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Abstract. This study is the first of two companion papers which investigate the temporal variability of CO2,
CH4 and additionally CO concentrations measured at the Xianghe observation site near Beijing in China using
the Weather Research and Forecast model coupled with Chemistry (WRF-Chem), aiming to understand the con-
tributions from different emission sectors and the influence of meteorological processes. Simulations of the in
situ (Picarro) and remote sensing (TCCON-affiliated) measurements are produced by the model’s greenhouse
gas option, called WRF-GHG, from September 2018 until September 2019. The present study discusses the
results for CH4. The model shows good performance, after correcting for biases in boundary conditions, achiev-
ing correlation coefficients up to 0.66 for near-surface concentrations and 0.65 for column-averaged data. The
simulations use separate tracers for different source sectors and revealed that energy, residential heating, waste
management and agriculture are the primary contributors to the CH4 concentrations, with the energy sector hav-
ing a greater impact on column measurements than surface concentrations. Monthly variability is linked to both
emission patterns and meteorological influences, with advection of either clean or polluted air masses from the
North China Plain playing a significant role. The diurnal variation of the in situ concentrations due to planetary
boundary layer dynamics is quite well captured by WRF-GHG. Despite capturing the key variability of the CH4
observations, the model displays a seasonal bias, likely originating from an incorrect seasonality in the emis-
sions from agricultural and/or waste management activities. Our findings highlight the value of WRF-GHG to
interpret both surface and column observations in Xianghe, offering source sector attribution and insights into
the link with local and large-scale winds based on the simultaneously computed meteorological fields. However,
they also highlight the need to improve the knowledge on the seasonal CH4 cycle in northern China to obtain
more accurate emission data and boundary conditions for high-resolution modeling.
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1 Introduction

Carbon dioxide (CO2) and methane (CH4) are the most im-
portant anthropogenic greenhouse gases (GHGs) contribut-
ing to climate change. Driven by human activities, the at-
mospheric burden of both species has been increasing over
the last 200 years to unprecedented levels (Masson-Delmotte
et al., 2021). Moreover, CH4 has a global warming potential
that is 28 times larger than CO2 over a period of 100 years
and an atmospheric lifetime that is 10 times shorter. Control-
ling CH4 emissions is therefore a priority to mitigate climate
change in the near future (Saunois et al., 2020).

Because of rapid industrialization in the past decades and
its heavy dependence on coal, China is the world’s largest
emitter of CO2 and CH4 (Friedlingstein et al., 2022; Worden
et al., 2022). The main anthropogenic CO2 sources in China
are industry, power generation, residential and commercial
activities, and transportation (Zhao et al., 2012), while sec-
tors such as coal mining, livestock, rice paddies, landfills
and wastewater management are the largest contributors to
the CH4 emissions in China (Chen et al., 2022). China has
pledged to reach its carbon peak by 2030 and neutrality by
2060. To help battle climate change and reach these goals, it
is essential to have accurate observations of the GHG con-
centrations. Not only does atmospheric monitoring aid in re-
vealing sources and sinks and controlling the impact of miti-
gation measures, but by studying temporal variations a better
understanding of the carbon cycle and its interactions with
the atmosphere can be achieved.

Since 2018, both ground-based in situ and remote sensing
observations of GHGs have been deployed at the Xianghe
observatory, which is located about 50 km southwest of Bei-
jing. Its location in the center of the Beijing–Tianjin–Hebei
(BTH) megalopolis makes it an interesting site to study the
properties and variability of GHGs in a polluted area. The re-
mote sensing observations are made by a Fourier transform
infrared (FTIR) spectrometer and are part of the international
Total Column Carbon Observing Network (TCCON), while
the in situ concentrations are measured by a Picarro cavity
ring-down spectroscopy (CRDS) analyzer that samples air
from a tower at an altitude of 60 m above the ground.

Our work aims to perform a comprehensive analysis of
both in situ and column observations of CO2, CH4 and ad-
ditionally CO in Xianghe to gain a better understanding of
the causes of the observed temporal variabilities and com-
plement previous studies. The present article is the first of
two companion papers, where the focus of the current work
lies on the CH4 observations. A second paper (in preparation)
will cover the analysis for CO2 and CO.

Some first insights into the observed CH4 time series in
Xianghe were made by Yang et al. (2020) and Ji et al. (2020).
They found that the seasonal cycle of XCH4 is different com-
pared to that at other TCCON sites at similar latitude, with
larger concentrations in summer and autumn and lower val-
ues in spring. Furthermore, the column observations of CO2,

CH4 and CO show a large day-to-day variability and are cor-
related with each other. Yang et al. (2020) showed that the
high values are related to both local pollution and pollution
originating from the south, while low concentrations are cor-
responding to clean air masses from more remote regions in
the north.

To achieve our goal, we will simulate the time series at a
high spatial resolution with the WRF-Chem model for green-
house gases (WRF-GHG). This widely used regional atmo-
spheric transport model simulates the 3-D concentrations to-
gether with meteorological fields without chemical interac-
tions, which is generally a valid assumption regarding the re-
gional domain and the relatively long atmospheric lifetimes
of the target species (∼ 100 years for CO2, ∼ 10 years for
CH4 and several weeks for CO) (Dekker et al., 2017). Never-
theless, both CH4 and CO are prone to chemical reactions in
the atmosphere, making this assumption a simplification of
actual conditions, which should be taken into account when
analyzing the results. WRF-GHG has already shown to be a
useful tool to study CO2 fluxes and variability in China (Day-
alu et al., 2018; Liu et al., 2018; Li et al., 2020; Dong et al.,
2021). However, and to our best knowledge, applications to
CH4 or CO observations in China have not been reported yet.
Elsewhere, this model was successfully used to analyze com-
parable observations (Zhao et al., 2019; Hu et al., 2020; Park
et al., 2020; Callewaert et al., 2022). Therefore, this study
will additionally assess the model’s capability of simulating
these time series in north China and highlight its strengths
and weaknesses in this region.

This work is structured as follows: in Sect. 2 the Xianghe
site and its observations are described, together with the
XCH4 product of TROPOMI (the TROPOspheric Monitor-
ing Instrument on board Sentinel-5P), which will give ad-
ditional insight into the results. Further, an overview of the
WRF-GHG model system is given and the approach used to
compare the model simulations with the different measure-
ments. Section 3 presents the results and discussion: the main
model performance is evaluated in Sect. 3.1, followed by an
analysis of the contributions from different source sectors to
the CH4 observations in Xianghe in Sect. 3.2. Section 3.3
explores potential causes of the observed seasonal bias in the
model simulations, while Sect. 3.4 examines the key mete-
orological processes influencing CH4 variability. Further, a
comparison with TROPOMI XCH4 is conducted in Sect. 3.5
to investigate the potential overestimation of emissions from
a coal mine source near Tangshan. Finally, Sect. 4 summa-
rizes the key findings and conclusions for CH4.

2 Data, models and methods

2.1 Xianghe site

The observation site is situated in the county of Xianghe
(39.7536° N, 116.96155° E; 30 m a.s.l.), a suburban area in
the Beijing–Tianjin–Hebei (BTH) region in north China. The
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center of Xianghe is about 2 km to the east of the site,
while the metropolitan cities of Beijing and Tianjin are lo-
cated about 50 km to the northwest and 70 km to the south-
southeast, respectively (see Fig. 1b). Cropland and irrigated
cropland are the predominant kind of vegetation in the area.
The East Asian Monsoon, which causes hot, humid summers
with plenty of precipitation and cold, dry winters, determines
the climate.

Since 1974, atmospheric observations have been made
at the Xianghe observatory by the Institute of Atmospheric
Physics (IAP), Chinese Academy of Sciences (CAS). In June
2016 a FTIR spectroscopy instrument (Bruker IFS 125HR)
was installed on the roof of the observatory; 2 years later,
a solar tracker was added to the setup, and continuous mea-
surements were made from June 2018 onwards. This ground-
based remote sensing instrument measures spectra in the in-
frared and is affiliated with TCCON (Wunch et al., 2011;
Zhou et al., 2022), providing total column-averaged dry-air
mole fractions (denoted as Xgas) of CO2, CH4 and CO. In the
current study, the GGG2020 data version (Laughner et al.,
2024) is used. Depending on the weather and measurement
status, observations occur every 5–20 min. TCCON measure-
ments are performed under clear-sky conditions only. The
measurement uncertainty is about 6 ppb for XCH4. Further
details about the instrument and retrieval methodology can
be found in Yang et al. (2020).

Additionally, in situ mole fractions of CO2 and CH4 have
been measured by a Picarro cavity ring-down spectroscopy
G2301 analyzer since June 2018. The instrument samples air
from an inlet fixed at 60 m above the ground on a tower. More
detail about the measurement setup is given in Yang et al.
(2021). The measurement uncertainty is 1 ppb for CH4.

2.2 TROPOMI

The TROPOMI instrument on board the Sentinel-5 Precur-
sor (S5P) satellite is observing the Earth on a polar sun-
synchronous orbit. With a daily global coverage, it mea-
sures solar backscatter in the near-infrared and shortwave
infrared absorption bands of which column-average mixing
ratios of CH4 can be retrieved. In the current study, the bias-
corrected reprocessed L2 RemoTec-S5P XCH4 product from
SRON (ESA, 2021) was used, where a quality filter of 0.5
was applied. This L2 product was evaluated in Xianghe by
Yang et al. (2020) and Tian et al. (2022): they found a small
negative bias of −0.6 % and −0.39 % with TCCON XCH4,
respectively. These values are well within the mission re-
quirements of 1.5 % and therefore indicate a good quality of
TROPOMI XCH4 in this part of China.

2.3 WRF-GHG modeling system

We use the Weather Research and Forecasting model coupled
with Chemistry version 4.1.5 (WRF-Chem, Grell et al., 2005;
Skamarock et al., 2019; Fast et al., 2006) in its greenhouse

Table 1. Overview of physical parameterization options used for
WRF-GHG simulations.

Physics Scheme name Option

Microphysics Morrison two-moment 10
Longwave radiation RRTMG 4
Shortwave radiation RRTMG 4
Planetary boundary layer Mellor-Yamada-Janjić 2
Surface layer Eta similarity 2
Cumulus (only in d01) Grell 3D Ensemble 5
Land surface Unified Noah Land 2

Surface Model

gas option, called WRF-GHG (Beck et al., 2011). WRF-
GHG is a Eulerian atmospheric transport model that simu-
lates the 3-D concentration of trace gases at every time step
simultaneously with meteorological fields, neglecting chem-
ical reactions. The model configuration consists of three
nested domains with increasing resolution in a Lambert Con-
formal projection (see Fig. 1a). The parent domain (d01) has
134 by 130 grid cells of 27× 27 km2 and covers a large part
of China, Mongolia, North and South Korea, and Japan. The
second domain (d02), which has 133 by 121 grid cells of
9× 9 km2, mainly covers north China. Finally, the innermost
domain (d03) has a resolution of 3× 3 km2 over 145 by 124
grid cells and almost completely covers BTH. There are 60
vertical levels between the surface and 50 hPa. A set of phys-
ical parameterization schemes was chosen (see Table 1) af-
ter performing several sensitivity tests, which are detailed in
Appendix A. Note that the cumulus parameterization scheme
was only applied in the outermost domain (d01). Given the
wide range of global anthropogenic emission datasets avail-
able and the significance of these fluxes to simulate accu-
rate concentrations in regions with large anthropogenic activ-
ity such as BTH, several anthropogenic emission inventories
were also included in these sensitivity tests.

2.3.1 Input data and parameterization

The model was driven by the hourly European Centre for
Medium-Range Weather Forecasts (ECMWF) global ERA5
reanalysis dataset (0.25°× 0.25°, Hersbach et al., 2023a, b)
for meteorological fields. The concentration fields for CO2
and CH4 are initialized by the 3-hourly Copernicus Atmo-
sphere Monitoring Service (CAMS) global reanalysis for
greenhouse gases (EGG4), while the 6-hourly reactive gas
product is used for CO (EAC4, Inness et al., 2019). These
CAMS reanalysis datasets are also used at the model domain
boundaries to represent influences coming from outside the
parent domain (d01). They are remapped with mass conser-
vation to the WRF-GHG domains using the CDO software
(Climate Data Operators, Schulzweida, 2020). The evolution
of these initial and lateral boundary conditions inside the do-
main over time is stored in a separate tracer, the so-called
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Figure 1. (a) Location of the WRF-GHG domains, with horizontal resolutions of 27 km (d01), 9 km (d02) and 3 km (d03). All domains have
60 (hybrid) vertical levels extending from the surface up to 50 hPa. (b) Terrain map including the largest cities in the region of Xianghe,
roughly corresponding to d03. The location of the Xianghe site is indicated by the red triangle in both maps.

background tracer. Similarly, the evolution of concentrations
caused by emissions within the boundaries of d01 is saved in
different tracers, dependent on their source sector. The sum
of all tracers, including the background, gives the total simu-
lated concentrations, which can be compared to the observa-
tions.

The simulations are re-initialized with the ECMWF ERA5
data every 30 h, starting at 18:00 UTC the previous day with
a 6 h spin-up period, as done in other WRF-GHG model-
ing studies (Feng et al., 2016; Park et al., 2018; Pillai et al.,
2011). Every day at 00:00 UTC, the tracer fields from the
previous run are copied to the new simulation to ensure con-
tinuous transport of the concentrations.

We conducted sensitivity tests to identify a set of physical
parameterization schemes and anthropogenic fluxes that pro-
vide appropriate simulations for all three species (CH4, CO2,
and CO) across the different observation methods (in situ
and remote sensing). The details of these tests are provided
in Appendix A. Our findings indicate that the anthropogenic
fluxes from CAMS-GLOB-ANT v5.3 (Granier et al., 2019;
Soulie et al., 2024) for CO2 and CH4 and from REAS v3.2.1
(Regional Emission Inventory in Asia, Kurokawa and Ohara,
2020) for CO offer the best alignment with the Xianghe ob-
servations. We released all fluxes in the lowest model layer
near the surface and multiplied them with temporal factors of
CAMS-TEMPO (Guevara et al., 2021) to account for hourly
and daily variation. Note that both chosen anthropogenic in-
ventories additionally provide sector-specific information. To
include this information in our simulations, different sectors
are linked to separate tracers. The 11 sectors from CAMS-
GLOB-ANT were aggregated into five broad sectors to make
the model simulations computationally less expensive. A
similar aggregation was performed on the REAS sectors. The
mapping is given in Table 2. This will allow us to track the
respective contributions to the total simulated concentrations
of the following source categories: energy, industry, trans-
portation, residential and waste, and agriculture. More detail

about what is included in every sub-sector can be found in
the documentation of the respective dataset.

Further, biomass burning emissions are coming from the
Fire INventory from NCAR (FINN v2.5, Wiedinmyer et al.,
2011) for all species. The observation-based global pCO2
climatology from Landschützer et al. (2017) is used to repre-
sent the ocean–atmosphere exchange of CO2, while the CH4
fluxes from wetlands are taken from the WetCHARTS v1.0
climatology (Bloom et al., 2017). Finally, WRF-GHG calcu-
lates the biogenic CO2 fluxes online based on the Vegetation
Photosynthesis and Respiration Model (VPRM, Mahadevan
et al., 2008; Ahmadov et al., 2007). It uses its own calculated
2 m temperature and downward shortwave radiation together
with surface reflectance data from the Moderate Resolution
Imaging Spectroradiameter (MODIS) on board the Aqua and
Terra satellites. The extra required parameters for VPRM are
taken from Li et al. (2020).

2.4 Comparing observations with WRF-GHG
simulations

2.4.1 Xianghe in situ observations

The WRF-GHG model cell which covers the location of the
instrument is selected to compare with the in situ observa-
tions. Because the concentrations are measured at an altitude
of 60 m a.g.l., this WRF-GHG profile is interpolated to that
altitude, using the model surface as ground level. Finally, the
observations are averaged over a period of 30 min around the
hourly model output.

2.4.2 Xianghe TCCON remote sensing observations

The same model cell as for the in situ observations is used
to compare with the column observations. The five TCCON
observations that are closest in time to the WRF-GHG output
but deviate no more than 15 min are averaged and used for
the comparison. The model profile is extended above 50 hPa
with the TCCON a priori profile and then smoothed using the
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Table 2. Overview of mapping between the five broad sectors used in this study (first column) and the emission sectors provided by CAMS-
GLOB-ANT v5.3 (second column) and REAS v3.2.1 (third column).

This study CAMS-GLOB-ANT (for CO2 and CH4) REAS (for CO)

Energy
Power generation (ene) Power plant point
Fugitives (fef) Power plant non-point
Oil refineries and transformation sector (ref)

Industry Industrial processes (ind) Industry

Transport
Road transportation (tro) Road transport
Off-road transportation (tnr) Other transport
Ships (shp)

Residential and
waste

Residential, commercial and other combustion (res) Domestic
Solid waste and waste water (swd)

Agriculture
Agriculture soils (ags)
Agricultural waste burning (awb)
Agriculture livestock (agl)

averaging kernels in order to account for the instrument and
retrieval characteristics (Rodgers and Connor, 2003). Note
that an alternative approach would be to extend the model
profiles with the CAMS reanalysis that is used as initial and
lateral boundary conditions. However, the accuracy issues
with CAMS CH4 data in the stratosphere are well docu-
mented (Ramonet et al., 2021; Agustí-Panareda et al., 2023),
and would introduce known biases into our study. Moreover
the optimized a priori profiles of the TCCON GGG2020 data
show improved accuracy in the stratosphere (Laughner et al.,
2023), supporting our decision to utilize these data for ex-
tending the model profiles.

2.4.3 TROPOMI observations

To compare the spatial XCH4 distribution of TROPOMI with
that of WRF-GHG, the model profiles are extended above
50 hPa with the TROPOMI a priori column number density
profiles of CH4 and dry air (mol m−2) to ensure that both
products in the comparison cover the same altitude range.
Since a typical CH4 profile shows a sharp decrease in the up-
per layers of the atmosphere, this part has a non-negligible
impact on the column-averaged mole fraction. Further, the
extended WRF-GHG CH4 profiles are smoothed with the
TROPOMI column averaging kernels and a priori profiles
following Apituley et al. (2023). The column number density
profiles of CH4 and dry air are calculated from the hourly 3-
D WRF-GHG output as follows:

ρ
CH4
i = ν

CH4
i ρda

i , with ρda
i =

Pi

RTi

1
1+ 1.6075qi

τi . (1)

In the above equation νCH4
i is the CH4 dry-air volume mix-

ing ratio (ppb) and ρda
i the dry-air column number density in

WRF-GHG layer i. The dry-air column number density ρda
i

is calculated according to the ideal gas law, where Pi , Ti and

qi are the air pressure (Pa), temperature (K) and water vapor
mixing ratio with respect to dry air (kg kg−1), respectively.
The thickness of layer i (m) is represented by τi . Finally, R is
the ideal gas constant 8.3145 J K−1 mol−1. Note that 1.6075
is the ratio of the molar mass of dry air with respect to the
molar mass of water to convert wet air to dry air.

TROPOMI has an Equator crossing time of around 13:30
local solar time, so we compute the equivalent simulated
XCH4 by taking the average over 12:00–15:00 LT. Note that
we use the model simulations from the d02 domain (which
has a horizontal resolution of 9× 9 km2) for this analysis,
instead of d03 as for the comparisons with Xianghe obser-
vations, since a larger spatial extent is advantageous for a
statistically effective comparison with TROPOMI.

Using the HARP toolset (part of the Atmospheric Toolbox,
https://atmospherictoolbox.org/ (last access: 14 June 2024)
for TROPOMI and the CDO software (Schulzweida, 2020)
for WRF-GHG, both XCH4 products are then binned to a
common spatial grid to enable a quantitative analysis: we
have chosen a regular latitude–longitude grid with a horizon-
tal resolution of 0.05°.

3 Results and discussion

3.1 Overall model performance

With the model settings as elaborated in Sect. 2.3, WRF-
GHG was run from 15 August 2018 to 1 September 2019.
However, the first 2 weeks was regarded as a spin-up phase,
so the analysis is done on 1 full year of data: from 1 Septem-
ber 2018 until 1 September 2019. This conservative spin-up
period is implemented to ensure thorough mixing of the trac-
ers within the domain. The complete dataset can be accessed
at https://doi.org/10.18758/P34WJEW2 (Callewaert, 2023).
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Table 3. Statistics of the model–data comparison of the ground-
based CH4 observations at the Xianghe site from 1 September 2018
until 1 September 2019. We present the mean bias error (BIAS),
root mean square error (RMSE) and Pearson correlation coefficient
(CORR). The mean bias error and root mean square error are given
in parts per billion (ppb). For in situ observations, the data are split
into afternoon (13:00–18:00 LT) and night (03:00–08:00 LT) hours.

In situ CH4 (afternoon) In situ CH4 (night) XCH4

BIAS 14.22 12.68 −3.03
RMSE 159.74 334.06 23.96
CORR 0.66 0.42 0.56

Due to the absence of qualitative meteorological observa-
tions at the Xianghe site, the simulated near-surface temper-
ature and 10 m wind fields within domain d03 were evalu-
ated against the publicly available Global Hourly – Integrated
Surface Database (ISD) from the National Centers for Envi-
ronmental Information (NCEI) to assess model performance
for key meteorological parameters. Considering the reported
precision of the observational data, the analysis reveals that
the WRF-GHG model adequately captures the primary sur-
face meteorological conditions within the study domain and
period. We therefore assume that significant systematic er-
rors in the simulated transport are unlikely.

An overview of the simulated and observed time series of
the CH4 concentrations in Xianghe is shown in Fig. 2, to-
gether with the model error. To further illustrate the distri-
bution of the differences between model and observations, a
histogram is given in Fig. 3. For the column observations,
the model shows a mean underestimation of−3.03 ppb, with
a moderate correlation of 0.56 (Table 3). At the surface level,
the data were divided into afternoon (13:00–18:00 LT) and
nighttime (03:00–08:00 LT) periods for statistical analysis,
as models generally perform better in simulating concentra-
tions during the afternoon when the lower atmosphere is bet-
ter mixed. The definition of these time periods is based on the
daily maximum and minimum values, as will be discussed
later in Sect. 3.4.2. Indeed, the correlation is higher during
the afternoon (0.66) compared to nighttime (0.42), with mean
bias errors of 14.22 and 12.68 ppb, respectively (see Table 3).
Additionally, significantly larger errors were found at night,
indicating greater challenges for the model in accurately cap-
turing nighttime values compared to afternoon.

The moderate correlation coefficients are likely due to a
seasonality in the bias: WRF-GHG underestimates the CH4
data in Xianghe in summer and autumn (June–November)
and slightly overestimates them in winter (January–March),
which is especially visible for the column data in Fig. 2c.

Possible sources of this bias are inaccuracies in the back-
ground values, misrepresentation of CH4 sources and sinks
within WRF-GHG, or a combination of these factors. Given
CH4’s long atmospheric lifetime, background values signif-
icantly contribute to the total simulated signal, as also il-

lustrated by the mean values for the background and total
simulated tracer in the top of Table 4. We therefore start
by further examining the global CAMS reanalysis which is
used to represent the inflow and outflow at the model do-
main boundaries. In the CAMS validation report by Ramonet
et al. (2021), a similar seasonal bias between CAMS CH4
and TCCON is found. To explore this pattern in more de-
tail and include Xianghe in the analysis, we reproduce their
calculations for several TCCON sites at similar latitudes
(Karlsruhe (49.1° N), Orleans (48.0° N), Garmisch (47.5° N),
Park Falls (45.9° N), Rikubetsu (43.5° N), Lamont (36.6° N),
Tsukuba (36.0° N), Edwards (35.0° N), Pasadena (34.1° N),
Saga (33.2° N) and Hefei (31.9° N)) for the period of inter-
est, as shown in Fig. 4. Indeed, we find a seasonal bias where
CAMS overestimates TCCON XCH4 from December until
May and shows a small underestimation in the rest of the pe-
riod. The bias in Xianghe ranges from 13.17 ppb in February
2019 to −6.56 ppb in August 2019 (monthly mean differ-
ences). The monthly mean bias of WRF, on the other hand,
ranges between 24.49 ppb in February 2019 and −28.70 ppb
in August 2019 and shows a significantly larger amplitude
than the CAMS bias. Moreover, the same seasonal pattern is
found in the time series of the differences for the in situ data
(Fig. 2d). Ramonet et al. (2021) assume the seasonal bias
within CAMS is related to an inaccurate representation of
the seasonal cycle of surface emissions and/or the OH sink.
Similarly, the remaining WRF-GHG bias likely arises from
errors in the seasonality of the CH4 emissions and/or neglect
of the reaction of CH4 with OH. This will be further investi-
gated in Sect. 3.3.

In the rest of this work, we have applied a bias correction
to the WRF-GHG simulations by subtracting the monthly
mean difference between CAMS and TCCON XCH4, av-
eraged over all sites (except Pasadena due to outlier be-
havior) between 30–50° N, from the background tracer. The
updated statistical metrics are given in Table 5. The corre-
lation coefficient for the column data slightly improves to
0.67, where for the surface concentrations the bias correction
has only a negligible impact on the model–data comparison.
The remaining monthly mean bias for XCH4 (in situ CH4)
ranges between 13.04 ppb (95.20 ppb) in February 2019 and
−25.70 ppb (−121.25 ppb) in August 2019, which is still
larger than the measurement uncertainty of 6 ppb (1 ppb).

3.2 Sector contributions to observed concentrations

All fluxes that are included in WRF-GHG are tracked in sep-
arate tracers, as explained in Sect. 2.3. This allows us to dis-
entangle the total simulated concentrations into the differ-
ent tracer contributions and evaluate the influence of differ-
ent source sectors on the observations in Xianghe, as well
as their respective importance. An overview of the monthly
mean values is shown in Fig. 5, while additionally the me-
dian and interquartile range of the complete period are given
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Figure 2. Time series of the observed (black) and simulated (red) (a) XCH4 and (b) in situ CH4 concentrations at the Xianghe site. Panels
(c) and (d) show the differences between WRF-GHG simulations and observations for XCH4 and in situ CH4, respectively. Data points are
hourly. The red points in (c) and (d) represent the monthly mean differences.

Figure 3. Distribution of difference between the model and observations for (a) XCH4 and (b) in situ CH4 (ppm), using hourly data points.
The red line indicates the median difference, while the blue lines are the first and third quartiles.

in Table 4. Note that all simulated hours were used for this
analysis, not just the ones coinciding with observations.

For CH4, the simulated signal in Xianghe is mainly deter-
mined by three sectors: energy, residential and waste (which
combines both residential heating and waste management
sectors), and agriculture. They respectively contribute with
a median enhancement of 11.13, 5.86 and 4.75 ppb above the
background for the columns and 49.67, 65.49 and 51.77 ppb
near the surface (see Table 4). Furthermore there is a small
contribution from wetlands in summer, peaking in July with
a median tracer contribution of 1.49 ppb for the columns and
10.65 ppb near the surface. Other sectors such as industry,
transportation, termites and biomass burning seem to be ir-
relevant in Xianghe. Overall, the total tracer enhancement is
about 10 times larger for the in situ concentrations compared
to the column-averaged values.

The fact that the dominant source sectors (agriculture, res-
idential heating, waste management and energy (which is
mainly coal mining in this case)) are not known for releasing
CH4 at elevated altitudes supports our choice to implement
the emissions only in the lowest model layer.

Furthermore, remark that for the in situ concentrations, the
three dominant sectors are roughly equally important, while
for the column concentrations we find a larger impact of the
energy sources: the relative mean enhancement of the energy
tracer is 52.87 % for the column concentrations, while it is
only 36.88 % for the surface concentrations. When looking
at the mean vertical profiles of the different tracer contribu-
tions above Xianghe (Fig. 6a), we see that the contributions
from the energy sector are generally found at a higher altitude
compared to other sectors. High concentrations near the sur-
face are associated with emission sources nearby, while those
aloft are likely caused by long-distance pollutant transport in
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Table 4. Statistics of the total simulated CH4 concentrations and the different tracer contributions over the complete simulation period. Q1
and Q3 represent the first and third quartile, respectively, between which 50 % of the data fall.

XCH4 (ppb) In situ CH4 (ppb)

Q1 Median Mean Q3 Q1 Median Mean Q3

Total 1900.74 1916.18 1927.36 1942.42 2028.75 2132.50 2212.50 2302.58
Background 1885.79 1890.75 1891.34 1896.57 1912.83 1927.69 1925.37 1938.20

Biomass burning 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Energy 2.61 11.13 19.04 28.90 12.03 49.67 105.88 135.21
Residential (and waste) 2.65 5.86 8.17 10.72 31.24 65.49 94.33 122.11
Industry 0.07 0.17 0.21 0.30 0.77 1.63 2.29 2.99
Transportation 0.06 0.12 0.15 0.20 0.66 1.40 2.00 2.58
Agriculture 2.00 4.75 7.56 9.49 24.95 51.77 76.08 97.30
Wetlands 0.02 0.12 0.56 0.62 0.09 0.66 4.17 3.91
Termites 0.17 0.29 0.34 0.46 1.13 2.02 2.37 3.17
Total tracers 9.86 24.76 36.02 51.21 102.75 209.15 287.13 377.48

Figure 4. Monthly mean difference (in ppb) between CAMS reanalysis model and TCCON XCH4 between 30–50° N over the simulation
period of this study.

Table 5. Same as Table 3 but with bias-corrected model values.

In situ CH4 (afternoon) In situ CH4 (night) XCH4

BIAS 8.43 6.88 −8.10
RMSE 158.29 333.22 22.35
CORR 0.66 0.43 0.67

the free troposphere. Therefore, we assume that this differ-
ence between column and surface energy contribution is be-
cause the strongest energy sources are situated in Shanxi (the
largest coal producing province in China), which is much fur-
ther away from Xianghe than for example the strongest resi-
dential (mainly Beijing and Tianjin) and agricultural sources;
see Fig. 6b–d.

In Fig. 5, we further observe a larger residential signal
in winter, where the median tracer contribution peaks at
13.43 ppb in February for the columns and at 132.75 ppb

in January, near the surface. Meanwhile, the influence from
agriculture reaches its maximum in September (monthly me-
dian values of 14.46 ppb for XCH4 and 196.07 ppb for in situ
CH4) and its minimum in March–April (monthly median val-
ues of 0.89 ppb for XCH4 and 11.49 ppb for in situ CH4).
This corresponds to the seasonal pattern of emissions within
CAMS-GLOB-ANT.

3.3 Seasonal CH4 bias

In Sect. 3.1, we identified a seasonal bias in the CH4 simula-
tions (WRF-GHG underestimates CH4 in summer and au-
tumn, overestimates in winter) that could not be fully ex-
plained by a similar bias in the background data, indicating
a potential bias in the seasonality of the emission data and/or
a consequence of ignoring the OH sink. In this section, we
first investigate the primary emission sectors that may have
contributed to this seasonal bias. One of the major sources of
CH4 in Xianghe is the energy sector (see Sect. 3.2), primarily
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Figure 5. Monthly mean tracer contributions above the background for (a) XCH4 and (b) in situ-CH4-simulated concentrations in Xianghe.

Figure 6. (a) Mean vertical profile of the tracer fields in WRF-GHG for CH4 in Xianghe. All simulated hours were used for this plot. (b–f)
Maps of the mean CH4 flux (mol km−2 h−1) in WRF-GHG domain d02 during the entire simulation period for the most important sectors.
Note that different sectors have different ranges in the color bar. The location of the Xianghe site is indicated by the blue cross.

through emissions from the extraction, processing, storage
and transport of coal, oil and natural gas. These emissions are
not expected to exhibit significant monthly variation. Indeed,
the energy emissions in the CAMS-GLOB-ANT inventory
are relatively stable throughout the year: they show a coeffi-
cient of variation (CV; calculated as the ratio of the standard
deviation to the mean) of only 0.42 % for the monthly aver-
aged values across the model domain. As a result, our focus
will be on the following emission categories: agriculture, res-
idential and waste, and wetlands.

– Agriculture. As presented in Table 2, the agricultural
sector is comprised of three subsectors: soils (this is
mainly rice cultivation), agricultural waste burning and
livestock (manure management and enteric fermenta-
tion). In China, rice cultivation plays a vital role but is
predominantly concentrated in regions south of 35° N.
In CAMS-GLOB-ANT, the most important agriculture
subsector in the region of the Xianghe site is live-

stock. According to the emission inventory, livestock
emissions in the wide region around Xianghe peak in
September and reach their lowest levels in March and
April. Unfortunately, the source of these monthly vari-
ations in CH4 emissions within the inventory is un-
clear, as the accompanying dataset of temporal factors,
CAMS-GLOB-TEMPO (Guevara et al., 2021), refer-
ences constant factors for CH4 emissions from agricul-
tural sources. Previous research by Maasakkers et al.
(2016) suggests that emissions from manure manage-
ment often correlate with air temperature, with higher
emissions during warmer months (May to Septem-
ber in this case) and lower emissions during colder
months (December to February). If the true seasonal-
ity of agricultural emissions around Xianghe is indeed
temperature-driven, it implies that the current inven-
tory underestimates emissions during spring and sum-
mer (May to August) and overestimates them in win-
ter, as it only shows a peak in September and a mini-
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mum in spring (March–April) rather than in winter. This
discrepancy in the seasonality of emissions could ex-
plain the seasonal bias observed in our CH4 simulations,
pointing to inaccuracies in the representation of agricul-
tural emissions. This is further evidenced by the con-
trasting model biases observed in September between
near-surface and column-averaged CH4 (Fig. 2c–d). In-
correct temporal variation of agricultural emissions im-
plies an overestimation of the emission in September,
where the current peak values are. Considering that in
situ observations are more sensitive to local sources
compared to column measurements, which represent a
larger spatial average, and given the presence of a local-
ized high-emission area immediately north of Xianghe
(Fig. 6d), this overestimation in September would more
likely lead to an overestimation of in situ CH4 than
XCH4.

– Residential and waste. This sector represents emis-
sions from residential, commercial and other combus-
tion sources together with CH4 emissions from solid
waste and waste water treatment. In CAMS-GLOB-
ANT, the waste sector is the most important one in the
Xianghe region and assumed to be relatively constant
throughout the year: monthly total CH4 emissions be-
tween 38–41° N and 115–119° E range between 0.0408
and 0.0452 Tg. In summer, total residential combustion
emissions in the region can be as low as 0.0039 Tg per
month, while in winter, they are almost of the same size
as the waste emissions: 0.0357 Tg. So the seasonality
of the residential and waste sector is coming from the
residential part, peaking in winter. However, Hu et al.
(2023) showed that CH4 emissions from waste treat-
ment often follow the seasonality of air temperature.
Even though this study is based on observations in the
Hangzhou megacity, their results could possibly be rep-
resentative for the BTH region as well. This would mean
that the waste emissions are underestimated in summer
and/or overestimated in winter, which would match the
current model–observation mismatch for CH4.

– Wetlands. Within the WRF-GHG simulations, wetlands
only show minor contributions to the surface and col-
umn data and only in summer. Emissions are taken
from the WetCHARTs v1.0 ensemble dataset. In the
BTH area, the main wetland areas are located close
to the Bohai Sea (see Fig. 6f). However, according to
WetCHARTs, these emissions are relatively small com-
pared to those from wetlands more in the south of
China. In an evaluation of the WetCHARTs ensemble
against GOSAT observations by Parker et al. (2020),
a general underestimation of the seasonal amplitude
in China was found. Furthermore, Chen et al. (2022)
showed increased posterior wetlands emissions com-
pared to the a priori values when inferring yearly CH4

emissions over China using TROPOMI satellite obser-
vations. This could point to an underestimation of the
wetland emissions in the current study, and therefore an
underestimation of CH4 in summer.

The observed seasonal error pattern between the WRF-GHG
CH4 simulations and the Xianghe observations may be due
to one or more of the points previously mentioned. To gain
a spatial perspective on this seasonal bias, we compared
the WRF-GHG XCH4 field with TROPOMI observations.
Note that this comparison with TROPOMI should be inter-
preted with caution, as WRF-GHG does not account for at-
mospheric chemistry and is assumed to not show systematic
transport errors. The primary aim here is to identify sug-
gestive spatial patterns of potential emission inaccuracies.
Figure 7 shows the seasonal mean XCH4 from both WRF-
GHG and TROPOMI, as well as their normalized difference
over the broader Xianghe region. To highlight seasonal vari-
ations, we subtracted the mean difference between WRF-
GHG and TROPOMI over the entire simulation period (also
shown in Fig. 13d) from the seasonal means, resulting in a
“normalized difference.” Overall, we find a mean bias er-
ror between WRF-GHG and TROPOMI of −10.55 ppb (or
−0.56 % [(TROPOMI – WRF-GHG)/WRF-GHG]), consis-
tent with previous studies (Yang et al., 2020; Tian et al.,
2022; Sha et al., 2021).

The analysis reveals a model underestimation in summer
(JJA) and an overestimation in winter (DJF); see Fig. 7. The
biases are smaller in spring and autumn. However, we can-
not identify a distinct spatial pattern throughout the seasons
that could point to errors within a specific source sector. Fig-
ure 7 shows differences on a large spatial scale, suggesting
that for example the underestimation by WRF-GHG is linked
to emission sources that are widespread in the region. Since
the North China Plain is a livestock-dominated region with
strong urbanization and industrial activities, this implies that
the fluxes of either agriculture (livestock), waste treatment
or both, rather than the fluxes from wetlands, are underesti-
mated in summer in CAMS-GLOB-ANT. Given the lack of
a clear outcome from our analysis, it is likely a combination
of factors.

Finally, we used backward simulations with the FLEXi-
ble PARTicle dispersion model (FLEXPART) v10.4 (Pisso
et al., 2019) to evaluate the impact of the OH sink on CH4
concentrations in Xianghe. CH4 particles were released near
the surface at the Xianghe site using the FLEXPART back-
ward mode with and without OH reaction, at different times
throughout the day and year. More specific details of the
model configuration and simulations are provided in Ap-
pendix B. By comparing simulations that include or exclude
the chemical reaction with OH, we estimated its influence.
The results indicate a more pronounced difference in sum-
mer than in winter, with mean relative backward sensitiv-
ity differences of about 0.04 %, 0.005 %, 0.05 % and 0.2 %
in October 2018, January 2019, April 2019 and July 2019,
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respectively, over the entire footprint. Considering the size
of CH4 emissions within the WRF-GHG domain (Table 4),
the contribution of the ignored OH reaction to the CH4 mole
fraction is around 0.11 ppb in winter and 4.4 ppb in summer,
which remains small compared to the measurement uncer-
tainties (1 ppb for in situ data and 6 ppb for TCCON) and the
magnitude of the observed bias. Moreover, the higher impact
in summer should theoretically cause a model overestimation
during this season when the OH sink is ignored. However,
since the observed seasonal bias shows a different trend, it is
unlikely to be driven by CH4 chemistry.

Therefore, our analysis highlights an urgent need for fur-
ther research into the seasonality of CH4 emissions in north-
ern China.

3.4 Impact of meteorology on variability of
concentrations

In Sect. 3.2, we showed how emissions from different
sources affect the CH4 observations in Xianghe. In the cur-
rent section we want to focus on the meteorological fac-
tors that influence the temporal variability of the time series.
More specifically we will discuss the impact of large-scale
phenomena, the planetary boundary layer and local winds.

3.4.1 Synoptic-scale winds

Because FTIR observations generally have a large area of
representativeness (generally a few 100 km), column con-
centrations are relatively insensitive to local fluxes and ver-
tical mixing, while they are strongly influenced by large-
scale patterns (Keppel-Aleks et al., 2011). We use the winds
at 800 hPa to represent horizontal transport in the free tro-
posphere, as this altitude is generally above the planetary
boundary layer height. More specifically, we looked at the
daily mean column concentrations above the background for
every wind direction to see if a clear relationship could be
found. This is shown in Fig. 8.

Note that only southwest (SW) and northwest (NW) wind
segments are given because southeast and northeast winds
occur only seldom at 800 hPa: only on 2 and 13 d out of 231,
respectively. We find that in general, larger enhancements are
found when winds blow from the SW wind segment (me-
dian tracer contribution of 57.79 ppb) compared to the NW
segment (median tracer contribution of 7.33 ppb). To quan-
tify the difference, we conducted a non-parametric Mann–
Whitney U test on the two categories, which yielded p val-
ues well below 0.05 (see Fig. 8, in the title), indicating that
the differences are statistically significant. Higher concen-
trations coincide with 800 hPa winds coming from the SW,
while NW winds correspond to lower concentrations. Yang
et al. (2020) already showed that the day-to-day variation of
the column observations of CH4, CO2 and CO is highly in-
tercorrelated and that clean days are linked with air from the
north, while polluted days are linked with air from the south,

which is confirmed here by the WRF-GHG simulations. Air
masses from the north have been moving over rather remote
and clean areas such as Inner Mongolia, Mongolia and Rus-
sia. Meanwhile, southerly air is linked with the highly pop-
ulated North China Plain (NCP), where many anthropogenic
emission sources are located.

The influence of polluted air from the southwest is visible
in the surface concentrations as well, as we find a high corre-
lation coefficient of 0.79 between the daily mean column and
surface tracer enhancements. This indicates that both surface
and column CH4 concentrations are affected by synoptic-
scale winds, which advect either clean or polluted air masses
to Xianghe.

Furthermore, the levels of pollution in these air masses
can vary significantly from month to month due to chang-
ing meteorological conditions. For instance, during the win-
ter months, weather conditions are generally more favorable
to the accumulation of pollutants, leading to higher pollution
levels (Li et al., 2022). This can intensify both local pollu-
tion plumes and those transported by southwestern winds.
This phenomenon likely explains why despite relatively con-
stant emissions throughout the year, we observe a significant
month-to-month variability in the energy tracer contributions
(see Fig. 5). More specifically, we find a CV of 26.53 %
for the column and 26.65 % for the surface tracers. These
findings suggest that tracer concentrations in Xianghe result
from a complex interplay of emissions, wind direction, and
weather patterns both near and far.

3.4.2 Planetary boundary layer dynamics

The planetary boundary layer (PBL) is the lowermost layer
of the atmosphere, which is in direct contact with the Earth’s
surface. The characteristics of this layer vary throughout the
day. During the day, under the influence of solar radiation,
turbulent motions cause strong vertical mixing of the air
within the PBL. These processes allow gases to be dispersed
and transported upwards, which generally leads to reduced
concentrations near the surface. At night, radiational cool-
ing of the surface creates a temperature inversion close to the
ground. This causes the nocturnal PBL to be stable and more
shallow, trapping pollutants near the surface and as such in-
creasing their local concentrations.

Figure 9 shows the diurnal variation of the PBL height as
simulated by WRF-GHG and the CH4 concentrations near
the surface (both simulated and observed). Indeed, the height
of the PBL in WRF-GHG is largest in the afternoon when
solar radiation is strongest, reaching its peak at 15:00 (local
time). This corresponds to the lowest simulated surface con-
centrations (Fig. 9b), where we find median (and interquar-
tile) values of 2039.77 (1977.74–2158.28) ppb. Right after
sunset, the height of the PBL drops to its lowest value (≈ 50–
430 m in WRF-GHG), after which it persists during the
course of the night, until sunrise. This period corresponds to
slightly increasing CH4 concentrations as emissions near the
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Figure 7. Seasonal mean XCH4 (ppb) over domain d02 (provinces of Beijing, Tianjin, Hebei, Shanxi and part of Shandong) as simulated
by WRF-GHG (first column) and observed by TROPOMI (second column), as well as the normalized difference between them (WRF-GHG
– TROPOMI, in ppb). Normalized difference indicates that the mean difference over the entire simulation period is subtracted from the
seasonal means. The seasons are defined as (a, b, c) SON: September–November (autumn), (d, e, f) DJF: December–February (winter), (g,
h, i) MAM: March–April (spring) and (j, k, l) JJA: June–August (summer). White pixels indicate that there are no observations available
during the entire period.

surface accumulate within this stable shallow layer. Hence,
the highest concentrations are found in the early morning:
at 08:00 with 2239.75 (2079.29–2484.04) ppb. As the PBL
height starts to rise at 08:00 due to turbulent mixing, CH4
start to drop in WRF-GHG, creating a diurnal cycle.

Note that WRF-GHG is quite capable at simulating this
diurnal variation of CH4 in situ observations. The observa-
tions show minimal concentrations at 16:00 with a median
(and interquartile) value of 2041.94 (1981.54–2135.88) ppb,

which is well captured by WRF-GHG, even though it is 1 h
earlier. The peak CH4 concentrations, however, are observed
at 06:00 with a median (and interquartile) value of 2252.71
(2104.36–2451.01) ppb, portraying a small model underesti-
mation of about 13 ppb. Together, this leads to a small un-
derestimation of the CH4 diurnal amplitude in WRF-GHG
of 10.79 ppb.

We have shown that these PBL dynamics are very impor-
tant for the variability of the surface concentrations; however
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Figure 8. Distribution of the daily mean (a) simulated column
tracer above the background and (b) observed XCH4 per 800 hPa
wind direction category. NW is for winds with an angle of 292.5 to
337.5° from north, while SW represents the angles between 202.5
and 247.5°. There are 7 d with NW winds and 33 d with SW winds.
The colored boxes indicate the range between the first and third
quartile, while the thick solid line is the median. Outliers (values
that are 1.5 times the interquartile range above (below) the third
(first) quartile) are shown by black dots. The p values of the cor-
responding non-parametric Mann–Whitney U tests are given in the
title.

Figure 9. Hourly median and interquartile range of the (a) simu-
lated planetary boundary layer height and (b) observed and simu-
lated surface CH4 concentration in Xianghe.

they are irrelevant for the column concentrations, as the lat-
ter are much less affected by vertical transport (Wunch et al.,
2011). Indeed, the WRF-GHG-simulated column concentra-
tions do not exhibit a clear diurnal cycle, suggesting that this
aspect is well captured by the model. It is however difficult to
validate this using observations, as FTIR measurements are
only possible during periods of sunlight.

3.4.3 Local emissions

Regional emissions influence both column and in situ con-
centrations in Xianghe, as elaborated in Sect. 3.4.1. How-
ever, emission sources nearby could also have an impact on
these values, especially for the in situ observations as they
sample the local air. To analyze which nearby sources in-
fluence the Xianghe measurements, we look for correlations
between the 10 m wind direction and the simulated concen-
trations. Figure 10 reveals the mean WRF-GHG tracer con-

tribution per wind direction for CH4. To eliminate the influ-
ence of polluted plumes from further away, we select only
those days on which the mean daily XCO enhancement is
smaller than 45 ppb. We use XCO as a tracer for polluted
events as it is the species with the shortest atmospheric life-
time. Furthermore, we compute the mean concentrations sep-
arately for day and night to avoid the effects of the PBL. The
night hours are defined as those with the peak concentrations,
i.e., between 03:00 and 08:00 LT, while the day represents
those hours with highest atmospheric mixing and lowest con-
centrations, i.e., between 13:00 and 18:00 h. During the day
most winds are coming from the north and southwest, while
at night the most frequent wind directions near the surface
are north and east. Corresponding panels indicating the fre-
quency of wind speed per direction is given in Fig. C1. We
find higher wind speeds during the day than at night. The
northern winds typically have the lowest tracer contributions
since there are fewer emission sources in this direction, with
the exception of agriculture (see Fig. 11). In general, we see
that wind directions with the largest enhancements corre-
spond to the largest sources nearby (Figs. 10–11): east and
west for energy, all but north for residential, all directions
for agriculture, southwest for industry and east-southeast for
wetlands. The highest values overall (> 400 ppb) are found
for the energy tracer at night, and they come from the east,
where some very large CH4 point sources are located that
correspond to coal mine emissions nearby the city of Tang-
shan (see Fig. 11a). However, when looking closer at the CH4
time series (not shown), we see that WRF-GHG often overes-
timates the Xianghe in situ CH4 observations at times where
the model shows a large energy contribution. This is also vis-
ible in Fig. 12. This makes us believe that these coal mine
emissions might be overestimated in CAMS-GLOB-ANT.
In the next section we further investigate this hypothesis by
comparing WRF-GHG concentration fields with TROPOMI
observations.

3.5 Source assessment near Tangshan

By comparing the yearly TROPOMI XCH4 with WRF-GHG
XCH4, we want to assess if the CH4 emissions from coal
mines around Tangshan are indeed overestimated in CAMS-
GLOB-ANT or not. Figure 13 shows the maps of the mean
XCH4 during the entire simulation period: September 2018
until September 2019. The yearly mean total CH4 fluxes
from CAMS-GLOB-ANT in the WRF-GHG d02 are also
given, as well as the difference between WRF-GHG and
TROPOMI. By taking the average over the complete sim-
ulation period, we minimize the influence of meteorologi-
cal patterns on the XCH4 concentration and expose the main
emission sources.

When comparing the WRF-GHG input fluxes in Fig. 13a
with the resulting XCH4 concentration field in Fig. 13b,
we indeed find a strong agreement. The largest sources are
found to the west of 114° E, which correspond to the ex-
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Figure 10. Mean CH4 simulated tracer concentrations (ppb) binned per wind direction for the main sectors (a) energy, (b) residential and
waste, (c) agriculture, (d) industry, and (f) wetlands on days without strong regional pollution. The lengths of the bars show the frequency of
any wind direction binned by 22.5°, given in percentage. The first row represents afternoon hours (13:00–18:00 LT), while the second row
represents nighttime hours (03:00–08:00 LT). Note that the panels have different concentration bins.

Figure 11. Map of the mean CH4 flux (mol km−2 h−1) in WRF-GHG domain d03 during the entire simulation period from September 2018
until September 2019, for the most important sectors. Note that the panels have different color scales. The location of the Xianghe site is
indicated by a blue cross.

tensive coal mining activities in Shanxi. In the same loca-
tions on the XCH4 map of WRF-GHG, we find the highest
concentration values of the region. Unfortunately due to the
mountainous terrain, TROPOMI observations are sparse in
this area. Other sources, such as a hotspot around 36.25° N,
116.75° E and the slightly smaller emissions around Beijing
(40° N, 116.3° E) and Tangshan (39.6° N, 118.4° E), corre-
spond to elevated XCH4 values. This suggests that yearly

averaged XCH4 maps can indeed reveal the strongest emis-
sion sources. It should be noted, however, that the CH4
sources around Beijing and Tangshan are approximately 3
times smaller than those in Shanxi (west of 114° E) and are
barely strong enough to cause significant enhancements in
the yearly XCH4 maps. Our analysis indicates that point
sources should emit at least around 0.1 Tg per year to be
clearly distinguishable on annual XCH4 maps, taken into ac-
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Figure 12. Correlation between energy tracer contribution to simu-
lated CH4 surface concentrations and differences between total sim-
ulated and observed surface concentrations. For this plot, the data
were not filtered on day, night or polluted/clean days.

count the noise of the observations. The region below 37° N
shows high simulated XCH4 values as well; however they
do not directly correspond to strong sources in the inventory.
This can likely be explained by the presence of the Taihang
mountains on the west, which lead to poor dispersion condi-
tions (Fu et al., 2014). Therefore the larger concentrations in
this area are likely more determined by the topography and
associated meteorological conditions than by surface fluxes.

We observe slightly elevated XCH4 values near the coal
mines of Tangshan in both the WRF-GHG and TROPOMI
maps. To isolate the potential model bias over these sources,
we defined a surrounding background region (39.3–40° N,
117.8–118.8° E), characterized by the absence of major CH4
emissions, and a source region (39.45–39.8° N, 118.15–
118.6° E) encompassing the concentrated coal mine sources
from CAMS-GLOB-ANT. The mean difference (WRF-GHG
– TROPOMI) was 8.87± 2.22 ppb in the background region
and 11.85± 3.24 ppb over the source region, suggesting a
potentially larger model overestimation near the coal mines.
However, when considering the reported spatial variability of
the TROPOMI bias, this difference of approximately 3 ppb
is not statistically significant. Validation studies by the S5P
Mission Performance Centre (MPC) indicate a bias disper-
sion of 0.7 % across different FTIR sites, which translates to
a potential bias variation exceeding 13 ppb. Therefore, based
on this TROPOMI comparison alone, we cannot definitively
conclude that the CAMS-GLOB-ANT emissions from these
sources are overestimated. Additional in situ CH4 measure-
ments in the immediate Tangshan area are crucial for a more
robust assessment.

Note that the XCH4 maps in Fig. 13 suggest that it is very
likely that the CH4 hotspot around 36.25° N, 116.75° E is
overestimated as well, as the very strong XCH4 enhancement
in WRF-GHG is absent in the TROPOMI map.

4 Conclusions

We have used the WRF-Chem model in its greenhouse gas
option WRF-GHG to simulate surface concentrations and
column abundances of CO2, CH4 and CO observed at the
Xianghe site in China, aiming to improve our understanding
of the variabilities in the measured time series. Since June
2018, column-averaged concentrations have been measured
with a FTIR spectrometer that is part of TCCON, while near-
surface concentrations of CO2 and CH4 are measured with a
Picarro CRDS analyzer at an altitude of 60 m a.g.l. We com-
puted 3-D concentration fields from September 2018 until
September 2019 in three nested domains, covering a large
part of China. The ground-based observations are compared
with simulations from the innermost domain, centered on the
Beijing–Tianjin–Hebei region, with a horizontal resolution
of 3× 3 km2. We employed the CAMS-GLOB-ANT v5.3 in-
ventory for anthropogenic emissions of CO2 and CH4 and the
REAS v3.2.1 dataset for CO. To disentangle the total simu-
lated signal into the various source sectors, including a wide
range of both natural and anthropogenic sources, they were
simulated as separate tracers. This study is the first part of
the analysis, focusing on CH4.

In general, the model demonstrated moderate perfor-
mance, with a correlation coefficient of 0.66 for near-surface
CH4 concentrations in the afternoon and 0.56 for column-
averaged concentrations. After adjusting for the observed
seasonal bias coming from the boundary conditions (CAMS
reanalyses), the performance improved, as indicated by an in-
crease in the correlation coefficient to 0.67 with the TCCON
time series.

The simulated CH4 concentration is predominantly influ-
enced by emissions from three main human activity sectors:
energy, residential and waste, and agriculture. The energy
sector has a more significant impact on column abundances
(accounting for 52.9 % of the total enhancement) compared
to surface concentrations (36.9 %), reflecting differences in
the sensitivity of remote sensing and in situ measurements to
sources at large distances, such as Shanxi Province. For the
in situ concentrations, the three emission sectors are equally
important.

Monthly variability in the contributions from each tracer
is found to align broadly with expected emission patterns:
the residential tracer is higher in winter, while the agricul-
tural tracer peaks in late summer (September). This month-
to-month variation is further influenced by meteorological
conditions such as horizontal advection and atmospheric sta-
bility, which is especially visible in the energy tracer where
corresponding emissions remain relatively constant through-
out the year, while the contributions from this tracer show
notable variations.

The model simulations confirm the importance of large-
scale wind patterns, with air masses from the southwest
transporting higher CH4 concentrations to the Xianghe site
compared to those from the northwest (median tracer contri-
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Figure 13. (a) The CH4 flux from all sectors in CAMS-GLOB-ANT averaged from September 2018 until September 2019 and regridded to
WRF-GHG grid d02 (9 km resolution). Mean XCH4 over the same period as (b) simulated by WRF-GHG and (c) observed by TROPOMI
(both regridded to 0.05°). (d) Mean difference between WRF-GHG and TROPOMI XCH4 over the entire simulation period.

butions of 57.8 ppb vs. 7.3 ppb, respectively). During south-
west wind regimes, pollution from the densely populated
North China Plain reaches the Xianghe site. While large-
scale air masses influence the variability of both measure-
ment types, smaller-scale factors such as planetary bound-
ary layer dynamics and local wind patterns also play a sig-
nificant role in the near-surface concentrations. WRF-GHG
effectively captures the diurnal variability driven by these
boundary layer dynamics, with CH4 surface concentrations
reaching their lowest levels in the afternoon (16:00 LT) and
peaking around sunrise (06:00 LT), leading to a diurnal am-
plitude of almost 200 ppb.

Despite correcting for the bias in boundary conditions, a
residual seasonal bias remained in the model, likely due to in-
accuracies in emission estimates from agricultural (livestock)
and waste management activities. Furthermore, comparisons
between simulated and observed CH4 concentrations near
the surface suggest an overestimation of coal mine emissions
near Tangshan in the emission inventory of CAMS-GLOB-
ANT. However, this hypothesis remains unconfirmed due to
the averaging effect in the column measurements, the rel-
atively low emission strength and the reported accuracy of
TROPOMI XCH4.

In summary, the WRF-GHG model successfully captures
key aspects of CH4 variability at the Xianghe site for both re-
mote sensing and in situ observations. The model simulations
also provide valuable insights into the relative contributions

of different source sectors and the influence of meteorologi-
cal processes on CH4 concentrations.

However, the observed discrepancies, particularly the sea-
sonal bias and overestimated emissions from certain sources,
underscore the need for improved emission inventories in this
region of China, especially for agricultural, waste manage-
ment and coal mining activities. Future research should aim
to enhance our understanding of the monthly variations of
CH4 in northern China, which is crucial for providing more
accurate boundary conditions and emission flux information
for high-resolution modeling studies like the present work.
By addressing these challenges, we can further refine our un-
derstanding of CH4 sources and their impacts on regional air
quality, ultimately contributing to more effective greenhouse
gas mitigation strategies.

Code and data availability. The ERA5 and CAMS reanalysis
dataset (https://doi.org/10.24381/cds.bd0915c6, Hersbach et al.,
2023a and https://doi.org/10.24381/cds.adbb2d47, Hersbach
et al., 2023b), used as input for the WRF-GHG simulations,
was downloaded from the Copernicus Climate Change Service
(C3S) Climate Data Store (2022). The CAMS-GLOB-ANT v5.3
emissions (https://doi.org/10.24380/D0BN-KX16, Granier et al.,
2019 and Soulie et al., 2024) and temporal profiles CAMS-GLOB-
TEMPO v3.1 (Guevara et al., 2021) are archived and distributed
through the Emissions of atmospheric Compounds and Compila-
tion of Ancillary Data (ECCAD) platform. The REAS emission
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inventory is publicly available at https://www.nies.go.jp/REAS/
(Kurokawa and Ohara, 2020). The WRF-Chem model code is dis-
tributed by NCAR (https://doi.org/10.5065/D6MK6B4K, NCAR,
2020). The WRF-GHG simulation output created in the context of
this study can be accessed at https://doi.org/10.18758/P34WJEW2
(Callewaert, 2023). The TCCON data were obtained from
the TCCON Data Archive hosted by CaltechDATA at
https://doi.org/10.14291/tccon.ggg2020.xianghe01.R0 (Zhou
et al., 2022), while the surface observations in Xianghe were
received through private communication with the co-authors.
TROPOMI Level 2 Methane Total Column data are publicly
available online at https://doi.org/10.5270/S5P-3lcdqiv (ESA,
2021) and the Copernicus Open Access Hub.

Appendix A: WRF-GHG sensitivity tests

Sensitivity tests were carried out to identify a model con-
figuration that matches the observations (of CO2, CH4 and
CO) well. We have tested several physical parameterization
schemes and anthropogenic fluxes because these elements
are essential to accurately simulate tracer concentrations. The
initial set of physical parameterization schemes (BASE) was
taken from Li et al. (2020) and Dong et al. (2021) as they
have shown good model performance for simulating CO2
concentrations in China. Four alternative combinations (A–
D) were created by changing the schemes for the longwave
and shortwave radiation, planetary boundary layer (PBL) and
surface layer physics, leading to five different model con-
figurations in total (see Table A1). Note that there are sev-
eral more physical parameterization schemes that could have
been included in these tests. Nevertheless, a full sensitivity
analysis is outside the scope of this study. Thus, we restricted
our tests to the most frequently used schemes in the literature
and chose the combination that produced satisfactory model
simulations without additional optimization.

Further, the following anthropogenic flux inventories were
tested: EDGAR GHG v6.0 (for CO2 and CH4, Ferrario et al.,
2021), EDGAR Air Pollutants v5.0 (for CO, Crippa et al.
(2019)), CAMS-GLOB-ANT v5.3 (for CO2, CH4 and CO,
Granier et al., 2019; Soulie et al., 2024), PKU v2 (for CO2
and CO, Wang et al., 2013; Zhong et al., 2017), REAS v3.2.1
(for CO2 and CO, Kurokawa and Ohara, 2020), MEICv3.1
(for CO2 and CO, http://www.meicmodel.org/, last access: 2
October 2023), ODIAC2020b (for CO2, Oda and Maksyuto,
2011, 2020; Oda et al., 2018) and FFDAS v2.2 (for CO2,
Asefi-Najafabady et al., 2014). Monthly fluxes are disag-
gregated into hourly fluxes using the temporal factors of
Crippa et al. (2020), Guevara et al. (2021) and Nassar et al.
(2013). The model code was adapted to include these differ-
ent anthropogenic emission inventories in separate tracers.
As such, one simulation is sufficient to compare the effect of
all inventories.

The five simulations, representing different combinations
of physical parameterization schemes and anthropogenic
fluxes, were run over three periods of about 2 weeks spread

over the year: 1–17 October 2018, 1–17 February 2019 and
10–25 June 2019. The first 48 h was regarded as spin-up and
is not taken into account in the analysis.

For each time series, the root mean square error (RMSE),
mean bias error (BIAS) and Pearson correlation coefficient
(CORR) were calculated. In order to find the most suitable
combination of physical parameterization schemes and an-
thropogenic emission inventory for all observations in Xi-
anghe, a combined skill score (S) was computed as follows,
based on Gbode et al. (2019):

S = (1−RMSEnorm)+ (1− |BIASnorm|)+CORRnorm, (A1)

where Xnorm =
Xi−Xmin
Xmax−Xmin

is the normalized statistical met-
ric. As such, the combination with the highest S will over-
all have the lowest RMSE, lowest absolute BIAS and high-
est CORR. Exact values of the statistical metrics and com-
bined skill scores for every sensitivity test can be found in
Tables A2, A3, A4, A5 and A6 for the time series of in situ
CO2, in situ CH4, XCO2, XCH4 and XCO, respectively.

Unfortunately, there is not one combination of physical pa-
rameterization schemes and anthropogenic flux inventories
that yields optimal scores for all species (CO2, CH4 and CO)
across various observation types (surface and column). To
identify the most appropriate model configuration for sim-
ulating all observations at the Xianghe site, it is necessary
that the chosen physical parameterization schemes (denoted
as test A–D, BASE) show satisfactory skill scores across
all five time series. Moreover, the choice of anthropogenic
flux inventory, although potentially varying among species,
should yield reasonable score values for all observation types
of the same species. Therefore, the final combination was de-
termined through the following logical process, where pref-
erence was given to the surface data (as it is assumed that
the physical schemes will have the highest impact on these
simulations):

– We reject the combination with the worst results: for
each statistical metric, we calculate a threshold derived
from the mean (µ) and standard deviation (σ ) of all
occurring values. Combinations in which one or more
of the metrics exceed or fall below these thresholds
are excluded from the selection process. Specifically,
these combinations must conform to the following set
of equations:

CORR≥ µCORR− σCORR,

|BIAS| ≤ µ|BIAS|+ σ|BIAS|,

RMSE≤ µRMSE+ σRMSE. (A2)

The combinations that are discarded after this step
are indicated with an asterisk (∗) behind the inventory
names in the tables.

– For CO2 and CH4, discard the combinations that are
only present in the table of either the surface or the col-
umn data in order to keep only those that are performing
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Table A1. Overview of sensitivity tests on different physical parameterization options. They are a combination of three different PBL
schemes: Yonsei University (Hong et al., 2006), Mellor-Yamada-Janjić (Janjić, 1994) and Mellor-Yamada-Nakanishi–Niino Level 3 (Nakan-
ishi and Niino, 2006, 2009; Olson et al., 2019); two surface layer schemes: Revised MM5 (Jiménez et al., 2012) and Eta similarity (Janjić,
1994); and two radiation schemes: RRTMG Longwave and Shortwave schemes (Iacono et al., 2008) versus RRTM Longwave and Dudhia
Shortwave schemes (Dudhia, 1989; Mlawer et al., 1997).

Test PBL Surface layer Radiation

BASE YSU scheme (option 1) Revised MM5 scheme (option 1) RRTM and Dudhia (option 1)
A YSU scheme (option 1) Revised MM5 scheme (option 1) RRTMG (option 4)
B MYJ scheme (option 2) Eta similarity scheme (option 2) RRTMG (option 4)
C MYNN3 scheme (option 6) Eta similarity scheme (option 2) RRTMG (option 4)
D MYNN3 scheme (option 6) Revised MM5 scheme (option 1) RRTMG (option 4)

Table A2. Statistical metrics for sensitivity tests, in situ CO2 data in
Xianghe. Unit of BIAS and RMSE is ppm. Rows where the inven-
tory name is followed by an asterisk (∗) indicate those where one or
more statistical metrics surpass the thresholds defined in Eq. (A2).
Rows in italic represent combinations that are rejected due to the
XCO2 value falling outside the thresholds. The bold lines represent
the final two options as determined by the methodology outlined in
Appendix A.

Test Flux CORR BIAS RMSE S

B PKU 0.67 −1.62 16.09 2.91
B CAMS 0.63 −0.12 17.50 2.81
B EDGAR 0.63 0.92 17.87 2.72
C PKU 0.64 −3.96 16.91 2.65
C REAS 0.61 −1.19 18.88 2.58
A PKU 0.63 −4.51 17.16 2.57
BASE PKU 0.61 −3.51 17.65 2.53
D PKU 0.62 −4.84 17.38 2.52
C FFDAS 0.58 −0.92 19.12 2.50
C CAMS 0.59 −2.77 18.06 2.49
C EDGAR 0.58 −1.71 18.53 2.47
D FFDAS 0.58 −1.69 19.19 2.44
B REAS 0.58 1.44 20.14 2.41
B FFDAS 0.60 2.97 20.19 2.41
A CAMS 0.58 −3.46 18.26 2.40
A EDGAR 0.57 −2.46 18.58 2.40
A FFDAS 0.56 −1.36 19.76 2.35
C MEIC 0.63 5.15 20.68 2.34
D CAMS 0.57 −3.74 18.90 2.30
D EDGAR 0.55 −2.73 19.32 2.29
BASE REAS 0.55 −0.29 22.00 2.27
A REAS 0.55 −1.33 21.49 2.25
A MEIC 0.59 4.60 21.84 2.20
D MEIC 0.58 4.02 21.86 2.19
D REAS 0.54 −1.33 22.02 2.19
BASE FFDAS∗ 0.51 0.11 21.66 2.17
BASE CAMS∗ 0.52 −2.21 20.93 2.13
BASE EDGAR∗ 0.51 −1.11 21.72 2.09
B MEIC∗ 0.64 9.16 22.95 2.07
BASE MEIC∗ 0.57 5.94 23.34 1.99
D ODIAC∗ 0.52 3.63 22.57 1.96
C ODIAC∗ 0.53 5.04 22.80 1.91
A ODIAC∗ 0.49 4.56 24.46 1.69
B ODIAC∗ 0.54 8.63 24.91 1.63
BASE ODIAC∗ 0.47 5.81 25.67 1.51

good enough on both time series. The combinations that
are discarded after this step are highlighted in italics in
the tables.

– From what is left, we see that only combinations with
test A, B or C should be considered as those with test D
and BASE settings have been discarded for CH4. The
choice of physical parameterization option should be
the same for all species. When sorting the remaining
combinations for CO2 and CO based on S (from the in
situ time series for CO2), we find that options with test B
and C are superior to those with test A. Finally, a choice
has to be made between options with test B and options
with test C.

– For both test B and C, we take the emission inventory
which has the highest S, for CO2 and CH4 based on the
in situ time series and for CO based on the column. This
leads to the following options:

– Test B: CAMS-GLOB-ANT for CH4 and CO2;
REAS for CO

– Test C: CAMS-GLOB-ANT for CH4, REAS for
CO2 and PKU for CO.

– The final choice between these two options is rather
arbitrary since certain combinations yield slightly im-
proved results for one time series but perform less fa-
vorably for another, and vice versa. In our study we have
chose the combinations with test B.

This approach leads to the settings of test B, together with
CAMS-GLOB-ANT v5.3 fluxes for CO2 and CH4 and REAS
v3.2.1 (Regional Emission Inventory in Asia) fluxes for CO.
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Table A3. Same as Table A2 but for in situ CH4. Unit of BIAS and
RMSE is ppb.

Test Flux CORR BIAS RMSE S

C CAMS 0.52 2.19 206.50 2.81
C EDGAR 0.52 19.09 208.24 2.67
BASE CAMS 0.48 3.26 213.26 2.47
A CAMS 0.45 −7.09 210.84 2.31
BASE EDGAR 0.48 22.33 216.09 2.28
A EDGAR 0.46 12.50 213.59 2.27
B CAMS 0.50 31.39 228.56 2.17
B EDGAR∗ 0.51 52.53 237.75 1.87
D EDGAR∗ 0.41 8.83 237.26 1.70
D CAMS∗ 0.39 −9.19 237.31 1.60

Table A4. Same as Table A2 but for XCO2.

Test Flux CORR BIAS RMSE S

D MEIC 0.77 0.62 1.52 2.87
C MEIC 0.76 0.62 1.54 2.83
BASE MEIC∗ 0.66 0.95 1.95 1.86
D ODIAC 0.78 −1.27 2.28 1.86
C ODIAC 0.79 −1.32 2.29 1.85
A MEIC∗ 0.62 0.97 2.03 1.62
D FFDAS 0.80 −1.60 2.43 1.58
C FFDAS 0.80 −1.62 2.45 1.55
BASE ODIAC 0.75 −1.36 2.47 1.54
D EDGAR 0.79 −1.59 2.45 1.54
A ODIAC 0.74 −1.30 2.50 1.49
B ODIAC 0.72 −1.23 2.53 1.47
C EDGAR 0.77 −1.57 2.49 1.45
D CAMS 0.79 −1.70 2.52 1.38
B EDGAR 0.76 −1.54 2.55 1.38
B FFDAS 0.75 −1.52 2.58 1.33
C REAS 0.80 −1.81 2.56 1.33
BASE FFDAS 0.77 −1.65 2.58 1.32
D REAS 0.79 −1.80 2.56 1.32
BASE EDGAR 0.77 −1.64 2.59 1.31
C CAMS 0.77 −1.68 2.57 1.30
A FFDAS 0.76 −1.62 2.60 1.28
B CAMS 0.75 −1.64 2.63 1.22
BASE CAMS 0.76 −1.74 2.66 1.15
D PKU∗ 0.80 −1.98 2.67 1.13
C PKU∗ 0.80 −2.00 2.67 1.13
B REAS 0.75 −1.71 2.69 1.10
A EDGAR 0.72 −1.54 2.71 1.09
BASE REAS 0.76 −1.85 2.73 1.03
A CAMS 0.72 −1.65 2.76 0.98
A REAS 0.75 −1.84 2.75 0.97
B MEIC∗ 0.55 1.25 2.30 0.95
B PKU∗ 0.76 −1.91 2.77 0.94
BASE PKU∗ 0.77 −2.02 2.81 0.87
A PKU∗ 0.76 −2.00 2.82 0.84

Table A5. Same as Table A2 but for XCH4. Unit of BIAS and
RMSE is ppb.

Test Flux CORR BIAS RMSE S

B CAMS 0.69 −0.79 20.53 2.94
B EDGAR 0.69 0.65 20.94 2.62
C EDGAR 0.67 −0.96 21.24 1.73
D EDGAR 0.66 −0.80 21.45 1.47
C CAMS 0.67 −2.16 21.31 1.12
A EDGAR 0.65 −1.17 21.72 0.86
BASE EDGAR∗ 0.65 −1.66 21.76 0.59
D CAMS∗ 0.65 −2.09 21.75 0.55
A CAMS∗ 0.65 −2.75 21.45 0.37
BASE CAMS∗ 0.65 −3.03 21.42 0.34

Table A6. Same as Table A2 but for XCO. Unit of BIAS and RMSE
is ppb.

Test Flux CORR BIAS RMSE S

B REAS 0.78 −3.99 30.25 2.96
B PKU 0.78 −5.38 30.32 2.94
D REAS 0.76 −5.32 31.54 2.83
BASE REAS 0.77 −7.12 31.39 2.81
C PKU 0.76 −6.88 31.73 2.79
D PKU 0.76 −6.82 31.75 2.79
C REAS 0.75 −5.53 32.00 2.79
BASE PKU 0.77 −7.85 31.74 2.77
A REAS 0.75 −7.15 32.35 2.72
A PKU 0.75 −7.51 32.67 2.71
B CAMS 0.68 −24.21 43.48 1.70
BASE CAMS 0.66 −25.16 44.35 1.61
D CAMS 0.64 −24.34 44.34 1.57
BASE EDGAR∗ 0.52 3.27 57.84 1.45
A CAMS 0.59 −23.19 44.78 1.44
C CAMS 0.60 −23.77 45.07 1.43
B EDGAR∗ 0.53 5.90 59.57 1.34
A EDGAR∗ 0.50 6.27 62.83 1.16
D MEIC∗ 0.65 −37.13 49.72 1.05
C MEIC∗ 0.61 −37.10 50.26 0.94
B MEIC∗ 0.53 −30.94 47.80 0.93
C EDGAR∗ 0.46 8.30 67.22 0.87
D EDGAR∗ 0.47 8.66 68.01 0.86
BASE MEIC∗ 0.55 −34.80 49.89 0.82
A MEIC∗ 0.52 −34.49 50.35 0.72
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Appendix B: FLEXPART simulations

The FLEXPART v10.4 model (Pisso et al., 2019) is applied
to quantitatively estimate the OH impact on the WRF-GHG
CH4 simulation in Xianghe. Table B1 lists the main set-
tings of the FLEXPART model. CH4 particles are released
using the FLEXPART backward mode at Xianghe site with
and without OH reaction. We release the CH4 particles be-
tween 00:00–01:00 and 12:00–13:00 (LT) every day in Oc-
tober 2018, January 2019, April 2019 and July 2019. The
release height is set to 0–100 m a.g.l., since the OH reaction
will have a higher impact near the surface where the wind is
weaker than at higher altitudes. The backward running dura-
tion is set to 3 d, and the backward sensitivities extend out-
side of the WRF-GHG d01 boundary. As an example, Fig. B1
shows the spatial distribution of CH4 backward sensitivities
for a release at 12:00–13:00 LT on 30 January 2019 including
the OH reaction, and Fig. B2 shows the corresponding rela-
tive difference in the CH4 backward sensitivities between the
simulations with and without OH reaction. Note that FLEX-
PART v10.4 includes a monthly OH climatology based on
GEOS-Chem simulations (Pisso et al., 2019).

Table B1. The main settings of FLEXPART model run with a CH4 tracer.

Parameter Settings

Release location ±0.1° around Xianghe site
Release height 0–100 m a.g.l.
Release time 00:00–01:00 and 12:00–13:00 (LT) every day in October 2018, January 2019, April 2019 and July 2019
Number of backward running days 3
Number of releasing particles 20 000
OH reaction On and off
Meteorological data NCEP CFSv2 with 0.5°× 0.5° horizontal resolution and 64 vertical levels (Saha et al., 2014)

Figure B1. The spatial distribution of CH4 backward sensitivities (in s m3 kg−1) for a release at 12:00–13:00 LT (which is 04:00–05:00 UTC
as indicated in the title) on 30 January 2019 from the FLEXPART simulation including the OH reaction. The location of WRF-GHG d01 is
indicated by the dashed line.
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Figure B2. Relative difference in the CH4 backward sensitivities between simulations with and without OH reaction. The location of WRF-
GHG d01 is indicated by the dashed line.

Appendix C: Additional figures

Figure C1 shows a wind rose of simulated wind speed and
direction in Xianghe, accompanying Fig. 10 in Sect. 3.4.3.

Figure C1. Wind rose from WRF-GHG simulations during the af-
ternoon (13:00–18:00 LT) (a) and at night (03:00–08:00 LT) (b).
The colors indicate the associated wind speed (in m s−1), while the
lengths of the bars show the frequency of any wind direction binned
by 22.5°, given in percentage.
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