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Abstract. A general formulation for the distribution problem is presented, which is applicable to frequency
distributions of subgrid-scale variables and hydrometeor size distributions, as well as to probability distributions
characterizing data uncertainties. The general formulation is presented based upon two well-known basic prin-
ciples: the maximum-entropy principle and the Liouville equation. The maximum-entropy principle defines the
most likely general distribution form if necessary constraints are specified. This paper proposes to specify these
constraints as the output variables to be used in a host model. Once a general distribution form is defined, the
problem of the temporal evolution of the distribution reduces to that of predicting a small number of parameters
characterizing it. This paper derives prognostic equations for these parameters from the Liouville equation. The
developed formulation, which is applicable to a wide range of atmospheric modeling problems, is specifically
applied to the condensation growth of cloud droplets as a demonstration.

1 Introduction

The present paper considers the distribution problem in a
general manner. Regarding the problems of distributions, at
least three examples are identified in atmospheric sciences.
The first and perhaps most obvious example is the problem
of determining the distribution of a variable over a domain as
a distribution density function (DDF). Typically, the domain
corresponds to a grid box in a numerical simulation, and
the obtained distribution is used for calculating subgrid-scale
characteristics that are required by a host model. This prob-
lem may be called the subgrid-scale distribution problem.
A specific application of this problem is the determination
of the fractional area occupied by clouds within a grid box

(Sommeria and Deadorff, 1977; Mellor, 1977; Bougeault,
1981; Le Treut and Li, 1991; Bechtold et al., 1992, 1995;
Richard and Royer, 1993; Bony and Emanuel, 2001; Go-
laz et al., 2002; Tompkins, 2002). Arguably all subgrid-scale
processes may be represented under this subgrid-scale distri-
bution framework (cf. Yano, 2016).

The second example is the size distribution of hydrome-
teor particles (condensed water, ice species, etc.). Informa-
tion on particle size distributions (PSDs) is crucial for pre-
dicting various conversion processes from one hydrometeor
type to another as well as for evaluating fall-out rates of
those hydrometeors (cf. Khain et al., 2015; Khain and Pin-
sky, 2018). The rates of all these processes depend sensi-
tively on the hydrometeor particle size.
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The third and perhaps most abstract example of the dis-
tribution is the probability. The notion of probability ap-
pears in many aspects of the atmospheric sciences (e.g.,
Yano and Manzato, 2022). Here, we especially keep in mind
applications to data assimilation, in which data uncertain-
ties are measured by probability distributions (cf. Wikle and
Berliner, 2007).

The present paper considers all three of these problems
under a single framework. It is possible to consider these
three qualitatively different problems together because the
time evolution of all these distributions can, in principle, be
predicted by similar equations. The time evolution of both
the subgrid-scale distribution (DDF) and the probability den-
sity function (PDF) is predicted by the Liouville equation (cf.
Sect. 3.5). Here, it is hard to overemphasize the clear differ-
ence between them; to put it simply, distribution and proba-
bility are distinctively different concepts. Unfortunately, in
the literature, both are often referred to as PDFs. We fol-
low this custom to some extent, but we will add “DDF” in
parentheses whenever it is not cumbersome. Thus, though
these two problems deal with different types of distributions,
both are governed by the same equation. The time evolu-
tion of PSDs is, fundamentally, described by the stochastic-
collection equation by adding additional tendency terms to
it (cf. Sect. 3.6). Though its form is not identical to the Li-
ouville equation, it can still be considered in an analogous
manner. Thus, it becomes possible to deal with these three
different problems under a single framework.

All three of these problems also suffer from the same
difficulty: direct use of these fundamental equations (Liou-
ville and stochastic-collection) turns out to be very expensive
computationally. In data assimilation, an ensemble-forecast
method is adopted as an alternative, but the difficulty of gen-
erating a statistically large enough ensemble remains. Thus
a numerically more efficient method must be sought in order
to make them practically useful. This difficulty has been, so
far, addressed separately in these three problems. The origi-
nality of the present work is to simply point out that all three
of these computational problems can be considered under a
common framework.

In the subgrid-scale distribution problem, a main strategy
is to assume a simple distribution form that is specified by
a small number of parameters, sometimes termed “PDF pa-
rameters”. The PDF parameter values, and hence the distri-
bution itself, evolve with time as conditions change from,
say, overcast cloud to cumulus cloud. Hence the time evo-
lution of the PDF parameters must be predicted. Typically,
this is done by first predicting a set of moments of the distri-
bution and then inverting the set to solve for the PDF param-
eters. This general approach can be called an assumed-PDF
method. One of the earliest applications of the idea to turbu-
lence is by Lockwood and Naguib (1975). See also an early
review by Pope (1979).

A main strategy in cloud microphysics is to integrate the
full information over all the possible particle sizes. Thus,
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the distribution problem becomes implicit. This approach is
called bulk. However, for performing integrals over particle
size, we need to assume a certain distribution form, which
is typically exponential or the gamma distribution. In this
manner, we see a clear link of the “bulk” microphysical ap-
proaches to the “assumed-PDF” approach.

In data assimilation, typically, a decision is made to fo-
cus only on the mean, variance, and some covariances of a
probability distribution. As a result, a full probability is not
explicitly considered. Here, typically, an “assumed PDF” is
Gaussian.

For overviews on how these three problems are con-
structed using the distributions, we refer to Machulskaya
(2015) for the subgrid-scale distribution problem; Seifert and
Beheng (2001, 2006), Khain et al. (2015), and Khain and Pin-
sky (2018) for microphysics; and Bannister (2017), Jazwin-
ski (1970), and Carrassi et al. (2018) for the data assimila-
tion. Among those three problems, the role of probability
may be least obvious in data assimilation, especially for those
who only consult the final formulation of the standard varia-
tional principle. Here, we specifically refer to Sect. 2 of Car-
rassi et al. (2018), in which a more formal formulation in
terms of the probability is presented.

The purpose of this study is to present a more coherent
and self-contained formulation for the distribution problems
under the framework of those assumed-PDF approaches in
a general sense. The assumed-PDF approaches solve only
about half of the whole problem. There are still two ma-
jor issues to be resolved: (i) the choice of an assumed-PDF
form and (ii) methodologies for evaluating the time evolution
of the introduced PDF parameters efficiently. The present
study proposes the solutions to those two major issues. Cur-
rently, there is no clear guiding principle for the first issue
(cf. Sect. 3.2.2). The second issue is currently dealt with by
relating the PDF parameters and moments to each other, but
the conversion from moments to parameters is not guaran-
teed to be simple or analytic (cf. Sect. 3.2.1). By address-
ing these two major issues in the distribution problem, the
present study generalizes the formulation for the existing
assumed-PDF approaches developed for the subgrid-scale
distribution problem into more general distribution problems.
By doing so, the present study links the subgrid-scale distri-
bution problem to the distribution problem more generally, as
found in, for example, cloud microphysics and data assimila-
tion. Conversely, the generalized formulation of the present
study reduces to the existing assumed-PDF approaches by
introducing additional approximations and assumptions (cf.
Sect. 5.4).

Here, these two questions are addressed separately in this
study in Sects. 4 and 5, respectively. Thus, those two method-
ologies can also be adopted independently if desired. Yet, the
present study suggests that the most coherent formulation for
the assumed-PDF approaches can be developed by adopting
both methodologies together.
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In this manner, the present work also constitutes an effort
to develop a unified and coherent formulation for subgrid-
scale representations (Yano, 2016; Yano et al., 2014, 2018).
Readers are encouraged to refer to them for the authors’ gen-
eral perspectives on the subgrid-scale representations, but see
further Yano (2015a, b). Refer especially to Yano (2016) for
general discussions of the subgrid-scale distribution prob-
lem. Keep in mind that the subgrid-scale representation prob-
lem is considered exclusively from the perspective of DDF in
the present study but without excluding the possibilities of al-
ternative approaches as discussed in Yano (2016). More gen-
erally, the fundamental research, as pursued in the present
study, is extremely crucial for the improvement of subgrid-
scale parameterizations (Yano et al., 2014). Even the cur-
rent operational numerical forecasts, which are based on a
premise of high-resolution cloud modeling, may break down
without such fundamental research to support them (Yano
et al., 2018).

The paper begins in the next section by introducing a basic
governing equation system that is adopted throughout the pa-
per to construct the general formulation for the distribution
problems. As seen therein, the adopted governing equation
is general enough that the formulation of the present study
can be applied to more or less any problems that can be ex-
pected in atmospheric sciences. Section 3 reviews our basic
knowledge about the distribution problem. The moment con-
cept is first introduced in Sect. 3.1 because it is so central in
the current approaches. The basic idea of the assumed-PDF
approach is outlined in Sect. 3.2, where its basic problems
are also pointed out. The maximum-entropy principle, which
defines the form for the most likely general distribution under
given constraints, is introduced in Sect. 3.3, and its applica-
tions are further discussed in Sect. 3.4. The Liouville equa-
tion is introduced in Sect. 3.5, and the stochastic-collection
equation is separately introduced in Sect. 3.6.

Both the maximum-entropy principle and the Liouville
equation play key roles in the present study, albeit in different
manners, in resolving the two aforementioned major issues.
The first issue is addressed by taking the maximum entropy
as a guiding principle. A key open question here is the precise
conditions to be posed under this principle in order to define
a PDF (DDF). A standard procedure is to take what we al-
ready know as a specified condition of a system (e.g., total
kinetic energy of an ideal-gas system). An original argument
of the present paper is to propose to constrain the form of
the PDF (DDF), instead, by the quantities that are required,
for example, for purpose of predictions (e.g., cloud fractions,
precipitation rate) in modeling. This argument is developed
in Sect. 4 by discussing the contrasts between the standard
statistical problems and those typically addressed in atmo-
spheric sciences. The second issue is addressed in Sect. 5 by
deriving a general form from the Liouville equation of prog-
nostic equations for predicting the time evolution of the PDF
parameters introduced under an assumed PDF. The derived
general formulation is applied to the illustrative example of
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the condensation growth of cloud droplets in Sect. 6. The pa-
per is concluded in Sect. 7.

It is emphasized that this work presents a new formula-
tion by addressing the two aforementioned major problems
in the assumed-PDF approaches, rather than solving any spe-
cific problems. For this reason, the basic style is to present
basic principles first in a straight and concise manner. We
choose this style for ease of referring to formulations, es-
pecially based on the fact that the presented formulation
can be applied to almost any distribution problems in atmo-
spheric sciences. Specific examples are gradually introduced
so that a more concrete picture of the methodology gradually
emerges. Readers who would like to see a concrete example
first are suggested to go to Sect. 6 directly and read back-
wards. Also for this reason, the governing equation system
to be considered in the present study is introduced in a stan-
dalone manner separately in the next section so that the range
of applicability of the present study to various atmospheric
problems should become immediately clear. Along the lines
of generality intended in the present study, all the equations
are presented in nondimensional forms, setting the various
physical constants to unity for convenience, throughout the

paper.

2 Governing equation system

Many physical variables, say ¢, of the atmospheric flows are
advective; thus they are governed by an equation of the fol-
lowing form:
99
—=—v-V¢+F. (1
ot
Here, v is the velocity and F designates all the tendencies
(source) contributing to the variable, ¢, apart from the advec-
tion as represented as the first term on the right-hand side.
The source, F, generally depends on the variable, ¢, and
also possibly on time ¢ and space. For instance, in a cloud
macrophysical application, ¢ is the liquid water content or
the number density of liquid droplets with a particular radius.
Equations (2.9), (2.10), and (2.11) of Machulskaya (2015)
are examples of the equations of the form of Eq. (1) consid-
ered in the context of the DDF problem. Yano et al. (2005)
and Yano (2016) show that the basic formulations for the
subgrid-scale parameterizations can be reproduced by sim-
ply examining this general form (Eq. 1). More specifically,
Yano (2014) shows that all the essential, basic standard for-
mulas for the mass-flux convection parameterization can be
reproduced from a general governing equation, Eq. (1).
With an ultimate application to the systems described by
governing equations of the form of Eq. (1) in mind, for ease
of the deductions in the following, the present study focuses
on a case with no spatial dependence in the above:

¥ _r
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Yet, in spite of this restriction, and without arguing for any
general physical relevance, it may also be worthwhile to em-
phasize that the source term, F, in Eq. (2) includes any types
of physical processes that are locally defined. Most of the
microphysical processes, for example, fall into this category.
More importantly, this restriction does not have any seri-
ous consequences because the final general formulation for
predicting the assumed-PDF parameters in Sect. 5.1 is very
easily generalized to the cases with spatial dependence (cf.
Sect. 5.3).

To maintain the generality of the formulation, the term, F,
is left unspecified in considering the time evolution of vari-
ous types of distributions in Sect. 5. As a result, the formu-
lations presented in the following, especially our key result
given by Egs. (50a) and (50b), are applicable to any types
of physics. All we have to do is to specify the form, F, as
required in applications. As a specific example, the source
term is set to F = 1/r in Sect. 6 (cf. Eq. 76a) in considering
the condensation growth of a droplet with a radius, . We also
examine the behavior of systems with mathematically simple
forms for F in Sect. 5.5 as well as in Appendix C. Keep in
mind that in Eq. (1), the source term, F, can be space depen-
dent, say, involving spatial derivatives. However, in consider-
ing Eq. (2) in the following, this possibility will be excluded
for ease of analysis. Furthermore, in the present study, the
source term, F, is assumed to be deterministic, except for
the case of the Brownian motion considered in Sect. 4.4.

Throughout the study, only the cases with a single variable,
¢, are considered explicitly for the economy of presentation.
However, when multiple variables are involved in a problem,
as is typically the case in any realistic applications, the only
modification required is to replace the scalar, ¢, by a vector.
Examples with systems with multiple dimensions are pre-
sented in Yano (2024). Probably, a more serious restriction
in the following development of the formulation is in consid-
ering only the cases with no spatial dependence. However,
as it turns out, the generalization of the final formulation to
the spatially dependent cases with Eq. (1) is fairly straight-
forward, as discussed in Sect. 5.3.

In the present work, we proceed with the hypothesis that
the physics of a system is already completely known in the
form of Eq. (2) with a forcing term, F, completely specified.
In practical applications, this hypothesis is satisfied by speci-
fying all the terms in a system in a closed form, as parameter-
izations, if required. Especially, in applying the general for-
mulation of the present study to the subgrid-scale distribution
problems, this hypothesis means that we know the governing
equation system of the small scale to be parameterized fully;
cf. Sect. 4.3 for further discussions. In this spirit, for exam-
ple, Yano (2014) proceeds with a hypothesis that we know
perfectly the equations for the cloud-resolving modeling and
reconstructs the standard mass-flux-based convection param-
eterization based on this hypothesis. In the same way, the
present method solves a subgrid-scale distribution problem
assuming that we know the full equations for all the scales of
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a system. As is going to be seen, for this reason, we do not
need any turbulence closures (cf. Mellor, 1973; Mellor and
Yamada, 1974) in the present formulation.

3 Basic principles

The purpose of this section is to summarize well-known basic
principles for describing PDFs (DDFs).

3.1 Distributions and moments

Let a PDF (DDF) for a variable, ¢, be denoted by p(¢). Mo-
ments, (¢") (n =1,2,...),! can be constructed from a given
distribution, p, by

(@") = /¢”Pd¢- 3)

Here, an unspecified integral range may be taken from —oo
to +o0o with many of the physical variables, but some phys-
ical variables are semi-positive definite (e.g., temperature,
mixing ratios). In the latter case, the integral range above
must be from 0 to +o0.

The series of moments may be interpreted analogously to
the Taylor series, in the sense that it constrains a function.
However, unlike the latter, there is no closed analytical for-
mula for reconstructing the original distribution from a given
series of moments: although a series of moments can be de-
rived from a given distribution in a straightforward manner,
the reverse is hardly the case. This is in spite of the extensive
literature on the subject (e.g., Daniels, 1954; Butler, 2007;
Dang and Xu, 2019). On the other hand, the usefulness of
the moments for describing the turbulent flows can hardly be
overemphasized (e.g., Stull, 1988; Garratt, 1992) either.

3.2 Assumed PDF (DDF)
3.2.1 General formulation

The basic idea of an assumed-PDF (DDF) approach is to
introduce a generic form of PDF (DDF) characterized by a
few free parameters, say A; (i =0, ..., N, where N is kept as
small as possible), but in such a manner that the distribution
of a variable of concern can be represented:

P =p(). A0, A, AN). (4a)

Here, 1o will be used to designate a constant factor for a nor-
malization of a distribution throughout the paper whenever
the assumed-PDF formulation is discussed in a general man-
ner. On the other hand, pg will be adopted for the normal-
ization factor whenever a specific PDF form is discussed; the

n the literature, higher moments (n > 2) are often defined in
terms of a deviation from the mean (i.e., the first moment). Here,
the definition is presented without discriminating between the first
and the higher moments for mathematical lucidity.

https://doi.org/10.5194/acp-25-9357-2025
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latter choice is consistent with the fact that notations different
than A; (i # 0) are also often adopted for the other assumed-
PDF parameters.

Importantly, the distribution, p, is related to the cumulative
probability, P, by

p=dP/dg, (4b)

where P is more precisely defined as the probability that the
variable ¢’ is less than a specified value ¢; i.e., P = P(¢' <
®).

Examples of distributions taking the form of Eq. (4a) are
discussed in subsequent subsections (e.g., Eqs. 24 and 25,
setting po = Ag therein). Once the functional form of a dis-
tribution is constrained by Eq. (4a), the problem of determin-
ing the distribution p(¢), which must be defined for every
value of ¢, reduces to that of determining a given finite set
of parameters {};}, which evolve with time by following the
evolution of the distribution. However, keep in mind that the
parameters {};} should not depend on ¢ for obvious reasons.
Note that {*} indicates a set of parameters throughout the pa-
per.

Here, it is important to remember that an assumed-PDF
form is only an approximation; to state this fact more em-
phatically, it may be better to state it as

p=p(P, Ao, A1, ..

with ¢ designating the possible error under this approxi-
mation. Yet, in the following deductions, this error term is
mostly neglected, except for couple of exceptions where it is
added as a reminder.

A major exception to the above rule is when the assumed
PDF is an exact solution of the original equation, and when
the initial PDF follows the assumed form, there is no error.
We may further expect that the error remains small even if
the initial PDF does not follow the assumed form. Otherwise,
there is no way that an assumed-PDF form can predict the
evolution of a distribution in any accurate manner.

The parameters {A;} defining the distribution (Eq. 3) may
be determined, for example, from a known set of moments,

(9")sie.,
A = i({{(@")D. &)

The prognostic equations for these moments, or diagnostic
approximations of these equations, are, in turn, known from,
e.g., the turbulence theories for the system (Eq. 1) in the con-
text of the subgrid-scale distribution problem; thus the prob-
lem is closed in this manner. That is the current basic strategy
of the assumed-PDF (DDF) approach (Larson, 2022).
However, there are problems with this strategy. First, the
functional form of a PDF (DDF), p(¢, {A;}), must somehow
be prescribed. However, no clear principle has been identi-
fied. A main thread of this paper is to use the maximum-
entropy principle (cf. Sect. 3.3) for this purpose. The sec-
ond problem is the difficulty of deriving a closed expression

AN+ &, (40)
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(Eq. 5) for defining the PDF (DDF) parameters from a given
set of moments. Here, it is straightforward to compute the
moments from a given PDF (DDF); thus we can readily write
this down as

(@") = (") ({1} (6)

However, inverting Eq. (6) into Eq. (5) is often not at all triv-
ial due to the nonlinearity in the former, and PDF parame-
ters are defined only in an implicit manner from a set of mo-
ments. See Eq. (6) of Milbrandt and Yau (2005) for example.
Often extra assumptions and approximations are required to
make this inversion possible (cf. Machulskaya, 2015). Al-
ternatively, an iterative procedure can be adopted in order
to invert a given set of moments and deduce the PDF pa-
rameter values (e.g., Lewellen and Yoh, 1993). The difficulty
of the inversion is exacerbated by predicting more (higher-
order) moments and also by moving to multivariate PDFs. In
Sect. 5, we will show, by more explicitly invoking the Liou-
ville equation as introduced in Sect. 3.5, how a prognostic set
of equations for {);} can be written down explicitly. These
equations are closed in the sense that no further inversion is
required.

3.2.2 Choice of assumed-distribution forms

In current assumed-PDF (DDF) approaches in the context of
the subgrid-scale distribution problem, distribution forms to
be adopted are chosen in a rather subjective manner, mostly
based on computational convenience. For this reason, one
popular choice is double Gaussian, i.e., a sum of 2 Gaussians,
for the purpose of representing a skewness (e.g., Larson et al.,
2002; Fitch, 2019; Naumann et al., 2013). Although those
studies show some fits to distributions obtained from either
observation or large-eddy simulations as support, we should
not consider that double-Gaussian distributions have been
verified by data; no objective comparisons with alternative
possible distributions have been made.

On the other hand, observations suggest that the hydrom-
eteor PSD follows an exponential distribution in the size
(Marshall and Palmer, 1948). However, Yano et al. (2016)
point out the difficulty of identifying the best fit for the PSDs
observationally from various exponential distribution forms
that are derived from the maximum-entropy principle (cf.
Sect. 3.3): it is indeed not possible to verify in any convinc-
ing manner that any of those fit the observations better than
the others, although it is possible to discuss different values
of errors of those fittings.

3.3 Maximum-entropy principle: derivation

3.3.1 Derivation

To address the first issue of the choice of PDF (DDF) form,
we take the maximum entropy as a guiding principle. It must
be emphasized that this is merely a mathematical principle.

Atmos. Chem. Phys., 25, 9357-9386, 2025
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Here, the guiding principle suggests that it is not any phys-
ical principle but merely a principle that guides a choice of
an assumed-PDF form. Note especially that Boltzmann’s en-
tropy, which takes a mathematically identical form, can be
derived by physical reasoning. However, it should not be con-
fused with the information entropy in general. From a physi-
cal point of view, although the principle is plausible, there is
no guarantee that it actually works. For this reason, we adopt
this principle merely as a guide for identifying a necessary
assumed form of a PDF (DDF). Such a guiding principle is
useful when there is no other principle for choosing an as-
sumed distribution. This principle should not be interpreted
as a hypothesis either because it suggests that the guiding
principle may be disproved by experiments. Here, the suc-
cess of a guiding principle may vary from case to case. How-
ever, so long as this principle is used with caution, we expect
that it remains useful for choosing a PDF form.

The maximum-entropy principle asks the question of what
the “most likely” distribution of a variable is under a given
set of “constraints” (cf. Eq. 12 below). It simply argues that
the “most likely” distribution is a distribution that is actually
realized in a given system. The argument of this principle
is simple and appealing enough to gain extensive applica-
tion (cf. Kapur, 1989), notably in the statistical description of
geophysical flows (e.g., Robert and Sommeria, 1991; Verkley
and Lynch, 2009; Verkley, 2011; Verkley et al., 2016). For
this reason, the present study also invokes this principle. See
Yano (2019) for further implications of this principle, as well
as for further references of applications in atmospheric sci-
ences and many other disciplines.

Here, “most likely” is defined in terms of the number of
possible combinations for a given state of a variable (cf. Eq. 8
below). We develop the idea for a discrete system first for
ease of explanation. Thus, we assume a variable, ¢, takes m
values, say, designated by ¢; (i = 1,...,m). For instance, in a
cloud macrophysics application, ¢ might represent the liquid
water content, whose values might be binned into m cate-
gories (0 to 1 gkg™!, 1 to 2gkg™!, etc.). Let us assume that
the total number of data (e.g., measurements, model outputs)
is n and, among them, n; takes a value ¢; (i = 1,...,m). For
instance, we might sample a cloud #n times, each time draw-
ing a value of liquid water content, and we might denote the
number of samples that fall into the ith bin by n;. Thus, the
frequency distribution of the variable, ¢, is given by

pi =ni/n, (N

withi =1,...,m.
The total number of possible combinations for realizing
this distribution is
n!
W=——. ®)

nil...ny!

By applying a logarithm to the above and also applying Stir-
ling’s formula,

logn! =nlogn + O(n), ©)]
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which is valid in the asymptotic limit of n — oo; for every
integer involved in the definition of W, we can approximate

1 m
;logWZ—Zpilogp,-. (10)

i=1

The right-hand side of Eq. (10) is the information entropy
(Shannon, 1948), which we shall refer to as “entropy” for
short.? Thus, the problem of maximizing the number of pos-
sible combinations reduces to that of maximizing the en-
tropy, and it leads to the notion of the maximum-entropy
principle.

The most extreme case of this distribution is when ¢ al-
ways takes only a particular value, say ¢;; thus p; =4;;,
using Kronecker’s delta. In this case, there is no possibility
of reshuffling the data; thus W =1 and the entropy is zero.
Qualitatively, as a variable is more widely distributed, the en-
tropy becomes larger.

A continuous version of the entropy is

—/plogpdd), (11)

where p = p(¢). However, some subtleties will be remarked
upon later in Sect. 3.4.1.

In applying the maximum-entropy principle, here, we sup-
pose that the distribution is constrained by L conditions given
by

/ Gi(p.$)d¢ = Ci (12)

for [=1,...,L. Here, Gi(p,®)= poi(¢), o1(¢) denotes
functions of ¢ (they define the constraints by Eq. 12), and
C; denotes known constants. See Sect. 3.4.2 for specific ex-
amples (cf. Eq. 22) and Yano et al. (2016) for physical con-
siderations of choices. Also keep in mind that a distribution
is normalized by

/pd¢= 1. (13)

The normalization can be considered a special case of the
constraints (Eq. 12) with Go = p and Cp =1 by extending
the above series to [ = 0. Note that, exceptionally, when the
PSDs are considered, Cop must be equal to the total particle
number density.

Thus, the most likely distribution is obtained by maximiz-
ing Eq. (11) under the constraints (Eq. 12) with/ =0, ..., L.
This goal is accomplished by applying a variational princi-
ple, as defined by following a standard notation (cf. Chap. 2,
Goldstein et al., 2002):

5 [— / plogpdp — > 3, / Gz(p,¢)d¢i| =0, (14)

=0

2However, this entropy should not be confused with thermody-
namic entropy (Jaynes, 1978).
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with Lagrange multipliers, A;. The above variation reduces to

S L
5 [/plogpdwzngcz(p,@dqs] 5p

1=0
L
G
=f |:logp+2)»18—l:| dpsp =0, (15)
= P
where the multipliers are re-set to
1+A, [=0,
=] Fho (16)
A [ #0.

Noting that dGo/dp =1 and 0G;/dp =o1(¢p) I =1,...,L)
and further re-setting pg to equal e~*0, the most likely distri-
bution under these constraints is

L
P = poexp [—Zkzm(@} (17)
=1

Here the constants, pg and A; are determined from the con-
straints (Eq. 12 and 13) by directly substituting the distribu-
tion form (Eq. 17) into them. This is the basic premise of the
maximum-entropy principle: a distribution of a variable, ¢,
is completely determined from only L constraints if they are
chosen properly. These L constraints determine L parame-
ters, {A ;}, that characterize the distribution. Recall that when-
ever the general assumed-PDF formulation is discussed, we
further re-set Aq to equal pg (cf. Eq. 44a).

3.3.2 Technical remarks

A rather ostensible limitation of the general result (Eq. 17)
from the maximum-entropy principle is that it does not in-
clude the possibility of a distribution zero at the zero value,
as is the case with many semi-positive definite atmospheric
variables, in any obvious manner. However, this simply stems
from the fact that results from the maximum entropy are not
exact: this principle is based on an approximate logarithmic
expression of the number, W, of possible combinations un-
der an asymptotic limit of n — oo (cf. Eq. 9). In this re-
spect, this principle may be considered a special case of the
large-deviation principle (e.g., Touchette, 2009): it can elu-
cidate only a predominant exponential dependence as seen
in Eq. (17). A possible additional subdominant algebraic de-
pendence is kept implicit because such a weak dependency
drops out in the given asymptotic approximation. Thus, if
required, an algebraic dependence of, say, ¢ can be multi-
plied on this distribution without contradicting the given re-
sult (Eq. 17). Here, u is an unspecified free positive parame-
ter. This slight generalization ensures the condition p(0) =0
as required for many atmospheric variables. See further dis-
cussions in Sect. 3.4.3 and further mathematical background
in Guiasu (1977).
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3.4 Maximum-entropy principle: examples

In order to understand the general distribution given by
Eq. (17) above better, this sub-section considers some spe-
cial cases. Implications of the maximum-entropy principle
are also remarked upon.

3.4.1 Homogeneous distribution

The simplest case for consideration is one without any con-
straints (i.e., L = 0). Then Eq. (17) simply reduces to a ho-
mogeneous distribution:

P = po. (18)

This means that a variable, ¢, has an equal chance of having
every possible value when there is nothing to constrain ¢.

However, there are a few difficulties in applying this con-
clusion to arbitrary physical variables. First, a distribution of
a variable must be bounded from both below and above in
order to apply this distribution. Second, the conclusion de-
pends on the choice of a physical variable. This is realized
by noting that any physical variable, ¢, can be transformed
into another, ¢, by assuming a relation, for example,

¢ =9”, (19)

with a constant ¢, and then the distribution is transformed by
a relation

p(@)de = agp®~ p(p*)de. (20)
Here, recall the definition of the distribution, p, given by
Eq. (4b).

Thus, although the system may represent a homogeneous
distribution in terms of a particular variable, ¢, it is no longer
homogeneously distributed in terms of another related vari-
able, ¢. This is a contradiction because a constant distri-
bution is obtained for a transformed variable, ¢, when the
maximum-entropy principle is directly applied to the latter.
In this case, the original variable, ¢, no longer follows a con-
stant probability according to the relation of Eq. (20).

The source of this ambiguity, i.e., the result from the
maximum-entropy principle depending on the choice of the
distribution variable (¢ or ¢), stems from the fact that in
translating a discrete expression for entropy (Eq. 10) into a
continuous version (Eq. 11), it is assumed that a variable,
¢, takes discrete values defined by a constant increment,
A¢ = (¢pm — ¢P1)/(m — 1), over an interval, [¢1, ¢, ]:

¢i =g+ —-DAg, ey

with i = 1,...,m. Then Eq. (11) is obtained from the right-
hand side of Eq. (10) by multiplying A¢ on the latter and
taking a limit of m — oco. Conversely, Eq. (11) can be ap-
proximated by the right-hand side of Eq. (10) multiplied by
A¢ with the discretization (Eq. 21). Note that ambiguity with
an arbitrary algebraic factor is also consistent with the nature
of the maximum-entropy principle that is valid only in an
asymptotic sense, as already suggested in Sect. 3.3.2.
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3.4.2 Constraints by moments

When a variable is constrained by the first L moments, gen-
eral constraints (Eq. 12) reduce to

f ¢! pde = Cy, (22)

with C; being a value of the /th moment with o; = q)l. The
general distribution (Eq. 17) reduces to

L
P = poexp [— Zw’] : (23)
=1

In particular, when a system is constrained only by a mean
(i.e., L = 1), the distribution reduces to an exponential distri-
bution,

p = poexp[—Ar14], (24)

i.e., the probability of the first occurrence of an event under
a Poisson process, and when a system is also constrained by
a variance (i.e., L = 2), it reduces to a Gaussian distribution,

p = poexp[ — ra(¢ — (#))?], (25)

with a slight reconfiguration of the general form (Eq. 23).
Here, the mean is given by (¢) with A1 = 2A,(¢). These re-
sults are consistent with our common usage of these distri-
butions: when only a mean (e.g., waiting time) is of concern,
an exponential distribution can be adopted. When a variance
is also of interest, a Gaussian distribution is the most conve-
nient.

3.4.3 Gamma distribution

Note that general distribution forms obtained from the
maximum-entropy principle, as seen by Egs. (17) and (23),
always take an exponential form without any algebraic fac-
tor. However, in many atmospheric applications, a distribu-
tion with an algebraic dependence is observed. The best ex-
ample would be the gamma distribution, which is commonly
adopted for representing PSDs in cloud microphysics (e.g.,
Khain et al., 2015). Furthermore, the gamma distribution is a
favorable choice for representing various semi-positive defi-
nite variables (e.g., water vapor, mixing ratios of various mi-
crophysical water species) as argued by Bishop (2016).

The issue may be commented on from three perspectives.
First, it is important to keep in mind the asymptotic nature of
the maximum-entropy principle, which is derived under an
asymptotic limit of n — 00. As noted in Sect. 3.3.2, for this
reason, the maximum-entropy principle is best understood as
a special application of the large-deviation principle, which
is designed to express only the dominant exponential depen-
dence, and a remaining subdominant algebraic dependence is
left implicit. From this perspective, the gamma distribution
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can be interpreted to be a straight generalization of an ex-
ponential distribution, obtained by multiplying an arbitrary,
subdominant algebraic factor.

A way of deriving the gamma distribution more explicitly
is as a consequence of a transformation of a distribution vari-
able, as discussed in Sect. 3.4.1. By setting a new variable to
be ¢, a transformed distribution can contain an algebraic fac-
tor as shown by Eq. (20). Lastly, it is in fact possible to obtain
an algebraic dependence from the maximum-entropy princi-
ple simply by setting one of the constraints to be o; = log¢.
The physical meaning of such a constraint is not immediately
clear, but it is a question that may be worthy of further inves-
tigation. When the constraints are chosen to be o1 =log¢
and o7 = ¢, then a gamma distribution is obtained.

3.5 Liouville equation

When a system is governed by an equation of the form of
Eq. (2), as introduced in Sect. 2, the Liouville equation,

ap(¢) _ 3IFp(®)
ar ap

(26)

describes the time evolution of a distribution density, p(¢), of
a given physical variable, ¢. Note that so long as the original
full physics is exactly described by Eq. (2) in a deterministic
manner, with F as a continuous function of ¢, the associ-
ated evolution of the probability distribution density is also
exactly described by Eq. (26). See Yano and Ouchtar (2017)
for a very concise derivation. Generalization for the multiple-
variable case is accomplished straightforwardly by replac-
ing ¢ and F' by vectors. See, e.g., Risken (1984) for systems
with stochasticity. More general formulations for the partial
differential equation (PDE) systems are presented, e.g., as
Eq. (15) in Larson (2004), with a full derivation given by,
e.g., Pope (1985) and Klimenko and Bilger (1999).

In spite of its advantage in directly evaluating the time evo-
lution of a given distribution, the Liouville equation is unfor-
tunately rarely adopted in the studies of atmospheric sciences
(e.g., Ehrendorfer, 1994a, b, 2006; Yano and Ouchtar, 2017,
Garret, 2019; Hermoso et al., 2020) due to its prohibitive
computational cost. An efficient computation methodology,
which may make much wider application possible, will be
presented in Sect. 5. The result can easily be generalized to a
PDE system, as outlined in Sect. 5.3.

3.6 PSD equation

A prognostic equation for a PSD, n(r), of hydrometeors can
be considered in an analogous manner to the Liouville equa-
tion, but it differs in the detail (cf. Khain et al., 2015). A PSD,
being considered at a single macroscopic point, is advected,
and also a source term, S, does not generally take a flux di-
vergence form:

on(r) LV n(u 4 d(w — wy(r))n(r)
at 0z

= S(). 27
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Here, r is the particle size, u the horizontal velocity, w the
vertical velocity, and w(r) the terminal velocity of the parti-
cle with the size r. The source term may furthermore be sepa-
rated into two distinctive processes, collision processes, Scol,
and non-collision processes, Sioc, namely the growth and the
reduction (e.g., evaporation) processes of the individual par-
ticles:

S(r) = Sco1(r) + Sioc(r). (28a)
The collision term may take the form
m
Scol(m) = %/n(m’)n(m —mK(@m',m —m")dm'
0
o
— /n(m)n(m/)K(m, mydm’, (28b)

0

setting the particle masses to be m = m(r) and m’ = m(r').
Here, K (m,m’) is the collision kernel between the particles
of the masses, m and m’. Also note Sco1(r)dr = Seo1(m)dm.
The first and the second terms on the right-hand side above
represent gain and loss, respectively, for a given particle size.
The collision process prevents Eq. (27) from being reduced
to the Liouville equation because this process makes the
source, F', discontinuous as a function of the particle size.
Nevertheless, Eq. (27) can be treated in an analogous manner
to the Liouville equation (Eq. 26) by replacing the right-hand
side of Eq. (26), —(dp(¢)F/d¢), by the tendency of PSD as
given in Eq. (27). Furthermore, the PSD equation (Eq. 27)
reduces to the Liouville equation when the advection and the
collision effects can be neglected, as seen in Sect. 6.

4 Applications to atmospheric processes

In applying the statistical principles discussed in the last sec-
tion to atmospheric problems, some additional considera-
tions are required due to differences from typical statistical
problems. This section discusses those differences. Our dis-
cussions may be rather abstract and philosophical. However,
we believe that they provide insights into critical issues of
atmospheric modeling that are often overlooked. Our discus-
sions lead to a principle for choosing distribution constraints
in atmospheric problems, as required for the maximum-
entropy principle, which we call the output-constrained dis-
tribution principle.

There are, namely, three important differences in the at-
mospheric applications from standard statistical applications.
Those are discussed in the following three subsections.

4.1 Static or non-static, diagnostic or prognostic

First, statistics or, more precisely, mathematical statistics is
fundamentally static and diagnostic: methodologies of statis-
tics and probability (e.g., hypothesis testing, probabilities
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with a binomial system) as found in standard textbooks (e.g.,
Feller, 1968; Wonnacott and Wonnacott, 1969; Jaynes, 2003;
Gregory, 2005) do not involve any time-dependent prob-
lems. Extensive time-dependent statistical models in the lit-
erature belong to statistical mechanics and stochastic model-
ing rather than to mathematical statistics. This fundamentally
static nature of the statistics is also reflected upon in more
modern statistic theories; for example a standard textbook on
deep learning (Goodfellow et al., 2016) does not address any
time-dependent problems. Very symbolically, the notion of
“updating” a prior distribution in Bayesian probability theo-
ries (e.g., Bernardo and Smith, 1997), contrary to its conno-
tation, involves not a concept of time but just an update of
our knowledge within a fixed time.

This is a rather stark contrast to the atmospheric system,
which continuously evolves with time: we are inherently in-
terested in forecasts. Allegorically speaking, there is no time
to update the priors with the atmospheric system because,
as soon as information is updated, the original prior is al-
ready obsolete because the system itself has changed. Still
allegorically speaking, the best we can do is to update (in a
meteorological sense but not in a statistical sense) the pri-
ors themselves with time. In other words, in describing the
atmospheric processes, the key issue is to predict the time
evolution of the probability and the statistics: atmospheric
problems are fundamentally non-static and prognostic.

The data assimilation problem falls in the middle of the
two. As in any other atmospheric problem, the prediction of
the evolution of the data uncertainty is a key aspect of data
assimilation. At the same time, the statistical update of data
by incorporating observational information is another key as-
pect of the data assimilation. In the present study, the focus
is exclusively on the first aspect.

4.2 Output-constrained distribution principle

Second, in many statistical applications as well as in stan-
dard equilibrium statistical mechanics, as summarized by
Jaynes (1978), a final aim is to know a distribution of a
given variable. For this goal, the integrated quantities are in-
puts to a problem that constrains a distribution. Under these
constraints, we define the most likely distribution from the
maximum-entropy principle.

However, in atmospheric modeling, knowing a distribution
itself, though it may be of theoretical interest, is not an ulti-
mate aim. It is merely a means of obtaining certain integrated
quantities (e.g., microphysical tendencies, grid-box-averaged
quantities, standard deviation error measures) for a modeling
purpose. For this goal, a precise form of a distribution is not
of interest, but it must be just accurate enough for providing
these required final outputs. This is a very different problem
compared to the problems in standard equilibrium statistical
mechanics. Here, we must clearly recognize that these are
two different problems: although a more accurate distribu-
tion may help to evaluate the required statistical quantities

Atmos. Chem. Phys., 25, 9357-9386, 2025



9366

more accurately, there should be a way of making the latter
more accurate without making the former more accurate than
necessary.

This observation leads to an interesting possibility for
constructing a prescribed PDF (DDF) form in atmospheric-
science applications: take the necessary outputs rather than
the available inputs as constraints. Thus, for example, if the
purpose is to know a mean value (e.g., a waiting time), take
an exponential distribution (Eq. 24). If the purpose is to know
a variance (e.g., a standard deviation error in temperature
measurements), take a Gaussian distribution (Eq. 25). We
propose to call these output-constrained distributions. Note
that an assumed PDF obtained under this principle may pro-
vide a poor fit to the actual distribution. Our basic argument
here is that, nevertheless, an assumed PDF will work rea-
sonably well for the purpose of estimating the required out-
put values (i.e., “constraints”) because the given distribution
is obtained from the maximum-entropy principle by taking
those required outputs as the constraints.

The proposed re-interpretation is consistent with a basic
requirement for an assumed-PDF form: if we need to fit a
PDF to L statistical variables, L parameters must be intro-
duced. This is not the case with a popular approach of intro-
ducing an assumed double-Gaussian distribution for the sake
of representing the skewness of an actual distribution (e.g.,
Larson et al., 2002; Fitch, 2019; Naumann et al., 2013): the
number of parameters of an assumed PDF becomes greater
than that of required outputs. For example, with a single vari-
able, a double-Gaussian distribution introduces five parame-
ters when only three outputs are required (mean, variance,
skewness). In contrast, the proposed principle suggests how
to choose a distribution that contains the minimum number of
parameters compatible with the required number of outputs.
Here, we invoke the maximum-entropy principle for this pur-
pose.

A current standard approach of updating the PDF param-
eters is from some moments (e.g., mean, variance) of vari-
ables. The output-constrained distribution principle dictates
the need to update those parameters using the actual output
variables that are required for a host model or quantities that
are crucial for predicting the evolution of the system of con-
cern. This rather philosophical statement poses an important
practical question of, for example, whether it is optimal to
choose the radar reflectivity as a third constraint in bulk mi-
crophysics.

Here, the notion of “output variables that are required for a
host model” is more specifically relevant to the subgrid-scale
distribution for a parameterization. Recall that the goal of a
parameterization is to provide not every detail of subgrid-
scale processes but only the so-called apparent sources, Q1
and Q», i.e., tendencies of the temperature and moisture due
to the subgrid-scale processes (cf. Yanai et al., 1973), and
only as grid-scale averages. All the other details are only for
the purpose of a consistent calculation of the subgrid-scale
processes. In the case of the clouds microphysics with ex-
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plicit cloud modeling (thus the cloud processes themselves
are not “parameterized”), certain variables must be passed
over to different components of the model, which plays the
role of “host model” in this context. For example, the mixing
ratios of clouds and rain, g, and g, must be counted for an ac-
curate definition of the buoyancy in the momentum equation.
Some radiation schemes require inputs of the mean radius
of the cloud and rain droplets, r. and rp, although they are
typically not prognostic variables of the cloud microphysics.
Those variables are considered to be the “necessary variables
(outputs) for the host model”. Thus, especially in the con-
text of the cloud microphysics, the “necessary variables (out-
puts)” should be clearly distinguished from the prognostic
variables in the cloud microphysics. The case of data assim-
ilation is more subtle because there is neither a host model
nor other model components to which information must be
passed. Yet, for operational purposes, we are not interested
in knowing the full shape of the probability distribution of
a variable in order to quantify the uncertainty. In traditional
assimilation formulations, we merely ask for the standard de-
viation errors/uncertainties in variables; those are considered
the “necessary outputs” for the data assimilation.

4.3 Availability of input data

A third major difference of atmospheric problems compared
to standard statistical problems is the availability of input
data (e.g., initial constraints). Regarding the latter, we as-
sume a situation whereby available input data (information)
are rather limited. For example, the Maxwell-Boltzmann dis-
tribution is derived by assuming that only the total energy is
known. It is rarely asked how to obtain more information so
that, for example, a higher-order correction to the Maxwell—
Boltzmann distribution can be obtained. A limited amount of
information is the given starting point.

On the other hand, in atmospheric problems, available in-
formation is rather unlimited, or at least, we believe that we
can obtain more data by either modeling or observation if
necessary. In other words, the input data are rather uncon-
strained. For the subgrid-scale distributions, more explicit
models such as cloud-resolving models (CRMs) or large-
eddy simulations (LESs) can be used at will for any detailed
simulations for the subgrid-scale processes of concern, es-
pecially with enhancements of computing power. Such an
abundance of information tends to obscure the basic idea of
statistical description. The same issue can also be identified
from the perspective of the assumed-PDF (DDF) approach:
we can take as many moments as required in principle. The
only issues are the computational cost and accuracy benefit.

In other words, in principle, the number of available in-
puts is less limited in atmospheric problems. Thus, if this
available information is simply adopted as constraints for
defining the most likely distribution under the maximum-
entropy principle, the number of distribution parameters can
arbitrarily be increased to get as accurate a distribution as
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desired. This consideration also strengthens the argument of
the last subsection. In the context of the assumed-PDF (DDF)
approach, a number of “constraints” (e.g., moments) must
be decided in such a manner that required outputs can be
evaluated in a sufficiently accurate manner. In other words,
the problem must be constrained by required outputs rather
than by available inputs; that is the essence of the output-
constrained distribution principle.

4.4 Validation: diffusion problem

Over the last two subsections (Sect. 4.2 and 4.3), argu-
ments have been developed for re-interpreting the maximum-
entropy principle in such a manner that the actual variables
required as outputs are to be adopted as “constraints” for de-
termining a distribution. Recall that the output-constrained
distribution principle is proposed merely as a guiding princi-
ple for choosing an assumed form for distributions; thus we
do not expect that those chosen distribution forms can make
any perfect predictions. Nevertheless, it would be helpful to
quantify the degrees of the accuracy of predictions; that is the
purpose of this subsection.

Thus, this subsection tests the proposed output-
constrained distribution principle by taking, as an example,
a one-dimensional diffusion equation:

9 92
( ) p=0, (29)

8 ox?

with a diffusion coefficient set to unity for simplicity. When
a system evolves purely under white-noise forcing, as in the
case of Brownian motion, the prognostic equation for the dis-
tribution, p, reduces to this form. Also note that Eq. (29) is a
special case of the Fokker—Planck equation.

Let us assume that we are interested in predicting only a
mean and a variance for the position, x, of the distribution,
p. In other words, the required outputs for our problem are
only a mean, (x), and a variance, {(x — (x))2). In this case,
the output-constrained distribution principle suggests that it
suffices to take a Gaussian distribution; say

p(x. 1) = po(t)e 2 OE= WO (30)

Note that in this particular case, the adopted distribution form
also corresponds to an exact solution of the system (Eq. 29).

The time dependence of the parameters, A(f) and (x)(¢),
introduced in the above solution (Eq. 30) can be de-
rived by directly substituting Eq. (30) into Eq. (29); cf.
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Sect. 5.7.When the initial conditions are given by
() =0 = {x)o, (31a)
()P0 = 537 (31b)

the time evolution of the distribution (Eq. 30) is given by

1 a2
) = ()
A (x = (x)o)?

Here, the distribution, p, is also normalized so that its in-
tegral over the whole domain becomes unity, and the time
evolution of the mean and the variance is given by

(x) = (x)o, (33a)
2 1 +40%t
((x = (x))7) = ETE
1
=5 +2r. (33b)

Note that the mean is a constant with time in the diffusion
problem if the initial condition is Gaussian, whereas the vari-
ance increases linearly with time.

The basic idea behind the output-constrained distribution
principle is to define a PDF in such a manner that the required
output variables (mean and variance here) can be evaluated
most effectively with the minimum possible parameters. Fit-
ting an actual distribution under an assumed-PDF form is not
a goal. To test the workings of this principle, we consider
two examples in which we set both the initial mean and the
variance of the output-constrained distribution (Eq. 32) to be
equal to those of an actual initial distribution and compare
the evolutions of means and variances of both distributions.

4.4.1 Example 1: double-Gaussian distribution

As a first example, we take an initial distribution consisting
of two Gaussian distributions:

1/2 2
plx,t =0)=a (ﬂ) el
T
1/2 )
+ar (&) e H2lx—x2)” (34)
T
Here, two Gaussians are centered as x = x1 and xj, respec-
tively. By a normalization condition, we may set

o1 +ar =1. (35a)
We may further set
o1x]+ax2 =0 (35b)

so that the initial mean is (x) = 0.

Atmos. Chem. Phys., 25, 9357-9386, 2025



9368

It is immediately seen that the time evolution of this sys-
tem is given by

o (ﬂ) V2 /(g
(I +4mnt2\

L » (&)” il (D (36
A +4u0 2\ 7

plx,t)=

Here, the mean remains a constant with time, thus (x) =0,
and evolution of the variance is given by

2 ap 14+4pt ax 1 4+4uat
X%y =— —
2w 2 w2
1
- (ﬂ n 2) +or. 37
2\ 1 m2

We can evaluate the statistical evolution of this system by an
output-constrained distribution (i.e., a single-Gaussian distri-
bution) by setting the initial mean and variance to be identi-
cal. Thus, we obtain (x)o =0 and

-1
A= <°‘—‘ + ﬂ) (38)
M1 M2

in Eq. (32). Substitution of Eq. (38) into Eq. (33b) shows that
this single-Gaussian model can predict the time evolution of
both the mean (rather trivially) and the variance of a two-
Gaussian system perfectly.

Note that in this case, a single Gaussian hardly fits a
double-Gaussian distribution in any good approximation, es-
pecially when two Gaussians are well separated from each
other. However, if our interest is merely to predict a variance,
then in this example a single-Gaussian approximation per-
fectly serves the purpose, being consistent with a proposed
re-interpretation of the maximum-entropy principle. This ex-
ample may appear to be rather too special and artificial. Nev-
ertheless, it makes the case well that for predicting a limited
number of statistical quantities satisfactorily, accurately pre-
dicting the evolution of the whole distribution is not neces-
sarily a requirement.

4.4.2 Example 2: a skewed Gaussian distribution

The second example is a skewed initial distribution given by

12 ,
plx,t=0)= <;> (1 +ax)e ™. (39)

Here, a constant parameter, «, controls the skewness of this
distribution. This example examines how well an assumed
Gaussian distribution predicts the statistics when an actual
distribution is not Gaussian.

The time evolution of this system is solved by, for ex-
ample, a Fourier transform method, as summarized in Ap-
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pendix A. The final answer is

p(x,1)

_ 1 1+ oax
T (144x)1/2 (144112

A\ 12 Ax?
x [ — exp| — . 40
<rr> P [ 1+ 4M] (40)
From this solution, the time evolution of mean and variance
is readily evaluated as

o
<x>=ms (41a)

I L P &
(e = @)?) = — [1 T +4m3] (41b)

“Fit” to this problem under the assumed single-Gaussian dis-
tribution is given by

(x)o = % (42a)
Ol2 -1
A — x<1 _ ﬁ) (42b)

In this case, the assumed PDF fails to predict a gradual
shift of the mean to the origin from an initial position (cf.
Egs. 41a and 42a; Fig. 1a). This discrepancy is hardly a sur-
prise because an assumed-PDF evolution is not expected to
predict an evolution of an actual distribution in any perfect
manner. However, the growth of the deviation of the vari-
ance with the assumed single-Gaussian distribution (Eq. 42b;
Fig. 1b, long dash) from the real value (Eq. 41b; Fig. 1b,
solid) is relatively slow, and an underestimate is only 25 %
even at At = 10 with a relatively large nondimensional skew-

ness parameter (i.e., a/A!'/? = 0.5) assumed.

5 Liouville equation constrained by an assumed
PDF

As emphasized in the last section, in principle, a full physical
system, as given by Eq. (2) in the present study, is known in
atmospheric problems; thus it also prompts us to exploit the
Liouville equation (Eq. 26) in predicting the time evolution
of a distribution. The next question is how it can be exploited
efficiently. The output-constrained distribution principle in-
troduced in the last section provides half of the answer to this
question: adopt a distribution form that is defined from the
maximum-entropy principle but taking the required outputs
for the host model as the “constraints”, {(o;) (| =1,...,n). As
a result, a distribution with a finite number of parameters,
{X;}, is obtained. Thus, the problem of defining the time evo-
lution of a continuous distribution function reduces to that of
describing the time evolution of a finite number of parame-
ters {A;(7)}. The remaining half of the question is how to ac-
tually calculate the time evolution of {};} directly by a set of
ordinary differential equations. The present section addresses

https://doi.org/10.5194/acp-25-9357-2025



J.-l. Yano et al.: General formulation for the distribution problem

1.2

mean

o N T N e A o s

45
(b) 40
35
30 -
25 -

20 —

15 -

10 -

variance

At

Figure 1. Plots of (a) 2A(x)/a and (b) 2A((x — (x))z) with an ini-
tial skewed Gaussian distribution (Eq. 39) with « /kl/ =0.5: exact
(solid) and with a single-Gaussian approximation (long dash). Note
that in panel (a), although the exact mean (solid) decreases to zero
with time, the assumed Gaussian solution (long dash) totally fails
to predict this tendency. Nevertheless, the prediction of the variance
(b) with the assumed Gaussian (long dash) is still qualitatively cor-
rect, even though a tendency for underestimation compared to the
exact value (solid) may be noted.

this remaining half. Importantly, the formulation presented in
this section does not rely on the output-constrained distribu-
tion (maximum-entropy) principle. Rather, it can be applied
to any form of assumed PDFs.

The first key step required for this procedure is, as just
suggested, to replace the time derivative, dp/dt, of the dis-
tribution by time derivatives, il, of the PDF parameters. This
is simply accomplished by taking a chain rule to the time
derivative, noting that the time dependence in the distribu-
tion (Eq. 4a) arises solely from the parameters, {A;}:

3 N oap .
PN @3)
Jat = oA

A specific example of this procedure is given by Eq. (55)
below, which can also be performed either more directly or
using Eq. (43) explicitly.

5.1 General formulation

This subsection derives a prognostic set of equations for the
PDF parameters {};} in a general manner. The derivation is
repeated in Sect. 5.5 by taking the exponential distribution
as an example so that the basic idea can be seen in a more
concrete manner.

https://doi.org/10.5194/acp-25-9357-2025
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We assume a distribution in a general form (Eq. 4a) assum-
ing that a distribution is defined by N + 1 free parameters A;
(i =0,...,N). Here, we assume that A¢ is a constant factor
that is required for normalizing the distribution, as already
noted when introducing the assumed distribution in a general
form by Eq. (4a); thus

P X Ao (44a)
or
0

& _ P (44b)

oAy o
Substitution of Eq. (44b) into Eq. (43) leads to
Ao N ap :
=p— — A 45
Pt ; A (45)

The replacement of the left-hand side of Eq. (45) by that of
the right-hand side is the key step of reducing the problem
of the evolution of a distribution, p, as a whole to that of the
fixed number of parameters, A; (i =1, ..., N).

The time evolution of this distribution is constrained in
two ways: first, by a normalization condition (Eq. 13) and,
second, by the Liouville equation (Eq. 26). The normaliza-
tion condition (Eq. 13) can also be cast into a prognostic form
by taking the time derivative:

5, | pde=0. (46)
with the normalization (Eq. 13) introduced as an initial con-
dition. Note that in cases with PSDs, the right-hand side of
Eq. (13) must be replaced by Co, with Co standing for the
total particle number density. Thus, the following reduction
must also be modified accordingly.

When the integral range is fixed with time, the time deriva-
tive can be moved inside the integral, operating only on the
distribution, p, in Eq. (46). Further substituting the formula
for the time derivative (45), we obtain

oo S/l

The Liouville equation (Eq. 26) also reduces from Eq. (45)
to

+—( F)= (48)

+Z
i=
and furthermore, by substituting Eq. (47) into the above, to
N
ap ap . a
— —p | ——=d¢|ii+—(pF)=
;[M p/ah ¢>} i+ 54 PF)

Equation (49a) is the key result of the present study be-
cause it constitutes a prognostic equation for evaluating the

(49a)
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time evolution of {A;}. Note that when the same procedure
is applied to the diffusion equation (Eq. 29), by replacing
ApF/d¢ by —dp/dp?, it reduces to a set of ordinary dif-
ferential equations for A, and (x), as shown in Sect. 5.4.1.
As in the case with the diffusion equation, more generally,
when the assumed-PDF form constitutes an exact solution
of a given system, Eq. (49a) is separated out into the ¢ and
A; dependencies, and the latter dependencies can be solved
separately, independent of the distribution variable, ¢. This
point can be understood directly from the fact that Eq. (49a)
is equivalent to the original Liouville equation (Eq. 26) under
the given assumed-PDF form.

However, because the assumed PDF generally constitutes
merely an approximation of a true distribution, ¢ depen-
dence in Eq. (49a) cannot be separated out in a general case;
thus this equation cannot be solved in any consistent manner
merely in terms of the assumed-PDF parameters, {A;}. The
consequence of the approximate nature of the assumed PDF
in Eq. (49a) is more explicitly seen by substituting Eq. (4¢)
into Eq. (26):

(49b)

N ap
Z[W_pfﬁcw}\ + ¢(pF)=5

with & suggesting a possible error. We should keep well in
mind that this very last fact does not change regardless of
the manner in which we attempt to predict the evolution of
a distribution by an assumed PDF. In other words, Eq. (49a)
itself is not defective, but the difficulty here is a simple con-
sequence of the assumed-PDF approach, which attempts to
solve the evolutions of distributions by assuming the forms
that are not actual solutions.

Thus, the next goal is to derive a closed set of equations,
not depending on ¢, from Eq. (49a) in order to solve a set
of distribution parameters, {A;}, in a consistent manner. For
this purpose, we need to remove the ¢ dependence from
Eq. (49a). An only option that we can see is to simply inte-
grate it over ¢. Here, a goal is to obtain N differential equa-
tions for A; (i =1,..., N) by removing ¢ dependence. For
this purpose, we apply a set of weights, oy (I =1,...,N), to
Eq. (49a) and integrate them over ¢. Here, the weight, o7, is
an unspecified function of ¢ but independent of {);}. After
integration in ¢, we obtain

N
dp O ]y "0 .
g { Uza—)\id@*/mpd@/a—)\[d@} A = 7'/ Uza—cb(PF)d@

= ‘ (50a)

for/ =1,...,N. As aresult, we obtain N ordinary differen-
tial equations for N unknowns. The set of Eq. (50a) is linear
in terms of A i; thus it can be inverted in principle, and the ten-
dencies, Xi, can explicitly be evaluated. Here, keep in mind
that Eq. (50a) is valid only approximately; thus it may be
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more emphatically stated as

’ZN:UG,—M) / 1pd¢>/—d¢i|

/ o1~ (pF)dp+ &, (50b)

¢
with & suggesting an associated error. Note further that the
right-hand side of Eq. (50a) can be re-written as

[asgtwrns=— [ priZlas (51)
by an integration by parts, assuming that pF vanishes at
the edges of the integral range. Realize that the key step in-
troduced in the formulation here is to predict the PDF pa-
rameters, {(1;)(#)}, by Eq. (50a). In this manner, we circum-
vent the principal difficulty of the current assumed-PDF ap-
proaches of inverting the relations of Eq. (6) into the form of
Eq. (5). Now, the major remaining open question with this
procedure is the choice of the weights, {07}, which is the is-
sue to be addressed next.

5.2 Choice of the weights, {o0;}

Here, the most appropriate choice of the weights, {07}, be-
comes immediately clear by noting that the left-hand side of
Eq. (50a) corresponds to a temporal tendency, d{(oy)/d¢, of
the “averaged” weight:

o= [ arao=3"[ [o a]i

where the last expression reduces to the left-hand side of
Eq. (50a) with the help of Eq. (47). Thus, symbolically,
Eq. (50a) is equivalent to

d

gl = (Fo),

with Fy, the source term that defines the tendency of o;. By
the deduction from Eq. (52a), we can conclude that Eq. (50a)
predicts the time evolution of (o7), as given by Eq. (52b),
where

{o1) = / porde.

It also follows that if {(o7)} is chosen as the outputs to be
used in the host model, by following the output-constrained
distribution principle (cf. Sect. 4.2), Eq. (50a) predicts those
required outputs consistently under a given assumed PDF
(DDF), being equivalent for solving Eq. (52b). Thus, we
choose {07} to be the same as in the constraints of Eq. (12)
with G; = poyand L = N.

A standard choice following the assumed-PDF (DDF) ap-
proach is to set o7 = ¢. This procedure is equivalent to time-
integrating the moments for predicting {};}. Equation (50a)

(52a)

(52b)

(52¢)
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or (52b) further reduces to a diagnostic method based on mo-
ments typically adopted in the subgrid-scale assumed-PDF
formulations, when {(o;)} is taken as moments, and also a
diagnostic limit is taken. As already emphasized in introduc-
ing the governing equation (Eq. 2) of the system in Sect. 2,
the source term, F, includes all the physics associated with
a variable, ¢. A multi-variable extension is also straightfor-
ward. Thus, in principle, this formulation can be applied to
any assumed-PDF approaches, including those in cloud mi-
crophysics and data assimilation.

In subsequent subsections, more specific versions of
Eq. (50a) for various assumed-PDF forms are presented, as
a demonstration that this general formulation can actually be
used. These results can readily be used as receipts for ap-
plying the formulation to any physical problems under given
assumed-PDF forms, once the source term, F, is specified.
However, as a detour, in the next subsection, we first discuss
the generalization of the formulation introduced into the PDE
system, and in Sect. 5.4, we discuss its link to the existing
assumed-PDF approaches and the bulk microphysics.

5.3 Generalization to the PDE system (Eq. 1)

The discussion of the last subsection suggests that the deriva-
tion of the prognostic equations for the assumed-PDF param-
eters in the one-dimensional dynamical system (Eq. 2) can be
generalized into partial differential equation (PDE) system:s,
described by Eq. (1), in a relatively straightforward manner.

First note that in a PDE system, the time derivative on
the right-hand side of Eq. (52a) is replaced by a partial time
derivative:

3 ap ul ap -
E(O—”:/Ulgd(b:;[/ala—)wd(f)})\l

Note next that a time-evolution equation for o7 can be derived
from the basic governing equation (Eq. 1) by taking a chain
rule:

(53a)

a0, doy @ a0
_lz_l_¢=_l(_v.v¢+p)_
at dp Jt g

Thus,

(53b)

do;

For= 5 (-0 Vo + ) (53¢)

and with the help of Eq. (53c), the PDE version of Eq. (52b)
becomes
0]

37 (o1 = (Fo). (53d)

By combining Egs. (53a) and (53d), the prognostic set of
equations for A; is given by

3 N 3 :
(o) :Z[/‘”a_fid"’}“ = (Fy).

i=0

(53¢)
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Keep in mind that }; in the above designates the partial time
derivative. The generality of the final result (Eq. 53e) would
not be necessary to emphasize.

5.4 Link to the existing assumed-PDF approaches and
the bulk microphysics

The formulation presented in the last three subsections con-
stitutes a generalization of the existing assumed-PDF ap-
proaches in the following manner. Recall that with the help of
Eq. (52a), the general equation (Eq. 50a) can be more sym-
bolically be written as Eq. (52b). Here, keep in mind that
a spatial dependence of variables with Eq. (1) can also be
taken into account by simply replacing the time derivative on
the left-hand side by a partial derivative (cf. Eq. 53d). Also
keep in mind the possibilities of generalizations in the sys-
tems with multiple variables (cf. Yano, 2024), though they
remain implicit here. In this manner, Eq. (52b) constitutes a
general form of governing equations considered in the exist-
ing assumed-PDF approaches, as more specifically presented
by, e.g., Egs. (3.1)—(3.10) in Larson (2022).

The first generalization to be noted is the fact that (o) can
be of any output variables as required by a host model so long
as oy is properly defined as functions of dependent variables.
Also note that the integral range in definition (Eq. 12) can be
taken in any manner, although such a full generalization itself
is left for future studies (cf. Yano, 2024). Thus, for example,
a cloud fraction can also be introduced as one of the output
variables of the form, (o;), under this definition. On the other
hand, the existing assumed-PDF approaches, rather arbitrar-
ily, restrict these statistical variables, (o;), to being moments
(e.g., Golaz et al., 2002). The formulation introduced here
demonstrates that this restriction is not necessary, but a very
wide range of choices can be made for (o7).

Furthermore, the existing assumed-PDF approaches per-
form time integrals of the statistical variables, (o), by
Eq. (52b). Note that with some variables, Eq. (52b) is solved
diagnostically by setting the left-hand side to be zero (cf. Lar-
son, 2022). After updating (o7), the PDF parameters, {};}, are
diagnosed from the given set of {(o;)} from the following re-
lations:

(0j) = (o;)({M}) (54)

for j =1,...N. As already discussed in Sect. 3.2.1, the in-
version of {{(o7)} to {A;} is not always easy.

The introduced general formulation, in turn, shows that the
left-hand side of Eq. (52b) or Eq. (53d) can be replaced by
the left-hand side of Eq. (50a) or Eq. (53a); thus the problem
directly reduces to the prognoses of the PDF parameters of
a given distribution. As a result, there is no longer a need to
perform a cumbersome inversion. This modification greatly
facilitates the computational procedure. Note especially that
when the same set of moments is taken for {{o;)}, with identi-
cal assumed-PDF forms, the present formulation is perfectly
equivalent to an existing assumed-PDF model apart from the
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fact that the PDF parameters, {};}, instead of the moment set,
{{a71)}, are directly predicted.

Another strength of the present formulation is in more
explicitly showing that the right-hand side of Eq. (52b) or
Eq. (53d) can also be totally expressed in terms of the PDF
parameters. As a result, there is no longer a need to intro-
duce further closures to the assumed-PDF formulation, as
also noted by Golaz et al. (2002). However, this last rather
obvious point is not always recognized, and some assumed-
PDF approaches often introduce additional closures to close
their formulations (e.g., Fitch, 2019; Naumann et al., 2013).

The standard formulations in the bulk microphysics (cf.
Milbrandt and Yau, 2005, and the references therein) are to
adopt the mixing ratio, ¢; the total number density, Nt; and
the radar reflectivity, Z, as the prognostic variables, with the
order to be adopted with decreasing truncations. Under the
present formulation, neglecting multiplication factors, g and
Z correspond to setting o1 = r> and oy = r°, respectively,
whereas Nt is predicted in a standalone manner by sepa-
rating out the number density, n, into the two components
by setting n = N1p. More or less the same remarks follow
for them with further flexibilities in the formulation by re-
writing it in terms of a general form of Eq. (52b) or Eq. (53d).
Probably, most importantly, the choice of the radar reflectiv-
ity, Z, as a “constraint” can be questioned from the point
of view of the output-constrained distribution principle (cf.
Sect. 4.2): though the reflectivity, Z, may be a useful variable
to compare with the observation, it is not directly required in
any microphysical tendencies within a model.?

5.5 Application 1: exponential distribution

In this subsection, we repeat the general derivation presented
in Sect. 5.1 by taking the exponential distribution (Eq. 24
with A9 = po) as an example. Here, we immediately obtain

3A standard argument for adopting the sixth moment, (ré), as a
prognostic variable for predicting the PSD distribution is that it can
describe the spread of PSD well. In distribution problems, on the
other hand, a standard choice for measuring the spread is the vari-
ance; thus a given distribution should be constrained by the second
moment, (r2), rather than by the sixth moment, (r6). The choice of
o = r% would only be justified when a mass distribution rather than
a size distribution is considered because in that case the variance is
defined by o0 = m? o r%, where m is the particle mass. On the other
hand, from the point of view of the output-constrained distribution
principle, what is important is to predict a set of output variables that
are required for the host model, rather than simply trying to predict
a spread in an accurate manner. In this respect, as already pointed
out, the reflectivity, (r®, is usually not a variable that is directly re-
quired within a cloud model. Probably, the most important process
to be predicted is the coalescence, which is, very crudely speaking,
controlled by n%; thus a weight to adopt would be o = n¢, noting
that there is already a factor, nc, in the definition of the integral
with . For the precipitating particles, the same would apply to the
sedimentation rate, which is proportional to a certain power, say a,
of the particle size, r; then o = r% would be the choice.
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op/dro = p/ho, dp/dr; = —p¢, and

81) io :

20 ek, 55
o1 PAO DPOAL (55)

The normalization condition (Eq. 46) is obtained by integrat-
ing the above equation with respect to ¢:

f%/pd¢—i1/p¢d¢=o.
0

Noting that [ pd¢ =1 and [ ppd¢ = (¢) = 1/A1, it reduces
to

(56a)

Aok

A0 _ A (56b)
A Al

which can be immediately integrated into

A

20 _ const. (56¢)

1

That is the constraint under the normalization condition. Al-
ternatively, the normalization condition can be obtained di-
rectly by performing an integral of the distribution analyti-
cally:

Ao =A1. (564)

Substitution of Eq. (56b) into Eq. (55), in the same manner
as that of Eq. (47) into Eq. (48), makes the right-hand side
dependent only on Aj. Substituting this final expression into
the Liouville equation (Eq. 26), we obtain

1 .
p(k—l—¢>kl+%(pF)=0. (57a)
Here, this equation contains ¢ dependence; thus it cannot be
directly used to predict Aj.

We remove the ¢ dependence from Eq. (57a) by multiply-
ing a weight o that depends only on ¢ and integrating it by
¢ over [0, +00]. We choose the weight o7 = ¢ because the
exponential distribution is to be used for predicting the mean
value, based on an argument in Sect. 4.2.

Thus,
[%lw») - <¢2>} hi—(F) =0, (57b)
or by further noting (¢) = 1/ and (%) =2/,

A= —A3(F). (58a)

This equation states that when there is a positive mean
source, (F) > 0, the slope of the distribution becomes gen-
tler by transporting it to larger values, whereas a mean sink
(negative source) steepens the distribution. The above equa-
tion can readily be solved analytically, and we obtain

¢ -1

1
o +/(F>dt

0

() = (58b)

https://doi.org/10.5194/acp-25-9357-2025



J.-l. Yano et al.: General formulation for the distribution problem

The significance of the above result may be best interpreted
by re-writing it for the mean value:

t

<m=mm*=@mﬂ+/wm.

0

(58c)

This is the consistent evolution of the mean state under the
assumed exponential distribution.

Here, the weight, o1 = ¢, has been chosen above in a man-
ner consistent with the fact that the exponential distribution
has been derived from the maximum-entropy principle, tak-
ing the mean as the constraint. Yet, the general formulation
presented in Sect. 5.1 can be used to predict any constraint
defined by the weight, o1, consistently with time under a
given assumed distribution. Thus, a natural question to ask
is, how is the evolution of the PDF parameter, A1, sensitive
to the choice of the weight, o1, for the constraint? To address
this question, we now set the weight to be o1 = ¢" more gen-
erally with an unspecified integer, n. In this case, we evaluate
the evolution of the assumed distribution (Eq. 24) in such a
manner that (¢") evolves consistently. As a result, the pre-
diction of the evolution of the parameter, 11, is modified to
achieve the best prediction of (¢") for a specified particular
n with the consequence of causing the prediction of the other
moments to deteriorate. Especially, when we set n # 1, the
prediction of the mean value is no longer optimized by the
constraint with o1 = ¢".

Consequently, instead of Egs. (58b) and (58c), we obtain

' —1/n
_ 1 n—1
q(t) = A,11@)+m/<m> ar| (592)
0
t
<¢">=<¢%hzo+43/<F¢"*Udn (59)

0

noting that (¢") = n!/AY. In this case, Eq. (59b) presents a
consistent evolution of (¢").

Keep in mind that the solution of Eq. (5§9a) is implicit
when F itself also depends on ¢. A more explicit solution
can be derived by setting it more specifically as, say, F = ¢™.
Solving an equivalent equation to Eq. (57b), we find

r() = (1 0) = ymt) " (59¢)
where
VYm=m—1D)n+m—1)!/n! (59d)

whenm # 1.

It is clear that the parameter, A1, qualitatively changes with
a different “rate”, y;,, of evolution with the varying n; thus
the evolution of the assumed PDF is sensitive to the choice
of the weight, o1. It also follows that a proper choice of o7 is
crucial to ensure that an output, (o), of a particular interest
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Figure 2. Plot of the obtained time series of A1 with m =0 (a),
2 (b), 3 (c), and 4 (d) with the weight exponents n = 1 (solid),n =2
(long dash), and n = 3 (short dash). The values of 1| evaluated from
(¢™) obtained using the exact solutions are further overlaid by green
curves.

is consistently predicted. A simple way to achieve this con-
sistency is to solve a prognostic equation for (o) in terms
of A1. The general formulation presented in Sect. 5.1 is con-
structed in this manner.

Here, however, there is a serious problem with the above
solution (Eq. 59¢): the exponential distribution continuously
flattens with time, and the distribution becomes totally ho-
mogeneous at t = Xﬁ" -1 (0)/¥m; then A1 = 0, and the solution
breaks down beyond this point with A; becoming a complex
number. Such a collapse of the distribution is a dramatic ex-
ample of suggesting an inherent limitation of the assumed-
PDF approach. Figure 2 plots the obtained time series of 1|
with m =0, 2, 3, 4 in panels (a)-(d) with the weight ex-
ponents n =1 (solid), n =2 (long dash), and n =3 (short
dash). It is seen that the discrepancy of the solution with dif-
ferent weights, o1, is exacerbated rapidly as a higher-order
dependence of F on ¢ (i.e., with the increasing m: Fig. 2b—
d). The exception is the case with m = 0, where yg = 0; thus
this singularity is avoided (Fig. 2a). Here, we set the initial
condition as A1(0) = 1. This is equivalent to normalizing the
PDF parameter and the time into X1 /A1(0) and Ai_m (0)t, re-
spectively.

The values of A; evaluated from (¢") with the exact so-
lutions in Appendix B are further overlaid by green curves
with further discussions concerning the exact solutions re-
ferred to therein. In the case with m = 0, we find satisfac-
tory agreement of the PDF parameter, 1|, between the so-
Iution (Eq. 59¢) and the exact results (Fig. 2a). However,
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due to the singularities discussed above with m > 2, the di-
agnosed solution (Eq. 59c) rapidly deviates from the exact
results (Fig. 2b—d).

The case with m = 1 must be considered separately, and in
this case we find, for all n values,

@) = A (0)e". (59%)

As it turns out, this is an exact solution of the evolution of
the system, as shown in Appendix B.

5.6 Application 2: Gaussian distribution

The second application is the Gaussian distribution, espe-
cially because this is a standard distribution assumed in data
assimilation. The Gaussian distribution is also often assumed
in subgrid-scale distribution problems. Here, the simplest
case with a single variable is considered, as given by Eq. (25).
Here, po = 1o, and we take the mean value, (¢) = —2X> /A1,
to be a PDF parameter in place of A1. From a normalization
condition,

3\ 1/2
po=(;2> . (60)

This diagnostic relation can be used to update the distribution
constant pg in place of updating it by integrating Eq. (47).
We further note that

ap
— =2A — , 61
2(6) 2(p —(d)p (61a)
ap L 5
_a)\z =—(¢ — () p. (61b)

By substituting these expressions into Eq. (50a), we obtain

202(9)[{o1(d — (9))) — {01) (P — ()]
+hal—(01(d — ($))*) + (01) (¢ — ($)P)] = <F

doy
d¢
Note that an integration by parts is applied to the last term in

Eq. (50a) to obtain the right-hand side above. Note also that
(¢ — (¢)) =0, and thus

202(@)(01(p — (9))

. 3(7[
+hal—(01(¢ — ($)%) + (o) (( — ($))] = <F£>. (63)

Recall that the Gaussian distribution is obtained from the
maximum-entropy principle when a system is constrained by
the mean and the variance; thus we set o1 = ¢ —(¢p) and o, =
(¢ — (¢))? in the above. With [ = 1, we obtain

> . (62)

222((¢ — (@) (@) — (@ — ($))’)ha = (F) (64a)
and, with [ =2,
222((¢ — (#))°) ()
+[— (@ — (N + (@ — (#))*) Nha =
2((¢ — ($)F). (64b)
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Note that the Gaussian distribution is not skewed; thus ((¢ —
(#))?) = 0. Also note the relations

1
2\
(@ = (90" = 5= (65a)
(@ — (oNh) =3 — (P2 (65b)

By substituting these relations into Egs. (64a) and (64b), we
obtain the final results:

(@) = (F), (66a)
d 1
m (E) =4{(¢p — ($)F). (66b)

Equation (66a) simply means that the mean value evolves by
following a tendency defined by the mean source, whereas
Eq. (66b) suggests that the distribution is more dispersed
when a more positive source is found away from the mean
value.

5.7 Diffusion problem

The diffusion equation (Eq. 29) considered in Sect. 4.4 is a
particular problem that can be solved exactly by the Gaus-
sian distribution (Eq. 25). We note that the diffusion equa-
tion (Eq. 29), re-setting x = ¢ here, is obtained from the Li-
ouville equation (Eq. 26) by setting the forcing to be an op-
erator, F = —9d/0d¢. As aresult, the general formulation pre-
sented so far can directly be applied to the diffusion equation:
by substituting the derivative relations (Eqgs. 61a and b) into
Eq. (49a) and also noting that

¥*p 2 2
997 =[—20 + 4250 — (#))°]p. (67)
we obtain

202(¢ — (9))()

1 .
- [(05 — () - 2_2»2} [la+423] =0. (68)

Note that the same can also be obtained by directly substitut-
ing Eq. (25) into Eq. (29). The above equation can be solved
for the two parameters, (¢) and A;, independently of ¢ by
setting

(¢) =0,
)‘\.2 + 4)»% =0.

(69a)
(69b)
The same pair as the above is more directly obtained by
substituting (F) =0 and ((¢ — (¢))F) = —1 into Eqgs. (66a)

and (66b). Solving for Egs. (69a) and (69b), we arrive at the
solution (Eq. 32).

https://doi.org/10.5194/acp-25-9357-2025



J.-l. Yano et al.: General formulation for the distribution problem

5.8 Application 3: gamma distribution

The third example to consider is the gamma distribution (cf.
Sect. 3.4.3):

p = popte ", (70a)
where
Naa!
S 70b
Po=T Wil (70b)

from the normalization condition. Recall that the gamma
function, I'(x), is defined by

+00
I(x)= / e e 8 4e. (70c)
0

We note the expressions for the derivatives by the distribu-
tion parameters:

9

—p=p10g¢, (71a)
o

ap

— =—¢p. 71b
TR (71b)

By substituting these two expressions into Eq. (50a), we ob-
tain

[t[(o110g$) — (01) (log )1+ Al—(016) + (07) ()] =

doj
o)

for I =1, 2. As before, we set 01 = ¢ and op = ¢2. We note
especially

($10g9) = 1 [(u+ 1llog) +11, (732)
(67108) = 5 (G + D+ Dllogg) +2u+3]. (73b)
Thus, with / = 1 and 2, respectively, we obtain

Bt 1)% — (F), (742)
2M+3'[L_2(M+2)(M+1)i=2<¢F). (74b)

A2 23

By combining Eqs. (74a) and (74b), we obtain the equations
for the tendencies of the two PDF parameters as

fo=2x[(n+2)(F) —A{pF)],
2

pAt1

(75a)

b=

[Cu+3)(F) =20(¢ F)]. (75b)
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6 Demonstration: condensation growth of cloud
droplets

The general formulation for directly predicting the evolution
of the assumed-PDF (DDF) parameters was presented in the
last section. The purpose of this section is to demonstrate the
steps of this formulation by taking the condensation growth
of cloud droplets as an example. The output-constrained dis-
tribution introduced in Sect. 4.2 is also invoked in choosing
a distribution form. It is known that the size, r, of a cloud
droplet grows with a rate proportional to 1/r under a fixed
state of super-saturation (cf. Chap. 6, Rogers and Yau, 1989).
Thus, by setting a proportionality constant to unity, the gov-
erning equation (Eq. 2) of this system becomes

F= l (76a)
r
with ¢ =r and F = 1/r. In this case, p(r) becomes a num-
ber density of drops with a radius r, or PSD. Here, we nor-
malize the PSD with Eq. (13).
The system of Eq. (76a) can be solved analytically, and the
general solution is

(1) = (ro +20)'/2, (76b)

with ro being the initial condition. Consequently, when an
initial distribution of droplets is given by

p(r.t =0)= po(r), (77
its subsequent evolution is defined by

p(r, t)dr = po(ro)dro (78a)

by following the chain rule of Eq. (20). Here, the initial con-
dition, ro = r(0|r, t), is related to the droplet size, r, at the
time ¢ by

ro=r(Olr,t)=("—20)"2. (78b)
From Eq. (78b), we find drg/dr = r/rp, and by substituting
this final result into Eq. (77), we obtain
p = (r/ro)po, (78¢)
but p(r,t) =0 for rz(t) < 2¢. In this manner, the problem of
time evolution of the droplet distribution under the conden-
sation growth is solved analytically.
As a specific initial distribution, we set

JpHl

M, (79)
Cp+1)

p(r,t=0)=
with =1 and A = 1. The exact time evolution following
this initialization, which obeys Eq. (78a) or (78c), is shown
in Fig. 3a with varying curves for t = 0—4 with an interval
of At = 1. The whole distribution moves with time to larger
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Figure 3. Time evolution of the cloud-droplet size distribution un-
der condensation growth with the curves corresponding to t =0
(solid) to t =4 (double-chain dash) with an interval of Ar=1:
(a) exact result and (b) when a gamma distribution is assumed. Note
that the whole distribution moves to a larger droplet size with time.

sizes, r, as seen in Fig. 3a, because of condensational growth,
as expected, but it is also associated with the squeezing ten-
dency by the factor, r/rg, with time, as predicted from the
analytical solution (Eq. 78c). The rate of squeezing is larger
towards the smaller o and forms a shockwave front at the
peak at the minimum droplet size,

r=Qn'2 (80)

The peak also sharpens with time, as it moves to larger values
with time. The pronounced narrowing tendency of the distri-
bution with time is well known in the literature. Remarkably,
it leads to a decrease in the standard deviation with time as
seen below.

In the following, the two assumed PSDs are considered for
demonstrations of the general formulation of the last section.

6.1 Gamma distribution

Considering the fact that our example is a microphysical
problem, the most natural choice to consider is the gamma
distribution (Eq. 70a), as a commonly adopted distribution
in microphysics (cf. Sect. 3.4.3). A general formulation for
this case is presented in Sect. 5.7. The only additional in-
formation required is to note (F) = XA/ and (r F) = 1 with
the system (Eq. 76a), recalling the definition (Eq. 52c) for
the angle bracket, and also F =1/r. Substituting them,
Egs. (75a) and (75b) are solved by the fourth-order Runge—
Kutta method with a time step of 1072 and the initial condi-
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tion given by u = 1 and A = 1. The result is shown in Fig. 3b
with the same curves as in Fig. 3a. Obviously, it is not pos-
sible to reproduce the shockwave structure at the minimum
size (Eq. 80) by a gamma distribution. However, it is still re-
markable that an overall evolution of the size distribution is
reasonably reproduced.

The result here is especially remarkable because the com-
putation of the evolution of the distribution involves only
time integrations of two parameters, i and y; then the full
distribution is automatically determined from the assumed
gamma distribution form. In a standard approach of di-
rectly evaluating the evolution of a distribution by integrating
Eq. (26) with time, we need to introduce a number of values
for r that we wish to evaluate. For example, in Fig. 2a and
b, 100 points are used for plotting the distribution curves for
each time. Furthermore, for numerically integrating the Li-
ouville equation (Eq. 26), we need to take r large enough
so that we can set p =0 as the boundary condition at the
largest r: this requirement further increases the number of
points required for the computation by, say, a factor of 10.
In standard bin microphysics, 30 points are considered the
minimum (cf. Khain et al., 2015). The assumed-PDF (DDF)
approach adopted here enables us to compute the same only
with the two parameters, instead of many bins for r.

To verify the prediction of statistics, Fig. 4 plots the time
evolutions of (a) the average size, (r), and (b) the stan-
dard deviation, ((r — (r))?)"/? with (r) = (u+1)/A and ((r —
(r)?) = (u+1)/A%. Here, the exact evolutions are shown
in solid curves, whereas the approximate predictions with
the assumed gamma distribution are shown by long-dash
curves. Keep in mind that from the point of view of the
maximum-entropy principle, the gamma distribution is de-
signed to predict only a mean value properly. An additional
algebraic correction factor is not the result of any “con-
straint” from the point of view of the large-deviation prin-
ciple (cf. Sect. 3.3.2). These predictions are accurate only
under limits of an assumed distribution. In fact, the predic-
tion of the mean (Fig. 4a) is almost perfect, although that
of the standard deviation deviates noticeably from the actual
evolution with time (Fig. 4b).

6.2 Exponential distribution

We further simplify the assumed distribution into an expo-
nential so that there is only a single parameter, A, in the
distribution (cf. Eq. 57a). In this case, the assumed distribu-
tion no longer fits the actual evolution initiated with a gamma
distribution (Eq. 79) as r — 0.

Here, we face a technical problem for adopting the expo-
nential distribution for this system because the integral for
(F) diverges due to a singularity of the source, F, at r = 0.
To avoid this problem, we set A1 of the exponential distribu-
tion in such a manner that it gives the same mean size, (r), as
the gamma distribution given by Eq. (79) (i.e., A1 =A/(1 +
1)), and then we adopt a formula, (F) = 1 /u, directly from
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Figure 4. Time evolutions of (a) the average size, (r), and (b) the
standard deviation, ((r — (r))z) 172 of droplets undergoing conden-
sation growth. Here, exact evolutions are shown in solid curves,
whereas the predictions with the assumed gamma distribution are
shown by long-dash curves.

the gamma distribution. Thus, (F) = (1 4+ p©),;/u. Here, u
is kept the same as the initial condition of the distribu-
tion (Eq. 79). Under this assumption, the time integral of
Eq. (58a) can be performed, and the evolution of the mean
size can be evaluated by Eq. (58c). Evolution of the standard
deviation is also evaluated as 1/A1.

These results are shown in Fig. 5 in the same format as
in Fig. 4; the evolution of the standard deviation (long-dash
curve in panel b) now becomes totally opposite to the ac-
tual tendency (solid curve). However, the evolution of the
mean size is still predicted in a consistent manner overall
with panel (a). The results are simply consistent with the as-
sertion in Sect. 4.2 that if the sole purpose of using a distri-
bution is to predict the evolution of a mean, the exponential
distribution is sufficient for the purpose. Here, this assertion
is supported to a reasonable extent, even though an actual
distribution does not fit the exponential distribution at all.

Appendix C presents further demonstrative mathematical
examples.

7 Conclusions and discussions

Distribution problems are identified in various contexts of at-
mospheric sciences: subgrid-scale distribution, the size dis-
tribution of hydrometeors, and probabilities in data assim-
ilation. Considering the dispersed literature on those three
distribution problems, the present paper has tried to set up
a general perspective for all the distribution problems. As
noted in the introduction, the majority of approaches in the
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Figure 5. The same as in Fig. 3 but long-dash curves are when an
exponential distribution is assumed for prediction.

distribution problems are based on a framework, which can
be termed “assumed PDF”, in which a distribution to be sim-
ulated is approximated by a distribution form characterized
only by a few free parameters (cf. Golaz et al., 2002).

The present work has attempted to answer the basic ques-
tions of how such a simple assumed PDF can be best chosen
and how the evolution of those PDF parameters can be eval-
uated consistently. To address these basic questions, it is im-
portant to realize that not every statistical aspect of any distri-
bution can be predicted by the assumed-PDF approaches ei-
ther accurately or consistently. More specifically, the number
of statistical variables (but not limited to simple moments)
that can be consistently predicted by an assumed-PDF ap-
proach cannot exceed the number of assumed-PDF param-
eters introduced by the given assumed PDF. Thus, the best
that we can accomplish under an assumed-PDF approach is
to predict the same number of statistical variables as that of
the assumed-PDF free parameters. The proposed formulation
in the present study is designed exactly to accomplish this
best.

The present study next notes (Sect. 4.2) that in many at-
mospheric applications, a given host model does not require
using the full form of a distribution as an output from a
distribution model, but, instead, it requires only a limited
number of statistical quantities that correspond to the phys-
ical variables of interest in the host model (e.g., domain-
averaged total condensed water, cloud fraction) as outputs.
Thus, the most desirable formulation would be to predict the
evolution of those statistical outputs required in a given host
model consistently. The final general formulation presented
in Sect. 5.1 is constructed exactly by following this receipt:
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the time evolution of the assumed-PDF parameters, {};}, is
evaluated by Eq. (50a), which is equivalent to solving the
prediction (Eq. 52b) for the required model outputs, {(o7)},
in terms of {);}.

Probably, the most novel aspect of the present study is
in deriving equations for the assumed-PDF parameters and
predicting them directly. This proposed alternative approach
can overcome difficulties of the current standard method that
requires a difficult mapping between the moments of the
PDF (mean, variance, skewness, etc. of overall PDF) and
the PDF parameters (e.g., mean of each Gaussian compo-
nent in a double-Gaussian PDF; cf. Lewellen and Yoh, 1993;
Machulskaya, 2015; Milbrandt and Yau, 2005). Furthermore,
by introducing a re-interpretation of the maximum-entropy
principle (cf. Sect. 3.3) in Sect. 4.2, we propose to adopt
those required statistical outputs as “constraints” to define
the assumed-PDF form for a given problem to resolve the
common problem of how to choose it, which is usually done
rather arbitrarily. The paper has also emphasized that ap-
proaches of trying to choose a distribution form based on
analyses of observational or simulation data found in the lit-
erature lack objectivity (cf. Sect. 3.2.2).

In the present study, the possible model outputs and con-
straints have been limited to much simpler statistical quan-
tities of the form, {(o7)}. However, generalizations to those
physically more significant variables, such as the domain-
averaged total condensed water and the cloud fraction, are
conceptually straightforward. For example, the cloud frac-
tion can formally be defined in terms of the DDF, p(qy), of
the total water, g, as

+00

/ p(q)dgy, (81)

q*

where g™ is the saturated moisture at a given height. Follow-
ing a similar line of argument to that presented in Sect. 5, a
prognostic equation for the cloud fraction, as defined above,
can be derived by integrating Eq. (49a) over the range of
[g*, +0oc], although a full derivation is left for a future paper.
Alternatively, a prognostic equation for the consistent DDF
parameters can more directly be derived from the prognostic
equation for the cloud fraction (Eq. 81), to be written down
similarly to Eq. (52b). A consistent assumed-distribution
form can also be derived by introducing the integral (81) as
a constraint for the maximum-entropy principle.

An obvious consequence of this formulation is that the
evolution of the PDF (DDF) would be predicted differently
by choosing the weights, {07}, differently. However, this con-
sequence should not be considered an inherent shortcoming
of the present formulation. Rather, one should realize that
this is the fundamental limitation of the assumed-PDF (DDF)
approach: it cannot predict every statistic of a distribution ac-
curately, as already emphasized. Simply, a different choice
of the set, {07}, predicts a different set of statistical outputs,
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{{o1)}, consistently. This point has been explicitly demon-
strated in Sect. 5.5. Thus, our best advice is to choose {{o7)}
to be those weights actually required by the host model so
that they are actually predicted consistently under a given
assumed-PDF form.

The present work is built upon the solid basis of two
well-known mathematical and physical principles: (1) the
maximum-entropy principle, which guides the determination
of the most likely distribution of a problem, and (2) the Li-
ouville equation, which predicts the time evolution of distri-
butions. The stochastic-collection equation for the hydrom-
eteor size distribution can also be treated in an analogous
manner to the Liouville equation. However, adopting these
two basic principles in practical atmospheric problems is
not quite straightforward, and we face two major difficulties:
first, application of the maximum-entropy principle to the at-
mospheric problems is not straightforward because it is often
not obvious how to identify the physical constraints required
for determining a distribution (cf. Yano et al., 2016). Second,
though the Liouville equation permits us to perform a pre-
diction of distributions in a formal manner, for both DDF and
PDF, its direct use would entail enormous numerical cost. We
have addressed these two difficulties by adopting a simple
distribution form containing only a small number of param-
eters so that its evolution with time can be predicted only in
terms of those parameters. In principle, the formulations pre-
sented in this study are applicable to any atmospheric model
in a straightforward manner, albeit with required coding and
testing, because the term, F, for the physical tendency in the
Liouville Eq. (26) is left unspecified in presenting the gen-
eral formulations. This straightforwardness includes no need
to introduce any extra closure, say, based on a turbulence
model, for example as is partially the case with CLUBB
(Cloud Layers Modified By Binormals; Golaz et al., 2002;
Larson and Golaz, 2005; Larson et al., 2019), so that higher-
order moments can be expressed in terms of the moments
considered under a given truncation of the system.

As a demonstrative example with a specified F, the paper
has considered the condensational growth of cloud droplets.
A rather unusual feature of this demonstration can be found
in comparing its performance with an exact numerical result:
the flexibility of the proposed formulation permits us to do
this very easily. Additional mathematical demonstrative ex-
amples are found in Appendix C. Further examples with fur-
ther elaborations of the methodology are also found in the
study by Yano (2024). We also anticipate that fuller applica-
tions of the developed formulation are still to follow, espe-
cially because the only way to evaluate the accuracy of the
method is to directly compare the results with more accurate
sophisticated evaluations, as presented in Sects. 5.5 and 6 and
Appendix C herein as well in Yano (2024). Yet, it is hoped
that this simple example provides a concrete idea about how
to use this general formulation and that readers can already
apply the formulation to their own problems.
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Two relatively distinct steps are involved in the present
formulation: (1) determination of the PDF form based
on the output-constrained distribution principle, as a
re-interpretation of the maximum-entropy principle, and
(2) prognostic equations for the PDF parameters derived
from the Liouville equation. Thus, whenever new types of
the output “constraints” are introduced into a problem, new
types of general PDF forms must first be derived based on
step 1. Next, new sets of prognostic equations must be de-
rived based on step 2. Alternatively, two steps can be adopted
separately. For example, the evolution of a PDF form de-
fined under the output-constrained distribution principle can
be evaluated by a more traditional assumed-PDF approach
based on moments. Conversely, currently existing assumed-
PDF schemes can be re-written based on step 2 but without
changing the assumed-PDF forms.

The general formulation for the distribution problem pre-
sented here constitutes, first of all, a natural extension of the
existing assumed-PDF (DDF) approaches for the subgrid-
scale distributions as discussed in Sect. 5.3. The work further
suggests that the same general formulation is also applicable
to other distribution problems, including cloud microphysics
and data assimilation. Extensive further general possibilities
of the proposed formulation are yet to be fully explored. For
example, constraints introduced by Eq. (12) have assumed
a fixed integral range. On the other hand, for example, the
cloud-fraction problem needs to take an integral with respect
to the total water above the saturation value (cf. Eq. 81),
which changes with time, as an output. It requires a further
generalization of the formulation (e.g., with Eq. 47).

The overall accuracy of predicting the required outputs
(“constraints”) by the proposed prognostic PDF formulation
is emphasized, except for the case where the evolution of the
assumed-PDF parameters presents singularities. Such unde-
sirable behaviors stem from a highly truncated PDF form un-
der the assumed-PDF formulation. When a multi-dimension
system is considered as in Yano (2024), the evolution of the
PDF parameters can even become chaotic with the given sys-
tem behaving chaotically when the evolution of the distribu-
tion itself is statistically stable. We need to face this inherent
limitation of the assumed-PDF approach with a limited num-
ber of PDF parameters.

Furthermore, there is a key issue left unaddressed: the per-
formance of integrals denoted by (... throughout the paper.
In the present study, all the integrals of the problem have
been performed analytically, apart from those including an
unspecified physical-tendency term, F. Performing the lat-
ter integrals in general, especially with a complex physical-
tendency term, is, however, not trivial. The most flexible ap-
proach currently available is Monte Carlo integration (e.g.,
Gentle, 2003; Larson and Schanen, 2013). However, this ap-
proach is numerically rather expensive and hardly considered
an ultimate answer. A key to the success of the prognos-
tic assumed-PDF formulation presented herein, especially
our key result, Eq. (50a), is to perform those integrals in

https://doi.org/10.5194/acp-25-9357-2025

9379

an efficient manner, albeit possibly with a numerical aide.
The integral problems in general can be greatly facilitated
by adopting Laplace’s method in asymptotic expansion and
more specifically by invoking Watson’s lemma (cf. Chap. 6,
Bender and Orszag, 1978), considering the fact that more or
less all the types of distributions of interest here take the form
of an exponential decay away from the maximum. In partic-
ular, all these integrals reduce to a form of an asymptotic ex-
pansion in terms of gamma functions if a Taylor expansion
of a subdominant contribution is possible. The more strongly
a distribution is peaked, the fewer terms required.

Another aspect that has not been explicitly taken into ac-
count is stochasticity; its potential importance in atmospheric
modeling can hardly be overemphasized (cf. Berner et al.,
2017). Formulations already exist for taking stochasticity
into account as a generalization of the Liouville equation (cf.
Risken, 1984).

Appendix A: Mathematical details of Sect. 4.4.2

We apply a Fourier integral

+o00
plx, 1) = / plk, e dk

—00

(AL)

to the diffusion problem (Eq. 29). The Fourier transform for
(Eq. A1) is given by

| +00
plk,t)= — f p(x, e *dx. (A2)
2w
—00
Thus, the initial condition is transformed into
| +o00
pll,t=0)= — / (14 ax)e P —ikx gy (A3)
7T
—0o0
The transform of the first term is straightforward, and
+00 +00
[ e—sz—ikxdx _ e—k2/4x / e—x(x+ik/2,\)2dx
—o0 —0oQ
- (%) e 14 (Ad)

For performing the second term in the transform (Eq. A3),
we note the following relation:

X e—x(x+ik/2)\)2 __ i i e—)\(x+ik/2x)2
2\ 0x
ik . 2
+ mef)»()hklk/z}») . (AS)
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Finally, in performing the inverse Fourier transform
(Eq. A1), we re-factorize the exponent by noting

2 LY
k t+4)L ikx =
AL | PR P B
4 2 4\

x2 1\!

Appendix B: Exact solutions of the problem in
Sect. 5.5

The problem of the system with F = ¢" in Sect. 5.5 can be
solved analytically, and the evolution of the PDF can also
be solved in a closed form by following the methodology of
Sect. 6; the resulting solution of the PDF is

d
1) = pldo(.1).1 =0>d%°, B1)

where ¢g = ¢o(¢, 1) is an initial condition that leads to a
state, ¢, at time, 7.

Once an explicit PDF form is given, numerical integrals
further provide the required moments, (¢"). As a minor tech-
nicality, the actual integral is performed with respect to ¢g
after transforming ¢ into ¢9 because the distribution tends to
stretch to larger values increasingly with time, and we need
to increase the upper limit of the integral with respect to ¢
accordingly. The variable transformation allows us to stretch
the integral range with respect to ¢ automatically by simply
performing the integral over the same range with respect to
¢o. Once a moment, (¢"), for a given 7 is obtained, a consis-
tent exponent, A1, can be evaluated by the formula

n! /"
A= [ ] (Bla)
(9")
by invoking the fact that the moments are given by
n!
(¢") = o (B1b)
1

under an assumption of the exponential distribution. The pa-
rameter, A1, estimated from Eq. (Bla) is added as green
curves in Fig. 2.

The following subsections discuss the exact solutions for
the specific choice of the power, m, that is required to accom-
plish those steps.

Bi Whenm=0

The system simply reduces to ¢ = I, which is solved as
¢ = ¢o +1. It follows that ¢p = ¢ — ¢ and d¢pp/d¢ = 1. By

Atmos. Chem. Phys., 25, 9357-9386, 2025

J.-l. Yano et al.: General formulation for the distribution problem

substituting those relations into Eq. (B1), we find

Ae MG >

p@.1) = { (B2)

0 x <t.

From this distribution, the moments can be readily evaluated
analytically, and the first three moments are given by

() = 0 +1, (B3a)
2 1 t ﬁ
(¢%) =2 <_x%(0) + 0 +5 ) : (B3b)
0% =6(——+——+ & + ° (B3c)
O\ 220 3O 27)°

The values of A; obtained from the above results can di-
rectly be compared with those obtained by setting m = 0 in
Egs. (59¢) and (59d):

A= ! + ! (B4)

T hOo) T

with varying n. The assumed formulation can predict the
consistent value of A; with the constraint of o7 = ¢" up to
O(1), in general, and the agreement is perfect especially with
n=1.

B2 Whenm=1

In this case, we find

¢ = ¢oe’, (B5a)
$o=ge ", (B5b)
% —e . (B5c)

From these relations, we find that this system evolves exactly
as prescribed by Eq. (59¢), maintaining the exponential dis-
tribution.

B3 When m > 1

In this case, the exact solution of the system is
—(m—1 _ _
¢ =lpy " " —(m— 1V, (B6)

and it follows that

go=[6~""D +(m—1)e] ", (B7a)
dpo 1 oy —m/(m—1)
W ¢_m[¢ + (m — 1] : (B7b)

By substituting Eqgs. (B7a) and (B7b) into Eq. (B1), an ex-
plicit form of the PDF evolution is obtained.

Note that the solution (Eq. B6) becomes singular at ¢ =
¢~"=D /(m — 1) with the tendency of ¢ — +o0. Due to this
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tendency, the distribution increasingly presents a longer tail
with time with an increasingly significant deviation from an
exponential distribution. This tendency is also aggravated
with the increasing n; thus the estimate of A based on the
constraint, o1 = ¢", also deteriorates faster with time with
increasing n (cf. Egs. 59¢ and 59d), as seen in Fig. 2.

Appendix C: Further demonstrative examples

This appendix further compares between the exact and
assumed-PDF solutions by taking three simple dynamical
systems, and their basic behaviors can be inferred from the
forcing forms. These comparisons follow on from a demon-
stration of the assumed-PDF approach taking a simple phys-
ical system in Sect. 6 and further expose basic characteristics
of the assumed-PDF solutions.

As simple dynamical systems, we consider the following
three forms of forcing:

(i) F = —¢: the only stable fixed point of this system is
¢ =0, and the system approaches this fixed point re-
gardless of the initial condition, ¢g, with ¢ = ¢ge".

(i) F = ¢(¢—1): the system consists of a stable fixed point
at ¢ = 0 and an unstable fixed point at ¢ = 1. Every ini-
tial point below ¢ = 1 exponentially approaches ¢ =0,
and every initial point above ¢ = 1 exponentially ap-
proaches infinity with time. An explicit solution is

%
B0 — (¢ — De'’

with ¢ being the initial condition.

o) (CD

(i) F = —¢(¢p—1)(¢ —2): the system consists of two stable
fixed points at ¢ = 0 and 2 and an unstable fixed point at
¢ = 1. Every initial point below and above ¢ = 1 expo-
nentially approaches ¢ = 0 and 2, respectively. An ex-
plicit solution is

¢=1%(1—Ae )12 (C2a)
where

-2
2= 02 2b)

and the sign in the solution is chosen by the sign of

¢do—1.

We examine the evolution of these systems by initializ-
ing the distribution as Gaussian of the form (Eq. 25) with
() t=0 = 1 and A |;=¢ = 10. Here, the initial peak of the dis-
tribution is taken to be sharp enough so that we can focus on
the evolution of the system initialized in the vicinity of x = 1.
The assumed peak point is not a stable fixed point with any of
those systems, and it is more precisely an unstable fixed point

https://doi.org/10.5194/acp-25-9357-2025

with the latter two systems. Thus, the evolution is expected

to be away from the given initial peak in all these three cases.
The exact evolutions of those three systems with this initial

distribution can be derived using the following relations:

(D)o = ge', dpo/dp =" (C3)
(i) po=—2 (Cda)
¢—(p—1De!
—t
490 _ ¢ (C4b)

dp  (@—(p—De 2

(iii) ¢o=1%(1—Be)~1/2, (C5a)
% =1+(1— Be*)32eX, (C5b)

with
P (©50)

(-1

The exact evolutions of the distributions are obtained by sub-
stituting these relations into Eq. (B1).

Evolution of a distribution under the assumed PDF (.e.,
Gaussian) is evaluated in terms of the evolutions of the
two PDF parameters, (¢) and XA;, as given by Egs. (66a)
and (66b). For this purpose, the following relations for the
three systems are invoked:

® (F)=—(¢), (C6a)
1
(@—(PNF) =~ (C6b)
(i) (F)= % + F({¢)), (CTa)
1
(@ —(@NF) = 7-Clg) = D). (C7b)
3
(iii) (F) = ——-({#) = D+ F($)). (C8a)

(@ @DF)==| 55+ 1007~ 30+ D] (C8b)
Figures C1-C3 show the obtained evolutions of the distri-
butions for those three systems, respectively. In each figure,
the upper and lower frames, (a) and (b), respectively, show
the results for the exact computations and with the assumed
PDFs (Gaussian). Here, the intervals for the plots are set as
At = 0.6, 0.2, and 0.3 for those three cases, respectively. Dif-
ferent intervals are chosen for the ease of following the se-
quence of the evolution of the distributions for all three cases
visually.
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Figure C1. Evolution of the distribution for model i with the in-
terval of At = 0.6, with the initial distribution given by the solid
line for (a) the exact solution and (b) the assumed Gaussian distri-
bution, shown with the varying types of curves. In both cases, the
distribution peak moves towards smaller values with time.

With the first dynamical system (i), the distribution peak
moves towards ¢ = 0, a stable fixed point of the system, with
both exact and assumed-PDF-based calculations, as seen in
Fig. C1. The exact evolution (Fig. Cla) presents a strong ten-
dency towards the sharpening of the peak as well. This sharp-
ening tendency is substantially weaker with the assumed-
PDF calculation (Fig. C1b).

With the second system (ii), the distribution tends to
spread with time in both directions, towards the two sta-
ble fixed points at ¢ =0 and ¢ — +o00. Both calculations
present an expected spreading tendency of the distribution
with time but in different manners. The exact calculation
(Fig. C2a) shows that the distribution peak moves to a smaller
¢ with time but, at the same time, with a tendency for a
long tail to stretch towards a larger ¢. However, the calcu-
lation with the assumed Gaussian distribution cannot repro-
duce the tendency of the distribution to be skewed with time
by design. The assumed-PDF calculation (Fig. C2b), instead,
shows that the distribution spreads by moving the peak to-
wards a larger ¢ with time. The tendency of spread is less
dramatic, too.

With the third dynamical system (iii), the system initial-
ized in the vicinity of the unstable fixed point, ¢ = 1, tends to
evolve towards either of the two stable fixed points at ¢ =0
and 2. As a result, as the exact calculation shows (Fig. C3a),
an initial distribution that peaked at ¢ = 1 splits into the two
peaks centered close to those two stable fixed points with
time. Of course, it is not possible to reproduce such a ten-
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Figure C2. The same as Fig. C1 but for model ii with the interval of
At = 0.2. The peak moves towards smaller and larger values with
the exact and assumed distributions with this model, respectively.

dency by assuming a Gaussian distribution as an assumed
form. Thus, under the assumed-PDF calculation (Fig. C3b),
we only see a tendency for the distribution to gradually
spread with time. One may also get an impression that the
rate of spread of the distribution is not sufficient enough to
reproduce a drastic tendency towards the two peaks in exact
calculation.

From the overview so far, it is clear that the assumed-PDF
approach can reproduce the actual evolution of the distribu-
tion in a manner that is less satisfactory even qualitatively.
However, as emphasized in the main text, the purpose of the
assumed PDF is not to predict the evolution of the whole dis-
tribution. Its purpose is solely limited to reproducing limited
statistics that are specified under the output-constrained dis-
tribution principle. More specifically, under the given spe-
cific assumed-PDF formulation with the Gaussian, the sole
goal is to predict the mean and the variance consistently.
Thus, the main question to be addressed is how those statis-
tics have been predicted.

To address this question, Fig. C4a and b plot the time se-
ries of the mean and the standard deviation, respectively, with
the assumed-PDF (black) and exact (green) calculations. The
curves for models i, ii, and iii are shown by the solid, long-
dash, and short-dash curves, respectively. Here, the assumed
PDF predicts the means of models i and iii perfectly. The
predictions of the standard deviations of these two models
are overall consistent with the exact results, although the pre-
dicted tendencies are less pronounced than the exact results,
especially with model i. On the other hand, the agreement of
the evolution of the standard deviation with model iii (short
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Figure C3. The same as Fig. C1 but for model iii with the interval
of At =0.4. The distribution peak monotonously decreases with
time in both cases.

dash) is still rather remarkable, considering the fact that the
assumed PDF does not reproduce an overall evolution of the
distribution even qualitatively. This provides another exam-
ple, in addition to the case of Sect. 4.4.1, demonstrating that it
is not indispensable to fit the distribution quantitatively well
to obtain a realistic prediction of a required statistics.

In the case with model ii, the calculations with the exact
distribution have their own problem: the numerical integral
of the distribution is extremely sensitive to the integral range
and the total number of points used. In Fig. C4, the integral is
performed over the range of —49 to 51 with 10* points with
respect to ¢o. Examination of those sensitivities shows that
the overall behavior of the curve (long-dash line in green) is
still correct, although the random-looking oscillatory behav-
ior sensitively changes with the integral range and the num-
ber of points adopted. This inherent difficulty fundamentally
stems from the fact that the distribution increasingly presents
a long tail towards the positive direction with time, as seen
in Fig. C2a. This tendency is reflected by the singularities in
Egs. (C4a) and (C4b) that lead to a more direct difficulty in
the integrals.

Comparing the curves (long-dash line) for the model ii
with the exact (green) and assumed-PDF (black) calcula-
tions, we conclude that the assumed-PDF approach can pre-
dict the tendencies of the statistics (mean and variance) only
up to ¢ >~ 0.5, but beyond that point, the actual evolution be-
gins to dramatically deviate from the monotonously increas-
ing tendencies predicted by the assumed-PDF method. The
former shows that, due to the shift of the peak towards the
smaller values with time, both the average and the standard
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Figure C4. Statistics of the dynamical systems under consideration:
the (a) average and (b) standard deviation for models i (solid), ii
(long dash), and iii (short dash). Black curves are the results with the
assumed PDF, and green ones are the results from direct integrals of
the exact solutions. Here, the results of the means for models i and
iii with the assumed PDF agree perfectly with the exact results.

deviation begin to decrease after # >~ 0.5. This later transi-
tion simply fails to be captured by the assumed-PDF solu-
tion. Here, the singularities in Egs. (C4a) and (C4b) lead to
a divergence of both the mean and the standard deviations in
finite time.
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