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Section 1. Offline chemical analyses

Section 1.1. GCxGC MS analyses

The GCxGC measurements were carried out on a Pegasus® GC-HRT 4D (LECO, St. Joeseph, USA) in combination with an
OPTIC-4 GC inlet system (GL Sciences, Netherlands) using Helium as a carrier gas. For the measurements, a circular filter
punch (diameter 3 mm) equal to 700 I of sampling volume was introduced into the OPTIC-4. For the fuel measurement, 1 pL
of diluted jet fuel (DCM, 1:100 v/v) was applied to a desorbed filter punch. After 2 min of inlet purging (flow 0.1 mL min™!,
split flow 100 mL min™!), a thermal desorption temperature gradient of 2 K s*! was applied from 50 °C to 350 °C (flow 2 mL
min’!, splitless). After thermal desorption, the flow and split flow were set to 1 mL min™! and 20 mL min™!, respectively.

For the separation, a 60 m BPX5 (0.25 mm internal diameter, 0.25 pum film thickness) column in the 1* dimension
and 1.5 m BPX50 (0.1 mm internal diameter, 0.1 pm film thickness) in the 2" dimension was used. The initial primary GC
oven temperature of 50 °C was held for 10 min and then ramped at 2 K min™ to 345 °C which was held for 20 min. The
secondary oven temperature offset was +5 °C to the primary oven and the modulator temperature offset was +15 °C to the
secondary oven temperature. The modulation time was 3 s.

Ionization of the eluted compounds was performed by electron ionization with 70 eV at 250 °C. The obtained ions
were acquired between m/z 40 to 500 in “high-resolution-mode” with an acquisition rate of 120 Hz. Perfluorotributylamine
(PFTBA) was continuously added to the MS source as internal standard for mass calibration. Calibration and processing of

acquired mass spectra was performed with the ChromaTOF HRT software (v5.10, LECO, St. Joe, USA).

Section 1.2. Gas phase analyses.

Adsorber tubes with three sublayers of GCB (Graphitized Carbon Black) sorbents were used for trapping gas-phase organics
of different volatilities (Table S1). Adsorber tubes were conditioned under a protective nitrogen atmosphere at 350 °C for 1 h
30 min for conditioning. During sampling, a stainless-steel filter holder assembly was positioned between an empty glass tube
upstream and the adsorber tube downstream to install a quartz fibre filter (QFF) in front of the adsorber tubes to remove particle
fractions (Mason et al., 2020). These 13 mm pre-filters (precipitation area diameter of 10mm) had been punched from baked
47 mm QFF (Whatman QM-A, cytiva). Gillian GilAir Plus sampling pumps (Gilian, USA) were used for sampling for 240
min at a flow rate of 0.5 1 min™' accounting for a total volume of 120 1.

The offline analysis of gas phase samples was performed on the GCMS-QP2010 Ultra (Shimadzu, Japan) equipped
with the thermal desorber unit (TD-20, Shimadzu). Thermal desorption occurred at 340 °C for 45 min. Extracted compounds
were first concentrated at 5 °C on a Tenax TD trap, then re-desorbed at 300 °C for 30 min, after which they were transferred
to the GC column at a split ratio of 50.

The separation took place on a VF-xMS, high-arylene-modified phase column (30 m + 5 m pre-column, 0.25 mm @
x 0.25 um t, Agilent Varian, USA) at a column flow of 1.62 mL min'!. GC oven temperature was 60 °C for a hold time of 6
min and then increased to a final temperature of 300°C at a rate of 5 °C min™'. The MS was operated with ion source temperature
0f 230 °C and interface temperature of 250 °C in scan mode in the m/z range of 30 to 500. An isotope-labeled standard mixture
was applied on the adsorber tubes prior to analysis and equivalent target compounds and similar target groups were quantified
according to respective standard compounds as documented in Table S3. GCMSsolution Ver.2 software was used for peak

identification and quantification.
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Section 2. Conditions in the oxidation flow reactor

The external OH reactivity (OHRex) of the sampled exhaust was estimated based on the concentrations of CO, NO, NO», and
THCrip (as ppm propane) assuming reaction rates of 2.41x10°13, 1x10"!, 1.06x10"!!, and 1x10"'? ¢cm? molecules” s,
respectively. OHRx in the undiluted sample was approximately 14 000 s!, with 35 %, 45 %, and 20 % of the total caused by
CO, THC, and NOy, respectively. The OHRey was moderated by sample dilution, leading to OHRexs of 280 s or 70 s™! for
the DR 50 and DR 200 experiments, respectively.

The particulate condensation sinks (CSpwm, Table S3) in the PEAR were estimated based on the size distributions
measured by SMPS for fresh and aged exhaust downstream the PEAR (Hartikainen et al., 2020). LVOC fates were estimated
as in Hartikainen et al., (2020) with the method based on Palm et al., (2016). Lifetime due to condensation to particles was
estimated as 1/CS. LVOC partitioning onto particles was by far the major LVOC fate compared to reactions with OH (Supp.
Table S2) or loss to walls (constant LVOC lifetime of 603 s). The photolysis rate in the PEAR for the varying lamp settings
was estimated based on the known lamp power, lamp efficiency (30 %) and internal surface area (0.47 m?) (lhalainen et al.,

2019), and the as ratio in exposure to photolysis exposure to OH exposure was calculated based on the known lamp settings

and the OH exposure determined by butanol-d9 measurements.
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Figure S1. The setup of the small-scale jet engine and its operation conditions presented as means and
standard deviations of the means of eight operation days.
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65 Figure S3. Scanning electron micrographs illustrating the morphology of the exhaust particles in the fresh
(a-b) and aged emissions (c-d: photochemical age 2 eqv.d, dilution ratio 50; e-f: photochemical age S eqv.d,
dilution ratio 200). The large black areas in A and E are holes in the grids. Note that no implications on
average particle size are to be driven based on these images of single particles.
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Fresh exhaust

Figure S4. Transmission electron micrographs illustrating the morphology of the non-volatile exhaust
particles in the fresh (a-c) and aged emissions (d-f: photochemical age 2 eqv.d, dilution ratio 50; g-n:
photochemical age 5 eqv.d, dilution ratio 200). Micrographs in j-n illustrate the evaporation of a single
particle (original diameter approx. 80 nm) when focusing the electron beam. Note that no implications on
average particle size are to be driven based on these images of single particles.
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Figure S5. The absolute carbon Els (a) and the relative fractions of the different volatility bins to the

thermally derived carbon fractions to the total carbon content (b). Error bars in indicate the standard

deviation of total EI (a) or fraction contribution (b) within filter samples collected from repetitions (n = 6
80 and 4 for fresh and aged exhausts, respectively).
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Figure S6. The bottom-up estimation of SOA production by compound group and number of carbon in the
parent ion measured by PTR-ToF-MS.
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Tables

Table S1. Composition of gas-phase adsorber tube containing three GCB layers separated by glass wool.
Thermal desorption was carried out with reversed airflow.

Sampling order in direction of airflow  Sorbent

Weight (mg)

1
2
3

Carbotrap® B (20-40 mesh) 60
Carbotrap® Y (20-40 mesh) 60
Carbotrap® 569 (20-40 mesh) 60

90 Table S2. Oxidation flow reactor conditions in each run with the PEAR, and estimated lifetimes of LVOCs
in the exhaust with respect to partitioning to particles (T.er) or reactions with OH: (Tou). * atmospheric
equivalent days at [OH-] 1.5 x10° em™. ** at the PEAR exit.

95

Experiment OHexp }?(2)5;1, exp CSem ™ LVOC Taer™  LVOC Ton
run (10'° molec. cm? 1) (eqvd®) (¢ ;"-')1) M (ms) )
DR50 experiments

Run-2 ~26 ~2 1.6x10° 470+ 14 2+0.1 130
Run-4 ~26 ~2 1.6x10° 410+ 11 2+0.1 130
Run-7 ~26 ~2 1.6x10° 420+ 25 2+0.2 130
Run-8 ~26 ~2 1.6x10° 470+ 11 2+0.1 130
DR200 experiments

Run-3 84 6.50 7.8%10° 170+ 6.3 6+0.2 42
Run-3 41 3.20 6.0x103 170 + 17 6=0.7 85
Run-3 22 1.70 5.7x10° 130+£6.2 7+£0.3 160
Run-3 8.1 0.60 7.6x103 85+43 12+£0.6 430
Run-7 74 5.70 9.3x10° 170+£4.5 6+0.2 47
Run-7 4.9 0.38 1.3x10° 95+5.2 11£0.6 720
Run-7 17 1.28 7.5%103 130+ 8.3 7£0.5 210
Run-8 84 6.49 8.1x10° 190 £ 6.3 5+£0.2 42
Run-8 39 3.04 6.3x103 160 + 20 6+1 89
Run-8 21 1.64 2.9x103 77 +£8.7 13+1.6 160
Run-8 3.0 0.24 2.0x10° 6704 15+0.1 1150

Table S3. Internal standards used for quantification for GC-MS analyses.

Internal standard Con:gelit};;ltlon Targets

Toluene d8 0.2344 Ethylbenzene, Styrene

0-Xylene d10 0.0787 m-Xylene, o-Xylene

Naphthalene d8 0.0797 Indane, Indene, Naphthalene, 2-Methylnaphthalene,
1-Methylnaphthalene, 1,2 Dimethylnaphthalene

Biphenyl d10 0.0719 Biphenyl

Fluorene d10 0.0310 Fluorene

n-Dodecane d26 0.0693 Octadecane, Nonadecane, Decane, Undecane, Dodecane,
Tridecane, Tetradecane

n-Hexadecane d34 0.0387 Pentadecane, Hexadecane, Heptadecane, Octadecane



Table S4. Tons measured by the PTR-ToF-MS: the applied reaction rates with H;O" (k), the determined
average emission indices in the fresh and aged exhausts at DR50, and the secondary organic aerosol yield

100 applied for the bottom-up yield estimation. ks are interpolated to 136 Td from the values available in
Cappellin et al., (2012). k 0of 2.00 x 10” cm® s was otherwise assumed. SOA mass yields were estimated based
on literature values similarly as in Hartikainen et al., (2024). std refers to standard deviation during the
operation time in DR50 experiments.

m/z ion formula Group DBE k EIL fresh El, aged ?12]1?1
10° em3s) | (mg kgre) | (mg kgtua™)
mean std | mean std
41.04 (C3H4)H+ CH 2 1.61 1744 ¢ 131 501 84| 0%
42.03 (C2H3N)H+ CHN 1.5 3.85 3 4 2 1 0%
42.01 C2H20+ CHO 2 2 15 2 10 1 0%
42.04 C3H6+ CH 4 2 58 8 18 31 0%
43.02  (C2H20)H+ CHO 2.5 2 920 64| 3329 306 0%
43.05 (C3H6)H+ CH 1 1.62 914 95 3400 66| 0%
45.03  (C2H40)H+ CHO 1.5 3.04 2294 82| 1603 197 0%
47.01 (HCOOH)H+ CHO 2 1.91 540 51| 2412 354 0%
47.05 (C2H60)H+ CHO 0.5 2.07 5 2 2 31 0%
49.03 (CH402)H+ CHO 0 2 6 1 74 11 0%
49.02  CHA4S-H+ CHS 1 2 2 1 4 21 0%
53.04 (C4H4)H+ CH 3 2 49 3 14 21 0%
55.05  (C4H6)H+ CH 3.5 1.8 1419 142 469 93| 0%
55.02 (C3H20)H+ CHO 2 2 66 9 85 81 0%
57.03  (C3H40)H+ CHO 2.5 3.04 607 27 258 35| 0%
57.07 (C4H8)H+ CH 1 1.8 1509 : 147 362 81 0%
59.05 (C3H60O)H+ CHO 1.5 3.01 1249 56| 1898 131 0%
61.03 (C2H402)H+ CHO 2 2.01 9211 45| 4023 417 0%
63.01 (CH203)H+ CHO 2.5 2 <1 51 11 0%
65.02 (CH403)H+ CHO 1.5 2 2 1 38 51 0%
67.06 (CS5H6)H+ CH 3 1.83 210 13 65 11 0%
69.03  (C4H40)H+ CHO 3.5 2 126 6 70 81 0%
69.07 (CSH8)H+ CH 2 2 968 93 268 61| 26%
71.01  (C3H202)H+ CHO 4 2 16 8 56 81 0%
71.05  (C4H60)H+ CHO 2.5 3.29 487 21 201 30| 0%
71.08 (C5H10)H+ CH 1 1.9 260 28 54 14| 26%
73.03  (C3H402)H+ CHO 3 2.55 319 12 290 27| 0%
73.06  (C4H8O)H+ CHO 1.5 2.99 375+ 20 489 48| 0%
75.04  (C3H602)H+ CHO 2 2.27 1671 12 941 94| 0%
77.02  (C2H403)H+ CHO 2.5 2 10 3 3791 99| 0%
79.05  (C6H6)H+ Ar-CH 4 1.93 258 18 119 20| 37%
81.03  (C5H40)H+ Ar-CHO 4.5 2 27 6 11 21 30%
81.07 (C6H8)H+ CH 3 2 4761 39 129 25| 26%
83.01 (C4H202)H+ Ar-CHO 5 2 4 5 23 31 30%
83.05 (C5H60O)H+ CHO 3.5 2 281 10 121 14 0%
83.08 (C6H10)H+ CH 2 2 678 61 144: 39| 26%
85.03  (C4H402)H+ CHO 4 2 196 11 242 33| 0%
85.06 (C5H8O)H+ CHO 2.5 2 390 17 304 40| 0%
85.1 (C6H12)H+ CH 1 2.02 133 15 29 9| 26%
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195.17 (C13H220)H+ CHO 35 2 169 24 35 11 0%
197.08 (C10H1204)H+ Ar-CHO 7 2 5 4 24 6| 30%
197.11 (C11H1603)H+ Ar-CHO 5.5 2 34 14 49 12| 30%
197.15 (C12H2002)H+ CHO 4 2 117 24 46 16| 0%
197.19 (C13H240)H+ CHO 2.5 2 148 22 33: 121 0%
199.1 (C10H1404)H+ Ar-CHO 6 2 6 5 39 91 30%
199.13 (C11H1803)H+ CHO 4.5 2 35. 22 41 10 0%
199.17 (C12H2202)H+ CHO 3 2 177 30 49 201 0%
199.2  (C13H260)H+ CHO 1.5 2 134 21 46 21 0 %
205.09 (C12HI1203)H+ Ar-CHO 8.5 2 300 12 350 12| 30%
205.19 (C15H24)H+ Ar-CH 4 2 136 . 13 10 6| 58%

105 Table S5. n-Alkanes (Cs-Cis) measured by the GC-MS system in the gaseous exhaust emissions. The factors
their measured intensity exceeded the calibration standard by are also shown for both fresh and aged
exhaust gases. The highest point of calibration would correspond to EI of 18 mg kgge™.

Compound Exceedance of calibration
Fresh Aged

n-Octane x4 x2
n-Nonane x5 x2
n-Decane x8 x3
n-Undecane x16 x4
n-Dodecane x16 x4
n-Tridecane x16 x4
n-Tetradecane x16 x4
n-Pentadecane x14 x3
n-Hexadecane x14 x3
n-Heptadecane x12 x2
n-Octadecane x12 x2
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