2—-5 um) on the leeward
slope with the recirculation zone (Malinovskaya et al., 2021).
Other potential topographic impacts include the generation
of erodible material by certain orographic winds (Washing-
ton et al., 2006) and the triggering of convective storms by
mountains (Knippertz et al., 2007). However, their associa-
tions with dust PSD are understudied. Overall, it remains un-
clear whether the observed effects of wind over local topog-
raphy on the PSD of dust emissions is detectable at regional
scales.

Understanding the relationship between topographic wind
conditions and PSD of dust emission on a regional scale is
important for simulating dust activities and impacts in atmo-
spheric or climate models. Complementing the accumulat-
ing field data on PSD of dust emissions (Shao et al., 2020;
Gonzalez-Florez et al., 2023; Fernandes et al., 2023), this
study aims to explore the impacts of topographic wind con-
ditions on dust PSD on a regional scale through data analy-
sis. The regional scale means that the dust emission of con-
cern inevitably includes near-source transport and deposi-
tion. Here, we selected “fresh” dust emission events from the
Multiscale Online Nonhydrostatic AtmospheRe Chemistry
model (MONARCH) dust reanalysis data (Di Tomaso et al.,
2022) and constructed models to investigate the correlations
between PSD of surface dust concentrations in fresh emis-
sions and wind conditions over slopes, while taking into ac-
count other relevant meteorological and surface conditions.
Our methodology, sensitivity analysis, and evaluations are
described in Sect. 2, and the discussion of our findings fol-
lowed by the main takeaways are presented in Sects. 3 and 4.
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2 Data and methods

2.1 Datasets and variables

The study domain (12-38° N, 18° W-36° E) encompasses the
Sahara Desert, the largest dust source on Earth, which con-
tributes to approximately 60 % of the global dust loading
(Tanaka and Chiba, 2006). Various monitoring or reanalysis
datasets are available for this region, providing information
on African dust sizes and the associated environmental con-
ditions needed for this study.

The MONARCH dust reanalysis (Di Tomaso et al., 2022)
dataset provides size-resolved dust information from 2007
to 2016 with 3 h intervals. The dataset covers North Africa,
the Middle East, and Europe using a rotated-pole projec-
tion with a spatial resolution of 0.1°. The assimilation data
of coarse-mode dust optical depth (DOD,gyrse) Were derived
from the Moderate Resolution Imaging Spectroradiometer
(MODIS)-Aqua Deep Blue level 2 aerosol products (Col-
lection 6), including the aerosol optical depth (AOD), the
Angstrom exponent, and the single scattering albedo at dif-
ferent wavelengths (Ginoux et al., 2012; Pu and Ginoux,
2016). MONARCH’s first-guess dust size distribution fol-
lows the brittle-fragmentation theory of Kok (2011) with per-
turbations across 12 ensemble members. By applying a local
ensemble transform Kalman filter with four-dimensional ex-
tension (4D-LETKF) at each 24 h assimilation window, re-
analysis increments were added to the model ensemble sim-
ulations (first-guess) to match the DODgarse Observations.
Specifically, the dust state vector of the total coarse dust
mixing ratio (distributed across five coarser bins from 1.2
to 20 um) was updated, then the increments for the finer
three bins were determined proportionally to their total rela-
tive mass. Therefore, although MONARCH reanalysis does
not directly assimilate fine-mode DOD, corrections in the
coarse bins propagated to the entire PSD through the assim-
ilation state vector and physical parameterizations, aligning
the PSD more closely with dust-specific observations. Con-
sequently, if the prior PSD is biased — for instance by placing
too much mass in the largest bin or not enough in a medium
bin — that bias may persist to some extent after assimilation.
Despite the limitation, validation against observational data
from the Aerosol Robotic Network (AERONET) indicates
that fine dust is still captured satisfactorily (Di Tomaso et al.,
2022; Mytilinaios et al., 2023), supporting the reliability of
the dataset to investigate dust PSD. We hypothesize that the
dust concentration reanalysis captures the potential regional
effects of topographic wind conditions on the dust PSD via
assimilation of the satellite DOD,yarse Observations. The ad-
justments in dust concentration PSD during data assimilation
are showcased by the uneven ratio of the first-guess dust con-
centration to its reanalysis across eight size bins (see Sect. 2.2
and Fig. S1 in the Supplement). The MONARCH model was
run in 40 hybrid pressure-sigma model layers and the dust
concentration in the lowest layer was saved as the surface
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dust concentration. The surface dust concentration best rep-
resents near-source dust emissions and transport, and was
chosen for this study. The concentration is available in eight
size bins (i.e., 0.2-0.36, 0.36-0.6, 0.6-1.2, 1.2-2.0, 2.0-3.6,
3.6-6.0, 6.0-12.0, and 12.0-20.0 um; Klose et al., 2021). For
easier comparison, these size-resolved concentrations were
condensed into a single index called the “coarse fraction”,
defined as the sum of mass concentrations of the coarsest
two bins (6—12 um) divided by the total mass concentration
of all eight bins (referred to as “cf2”). The delineation of fine
and coarse particles is somewhat arbitrary and case-specific
across studies. In general, a cut-off diameter from submicron
to above 10 um was used (Dupont, 2022; Fernandes et al.,
2023; Panebianco et al., 2023) and the most common range
is approximately 2-5 um (Ishizuka et al., 2008; Ryder et al.,
2019; Shao et al., 2020; Webb et al., 2021), which generally
aligns with the lower boundary of 6 um used in this study. In
addition, we tested alternative definitions of coarse fraction
(namely, “cf1” and “cf3”, where the coarsest one or three
bins were assigned as coarse dust) in the subsequent statis-
tical analysis and results suggest that cf2 is a representative
surrogate for dust particle size. More details on the compari-
son are listed in Table S4 in the Supplement and Sect. 3.3.

Because wind conditions associated with dust concentra-
tions are not available from the MONARCH dust reanaly-
sis dataset, we sourced the information from the Modern-
Era Retrospective analysis for Research and Applications
(MERRA-2) data (Gelaro et al., 2017). MONARCH ensem-
ble simulations applied meteorological inputs from two re-
analysis datasets, i.e., MERRA-2 and ERA-Interim. Given
that wind from both reanalyses are highly constrained by ob-
servations, and there is a substantial overlap in the assimi-
lated data used by the two (Fujiwara et al., 2024; Rienecker
et al, 2008; Dee et al., 2011; Gelaro et al., 2017), it is reason-
able to use MERRA-2 wind vectors to inform the wind con-
ditions of MONARCH dust reanalysis. The available wind
components nearest to the surface and most relevant to dust
emissions are at 2m above ground, provided as hourly av-
erage with a spatial resolution of 0.5° latitude x0.625° lon-
gitude in the product M2IINXASM. Wind speed and wind
direction were subsequently calculated.

The wind direction types relative to topography (hereafter
“relative wind direction type”) were determined based on the
wind vector (represented by u(i, j) and v(i, j)) and the slope
vector (represented by Sy (7, j) and Sy(i, j)). Elevation data
for calculating the slope were retrieved from the NASA Shut-
tle Radar Topography Mission Global 3 arcsec (SRTM GL3)
dataset (Farr et al., 2007). The SRTM elevation data are ex-
pected to be compatible with the MERRA-2 wind reanalysis
because (1) both the SRTM and GTOPO30, which are used
in the Goddard Earth Observing System (GEOS-5) model
(MERRA-2’s first-guess), have much finer resolution than
MERRA-2’s grids, making their spatial averages compara-
ble (Gesch et al., 2001), and (2) MERRA-2 wind reanalysis
is highly constrained by assimilated observations, reducing
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Figure 1. (a) Variables used in the calculation of the upwind slope. The elevations in the target grid, E(i, j) and the upwind grids (in orange if
the wind components were positive; in light blue if the wind components were negative) were used to calculate the upwind slope components
in x and y directions. (b) Methods for assigning the type of wind direction over topography. The angle between the upwind slope and the
wind vector, «, and the predefined cut-off angle, S, together determined whether the wind from an event was typical for any of the three
categories of relative wind direction, namely downhill, tangential, and uphill winds.

its dependency on topographic input. Dust concentration is
most relevant to emissions in upwind grids, therefore, slope
vector components in each grid (i, j) were determined as gra-
dients of elevation between the target grid and the two neigh-
boring grids in the upwind directions (Fig. 1a and Eq. 1). To
the best of the authors’ knowledge, this study presents the
first derivation of the upwind slope over North Africa.

The wind direction over topography was categorized into
tangential, uphill, and downhill winds depending on the an-
gle between the slope and wind vectors, « (0 < o < 360°) as
well as a predefined cut-off angle, 8 (0 < 8 < 45°) (Fig. 1b
and Eq. 2). A smaller cut-off angle will result in a more selec-
tive process for assigning the relative wind direction types.

Sx. D=1 Eiep-Bit1)) u(l.’ J.) >0,
=, u(, ) <0,
Sy =1 Eij-Fij+n v =0, M
gy s (i, j) <0,

where (i, j) denotes the location of a grid cell, E(i, j) rep-
resents the elevation, and S, (i, j) and Sy(i, j) represent the
slope components in x and y directions, respectively; u(i, j)
and v(i, j) are horizontal wind components.

uphill, 0 <a < Bor(360°—p),
<o < 360°

90°-pB) <«
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or (270° — B)

<o < (270°+ ),
(180°—-pB) <«
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The land characteristics of soil texture and soil moisture that
are expected to cast impacts on PSD of dust emissions were
considered. Spatial distribution of soil texture was adopted
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from the map used in the Global Land Data Assimilation Sys-
tem version 2 (GLDAS?2) Noah land surface model (Rodell
etal., 2004), derived from the global soil dataset by Reynolds
et al. (2000). The texture of the top layer of soil was catego-
rized into the 16 classes developed by the Food and Agricul-
tural Organization (FAO), varying in sand, silt, and clay frac-
tions (FAO, 2006). Soil moisture data were retrieved from the
MERRA-2 product M2T1NXLND, providing average water
content in the top 5 cm layer of soil hourly with a spatial res-
olution of 0.5° latitude x0.625° longitude.

All datasets were co-registered onto a universal 0.1° Plate
Carrée coordinate. MERRA-2 and MONARCH data were
regridded using the Python xesmf package version 0.7.1
(Zhuang et al., 2023). The 2m wind vectors and the soil
moisture from the MERRA-2 reanalysis underwent upsam-
pling using the “nearest source to destination” algorithm to
match MONARCH’s finer resolution. This algorithm did not
bring in artificial variations so was the safest choice for re-
gridding. Coarser spatial resolution of the MERRA-2 data
meant some neighboring grids inevitably shared the same
wind vector and soil moisture, diminishing the potential ef-
fects of wind conditions on dust PSD. The SRTM elevation
data with a much higher original resolution were downsam-
pled using the “average” method provided by the Python
package of geowombat version 2.1.6 (Graesser, 2023). Sub-
grid information on topography was lost, but handling topog-
raphy information at the same scale as the wind data was rea-
sonable because the terrain variations at finer resolution were
deemed smooth when scaling up. Soil texture data at 0.25°
latitude—longitude coordinates were also projected to the 0.1°
coordinates. To match the instantaneous 3 h time steps of the
MONARCH reanalysis, we picked the average wind com-
ponents and soil moisture from the precedent hour, relevant
to the initial dust emissions that could remain airborne dur-
ing that time period. Maps showing the average wind speed,
the average upwind slope, the most common wind direction
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types, and the average surface dust concentration at 0.1° res-
olution over the 10 years are presented in Fig. 2. While we
acknowledge the inherent resolution limitations of reanalysis
datasets, the focus of this study is on the broader-scale mod-
ulation of dust emission by wind conditions, and data assim-
ilation combined with upsampling techniques ensure that our
conclusions remain interpretable in this context.

2.2 Validation against the Fennec measurements

The MONARCH dust reanalysis dataset was previously eval-
uated against observations from the AERONET retrievals
(Di Tomaso et al., 2022; Mytilinaios et al., 2023). Compar-
ison between the 3h MONARCH reanalysis of DODcoarse
at 550nm and the coarse-mode AOD at 500nm from
AERONET retrievals over Sahara generate a Pearson cor-
relation of 0.81 with a root-mean-square error (RMSE) of
0.15 (Di Tomaso et al., 2022). Here, we present an addi-
tional case study to particularly evaluate the performance of
dust reanalysis on capturing fresh dust emissions. Observa-
tional data were obtained from the 2011 Fennec campaign,
where size-resolved dust emissions over western Africa were
intensively sampled using wing-mounted instruments (Ry-
der et al., 2013). Segments of three flights (b600-602), each
lasted 10 min, over northern Mali on 17-18 June 2011, were
identified to be associated with fresh dust uplifts by low-
level jets (Ryder et al., 2013; Ryder et al., 2015). Measured
dust number concentration during these flight segments was
converted to volumetric concentration for easier comparison
with the MONARCH reanalysis data. The MONARCH re-
analysis grids containing any portion of these flight trajec-
tories were identified, and the associated dust mass concen-
trations were retrieved. These concentrations were weighted
averaged by flight duration in each grid cell to yield an over-
all binned dust concentration. The MONARCH dust mass
concentrations were also converted into volumetric concen-
trations using the dust particle density of 2500kgm™> for
the finer four bins and 2650 kg m—> for the coarser four bins
(Klose et al., 2021). As shown in Fig. 3, the trends of two dust
PSDs generally agree well across all the eight size bins of
the MONARCH dataset. Most notably, MONARCH reanal-
ysis is effective at capturing the coarse to super coarse modes
(defined as dust with diameter greater than 10 um; Meng et
al., 2022) represented by the last three bins (3.6-20 um), out-
performing several recent dust simulations that lack the data
assimilation (Adebiyi and Kok, 2020; Meng et al., 2022).
Additional investigations (see Fig. S1) revealed that the re-
analysis dust concentration changes non-monotonically from
its first-guess, leading to the conclusion that not only the to-
tal dust concentration but also its PSD has changed through
assimilation. Overall, the predicted concentration for fresh
emitted dust lies in an acceptable range, and the data as-
similation process improved concentration across all bins as
well as adjusted the dust size distribution, suggesting that
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the MONARCH reanalysis reasonably represents fresh dust
emissions.

2.3 Event selection and sensitivity tests

Addressing the specific goals of this study requires the selec-
tion of the most relevant dust events from a decade of data
over northern Africa. Two goals guided the screening pro-
cess: (1) excluding the aged dust, and (2) focusing on wind
conditions over distinctive terrain variations. Several screen-
ing criteria were accordingly developed that must be met si-
multaneously for dust events to be eligible for further anal-
ysis. Specifically, the selected dust events must occur within
dust sources and over terrain with prominent slopes, be con-
current with high wind speeds and typical wind directions
over slope, and have notable increases in dust surface con-
centrations. The procedures for screening these events are il-
lustrated in Fig. 4 and described below in detail. This highly
selective approach was made possible by the abundance of
data from the MONARCH reanalysis.

To start with, dust events were confined to dust sources
to exclude long-range transported and probably aged dust
far from dust-source regions. The 10-year average of surface
dust concentrations was calculated for the entire study do-
main, and pixels with values above the threshold percentile
were designated as dust sources. For example, dust sources
selected using the 80th percentile of the 10-year average dust
concentration as the threshold are presented in Fig. 4a. The
map of dust sources features the Bodélé Depression, Great
Sand Sea, Tanezrouft, and the Atlantic Coastal Desert, con-
sistent with the dust sources identified in other studies (For-
menti et al., 2011; Di Tomaso et al., 2022). Further screen-
ing steps were performed independently within these dust
sources.

To maximize the likelihood of capturing predominantly
fresh dust emissions, high wind speed was a necessary cri-
terion, as low wind speeds are unlikely to generate sufficient
fresh dust. A single cut-off value for high wind speed was
chosen as a top percentile of the 10-year average wind speed
over the whole domain. Similarly, a single threshold slope
was used to select the events over prominent terrain varia-
tions. Dust events occurring over relative flat surfaces were
excluded to magnify the potential signals of shifted PSD due
to terrain variation. Wind direction over slopes was catego-
rized following procedures described in Sect. 2.1 and a cut-
off angle smaller than 45° was used to exclusively select typi-
cal uphill, tangential, or downhill winds over slopes. Another
criterion for increasing the probability of capturing dom-
inantly fresh emissions was identifying sharp increases in
surface concentrations. This approach favored the initiation
of significant dust emissions with relative clean background
dust levels. Examples of selected dust events based on each
of the above criteria at 02:30 UTC on 1 January 2016, are
provided in Fig. 4b—e, using the configurations for the “ini-
tial” run (i.e., a cut-off angle of 10° for categorization of
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Figure 2. General spatial patterns of (a) 2m wind speed from the MERRA-2 reanalysis, (b) calculated upwind slope, (c¢) derived wind
direction type relative to slope using cut-off angle of 10°, and (d) MONARCH total dust concentration at ground surface from 2007 to 2016.
The average values are shown for wind speed, upwind slope, and dust surface concentration, and the most frequent types are shown for the
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Figure 3. The black line shows the average volumetric concen-
tration (pm3 cm_3) of dust sampled during three Fennec flights (6
flight segments) and the gray shaded area denotes the range of val-
ues. The blue bars show the volumetric concentration (pm3 cm_3)
of dust in corresponding grids from the MONARCH reanalysis cal-
culated from the weighted average mass concentration, with a parti-
cle density of 2500 kg m ™3 for the finer four bins and 2650 kg m—3
for the coarser four bins. The error bars denote the range of values.

wind direction, the 80th percentile as threshold for high wind
speeds and steep slope, and 80 % as the threshold ratio of the
increased surface dust concentration to the total dust concen-
tration as listed in Table 1).

We performed several sensitivity tests to account for the
uncertainties associated with the criteria used for event se-
lection. We perturbed each of the threshold percentiles or the
cut-off values used in the initial run in a pair of sensitivity
runs. Specifically, we added and subtracted 10 % from the
threshold percentiles of 80 % used for screening dust sources,
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steep slope, high wind speed, and high fraction of fresh emis-
sions. Cut-off angles, B of 5 and 20° were tested compared
to the initial 10° for typical wind direction. Configurations of
all the sensitivity runs are listed in Table 1. A combination of
all the more strict criteria was used in the “final” run.

2.4 Statistical analysis

Based on the selected events for “fresh” dust emissions, we
explored the relationships between wind conditions and the
PSD of emitted dust, taking into consideration the effects of
various meteorological and landscape factors. Specifically,
the dependent variable was the coarse fraction of surface
dust, and the independent variables of focus were the wind
speed and the slope associated with uphill, tangential, and
downhill winds. The five additional independent variables
are environmental variables that can potentially affect dust
PSD as well as the relationships between dust PSD and wind
conditions, including the continuous variables of year and
soil moisture, and the categorical variables of time of day,
season, and soil texture type. Dust events with missing val-
ues in soil texture class or wind direction type were excluded.

Exploratory data analysis was conducted to assess data
quality, identify intrinsic patterns, and guide the selection
of appropriate statistical models. We selected and modified
our statistical models based on their adherence to model as-
sumptions, ability to explain the variability in the coarse
fraction, and overall complexity. An initial choice was the
multiple linear regression model which has the advantage of
high explainability. We separated the slope by wind direc-
tion types to provide a more holistic representation of the
effects of veering wind over topography. Significant coeffi-
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Figure 4. Schematics showing the procedures for screening the 10-year dust reanalysis data for fresh dust emissions. First, dust sources
were assigned to regions where the annual average of dust surface concentration is among the top percentile (i.e., 20 % as shown in a) of
all values across the study domain of North Africa. Subsequently, additional screening criteria were applied simultaneously to events that
occurred within these dust sources. These criteria include (b) high wind speed, (¢) wind direction over topography, (d) high increase in dust
surface concentration, and (e) steep slope. Maps (b—e) are examples of filters used in the “initial” run (see in Table 1) for 1 January 2016, at
02:30UTC.

Table 1. Thresholds or cut-off values used in all runs. Locations where the 10-year average surface dust concentration is above the threshold
percentile value of all locations were designated as dust sources. Events over dust sources with slope and wind speed above the threshold
percentiles of temporally averaged values over the whole domain, and increases in dust surface concentration above the threshold values
were selected. The wind direction relative to topography was assigned using the cut-off angle. Values marked in bold represent the different

criteria compared to the “initial” run.

Test name Dust sources Wind Slope Wind speed Increase in
threshold direction  threshold threshold dust surface
percentile cut-off percentile  percentile  concentration

angle threshold

Initial 80 10° 80 80 80 %

90 %source 90 10° 80 80 80 %

70 %source 70 10° 80 80 80 %

Scutoff 80 5° 80 80 80 %

20cutoff 80 20° 80 80 80 %

90 %slope 80 10° 90 80 80 %

70 %slope 80 10° 70 80 80 %

90 %wdsp 80 10° 80 90 80 %

70 %owdsp 80 10° 80 70 80 %

90 %sconc 80 10° 80 80 90 %

70 %sconc 80 10° 80 80 70 %

Final 920 5° 90 90 90 %

cients for continuous variables, such as wind speed, repre-
sent the change in the coarse fraction of dust concentrations
associated with a one-unit change in that corresponding in-
dependent variable. Categorical variables (e.g., time of day)
are encoded as binary dummy variables, each representing a
distinct category. The coefficients of these variables reflect
the change in coarse fraction relative to the reference cate-
gory chosen during the encoding process. Interaction terms
can also be added to linear models in order to reflect the in-
terplay between wind conditions and other factors. An inter-
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action can be expressed as x,, X xp, where x,, is one of the
four wind condition variables and x, is one of the two addi-
tional continuous variables (i.e., year and soil moisture), or
a dummy variable representing one of the three additional
categorical variables (i.e., time of day, season, and soil tex-
ture). The adjustment in the coefficient for x,, due to x,
would be represented by B;,xp. A valid linear model re-
quires linear relationships, normality of errors, constant vari-
ance (homoscedasticity), and low correlations among inde-
pendent variables. Collinearity or multicollinearity among
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predictors can inflate standard errors and reduce the statisti-
cal significance of regression coefficients. To assess this, we
calculated the generalized variance inflation factors (GVIFs)
for all predictors in the linear models using the VIF function
in R (R. Core Team, 2023). For categorical variables, the GV-
IFs were adjusted by the degrees of freedom (Df), expressed
as GVIF!/@DD_ Ap adjusted GVIF of 1 (the smallest value)
indicates no collinearity, while values below 5 generally sug-
gest low and acceptable collinearity.

When assumptions of normality and constant variances
were violated, we attempted standardization and transforma-
tions, including the Box—Cox transformation (Box and Cox,
1964) and the logit transformation (Berkson, 1944), to tackle
these issues. We also tested weighted linear regression, also
known as weighted least squares (WLS) (Kiers, 1997), which
can handle non-constant variance (heteroscedasticity) by as-
signing weights to observations. In addition, beta regression
models were implemented, which are particularly useful for
fractional variables that range between O and 1, such as the
coarse fraction in this study (Douma and Weedon, 2019).
Beta regression has been previously applied to air quality-
related health metrics within the standard unit interval (Lu et
al., 2021) and to particle size data with skewed distributions
(Peleg, 2019).

Several evaluation metrics were used to compare model
performance, including the RMSE, the mean absolute er-
ror (MAE), and the adjusted coefficient of determination
(adjusted R?, which evaluates the amount of variability in
the coarse fraction explained by the model while penalizing
model complexity). Higher adjusted R2, and lower RMSE or
MAE values suggest that more variations of the data are cap-
tured by models. We also calculated the prediction interval
accuracy at the 95 % confidence level, defined as the propor-
tion of observations covered by prediction intervals. The per-
formance metrics were also averaged using the 10-fold cross-
validation (CV), where the dataset was randomly divided into
10 subsets, and models were trained on 9 subsets and tested
on the remaining subset in each iteration, with a total of 10 it-
erations. All statistical analyses were performed using R and
the relevant packages (Zeileis and Hothorn, 2002; Griin et
al., 2012; Cribari-Neto and Zeileis, 2010; Fox and Weisberg,
2018; Venables and Ripley, 2002).

Moreover, we constructed machine learning models to ac-
count for the large dataset and potential nonlinear relation-
ships. Categorical variables (wind direction, soil texture type,
season, and time of day) were converted into dummy vari-
ables, resulting in a total of 22 predictors when combined
with continuous predictors (wind speed, slope, and year).
We built random forest and extreme gradient boosting (XG-
Boost) models, both are widely used regressors (Bacanin et
al., 2024; Brokamp et al., 2017; Keller and Evans, 2019;
Zhang et al., 2022). Though both models rely on decision
trees, random forest aggregates multiple trees trained on a
randomly sampled subset of data, whereas XGBoost sequen-
tially refines decision trees through iterative training. Model
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hyperparameters were fine-tuned to maximize the predictive
performance, with the search grids determined based on sam-
ple size, predictor count, and computational efficiency. The
search grids and the optimal hyperparameter combinations
are listed in Table S1. As with the linear models, we assessed
the accuracy of prediction interval coverage at 95 % confi-
dence level through 10-fold CV. Machine learning models
are known to have high prediction accuracy but can be chal-
lenging to interpret. One technique to assess the contribution
of individual predictors to the coarse fraction based on deci-
sion trees is the SHapley Additive exPlanations (SHAP) anal-
ysis, which was performed on the optimized models. These
analyses were conducted using Python packages including
scikit-learn (version 1.2.2; Pedregosa et al., 2011), xgboost
(version 1.7.6; Chen and Guestrin, 2016), and shap (version
0.44.0; Lundberg and Lee, 2017).

Eventually, the more complex models did not outperform
the multiple linear models to a large extent. Given their high
explainability, ability to incorporate interactions between
predictors, and competitive performance, we ultimately se-
lected linear models for further analysis. SHAP results from
the machine learning models were also included for cross-
validating key findings. More details on the model perfor-
mance and results are described in Sect. 3.3.

3 Results and discussion

3.1 Sensitivity tests show minor variations

As a result of the screening processes, a total number of
461 183 dust events were identified in the initial run and
25 884 events were identified in the final run from approx-
imately 3.5 billion records of dust surface concentrations at
specific locations and times. Figure 5 shows the percentage
changes in median coarse fraction by wind direction types
from all sensitivity runs (Table 1). In general, nearly all per-
turbations of any single screening criterion result in approx-
imately 1% of changes in the average or median coarse
fraction grouped by wind direction. The exception is restrict-
ing wind speed to the top 10 % percentile (the “90 %wdsp”
run), which leads to an approximately 2 % increase in the me-
dian values for each wind direction type. Coarse fraction of
dust emissions with downhill winds are usually more sensi-
tive to the screening threshold values than the other two wind
directions. When all criteria were restricted simultaneously
in the final run, the median coarse fraction of dust emission
increases by less than 2 % under tangential or uphill winds
and approximately 3.5 % under downhill winds. Consider-
ing the minor variations in coarse fraction among sensitivity
runs, we decided to focus on one run for more detailed analy-
sis. The final run was chosen because, in theory, the selected
events are most representative for fresh dust emissions.
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Figure 5. Percentage change in the median coarse fraction by wind
direction type for all sensitivity runs (see Table 1) as compared to
the “initial” run.

3.2 Exploratory analysis

To gain an impression of the general distribution of the data,
we started with plotting the dust coarse fraction against four
variables of wind conditions (Fig. 6). Scatter points in the
panel for wind speed are color-coded by number of overlap-
ping observations, and data points in other three panels for
slopes are color-coded by wind speed. Across all four panels,
a pattern of heteroscedasticity is revealed, that is, the vari-
ance of coarse fraction is greater for dust events associated
with lower wind speed or slope than for events with high
wind speed or slope. The vertically aligned scatter points
with varying colors at a slope of approximately 1.7 in the
panel for “slope under uphill winds” represent 93 dust events
that occurred at a same location under different wind speeds
near the northern border of Western Sahara during 2007-
2016, illustrating how a large number of dust events can
lead to high variance. No obvious nonlinear relationships be-
tween the four wind condition variables and the coarse frac-
tion were observed. The trend lines based on simple linear re-
gression models of the coarse fraction against each wind con-
dition variable indicate general trends in the dust PSD with
varying wind conditions, but the significance of these rela-
tionships is not assured. Additional plots for the soil moisture
and slope under three wind conditions color-coded by the
density of overlapping data points are presented in Fig. S2.

3.3 General associations between wind conditions and
dust coarse fraction

The absence of obvious nonlinear relationships between
coarse fraction and wind conditions from the exploratory
analysis further motivated us to initially construct linear re-
gression models, in addition to it being a common starting
point. The linear model including all independent variables
but no interactions has an adjusted R? value of 0.224, RMSE
with 10-fold CV of 0.070, and MAE with 10-fold CV of
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0.059. In addition, we added all possible interactions into the
model and fine-tuned it by removing the insignificant inter-
action terms. The resulting model with interactions has sim-
ilar performance, with the adjusted R? of 0.239, RMSE with
10-fold CV of 0.070, and MAE with 10-fold CV of 0.058.
The somewhat weak correlations may be related to factors
that are not included in the model, such as deposition, vari-
ability within the same categories of soil texture, etc. Resid-
ual analyses indicate violations of the assumptions of evenly
distributed variance and normality (Fig. S3). We attempted to
address these issues and improve model performance through
various linear model adaptations but only obtain indefinite or
marginal improvements — standardizing the coarse fraction
and wind conditions variables yields an adjusted R? of 0.241,
RMSE with 10-fold CV of 1.678, and MAE with 10-fold CV
of 1.420; and logit transformation on the coarse fraction gen-
erates an adjusted R? of 0.237, RMSE with 10-fold CV of
1.420, and MAE with 10-fold CV of 0.487. Furthermore, the
Box—Cox transformation, WLS, or beta regression models
with the best-performing configuration (with a log—log link
function for the mean and an identity link function for the
dispersion) all fail to resolve heteroscedasticity in the residu-
als with respect to wind condition variables. For the machine
learning models, the optimized random forest and XGBoost
models achieve R? values of 0.407 and 0.474, respectively,
which drop to 0.259 and 0.273 after 10-fold CV, indicating
potential overfitting. The coverage rates of prediction inter-
vals with the 10-fold CV are 92.5 % for random forest and
54.4 % for XGBoost, both lower than the 94.0 % coverage
by the linear models both with and without interactions. Lin-
ear models outperforming machine learning models on pre-
diction accuracy strongly encourages the selection of linear
models. Considering their comparative satisfactory perfor-
mance, simplicity, and directly interpretable coefficients, we
decided to proceed with the linear regression models among
all models. We first assessed the influence of individual pre-
dictors based on the linear regression model without interac-
tions, with cross comparison with results from the machine
learning models (Fig. S5). Subsequently, we used the linear
model with interaction terms to investigate the effects of in-
teractions among predictors.

Linear model without interaction terms are used to infer
the general effects of wind conditions on coarse dust frac-
tion. These linear models are not intended to imply strictly
linear relationships between dust PSD and wind conditions,
but rather to provide initial guidance on the directionality of
these relationships. Although individual data points present
deviations, our models effectively predict the overall trend,
as suggested by the response vs. fitted value plots (Fig. S4),
where the predicted values align closely with observed values
and cluster around the one-to-one red line. Adjusted GVIF
values for the model without regression were consistently be-
low 2 with most values close to 1 (Table S2), indicating that
multicollinearity among continuous or categorical predictors
does not significantly affect the regression model. The mul-
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Figure 6. Scatter plots and linear trend lines of relationships between the coarse fraction of surface dust concentration in fresh emissions and
the wind speed and the slope under three different wind directions. In (a) for wind speed, the color codes present the number of overlapping
data points. In (b), (¢), (d) for slope, the color of each scatter point represents the associated wind speed for each dust event.

tiple linear regression model for the dust coarse fraction in-
cludes four independent variables for wind conditions (speed
and three options for slope) and additional factors that may
affect the PSD of dust emissions, allowing us to investigate
the effects of topographic wind conditions while controlling
interferences from other environmental factors. The model
can be expressed as:

v = Bo+ Bix1 + Baxz + B3x3 + Paxs + Bsxs + Bexe

+ B7x7 + Bsxg + Boxg + €, 3)

where, y represents the coarse fraction of dust emissions, x|
represents wind speed, and x, x3, and x4 represent slope un-
der uphill, tangential, and downhill winds, respectively; x5 is
the categorical variable of time of day, including three lev-
els of morning (06:00-12:00 local time), afternoon (12:00-
18:00 local time), and evening (18:00-6:00 local time); x¢
is the categorical variable of season, comprising DJF (winter
months of December, January, and February), MAM (spring
months of March, April, and May), JJA (summer months
of June, July, and August), and SON (autumn months of
September, October, and November); x7 and xg represent the
continuous variables of year and soil moisture; and xg is the
categorical variable of soil texture class, which contains eight
levels of the FAO soil texture classes (FAO, 2006). The co-
efficients gB; represent the expected changes in the response
variable y per unit increase in the continuous predictor x;,
and the difference in y relative to the reference category
for categorical predictor x;, while holding all other variables
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constant. The value of € represents the residuals of the model.
The default coarse fraction is cf2 (defined in Sect. 2.1), and
the corresponding estimated values, standard errors, and sig-
nificance of the wind condition coefficients (8; — B4) are
listed in Table 2, with full details of all coefficients listed
in Table S3. As noted in Sect. 2.1, we also tested two alterna-
tive definitions of coarse fraction (cf1 and cf3) and compared
the estimated coefficients with their statistical significance in
Table S4. The coefficient estimates based on cf2 and cf3 are
largely consistent, whereas those based on cfl show some
distinct patterns. Given that dust in the top bin (12—-20 um)
falls into the “super coarse” dust category (> 10 um; Meng
et al., 2022), these results suggest that super coarse dust re-
sponds differently to varying wind conditions compared to
other coarse dust. Therefore, the cf2 definition serves as a
robust representation of coarse dust particles.

The coefficient for wind speed from the linear model, 8;
is statistically significant and positive (Table 2), suggesting
that controlling the effects of other factors, the coarse frac-
tion of dust emissions increases with the wind speed. This
result is consistent with the SHAP analyses on both machine
learning models as showcased in the SHAP summary plots
(Fig. S5), where purple data points with high wind speed
are concentrated on the right side of the vertical centerline
and yellow points with lower wind speed dominate the left
side, indicating a positive correlation between wind speed
and coarse fraction. The observed trend contradicts implica-
tions of the theory based on the saltation-bombardment emis-
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Table 2. Estimates, standard errors, and p-values of wind condition
coefficients for the multiple linear model of dust coarse fraction.
The model includes the independent variables of wind conditions
(i.e., wind speed and slope under three wind direction types), time
of day, season, year, soil moisture, and soil texture. The symbols of
coefficients are defined in Eq. (3).

Coefficients for Estimates  Standard  p-values
Variables errors

wind speed (81) 0.0075 0.0002 < 0.0001
slope with uphill 0.0175 0.0013 < 0.0001
winds (82)

slope with tangential 0.0081 0.0015 < 0.0001
winds (83)

slope with downhill 0.0076 0.0016 < 0.0001

winds (84)

sion mechanism, which predicts that higher kinetic energy of
impact particles from greater wind speed can intensify the
disintegration of soil aggregates and thus the release of finer
particles (Shao, 2001; Alfaro et al., 1997). Conversely, our
result aligns with the observed shift in the dominant emis-
sion mechanism from “shaking-off” of submicron particles
to the generation of coarser microparticles from fragmen-
tation as the velocity of saltating particles increases (Mali-
novskaya et al., 2021). An alternative explanation for the ob-
served positive effect of wind speed on dust size at emission
is related to soil conditions (Ishizuka et al., 2008; Panebianco
et al., 2023). In previous studies, emissions of super coarse
dust (> 10 um) increased with wind speed while the emis-
sions of ultrafine dust (< 1 um) remained nearly invariant
over sandy soil (Panebianco et al., 2023); in addition, the
fraction of fine dust (< 2 um) decreased with friction veloc-
ity on slightly crusted surfaces (Ishizuka et al., 2008). These
phenomena were probably due to weaker cohesive forces
and thus easier emission of coarse particles than fine par-
ticles. Though our sensitivity test using cfl rejects the in-
creased emission of super coarse dust with wind speed (Ta-
ble S4), unmeasured changes in the fine dust emissions lead-
ing to an overall higher coarse fraction remain one possibil-
ity. Soil texture and soil moisture were included in the model,
but subtle discrepancies across events within the same soil
class or soil moisture are not eliminated. Last but not least,
since the fresh dust emissions at regional scale inevitably in-
clude transported dust, yet another potential explanation is
unrelated to the emission, but to the transport process — as
wind speed increases, more fresh emissions are generated,
which undergo less deposition and contain a higher fraction
of coarse particles than the aged background dust (Gonzalez-
Florez et al., 2023).

The coefficients for slopes under all three wind directions
from the linear regression are significant and positive (Ta-
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ble 2), suggesting that the coarse fraction of dust emissions
increases with the slope regardless of the relative wind direc-
tion. The largest coefficient for uphill winds among all three
slopes indicates that it has the strongest effect on dust coarse
fraction. Similarly, the SHAP analysis on the optimized ran-
dom forest model (Fig. S5) suggests a positive relationship
between slope and coarse fraction, with uphill winds further
accentuate the positive effects. The XGBoost model indicates
mixed effects of wind directions but the results are less reli-
able due to its lower prediction accuracy (54 %). Overall, the
linear model and the random forest model agree on the posi-
tive correlation between slope and dust size, especially under
uphill winds. The strong increase in coarse fraction with up-
hill slope aligns with previous findings using large-eddy sim-
ulations, which was explained by the enhancement in vertical
transport of dust particles being more prominent for coarser
particles (Heisel et al., 2021). In contrast, the microphysics
of dust emission proposed that compared to tangential winds,
uphill winds against the slope resulted in more detachment of
fine particles from the surface of soil aggregates on the wind-
ward slope due to the secondary eolian structures, and mean-
while less ejection of coarse particles from the fragmenta-
tion of soil aggregates upon hitting the leeward slope (Mali-
novskaya et al., 2021). Our results suggest that at the regional
scale, the effect of near-source transport of emitted dust at
scales of hundreds to thousands of meters dominates over the
impact of microphysics of dust emission related to secondary
dune structure at scales of centimeter to meters. The overall
elevated coarse fraction with slopes might also be attributed
to the orographic wind channeling (Rosenberg et al., 2014),
increased availability of coarser particles on hills (Samuel-
Rosa et al., 2013; Washington et al., 2006), and their greater
mobility under gravity. Effects of slope under tangential and
downhill winds are less pronounced, with linear model sug-
gesting their weaker positive relationships with coarse frac-
tion compared to uphill winds (Table 2), and the random
forest model indicating negative impacts of tangential and
downhill wind directions on coarse fraction even though the
effect of slope is positive (Fig. S5). These weaker effects can
possibly be explained by the lack of effective enhancement
in vertical transport of coarse particles on the windward side
of slopes.

3.4 Associations between wind conditions and dust
coarse fraction under varying environmental
conditions

Adding interaction terms to the linear model allows us to in-
vestigate how the relationships between wind conditions and
dust coarse fraction may vary depending on the additional
variables for time and surface characteristics. The model in-
cluding all significant interactions is shown in Eq. (4). Re-
sults for coefficients related to the interactions are listed in
Table 3 and the complete results are listed in Table S5.
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Equation (4) is defined as follows:

Yy = Bo+ Bix1 + Baxa + Baxs + Baxa + Bsxs + Pexe
+ B7x7 + Bsxs + Boxg + B1sx1x5 + Prex1xe
+ Bigx1xg + Basxaxs + Basxaxe + Prgxaxs
+ B35x3x5 + Bagx3xg + Bagxaxe + €, “4)

where, x1x9, ¥, and 8189 are the same as in Eq. (3). The
Bij are coefficients for interactions between x;(1 <i <4)
and x;(5 < j <9) and their interpretations are described in
Sect. 2.4.

With interactions in the model, the coefficient 8; indicates
the slope of linear correlation between wind speed and the
coarse fraction when the variables that have interactions with
wind speed are at the reference levels for categorical vari-
ables (i.e., “afternoon” for time of day and “DJF” for season)
or at zero for continuous variable (i.e., soil moisture). Adjust-
ments of the correlation under other conditions are indicated
by the coefficients for interactions with wind speed (815816,
and B1g). The overall coefficient for wind speed stays positive
with varying time of day and season, which agrees with the
results from the model without interactions (Table 2) , except
for the rare cases when soil moisture is high (> 50%). As
suggested by the adjustments of coefficients, the positive cor-
relation between wind speed and coarse fraction is weakened
during events that happen in the afternoon, in summer, or are
associated with higher soil moisture. All these conditions are
typical for haboob dust storms which are capable of generat-
ing intense dust emissions (Heinold et al., 2013; Knippertz,
2017). Therefore, a potential explanation for the observed
patterns is that the dust PSD dependency on wind speed is re-
duced during convective conditions associated with haboobs.
Reasons behind the weakened correlation could be related to
turbulent atmospheric conditions. If the earlier assumption is
valid that the coarse fraction increases with wind speed due
to the associated higher proportion of fresh emissions, dur-
ing convective events, the role of turbulent flows in keeping
dust particles suspended regardless of the magnitude of wind
speed may blur the effects of wind speed. Moreover, the pos-
itive relationship between wind speed and coarse fraction di-
minishes with soil moisture. Higher soil moisture may inhibit
fresh dust emissions, thereby weakening the positive correla-
tion.

The adjustments of the relationship between slope and
coarse fraction with other environmental variables are gen-
erally consistent across three wind direction types. Overall,
the coefficients for slope with three wind directions stay pos-
itive under most circumstances, aligning with results from
the model without interactions (Table 2). Notably, the effect
of the uphill slope is strongest in the morning. Unlike Har-
mattan surges, which can induce dust emission throughout
the day, or haboob storms, which mostly occur in the after-
noons, dust uplift due to the breakdown of night-time low-
level jets (NLLIJs) is limited to the period around sunrise to
midday (Fiedler et al., 2015; Heinold et al., 2013). Therefore,
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the result may indicate that the role of uphill slope in facili-
tating transport of coarse dust is particularly relevant during
emissions related to NLLIJs. Moreover, the effect of slope in
increasing coarse fraction is weakest during afternoon events
under both uphill and tangential winds. With both uphill and
downhill winds, the positive correlation between slope and
coarse fraction is the strongest in winter, and the weakest
in spring and summer. The reduced correlation of dust PSD
with uphill slope in both afternoon and summer suggests a
diminished effect of slope during haboob dust storms. This
can be explained by the stronger turbulence associated with
convective storms, which readily stirs up the air and facili-
tates particle transport, thereby weakening the additional ef-
fect of uphill slope by elevating coarse particles through flow
separation.

The effect of slope on increasing coarse fraction of dust
also becomes more apparent with increasing soil moisture
under uphill and tangential winds. A potential explanation is
that low soil moisture might be associated with low water va-
por content in lower-Saharan air layer, which can lead to con-
tinued vertical motions of the atmosphere into the night due
to increased atmospheric longwave heating (Ryder, 2021).
Conversely, the air is more stable with higher relative humid-
ity, making the enhancement by topography more critical for
the transport of coarse dust.

4 Conclusions

This study aims to explore the relationship between topo-
graphic wind conditions and PSD of dust emissions on a
regional scale through data analysis. The MONARCH dust
concentrations were first evaluated against flight measure-
ments of fresh dust emissions from the 2011 Fennec cam-
paign and were proven to be effective in capturing concentra-
tions of coarse to super coarse dusts in fresh dust emissions.
For our analysis, size-resolved surface dust mass concentra-
tions from the MONARCH dust reanalysis over the Sahara
during 2007-2016 were condensed into an index of coarse
fraction (the ratio of the sum of concentrations in the top
two bins (6-20 um) to the total concentration in eight bins
(0.2-20 um)), serving as the proxy for size distribution. In-
formation on wind vectors and soil moisture, elevation, and
soil texture was obtained from the Modern-Era Retrospec-
tive analysis for Research and Applications (MERRA-2) re-
analysis data, the NASA Shuttle Radar Topography Mission
Global 3 arcsec (SRTM GL3) dataset, and the inputs to the
Global Land Data Assimilation System version 2 (GLDAS?2)
Noah land surface model, respectively. Several highly se-
lective criteria were applied to maximize the probability of
selecting fresh dust emissions with typical wind conditions
over topography. Scatter plots of coarse fraction against four
wind conditions variables (i.e., wind speed, slope under up-
hill, tangential, and downhill winds) reveal unevenly dis-
tributed variance without obvious nonlinear trends. We ul-
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Table 3. Estimates, standard errors, and p-values of the interaction coefficients for the multiple linear model of dust coarse fraction. The
model includes the independent variables of wind conditions (i.e., wind speed and slope under three wind direction types), time of day,
season, year, soil moisture, and soil texture, as well as significant interaction terms between wind conditions and other independent variables.
The interaction coefficients represent wind conditions (speed and direction) under various situations of time of day, season, and soil moisture.
The symbols of coefficients are defined in Eqgs. (3) and (4). Statistically significant (at 0.05 significance level) coefficients are marked with
“ after their p-values, among which the positive coefficients are bolded and the negative coefficients are italicized.

Multiple linear model coefficients for wind speed under various conditions

Estimates  Standard errors p-values

Afternoon, DJF, and soil moisture of O (reference levels; 8;) 0.0076 0.0007  <0.0001*

Adjustments with time of day (8;5)

evening 0.0122 0.0006 <0.0001*
morning 0.0016 0.0006 0.0058*
Adjustments with season (B1¢)

JJA —0.0028 0.0007  <0.0001*
MAM —0.0023 0.0006 0.0003*
SON —0.0003 0.0007 0.6500
Adjustments with soil moisture (81g) —0.0154 0.0029  <0.0001*

Multiple linear model coefficients for slope with uphill winds under various conditions

Estimates  Standard errors p-values

Afternoon, DJF, and soil moisture of O (reference levels; f7) 0.0135 0.0030 <0.0001*

Adjustments with time of day (8>5)

evening 0.0061 0.0024 0.0118*
morning 0.0159 0.0026 <0.0001*

Adjustments with season (B>¢)

JJA —0.0098 0.0028 0.0005*
MAM —0.0138 0.0029  <0.000I*
SON —0.0056 0.0031 0.0672
Adjustments with soil moisture (83) 0.0521 0.0107 < 0.0001

Multiple linear model coefficients for slope with tangential winds under various conditions

Estimates  Standard errors p-values

Afternoon, soil moisture of O (reference levels; B3) —0.0038 0.0025 0.1261

Adjustments with time of day (835)

evening 0.0134 0.0024  <0.0001*
morning 0.0110 0.0027 <0.0001*
Adjustments with soil moisture (833) 0.0351 0.0115 0.0022*

Multiple linear model coefficients for slope with downhill winds under various conditions

Estimates ~ Standard errors p-values

DIJF (reference level; B4) 0.0148 0.0026  <0.0001*

Adjustments with season (B4¢)

JJA —0.0101 0.0031 0.0011*
MAM —0.0105 0.0032 0.0011*
SON —0.0090 0.0036 0.0116*
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timately selected the multiple linear models after testing sev-
eral model variations to quantify and explain the trends in
data, with key findings cross-validated using machine learn-
ing models.

The linear model without and with significant interac-
tion terms can explain 22 % and 24 % of the variability of
coarse fraction, respectively. The model, however, fails to
fulfill the assumptions on homoscedasticity (constant vari-
ance) and normality, and this issue could not be resolved by
other parametric modeling approaches including linear re-
gression models with transformations of variables, weighted
least square, or beta regression models with several op-
tions for link functions. The strong intrinsic pattern of non-
constant variance and the abundance of data points require
more advanced models, which is beyond the scope of our cur-
rent work. Other uncertainties arose from the varying original
resolution of datasets and the resampling process. Moreover,
even though we applied multiple criteria to exclusively pick
fresh dust emissions, we cannot totally exclude the portion
of transported dust. The analysis focuses on the general trend
for North Africa, and more detailed insights rely on analysis
for smaller geographic domains.

Despite some limitations, the multiple linear models
achieved high predictive accuracy — over 94 % under 10-
fold CV — demonstrating their capability to provide mean-
ingful insights for interpretation. The optimized random for-
est model, which attained 92 % predictive accuracy with 10-
fold CV despite potential overfitting, added insights to the
influence of each predictor by applying SHAP analysis. Both
the linear and the random forest models reveal positive asso-
ciations between coarse dust fraction and both wind speed
and slope. An increased coarse fraction in dust emissions
with wind speed is inconsistent with theories by Kok (2011)
or those based on saltation-bombardment mechanism (Shao,
2001; Alfaro et al., 1997), which predict invariant or opposite
trends, respectively. The most likely explanation for our find-
ing is that higher winds are associated with more fresh emis-
sions (which undergo less deposition) because transported
dust was inevitably included in our samples even with metic-
ulous screening (Gonzélez-Florez et al., 2023). Therefore,
our finding does not necessarily reject the former theories,
as the definition of dust emissions may differ across stud-
ies. Another notable possibility is a shift in emission mecha-
nisms with wind speed — under light winds, the detachment
of fine particles from surfaces of soil aggregates dominates
the emissions, generating more fine dust; in contrast, the
fragmentation of soil aggregates dominates emissions under
stronger winds and ejects more coarse dusts (Malinovskaya
et al., 2021).

The positive correlation between coarse dust fraction and
slope is most pronounced under uphill winds. This aligns
with the impacts of flow separation induced by topography,
as suggested by previous numerical simulations (Heisel et
al., 2021), but contradicts the observed effects of frontal
winds explained by the microphysics of dust emissions (Ma-
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linovskaya et al., 2021). Our finding suggests that the topo-
graphic influence on transport over hundreds to thousands of
meters may override the localized effects (increased gener-
ation of fine particles) from secondary eolian structures at
scales of centimeters to meters. The persistent influence of
slope on increasing the coarse fraction, regardless of wind di-
rection, might be related to meteorological conditions (e.g.,
orographic wind channeling; Rosenberg et al., 2014) and soil
conditions (e.g., increased availability and gravitational mo-
bility of coarser particles on hills; Washington et al., 2006).

Including interaction terms in the model allows us to in-
vestigate shifts in the effects of wind conditions on dust
size under different environmental conditions. The positive
correlation between wind speed and coarse fraction dimin-
ishes during afternoon and summer events and under high
soil moisture. This reduction is probably due to decreased
differences in dust size distribution by deposition during ha-
boob convective storms when turbulence is strong (Heinold
et al., 2013; Knippertz, 2017). The uphill slope exhibits the
strongest effect on increasing dust size in the morning, sug-
gesting that the enhanced vertical transport may be particu-
larly effective in uplifting coarse dust during emissions re-
lated to the breakdown of night-time low-level jets (Fiedler
et al., 2015; Heinold et al., 2013). The effect of uphill slope
is weakened during summer and afternoons, indicating that
turbulence during haboob dust storms has competing effects
in sustaining airborne coarse dust.

This work provides insights into the controlling factors of
dust PSD on a regional scale using a meta-analysis of a 10-
year dust reanalysis dataset, complementing the accumulat-
ing knowledge from recent field measurements. The study
highlights the overlapping effects and interactions among
various environmental factors on the size distribution of dust
emissions, which can potentially be applied to improve dust
emission parameterizations in regional to global Earth sys-
tem models. Moreover, the workflow for screening fresh dust
events developed in this work serves as a reference for future
studies utilizing datasets at various scales. Remaining uncer-
tainties in this work (e.g., those introduced by unmatching
resolution of source data or lack of explicit information on
dust event types) calls for further investigation, especially on
the role of various environmental factors and their interac-
tions. Additional field measurements, as well as the develop-
ment and validation of data products providing detailed infor-
mation on size-resolved dust emissions, meteorological con-
ditions, and soil and topographic properties, would be crucial
for advancing this field.

Data availability. The open-access MONARCH dust reanalysis
data, prepared by the Barcelona Supercomputing Center (BSC),
are available at https://earth.bsc.es/thredds_dustclim/homepage/
(Di Tomaso et al., 2021). The Modern-Era Retrospective analysis
for Research and Applications (MERRA-2) data (Gelaro et
al., 2017) are managed by the NASA Goddard Earth Sciences
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(GES) Data and Information Services Center (DISC) and can be
accessed at https://disc.gsfc.nasa.gov/datasets?project=MERRA-2

(Global Modeling and Assimilation Office (GMAO),
2015). The NASA Shuttle Radar Topography Mission
Global 3arcsec (SRTM GL3) dataset is available at

https://doi.org/10.5067/MEASURES/SRTM/SRTMGL3.003
(NASA JPL, 2013). The soil texture map input to the Global Land
Data Assimilation System version 2 (GLDAS?2) Noah land surface
model (Rodell et al., 2004) is described and provided by NASA at
https://1das.gsfc.nasa.gov/gldas/soils (NASA Goddard Space Flight
Center (GSFC) and NOAA National Centers for Environmental
Prediction (NCEP), 2023).
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