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S1 Nested GEOS-Chem simulation setup and scenario design

We use nested GEOS-Chem simulations over Asia (60°E—150°E, -11°N-55°N) at the native resolution of 0.5° lat. x 0.625° long. to
simulate the summertime (June, July and August) ozone change from 2015 to 2019. All nested simulations obtain the boundary conditions
of chemicals from the global simulations at 2° lat. x 2.5° long. for the corresponding year. The global and nested simulations are run 6
months and 6 days in advance, respectively, as model spin-up to remove the impact of initial conditions. Compared to the global model
setup in Section 2.3, the nested simulations only adjust the NOx and NMVOC emissions, leaving the rest of the model settings unchanged.
To focus on the impacts of emissions and chemical nonlinearity, the meteorological variables to drive the nested model simulations are

fixed at the 2015 levels.

For anthropogenic NOx emissions, we use the emission data in Section 2.4. For anthropogenic VOC emissions, we use the CEDS
inventory globally, but used the MEIC (Multi-scale Emissions Inventory of China; www.meicmodel.org) v1.4 inventory (Li et al., 2017;
Zheng et al., 2018) for China for VOC species available in MEIC (including acetone, acetaldehyde, lumped C4 + C5 alkanes, ethane,
propane, formaldehyde, methyl ethyl ketone, and lumped >= C3 alkenes). As mentioned in Section 2.3, in the VOC emission inventories,
local emission sources in the TP region may be substantially underestimated and the emission trends are not accurately accounted for.
Chen et al. (2022) found that emissions of many VOC species in the MEIC inventory were underestimated by about an order of magnitude
in Lhasa in 2016. Tang et al. (2022) showed a three-fold increase in the concentrations of aromatic and alkane hydrocarbons in the TP
urban areas from 2012-2014 to 2020-2022, which were poorly accounted for in the emission inventories. Given the lack of accurate, timely
VOC emission data, we adjust the anthropogenic VOC emissions on the TP in the nested simulations as follows. (1) We multiply
emissions by a factor of 10 for the VOC species available in MEIC, and by a factor of 2 for other VOC species available in CEDS but not
MEIC. The different scaling choice is based on the fact that for the same VOC species available in both CEDS and MEIC, the emissions in
CEDS are 4-6 times greater than MEIC over the TP. (2) For alkanes and aromatics, we further account for the emission trends by using the
adjusted 2016 emissions in (1) as the baseline, assuming that emissions increased by a factor of three from 2013 to 2021, and assuming

that such emission growth was linear.

We conduct multiple simulations to examine the impacts of emission changes on ozone (Table S1). The BASE scenario simulated ozone
concentrations in 2015. The E19, NLE19, and LE19 scenarios are used to simulate ozone concentrations as a result of changes in
emissions of both NOx and VOCs in different regions. NOx_E19 and NOx_NLE19 only changed the NOx emissions in the corresponding

regions.



Table S1: Detailed descriptions of all scenarios are elaborated in Section S1. Here, LE and NLE are abbreviations for ‘Local 1.5°

Emission” and ‘Non-Local Emission’, respectively. Meteorology is fixed at the 2015 level.

Scenario NOx LE year VOC LE year NOx NLE year VOC NLE year
BASE 2015 2015 2015 2015
E19 2019 2019 2019 2019
NLE19 2015 2015 2019 2019
LE19 2019 2019 2015 2015
NO,_E19 2019 2015 2019 2015
NOx_NLE19 2015 2015 2019 2015

Table S2: Changes in averaged ozone mixing ratios over 2015-2019 simulated by the nested GEOS-Chem model. The results of the

averaged ozone mixing ratio change are represented by the mean value and standard deviation of ozone changes in 17 cities.

Factor Calculation method Averzfged ozone mixing
ratio change [ppb]
Emission E19 minus BASE 1.52+0.51
Non-local emission NLE19 minus BASE 1.21+0.57
Local emission LE19 minus BASE 0.71+0.37
NOy emission NOx_E19 minus BASE 1.34+0.61
Non-local NOy emission | NOx NLE19 minus BASE 1.02+0.73
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Figure S1 Monthly variation of deseasonalized MEE ozone mixing ratios averaged over 17 cities on the TP from January 2015 to
December 2023. The data points represent the deseasonalized ozone in individual months, and the dashed lines represent the linear

regression fit in Phase 1 (from January 2015 to December 2019) and Phase 2 (from July 2020 to June 2023). The slope of linear

regression and the p-value are also shown.
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Figure S2 Monthly variation of deseasonalized MEE ozone mixing ratios averaged over 17 cities on the TP during January 2015 to
December 2019. Each color represents an ozone metric, including daily average ozone concentration (AVG), maximum daily 8-h

average ozone concentration (MDAS), ozone at 09:00 local solar time (LST09), and ozone at13:00 local solar time (LST13). The



data points represent the deseasonalized ozone in individual months, and the dashed line represents the linear regression fit. The

slope of linear regression and the p-value are also shown.
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Figure S3 Trends of deseasonalized tropospheric ozone mixing ratios from 2008 to 2019 based on different satellite datasets. The

error bar represents the standard deviation of all gridded data over the TP. The '_Corr' suffix means that the data have been

corrected, as described in Section 2.3.
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Figure S4 Spatial distribution of deseasonalized tropospheric ozone mixing ratio trends from 2008 to 2019 for (a) OMI-RAL, (b)
OMI/MLS, (c) IASI-SOFRID_Corr, (d) IASI-FORLI_Corr, (e¢) IASI-SOFRID, and (f) IASI-FORLI. Each cross means the trend
in that grid cell is statistically significant (p-value < 0.05).
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Figure S5 Annual variation of non-local QNR over 17 cities from (a) foreign countries and (b) provinces of China. Each of the five

provinces or countries with the largest average QNR contribution in 2015 is marked with a separate color. (¢) Normalized time



series of three-year moving average PHLET-OMI NOx anthropogenic emissions in summer for different regions, with summer
2015 emissions as a baseline. Here, the value for 2015 represents the average over 2014-2016, and so on. South Asia includes India,
Maldives, Bhutan, Sri Lanka, Pakistan, Bangladesh and Nepal; Southeast Asia includes Philippines, Vietnam, Laos, Cambodia,
Myanmar, Thailand, Malaysia, Brunei Darussalam, Singapore, Indonesia, Timor-Leste; and West and Central China includes
Inner-Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Ningxia, Xinjiang, Shanxi, Anhui, Jiangxi,

Henan, Hubei, Hunan.
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Figure S6 Deseasonalized monthly variation of QNR at Waliguan. (a) Non-local QNR changes due to the combined effect of
changes in anthropogenic emissions and in transport pathway. (b) Non-local QNR changes due to changes in transport pathway
alone. (¢) Non-local QNR changes due to changes in anthropogenic emissions alone. (d) Local QNR changes due to the combined

effect of changes in anthropogenic emissions and in transport pathway.
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Figure S7 Deseasonalized monthly variation of QNR over 3 cities (Changdu, Hainan and Lhasa). (a) Non-local QNR changes due
to the combined effect of changes in anthropogenic emissions and in transport pathway. (b) Non-local QNR changes due to
changes in transport pathway alone. (c) Non-local QNR changes due to changes in anthropogenic emissions alone. (d) Local QNR

changes due to the combined effect of changes in anthropogenic emissions and in transport pathway.
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