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Abstract. Inverse modelling of atmospheric releases of radioactivity consists of reconstructing the release
source by combining radiological field measurements with atmospheric transport calculations. This is typically
performed with air concentration measurements, although deposition measurements or gamma dose rate mea-
surements could also be used. In this paper, we assess the use of deposition measurements of radioactivity in
this context. This is done through a case study of the undisclosed release of the radionuclide 106Ru in Eurasia
during the autumn of 2017. The atmospheric transport model we utilize for this purpose is FLEXPART. In-
verse modelling is performed with the inverse modelling tool FREAR (Forensic Radionuclide Event Analysis
and Reconstruction), which has been modified to work with deposition measurements. The inversion consists
of Bayesian and cost-function-based algorithms to reconstruct the initial source properties. Inverse modelling is
applied to both real and synthetic-deposition data following the 106Ru release. We also construct synthetic air
concentration data for use in inverse modelling to make a comparison with the results using deposition data. It
is found that source localization is feasible with both the synthetic and real-world deposition data. Synthetic air
concentration measurements lead to more precise source localization than deposition. It is demonstrated that this
can be explained by the lower detection limits of air concentration measurements compared to deposition.

1 Introduction

The ability to reconstruct the sources of polluting atmo-
spheric releases is critical in the endeavour of monitoring and
guarding the health of humans and nature. The process of
such source reconstruction, also often referred to as inverse
atmospheric transport modelling (or simply “inverse mod-
elling”), has been applied to the releases of pollutants such as
greenhouse gases (Stohl et al., 2009; Houweling et al., 2015;
Henne et al., 2016), volcanic sulfur dioxide (Eckhardt et al.,
2008; Kristiansen et al., 2010), microplastics (Evangeliou et
al., 2022), radionuclides (Devell et al., 1995; De Cort, 1998;
Davoine and Bocquet, 2007; Stohl et al., 2012; Katata et al.,
2015; De Meutter and Hoffman, 2020), and others.

Specifically, the release of radionuclides can potentially
pose an immediate danger to the surrounding population due

to direct exposure to radiation from either airborne or de-
posited radionuclides or contaminated water and foodstuffs.
Given these hazards, knowledge of the source term is cru-
cial for emergency preparedness and response. Another rele-
vant application of inverse modelling of radiological releases
is the verification of the Comprehensive Nuclear-Test-Ban
Treaty (CTBT). The CTBT was adopted by the United Na-
tions in 1996 – though it is yet to be ratified by all An-
nex II states – to ban all nuclear explosions. Adherence to
the CTBT is monitored by, among other methods, almost 80
radionuclide detection stations worldwide. In order to link
a CTBT-relevant waveform event (as can be identified by
seismic, ultrasound, or hydro-acoustic signals) to a nuclear
explosion, these radionuclide measurements can be used to
reconstruct the source with inverse modelling techniques
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(Wotawa et al., 2003; Eslinger and Milbrath, 2024; De Meut-
ter et al., 2024).

Following detections of radionuclides, one can use various
inverse modelling techniques to reconstruct the source term.
Combining observations and results from atmospheric trans-
port modelling (ATM) in a mathematically consistent man-
ner makes it possible to estimate the properties of the source,
such as its location, the total amount of material released, and
the timing of the release.

The most commonly used quantity in inverse modelling in
the radiological context is activity air concentration. How-
ever, what are also often available are measurements of dry
and/or wet deposition. Such measurements do not contain
noble gases (such as xenon) since these nuclides are not
subject to deposition (Baklanov and Sørensen, 2001). Some
common nuclear fission products that have been previously
detected in deposition samples after a radiological release
are 137Cs, 134Cs, 131I, and 106Ru (Evangeliou et al., 2017;
MEXT, 2011; Ramebäck et al., 2018; Masson et al., 2019).

In practice, deposition measurements can provide advan-
tages compared to those of air concentration. Activity air
concentration detectors are typically part of expensive, sta-
tionary networks. Deposition, on the other hand, can be ob-
tained by mobile and cheaper deposition collection methods.
For instance, following a known or suspected release, one
can place deposition collectors in locations that are likely
to be hit according to the current or forecast meteorologi-
cal conditions. Moreover, in this way, a plume that misses
existing air concentration detectors can still be captured by
placing deposition tanks, assuming that the collected depo-
sition surpasses the detection threshold. Deposition can also
be collected a posteriori by taking soil and plant samples.
However, for a given release, air concentration is generally
more easily detected than deposition due to the lower detec-
tion limits of air concentration detectors.

Deposition detections of radionuclides have previously
been used in combination with those of air concentration
to estimate the source term of the Chernobyl (1986) and
Fukushima (2011) nuclear disasters (Evangeliou et al., 2017;
Stohl et al., 2012; Winiarek et al., 2014; Dumont Le Brazidec
et al., 2023). In these cases, the source location was al-
ready known beforehand, significantly simplifying the in-
verse modelling procedures by reducing the overdetermi-
nation of the problem. However, the source location is not
always known. Such real-life scenarios include potential
CTBT-relevant events and the undisclosed release of 106Ru
during late September 2017.

During late September and early October 2017, anoma-
lous amounts of the radionuclide 106Ru (T1/2= 1 yr 7 d) and,
to a lesser extent, of 103Ru (T1/2= 39.3 d) were detected in
Europe and other parts of the Northern Hemisphere (Masson
et al., 2019). To this day, no release of the radioactive ruthe-
nium has officially been declared. The source term has been
estimated in previous studies (Sørensen, 2018; Shershakov
et al., 2019; Saunier et al., 2019; Western et al., 2020; Du-

mont Le Brazidec et al., 2021; Tølløse et al., 2021). The re-
sults of these studies are summarized in Table 1. Most stud-
ies conclude that the release likely originated in the south-
ern Ural region, with the Federal State Unitary Enterprise
of the Mayak Production Association being the most prob-
able source as it is the only nuclear facility in the region.
The released activity varies from some hundreds of TBq
to about 1 PBq, with the majority of the release having oc-
curred between 24 and 26 September 2017. In these stud-
ies, only atmospheric concentration measurements of 106Ru,
of which there are more than 1000 available (Masson et al.,
2019), were used directly in the inverse modelling process.
However, 106Ru was also detected in numerous deposition
samples. Masson et al. (2019) aggregated 135 deposition
detections in total. Values up to ∼ 300 Bq m−2 and up to
∼ 90 Bq m−2 were detected in Russia and Europe (Scandi-
navia), respectively.

The anomalous 106Ru release of 2017 serves as a valuable
test case due to the absence of any prior radioactive ruthe-
nium background. 106Ru does not occur naturally, and that
from the only previous major release (the Chernobyl nuclear
disaster in 1986) has long since decayed due to its half-life
of approximately 1 yr. Thus, there is no background-related
error associated with interpreting the 106Ru detections. This
contrasts with, for example, 133Xe or 137Cs detections, which
can contain traces from present-day civil sources (Gueibe et
al., 2017) and historical nuclear accidents and weapon tests
(De Cort, 1998; Evangeliou et al., 2016), respectively.

In this paper, the source of the undisclosed 106Ru release
is reconstructed based on the available deposition detections
using the FREAR (Forensic Radionuclide Event Analysis
and Reconstruction) inverse modelling code (De Meutter et
al., 2018; De Meutter and Hoffman, 2020; De Meutter et al.,
2024). The source location is assumed to be unknown for the
purposes of inverse modelling. The intent of this paper is not
necessarily to refine the source term parameters of the 106Ru
release but rather to evaluate the capabilities of inverse mod-
elling with deposition measurements.

The rest of the paper is organized as follows. In Sect. 2,
we describe the measurement data and models used for this
study, as well as the constructed inverse modelling experi-
ments. In Sect. 3, the results are shown and discussed after
the data and model setup are evaluated. The conclusions are
presented in Sect. 4.

2 Data, models, and experiments

Described herein are the atmospheric transport model, the
meteorological data, and the inverse modelling algorithms.
We also include a sub-section describing the inherent phys-
ical differences between measurements of air concentration
and deposition as is relevant for inverse modelling. The sec-
tion also contains a description of the different experiments.
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Table 1. Source term estimates in the existing literature of the undeclared 106Ru release in 2017. The Mayak Production Association is
located at 55.71° N, 60.85° E.

Reference Location Total activity Release date

Sørensen (2018) Mayak 1100 TBq 26 September
Shershakov et al. (2019) Southern and central Urals 500 TBq 25–26 September
Saunier et al. (2019) Mayak 250 TBq 26 September
Western et al. (2020) Mayak 441 TBq 24 September
Dumont Le Brazidec et al. (2021) [55°, 56°] N, [59°, 61°] E 200–450 TBq 25–26 September
Tichý et al. (2021) Mayak 130–344 TBq 25–26 September
Tølløse et al. (2021) Mayak 620 TBq 23–26 September

2.1 106Ru deposition data

Deposition data of 106Ru located across the Eurasian conti-
nent following the 2017 anomalous release have been com-
piled by Masson et al. (2019). The dataset contains 135 de-
position measurements in total. For this study, we have made
a selection of data points for use in the inverse modelling
calculations based on their temporal measurement window
and location and the physical quantity that was measured.
Only observations that started after 2 September 2017 and
ended before 25 October 2017 were selected. After 1 month,
the released material was dispersed significantly in the at-
mosphere so that it generally no longer contained relevant
information for the purpose of inverse modelling. Further-
more, only detections at a distance greater than 1000 km from
Mayak were selected. Detections closer than this may be con-
founded by particle–gaseous partitioning of the radioactive
ruthenium and local weather effects. The absence of gaseous
106Ru has only been confirmed in Europe (Masson et al.,
2019). Finally, only detections of activity per surface area
(i.e. Bq m−2) were selected. There were five measurements
in the remaining dataset reported in units of activity per pre-
cipitated volume (i.e. Bq L−1), which were not used. Val-
ues in Bq m−2 are directly suitable for the inverse modelling
framework as the deposition values of the ATM we use are
output in these units. Thus, to keep the dataset consistent, we
decided to use the Bq m−2 values.

The end result of applying all of the above criteria leaves
30 remaining measurements. We follow the distinction made
by Masson et al. (2019) to label 18 of these “activity con-
centration in rainwater” and 12 “dry + wet fallout”, which
we will abbreviate to “rainwater” and “fallout”, respectively.
The locations of these 30 remaining measurements are shown
in Fig. 1. Though the description “activity concentration in
rainwater” may seem to imply only the collection of wet de-
position, in general, monitoring networks do not discriminate
between dry and wet deposition. It is therefore assumed that
both the rainwater and fallout measurements contain dry and
wet deposition collected over the entire measurement win-
dow. We will perform the inverse modelling separately with
the rainwater and fallout datasets, as well as by combining
both datasets.

Figure 1. Location of 18 rainwater (blue circles) and 12 fallout (red
triangles) deposition observations selected from the Supplement in
Masson et al. (2019). Some measurement locations (partially) over-
lap. The location of the Mayak nuclear installation is shown with
the green star. The grey rectangle defines the search area for the
inverse modelling calculations (lower-left corner of [45° N, 40° E]
and upper-right corner of [70° N, 80° E]).

One remaining aspect is the timing to be used for the mea-
surements. The duration of the measurement windows ranges
from 1 d (13 measurements) to 7 d (8 measurements), with
the rest being scattered in between (8 measurements), except
for one measurement window, which is 28 d. However, the
deposition data in the Supplement of Masson et al. (2019)
only provide the start and end dates of the measurements.
Absent are the hours at which the measurements may have
started or ended. Assigning start and end hours is, however,
necessary to perform the inverse modelling lest it is assumed
that each measurement started and ended at 00:00 UTC,
which does not appear to be realistic. The choice made for
this study is that each measurement starts at 05:00 UTC and
ends at 13:00 UTC. It is reasonable to assume the start and
end times to be similar. However, the choice to extend the
measurement interval by 8 h was made to increase the like-
lihood of capturing the relevant precipitation event that con-
tributed to any wet deposition. While, a priori, this may in-
crease the chance of erroneously capturing a rain event out-
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side the true measurement interval, we show in Sect. 3.1 that
this is not the case. The time extension in the measurement
window is kept more modest than the theoretical maximal er-
ror since such a large window would induce chances of cap-
turing erroneous precipitation and (retro-) plume dispersion.

2.2 Atmospheric transport modelling

The source–receptor sensitivities (SRSs) were calculated
with the stochastic Lagrangian particle dispersion model
FLEXPART v10.4 (Stohl et al., 2005; Pisso et al., 2019a),
used in backward-in-time mode (Seibert and Frank, 2004;
Eckhardt et al., 2017). The backward-in-time mode is based
on the adjoint version of the ATM, which mathematically
equates to simply inverting the sign of the advection term
in the transport equation for a Lagrangian particle model
(Thomson, 1987; Flesch et al., 1995; Pudykiewicz, 1998).
SRS fields can be obtained through both forward- and
backward-in-time calculations. The forward- or backward-
in-time method will be more computationally efficient if
the number of observations is, respectively, greater or less
than the number of potential geotemporal source term seg-
ments. In this study, the source location is assumed to be un-
known for the purposes of inverse modelling; therefore, the
backward-in-time method is more efficient. A total of 10 mil-
lion particles were released for each backward-in-time calcu-
lation. The SRS fields were output every 3 h on a 0.5°× 0.5°
grid that covers the grey rectangle in Fig. 1. The retro-plume
dispersion was calculated from the end of each measure-
ment backward in time to 00:00 UTC on 22 September 2017,
which is several days before the release starts in the existing
literature (Table 1).

The relevant 106Ru deposition parameters used in the
FLEXPART simulations are given in Table 2. The wet-
deposition parameters (Crain, Csnow, CCNeff, and INeff) are
taken from Van Leuven et al. (2023), who found that the
default deposition parameters were the cause of an un-
derestimation of global 137Cs concentration following the
Fukushima nuclear accident when using FLEXPART v10.4.
The in-cloud scavenging efficiencies are greater than 1 but
can mathematically be absorbed into other internal param-
eters of FLEXPART (such as the cloud water replenishing
rate), thus not necessarily violating the physical correctness
of the model. Masson et al. (2019) found that the particle
sizes were in the sub-micron range; hence, the default value
of 0.6 µm was kept.

The input numerical weather data for the ATM calcu-
lations were obtained from the MARS archive from the
ECMWF with the use of the FlexExtract v7 software (Tipka
et al., 2020). We evaluate two sets of meteorological data
with different resolutions, both extracted from the same un-
derlying ECMWF data. One is a nested set of hourly model
values. These data consist of analyses at 0, 6, 12, and 18 Z,
intermixed with short forecasts of+1,+2,+3,+4, and+5 h.
The nesting is as follows: a 0.1°× 0.1° grid with the coverage

of the full extent of Fig. 1 (lower-left corner of [20° N, 0° E]
and upper-right corner of [80° N, 90° E]) is nested in a grid
of 0.5°× 0.5° covering the Northern Hemisphere. The other
set of meteorological data we use is a Northern Hemisphere
model with 1° horizontal resolution and short forecasts of
+3 h, resulting in a temporal resolution of 3 h. Both sets of
meteorological data contain 137 non-uniformly spaced hy-
brid vertical levels ranging from 10 m above the surface up to
approximately 80 km. The high-resolution nested model will
be denoted by (0.1°, 1 h), and the lower-resolution model will
be denoted by (1°, 3 h).

2.3 Inverse modelling

The general idea behind inverse modelling is to estimate rel-
evant source term parameters given a set of observations and
source–receptor sensitivities obtained by atmospheric trans-
port modelling. Inverse modelling is most straightforward
with a linear atmospheric transport model, such as FLEX-
PART. A linear ATM has physical quantities φi (e.g. air con-
centration, deposition) that scale linearly with the geotempo-
ral release segment Sj of the source term:

φi =
∑
j

MijSj . (1)

The proportionality factors Mij are the source–receptor sen-
sitivities (SRSs) and form the components of the SRS matrix
M. The SRS valueMij captures the sensitivity of observation
i to the geotemporal release segment j . Under this formal-
ism, one needs to calculate the SRS values Mij only once in
order to be able to generate φi for a given scaling of Sj .

The inverse modelling for this study is performed using
the inverse modelling code FREAR (Forensic Radionuclide
Event Analysis and Reconstruction) (De Meutter et al., 2018;
De Meutter and Hoffman, 2020; De Meutter et al., 2024).
FREAR is an open-source inverse modelling tool developed
to aid nuclear emergency preparedness and response and the
CTBT verification regime. It takes as input a set of activity
air concentration measurements and source–receptor sensi-
tivities from ATM. Inverse modelling in FREAR can be per-
formed with a Bayesian inference and a cost function opti-
mization method, as well as some other, more simple meth-
ods (a correlation and an overlapping retro-plume method).

The source term is assumed to be contained within the grey
rectangle in Fig. 1, which is defined by a lower-left corner of
[45° N, 40° E] and an upper-right corner of [70° N, 80° E].

2.3.1 Bayesian inference

The Bayesian method uses a Gaussian likelihood, where the
standard deviation has been replaced by an inverse gamma
distribution for the combined model and observation uncer-
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Table 2. Deposition parameters used for the aerosolized 106Ru in the FLEXPART simulations.

Parameter name Symbol Value

Rain scavenging coefficient Crain 3.6
Snow scavenging coefficient Csnow 1.4
Cloud condensation nucleation efficiency CCNeff 1.8
Ice nucleation efficiency INeff 1.6
Average particle diameter d 0.6 µm
Particle diameter geometric variance σd 0.3
Particle density ρ 2500 kg m−3

tainties (Yee, 2012):

p
(
φmod,i |φobs,i

)
=
αβ0

(
β + 1/2

)
√

2πsi0
(
β
)

1[
α+

(
φobs,i −φmod,i

)2
/
(
2s2
i

)]β+1/2
. (2)

The hyperparameters α and β of the inverse gamma distri-
bution are fixed at 1/π and 1, respectively. si represents the
combined model and observation uncertainties:

s2
i = σ

2
obs,i + σ

2
mod,i . (3)

Since the model errors are unknown but assumed to be dom-
inant over the observational errors, the combined model and
observation uncertainties are parameterized as

si = σmod,i =max
(
4MDQi,0.5φobs,i

)
, (4)

where MDQi is the minimal detectable quantity for observa-
tion φobs,i . The Bayesian algorithm takes into account detec-
tions, non-detections, misses, and false alarms through the
use of the detection limits (De Meutter and Hoffman, 2020).
The posterior is sampled with the general-purpose Markov
chain Monte Carlo algorithm MT-DREAM(ZS) (Laloy and
Vrugt, 2012). In the Bayesian algorithm, the source term
is parameterized by a singular block release specified by a
longitude–latitude location, a start time, end time, and total
amount released. The prior distribution for the start time is
chosen to be uniform from 23 to 29 September 2017. The
prior for the end time is determined by a uniform distribution
of rend in

tend = tstart+ rend (tmax− tstart) . (5)

This construction is used to ensure that the end time occurs
after the start time. The prior distributions of the source lat-
itude, longitude, and release quantity are also chosen to be
uniform.

2.3.2 Cost function minimization

The cost function method is based on minimizing a modified
version of the geometric variance (De Meutter et al., 2024):

F = exp

{
1
N

N∑
i=1

[
log

(
f
(
φobs,i

))
− log

(
f
(
φmod,i

))]2}
, (6)

with

f (φ)=

{
φ2

4MDQ +MDQ if φ ≤ 2MDQ
φ else.

(7)

This allows the cost function algorithm to take into account
detections and non-detections. The cost function F does not
optimize for the source location explicitly. Rather, the cost
function optimization is applied to each grid box by fixing the
source location while varying the temporal release profile.
The end result is a grid of residual costs, where lower cost
means a better fit for a release at that location. The temporal
release profile is parameterized as a sequence of block re-
leases for each day in contrast to the Bayesian method which
only evaluates a single block release as part of the source
term.

2.3.3 FREAR with deposition

The existing version of FREAR takes observation sets of ac-
tivity air concentration as input. For this study, the FREAR
source code has been modified to work with both concen-
tration and deposition observations. The source reconstruc-
tion can be performed using any combination of the different
types of measurements simultaneously. Mathematically, this
can be more clearly denoted by writing Eq. (1) as φ =MS in
vector notation, where φ and S are column vectors. If φ con-
tains multiple types of measurements, this can be represented
as
φconc
φtot
φwet
φdry

=


Mconc
Mtot
Mwet
Mdry

S, (8)

where the subscripts “conc”, “tot”, “wet”, and “dry” stand
for air concentration, total deposition, and wet deposition
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and dry deposition, respectively. Mtot cannot be calculated
directly with FLEXPART. Instead, the dry and wet compo-
nents need to be calculated separately and added to obtain
the total deposition:

Mtot =Mdry+Mwet. (9)

2.4 Air concentration versus deposition

In this section, we take the opportunity to expound on the
physical differences between measurements of air concentra-
tion and deposition as relevant for inverse modelling. These
differences arise from the fact that the part of the concentra-
tion plume that is sampled with each type of measurement
differs significantly.

Consider first that the source–receptor relationship (1) can
also be written in its continuous form using inner-product
notation:

φi = 〈Mi,S〉 =

∫
dt
∫
D

d3xMi (x,y,z, t)S (x,y,z, t) , (10)

where D is the domain under consideration. Using the dual
relation of the inner product, φi can also be related to the
air concentration field c(x,y,z, t) (Pudykiewicz, 1998; Yee
et al., 2008):

φi = 〈c, S̃i〉 =

∫
dt
∫
D

d3x c (x,y,z, t) S̃i (x,y,z, t) . (11)

Here, S̃i is the source term for the adjoint transport equation
of observation i and is therefore referred to as the adjoint
source function. S̃ takes a different form depending on the
measured quantity:

S̃i (x,y,z, t)

=


Kconc,i(x,y,z, t) for φconc,i
Kwet,i(x,y, t)3(x,y,z, t)T for φwet,i

Kdry,i(x,y, t)
vdry(x,y,z,t)

h
T for φdry,i .

(12)

Ki functions as a receptor kernel that represents the geotem-
poral sampling space of the detector of observation i: each
observation has a certain spatial coverage and covers a cer-
tain time period. For an air concentration measurement,
this is a three-dimensional kernel (L−3) and the condi-
tion that

∫
dt
∫
Dd3xK(x,y,z, t)= 1. For a deposition mea-

surement, K is two dimensional (L−2) and the condition∫
dt
∫
D2

dxdyK(x,y, t)= 1, where D2 is the surface of the
domainD. In Eq. (12), the adjoint source function S̃ for an air
concentration measurement simply corresponds to the ker-
nel function K . We can account for linear functions of the
concentration field, such as deposition, by absorbing the pro-
portionalities into the adjoint source function. Thus, for wet
and dry deposition, the adjoint source function also contains
the scavenging coefficient3 (Seinfeld and Pandis, 2006) and

dry-deposition velocity vdry, respectively. Dry deposition is
applied over a vertical distance h, which is set to 30 m in
FLEXPART. The sampling time T is also present in the ad-
joint source functions of both deposition quantities in order
to convert deposition rate to total deposition. Given these def-
initions, the adjoint source functions S̃i can be interpreted as
the effective geotemporal sampling space of each measure-
ment, as schematically shown in Fig. 2. The adjoint source
function of a dry-deposition measurement is similar to one
of air concentration as it samples air in the lowest part of the
boundary layer where material is deposited at a rate propor-
tional to the deposition velocity vdry(x,y,z, t). Wet deposi-
tion provides a different vertical resolution compared to air
concentration or dry deposition. Under wet deposition, the
concentration is scavenged at the rate of the local scaveng-
ing coefficient 3(x,y,z, t) over the entire vertical up to the
height of the precipitating cloud. Thus, wet deposition pro-
vides a more extended vertical sampling space compared to
dry deposition and air concentration. This vertical extent can
be beneficial in certain scenarios. Material will still be de-
posited if the plume passes at an altitude but not near the
surface, where it would miss an air concentration or dry-
deposition detector. Besides the vertical resolution, the tim-
ing of the sampled air also differs significantly. Air concen-
tration and dry deposition are sampled during the entire mea-
surement window, while wet deposition is sampled in precip-
itating conditions only, which can cover merely a part of the
full measurement window. Thus, a wet-deposition measure-
ment can potentially provide better temporal resolution com-
pared to an equivalent air concentration or dry-deposition
measurement. The benefits of this improved temporal reso-
lution with respect to inverse modelling will depend on the
accuracy of the precipitation in the meteorological data used
in the ATM calculation. The net effect of the differences in
terms of vertical and temporal resolution is not considered to
be trivial.

The above-mentioned physical differences between the
various types of measurements also have further implications
for backward-in-time calculations with a Lagrangian parti-
cle ATM since S̃ is also the source function of the adjoint
transport equation. As implemented in FLEXPART (Seibert
and Frank, 2004; Eckhardt et al., 2017), particles are released
according to the adjoint source function and then evolve
with the adjoint model. This means that the backward-in-
time method applied to air concentration and dry-deposition
measurements is expected to be similar as particles are re-
leased continuously over the measurement window close to
the surface. For a wet-deposition measurement, on the other
hand, particles are released across the vertical. With the im-
plementation in FLEXPART, this dilutes the number of par-
ticles compared to the near-surface releases of air concen-
tration and dry deposition. This can increase stochastic un-
certainty in the model output as fewer particles are available
to construct the retro-plume. Furthermore, in a backward-in-
time simulation particles that are allocated and released in

Atmos. Chem. Phys., 25, 9199–9218, 2025 https://doi.org/10.5194/acp-25-9199-2025



S. Van Leuven et al.: Source localization via deposition 9205

Figure 2. Schematic representation of the adjoint source functions S̃i (x,y,z, t) (green-filled boxes) of air concentration and dry-deposition
and wet-deposition measurements. S̃ represents both the geotemporal coordinates of the air sampled in each measurement and the coordinates
of the particle releases in the backward-in-time dispersion calculations (Seibert and Frank, 2004; Eckhardt et al., 2017). The sampling starts
at t = 0 and ends at t = T . The raindrop symbols indicate precipitation events, where wet deposition is collected.

non-precipitating conditions are immediately removed from
the simulation, thus further reducing the output statistics. As
mentioned in Sect. 2.2, the number of particles allocated for
each simulation in this study is 10 million, which was deter-
mined based on practical time constraints.

2.5 Performance metrics

In evaluating the performances of the different inverse mod-
elling experiments, we will make use of the three perfor-
mance metrics introduced by De Meutter et al. (2024). These
metrics have been proposed to quantify the performance of
various source localization methods. These are schematically
shown in Fig. 3 (adapted from De Meutter et al., 2024 with a
licence agreement):

a. distance

b. fraction of the domain excluded (FDE) ∈ [0,1[

c. cumulative distribution score (CDS) ∈ [0,1].

The distance metric quantifies the great circle distance be-
tween the true source location and the most probable location
assigned by the inverse modelling method. The FDE is the
fraction of the domain that is excluded as a possible source
location based on threshold values: 2 for the residual cost and
0 for the Bayesian source location probability. It has a value
between 0 and 1, with the latter being the perfect value. The
total domain we consider is that defined by the grey rectangle
in Fig. 1. The CDS is the value of the cumulative distribution
function at the true source location. It also has a value be-
tween 0 and 1, with the latter being the perfect value. It can
be defined relative to the full domain or relative to a sub-
domain defined by the coverage of the location probability.
In this study, we use the definition using the sub-domain.

2.6 Source term and synthetic observations

In this study, the inverse modelling techniques are evalu-
ated with two different types of experiments: a “twin exper-
iment” and a “real-world” experiment. The twin experiment
involves an inverse modelling calculation based on measure-
ments generated from a forward ATM calculation. This type
of experiment eliminates measurement, meteorological, and
model errors. The forward FLEXPART calculation in our ex-
periment is based on the 106Ru source term from Saunier et
al. (2019) as this is a source term from the literature with
a described temporal release profile. They estimate a total
release of about 250 TBq (2.5× 1014 Bq), mainly released
on 26 September (Fig. 4). This ATM calculation is then
used to generate synthetic observations. The synthetic ob-
servations are subsequently used as the basis for the inverse
modelling calculation, together with the SRS fields obtained
from backward-in-time ATM calculations. As first glance,
one might expect that the inversion results from such a type
of experiment are somewhat trivial. This is, however, not nec-
essarily the case since the synthetic measurements have a cer-
tain spatial and temporal resolution as explained in Sect. 2.4.
Thus, a perfectly accurate result should not be expected, even
for a twin experiment. It is also worth noting that the source
term parameterization used for the Bayesian inversion can
only resolve a constant release and would thus not be capa-
ble of fully reproducing the profile as shown in Fig. 4. It will
likely focus on fitting the main release on 26 September.

The synthetic observations are based on the real observa-
tions (Fig. 1) by using identical station locations and mea-
surement windows. The synthetic data do not, however, come
with minimal detectable quantities (MDQs). Nevertheless,
these values are required for the inverse modelling algo-
rithms (see Sect. 2.3). Thus, a choice has to be made. For the
synthetic-deposition datasets, an MDQ of 0.1 Bq m−2 was
chosen, reflecting (in order of magnitude) the lowest MDQ
seen in the real dataset. Since air concentration (activity per
unit volume) is a different quantity to deposition (activity per
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Figure 3. Schematic illustration of the three performance metrics as introduced by De Meutter et al. (2024) and adapted therefrom with a
licence agreement. (a) Distance, (b) fraction of the domain excluded (FDE), and (c) cumulative distribution score (CDS). The black bullet
represents the true source location, and the coloured fields represent the source location probabilities.

Figure 4. 106Ru source term (Saunier et al., 2019) used for the
forward ATM calculations in the twin experiments.

unit area), a different MDQ needs to be chosen as well. The
MDQ for air concentration is also known as the minimal de-
tectable concentration (MDC). The choice was made to use
an MDC of 1 µBqm−3, a value common for modern particu-
late monitoring stations.

2.7 Experiments

As mentioned before, we perform two experiments: the twin
experiment and the real-world experiment. Each experiment
contains multiple sub-experiments wherein different sets of
measurements are used for the inverse modelling calcula-
tions. The experiment using real data contains three sub-
experiments (Table 3). The rainwater and fallout deposition
datasets form the basis of two sub-experiments, with the
third being based on the combination of these two datasets.
The twin experiments are set up differently (Table 4). Syn-
thetic observations are generated for the 18 rainwater and 12
fallout measurement locations and windows. Since these are
synthetic observations, the detected quantity can be chosen.
Synthetic observations are generated for wet, dry, and total
deposition and air concentration. In this way, a comparison
can be made between the differences in terms of the vertical
and temporal resolution of the deposition and air concentra-
tion observations (see Sect. 2.4). A fifth twin experiment is
a combination of the total-deposition and air concentration

Table 3. Datasets used in the real-data experiments. The circle and
triangle symbols signify sets of measurement locations and win-
dows, using the symbology from Fig. 1. The SRS fields follow the
notation used in Eq. (8).

Real data No. Locations SRS field(s)

Rainwater 18 • Mtot
Fallout 12 N Mtot
Rainwater + fallout 30 • + N Mtot

Table 4. Datasets used in the twin experiments. The circle and tri-
angle symbols signify sets of measurement locations and windows,
using the symbology from Fig. 1. The SRS fields follow the notation
used in Eq. (8).

Twin experiment No. Locations SRS field(s)

Wet deposition 30 • + N Mwet
Dry deposition 30 • + N Mdry
Total deposition 30 • + N Mtot
Air concentration 30 • + N Mconc
Total dep. + air conc. 60 2× (•+N) Mtot, Mconc

synthetic datasets with Eq. (8). The total-deposition twin ex-
periment uses the same measurements as the “rainwater +
fallout” real experiment and can thus be used in a direct com-
parison.

3 Results and discussion

The results are organized into three sub-sections. Firstly, the
model setup is evaluated by means of analysis of the depo-
sition datasets with forward ATM calculations. Then the in-
verse modelling results with the synthetic datasets are shown
and discussed. Finally, the same is done for the inversion re-
sults with the real datasets.
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Table 5. Selection of statistical scores between the model and ob-
served deposition values for the two datasets: “rainwater” and “fall-
out”.

FB R FAC2 FAC5 FAC10

Rainwater −0.64 0.85 0.67 0.89 1
Fallout −0.33 0.43 0.42 1 1

3.1 Model setup evaluation

Figure 5 compares the observed rainwater and fallout de-
position values with the modelled values obtained with the
(0.1°, 1 h) meteorological data. All modelled rainwater de-
posits fall within a factor 10 (FAC10) of the observations
(Fig. 5, top panel, and Table 5). Overall, the model consis-
tently underestimates the observed deposition, as quantified
by the fractional bias (FB) of −0.64. The correlation can be
considered to be high, with a Pearson coefficient (R) of 0.85.
The fallout measurements exhibit some different character-
istics (Fig. 5, bottom panel). All model values fall within a
factor 5 (FAC5) of the observations. However, the correlation
is poorer at 0.43. The reasons for the poorer correlation of the
fallout dataset are unclear. This can be due to the collection
method or other sources of error such as the source term or
the model itself.

Almost all non-detections are reproduced perfectly, sug-
gesting that no erroneous rain event was captured due to in-
creasing the measurement window as discussed in Sect. 2.1.

As described in Sect. 2.1, both the rainwater and fallout
datasets are assumed to contain dry and wet deposition. All
simulated values for the rainwater dataset contain a non-zero
amount of wet deposition, while there are three fallout val-
ues that contain no wet deposition. This difference supports
studying the two datasets separately in our analysis. We will
also discuss the results of combining both datasets.

There are two outliers in the modelled deposition values in
rainwater, labelled Sweden 3 and 6. They are underestimated
by factors of 6.2 and 9.4, respectively. These data points have
required some extra attention since they concern two of the
highest measurements.

The observations Sweden 3 and Sweden 6 were made
around 150 km from each other (in Gävle and Stock-
holm, Sweden), with measured values of 18.7± 1.1 and
20.8± 1.5 Bq m−2, respectively. They are the second and
third highest measurements in the dataset. For both values,
the model apportions around 35 % to wet deposition and the
other 65 % to dry deposition. A comparison with the values
obtained using the (1°, 3 h) meteorological data shows these
measurements to be very sensitive to the resolution. This is
shown in Fig. 6. Using the lower-resolution meteorological
data, the two observations are underestimated by 2 orders of
magnitude. The higher-resolution meteorological data (0.1°,
1 h) provide an increase in deposition by 1 order of magni-

tude, which is still an underestimation but an improvement
over the lower-resolution result.

In order to assess whether the remaining discrepancy is
related to deposition or transport, we perform ATM calcula-
tions with an air tracer species. The air tracer species experi-
ences no deposition, thus isolating the effects of transport. It
is then interesting to analyse the column density σ , which is
defined as the vertical integral of the air concentration field,

σ (x,y, t)=

∞∫
0

c(x,y,z, t)dz, (13)

and represents the total activity present in the vertical col-
umn. Taking the cumulative sum of the column density over
time gives a theoretical limit on the total deposition that
could have occurred over that time. At any given point in
time, all that can theoretically be deposited is that which is
present in the vertical column. Accumulating this quantity
over time then gives an upper limit on the accumulated depo-
sition. Accumulating the column density in this way neglects
any depletion that may occur in the plume from one time
step to the next and the fact that material will not be scav-
enged over the entire vertical, which should thus lead to an
overestimation of the total possible deposition.

The comparison of the accumulated column densities be-
tween the (1°, 3 h) and (1°, 1 h) meteorological data is also
shown in Fig. 6 alongside the deposition values. As already
described, the modelled deposition values with the (1°, 3 h)
meteorological fields are, for both measurements, 2 orders
of magnitude too low. The column densities show that this
cannot be explained by the calculation of deposition itself as
the column densities also fall below the observed values (de-
spite being a very conservative estimate). Thus, no increase
in deposition in this ATM calculation can possibly reproduce
the observed values. The (0.1°, 1 h) calculation fares better.
The deposition values increased by around 1 order of magni-
tude compared to the (1°, 3 h) calculation. This time, the col-
umn densities actually exceed the observed deposition val-
ues. Figure 7 shows the spatial pattern of the deposition ac-
cumulated over the measurement period. The locations of the
Sweden 3 and 6 measurements are denoted by the black cir-
cles. For the (1°, 3 h) meteorological data, the measurements
are located along a relatively strong gradient compared to the
(0.1°, 1 h) meteorological fields, where the gradient is much
lower at those locations. This is the result of the air con-
centration plume passing over Scandinavia being narrower in
the (1°, 3 h) simulation and containing a lower concentration
overall.

No significant difference in terms of deposition between
the two sets of meteorological data was seen for other mea-
surements. For this reason, we continue with the (0.1°, 1 h)
data.
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Figure 5. Comparison of observations and FLEXPART model values based on the source term of Saunier et al. (2019) (top: rainwater
deposition measurements; bottom: fallout deposition measurements). Simulated values that fall below MDQ/2 are artificially set to be equal
to the MDQ for visual aid.

Figure 6. Modelled and observed deposition values for the Sweden 3 and 6 measurements. Modelled values use meteorological data with a
spatiotemporal resolution of (1°, 3 h) and (0.1°, 1 h). The accumulated column density of a tracer species is denoted by σ .

3.2 Twin experiments

In Sect. 2.7, we have defined five datasets for the twin ex-
periments. These experiments use synthetic data to eliminate
measurement, meteorological, and model errors.

3.2.1 Deposition data

Figure 8 shows the source localization results using the syn-
thetic datasets of wet, dry, and total deposition. The true
source (Mayak, black circle) is located in a region of high
probability for each of the three datasets. The performances
can be further quantified by the three performance metrics
introduced by De Meutter et al. (2024) (Sect. 2.5). These
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Figure 7. Total deposition using meteorological data with spatiotemporal resolutions of (1°, 3 h) and (0.1°, 1 h). The location of the Sweden 3
and 6 measurements are marked by the black circles.

are shown graphically in Fig. 9. The figure shows the three
performance scores on three axes, though these should not
necessarily be considered to be orthogonal (i.e. the metrics
are not wholly independent). The choice was made to use
1−CDS and 1−FDE so that a value of zero represents the
best score for all three metrics. The maximum limit of the
distance axis is arbitrary and chosen to be 1500 km, a dis-
tance that roughly corresponds to the largest possible dis-
tance to Mayak within the domain shown in Fig. 8.

The cost function method provides a very similar CDS
and FDE for each twin experiment, with values of around
1 and 0.7, respectively. The high CDS values signify that the
true source location has a relatively low residual cost in each
case. There is a also an overall good fit between the syn-
thetic and reconstructed values. The FDEs for the three ex-
periments are similar despite the use of different deposition
quantities in each dataset. The distance to the true source is
around 500 km using the wet- and total-deposition datasets.
The dry-deposition inversion appoints the most likely loca-
tion to the correct grid box. However, this difference in dis-
tances just described is significant, as may appear at first
sight. The CDSs of the wet- and total-deposition inversions
are nearly equal to 1; hence, the location of the overall most
probable location is only very slightly more probable than
that of the true source location. This emphasizes that some
care needs to be taken in interpreting the performance scores.

The performance metrics for the inverse modelling with
Bayesian inference are essentially perfect: a near-zero dis-
tance metric and a CDS and FDE near to 1 for each dataset.
Nevertheless, there are some minor differences between the
datasets that can be identified in Fig. 8. The result with the
wet-deposition dataset shows, similarly to the cost function
method, three unconnected regions of local maximal proba-
bility. The Bayesian inference is able to assign a lower prob-
ability to the patches west of Mayak compared to the cost
function method. Using the dry-deposition dataset, the pre-
vious most western patch is excluded as a probable source
region by the Bayesian inference. The dry-deposition SRS

components carry this property to the total-deposition results
as well.

Besides the source location, the profile of the release (i.e.
the released quantity over time) can also be of interest. This
information exists in different formats for each of the two
inversion methods. The cost function method provides a re-
lease profile for each grid box since the cost is minimized
for each grid box. The Bayesian inference method provides
the (marginal) posterior distributions of each source term pa-
rameter, covering the whole domain. Therefore, an additional
Bayesian inference inversion is performed for each experi-
ment, with the location fixed at the location of Mayak. In
this way, the source terms obtained through cost function and
Bayesian inference can be compared directly.

Figure 10 shows the release profiles of the three synthetic-
deposition datasets using the cost function method. These are
the source terms as obtained within the grid box of the true
source location (Mayak). The inversion with dry-deposition
SRS fields is able to isolate the exact date of the major re-
lease. Using wet-deposition SRS fields, a partial release is
found on the correct day and a day earlier. This effect is
propagated when summing the wet- and dry-deposition SRS
fields in the total-deposition experiment. There, the release
on the correct date is closer in magnitude to the true value.
The algorithms are unable to reconstruct the small releases
on 23 and 24 September as they are several orders of magni-
tude smaller than the main release. These releases thus have
a small effect on the deposition values considering the fact
that the SRS values for these releases have the same order of
magnitude (or lower) than the later releases. Figure 11 shows
the release profiles of the three synthetic-deposition datasets
using the Bayesian inference method. The start time of the
wet-deposition experiment is around 1 d too early. The dry-
and total-deposition experiments both show a similar start
time signal, which is closer to the real value and shows a
clear cut-off after 26 September. The end times of all three
experiments show a signal around the correct date. The re-
lease magnitudes Q of all experiments are overestimated by
a factor of around 2. The fractional bias of the best fit is,
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Figure 8. (a, b, c) Residual cost after optimization. (d, e, f) Source location probability from Bayesian inference. Black circle: true source
location (Mayak). (a, d) Wet-deposition twin experiment. (b, e) total-deposition twin experiment. (c, f) total-deposition twin experiment. See
Table 4 for the definitions of the experiments.

Figure 9. Performance scores of the cost function optimization and Bayesian inference methods for the synthetic datasets: wet, dry, and total
deposition as defined in Table 4.

however, close to zero (< 0.1) for all three experiments. The
overestimation is then likely to be caused by a combina-
tion of factors. The Bayesian algorithm may assign different
start and/or end times to the release, where a larger source
term is found, in trying to compensate for the small incon-
sistencies between forward and backward FLEXPART simu-
lations. These inconsistencies can arise due the small differ-
ence in interpolation of the meteorological input data (Seibert
and Frank, 2004; Eckhardt et al., 2017).

3.2.2 Air concentration data

As described in Sect. 2.7, we also constructed a twin experi-
ment using a synthetic dataset of air concentration measure-
ments. These synthetic measurements have the same location
and measurement windows as the deposition data. Figure 12

shows the inverse modelling results of the air concentration
twin experiment and the experiment combining all SRS fields
using Eq. (8) (total deposition + air concentration experi-
ment in Table 4). The results for both cases are extremely
accurate and precise. Figure 13 shows the corresponding
scores. All inversion experiments that contain air concentra-
tion SRS fields can be considered to be quasi-perfect. Only
the CDS using the Bayesian inference deviates from perfec-
tion, with a value of around 0.7.

The release profile using Bayesian inference in the air con-
centration experiment, shown in Fig. 14, provides an inter-
esting comparison with the dry-deposition experiment from
Fig. 11. Since both dry-deposition and air concentration SRS
fields are very similar (see Fig. 2), the inverse modelling re-
sults are expected to be similar. This is verified with the re-
sults as shown.
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Figure 10. Optimized source terms following cost function optimization in the Mayak grid box for the deposition-based twin experiments
as defined in Table 4. The red outline is the true source term (Saunier et al., 2019) used for generating the synthetic observations.

Figure 11. Probabilities of source term parameters following Bayesian inference, with each deposition twin experiment as defined in Table 4.

It can be considered to be peculiar that the source local-
ization using the cost function method is much better in the
air concentration experiment compared to in the deposition
experiments. This is most clearly expressed by the FDEs: 0.7
for the deposition experiments (Fig. 9) versus 0.99 for the air
concentration experiment (Fig. 13). Further analysis shows
that this can be mainly attributed to the difference in the
MDQs. The (synthetic) values of deposition are, in relative
terms, closer to the chosen MDQ (0.1 Bq m−2) than the air

concentrations are to their MDC (1 µBqm−3. The air concen-
tration values are generally much larger than this MDC. Re-
running the air concentration experiment with an increased
MDC of 0.1 mBq m−3 yields the results shown in Fig. 15.
The FDE is now comparable to those of the deposition ex-
periments. The overall shape of the residual cost is particu-
larly similar to that of the dry-deposition experiment (Fig. 15,
middle panel, top row). This is expected as dry-deposition
and air concentration measurements sample similar parts of
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Figure 12. (a, b) Residual cost after optimization. (c, d) Source location probability from Bayesian inference. Black circle: true source
location (Mayak). (a, c) Air concentration twin experiment and (b, d) total deposition + air concentration twin experiment, as defined in
Table 4.

Figure 13. Performance scores of the cost function optimization and Bayesian inference methods for the synthetic air concentration datasets
as defined in Table 4.

Figure 14. Probabilities of source term parameters following Bayesian inference with the synthetic air concentration dataset.
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Figure 15. Residual cost after optimization using synthetic air con-
centration measurements with an MDC of 0.1 mBq m−3. Black cir-
cle: true source location (Mayak).

the plume (see Sect. 2.4). The MDC of 0.1 mBq m−3, how-
ever, can be considered to be too high for modern technolo-
gies. We thus find that, theoretically, the largest influence on
source localization is not the type of measurement but rather
the detection limits thereof.

3.3 Real data

In this section, the inverse modelling techniques are applied
to the real data. When evaluating the performance scores in
this section, it is assumed that the Mayak nuclear installation
is the true source location.

The source localization results of the cost function and
Bayesian inference methods are shown in Fig. 16, and their
scores are shown in Fig. 17. Significant differences can be
seen between the rainwater and fallout inversion experi-
ments. The cost function method shows a better localization
with the rainwater data compared to the fallout data. The fall-
out data cover a larger part of the domain as quantified by the
FDE of the fallout experiment being 0.5 compared to 0.7 for
the rainwater data. The residual cost at Mayak with the fall-
out data is greater compared to that with the rainwater data,
implying that the SRS fields are better able to reproduce the
latter measurements. The distance metric for the fallout data
is also rather large at 1500 km. This is the most western patch
of local minimal cost visible on the figure. However, the lo-
cal minimal cost neighbouring Mayak is only very slightly
higher, as reflected in the CDS of ∼ 1. Thus, this should not
necessarily be considered to be a bad result. The Bayesian
method is able to assign a lower probability to this western-
most patch, placing the most likely source location at around
300 km from Mayak in the close-by region of high probabil-
ity. The Bayesian inference with rainwater data is overconfi-
dent compared to the cost function method, a property of the
Bayesian method in FREAR which has been observed in pre-
vious studies (De Meutter et al., 2024). The combination of
the rainwater and fallout datasets is shown in the column “all
data”. This can be directly compared to the total-deposition

twin experiments in Fig. 8 (right panels) as they use the same
SRS fields. It is somewhat remarkable, then, that both results
appear to be very similar. The Bayesian-inferred CDS of the
real-data experiment is, however, much smaller compared to
its synthetic counterpart. This is due to the overconfidence of
the Bayesian method. Nonetheless, in a real-world case with
a truly unknown source, one would still be able to identify
Mayak as the only close-by nuclear installation without am-
biguity.

The optimized release profiles following cost function op-
timization are shown in Fig. 18. The total amounts released
are 350, 250, and 290 TBq for the rainwater, the fallout, and
the combination of both datasets, respectively. All of these
values are comparable to the source terms from the exist-
ing literature (Table 1). Using the rainwater data, the re-
lease occurs fully on 25 September, while the fallout data
also give a split release 1 d later, on 25 September. The tim-
ing of both these source terms falls within the range of 24–
26 September that is covered by the existing literature. Using
both datasets simultaneously results in the algorithm assign-
ing the release fully to 25 September. The release profiles
following Bayesian inference are shown in Fig. 19. The rain-
water dataset leads to relatively well-defined start and end
times that are within 24 h of that of Saunier et al. (2019).
The release magnitude is about a factor of 5 higher. The tim-
ing when using the fallout dataset fares less well. Both start
and end times show only weak signals, though a clear cut-
off is seen in the start time, excluding a release start after
26 September. Combining the rainwater and fallout datasets
provides results that are close to that of the rainwater dataset.
This can be compared once more to that of its synthetic coun-
terpart (total deposition of Fig. 11), showing remarkably sim-
ilar results.

While we have not used the> 1000 air concentration mea-
surements that are available for the 106Ru case, we can spec-
ulate on the impact of combining them together with the de-
position measurements. Since the total number of deposition
measurements is 1 order of magnitude smaller – at around
100 – the resulting impact of combining the air concentra-
tion and deposition measurements is expected to be minimal
since we have shown that a deposition measurement gener-
ally contains a similar amount of information as an air con-
centration measurement for the purposes of source recon-
struction. There are also other studies which have combined
air concentration and deposition measurements, albeit by as-
suming a known source location. Winiarek et al. (2014) and
Dumont Le Brazidec et al. (2023) estimated the 137Cs source
term of the Fukushima nuclear disaster based on combin-
ing air concentration and deposition measurements. Dumont
Le Brazidec et al. (2023) found that adding deposition mea-
surements leads to a significant improvement in the fit to the
deposition observations, while their fit to the air concentra-
tion measurements remains similar. Winiarek et al. (2014)
find that their algorithm has too much freedom to fit the
data when solely using deposition measurements. However,
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Figure 16. (a, b, c) Residual cost after optimization using real deposition measurements. (d, e, f) Source location probability from Bayesian
inference. Black circle: location of the Mayak nuclear installation. Using (a, d) rainwater measurements, (b, e) fallout measurements, and
(c, f) rainwater + fallout deposition measurements as defined in Table 3.

Figure 17. Performance scores of the cost function optimization and Bayesian inference methods for the real deposition datasets: rainwater,
fallout, and rainwater + fallout (all data) as defined in Table 3.

Figure 18. Optimized source terms following cost function optimization in the Mayak grid box for each dataset as defined in Table 3. The
red outline is the source term of Saunier et al. (2019).
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Figure 19. Probabilities of source term parameters following Bayesian inference with each dataset as defined in Table 3. “True” values are
based on the Saunier et al. (2019) source term.

the Fukushima release term is much more complex than the
short 106Ru release considered in this paper, with complex
variations in strength over several weeks. We are able to ob-
tain better results using deposition measurements, presum-
ably due to the (assumed) simpler source term.

Finally, we remark on the differences in performance be-
tween rainwater and fallout deposition measurements in our
study. Ultimately, the origins of these differences are unclear.
While the fallout dataset contains fewer measurements, ef-
fects that cannot be explained by this difference are seen.
The lower residual cost and probability mean that the recon-
structed depositions also provide a poorer fit to the measure-
ments. One possibility is that the fallout deposition measure-
ments are somewhat poor or have an under-reported uncer-
tainty compared to the rainwater measurements.

4 Conclusions

We have investigated the use of deposition measurements for
inverse modelling by applying them to the case of an undis-
closed large release of 106Ru in Eurasia during the autumn
of 2017. The inversion was performed with two algorithms
provided by the inverse modelling software FREAR: a cost

function optimization and a Bayesian inference method. Two
types of inversion experiments were set up: one using the
real dataset of deposition measurements made in Europe and
one using synthetic observations. The real datasets consist
of activity measured in rainwater and fallout. The synthetic-
deposition datasets are comprised of synthetic wet-, dry-,
and total-deposition measurements at the locations and with
the observation windows of the real data. On top of that,
we added a corresponding synthetic air concentration dataset
with the same location and measurement timings as the depo-
sition data. We found a large impact of the resolution of the
meteorological data on two measurements in Sweden, sug-
gesting that high-resolution meteorological data can help to
improve the accuracy of source reconstruction.

The synthetic datasets provide a probe into the fundamen-
tal abilities of deposition measurements in inverse modelling
by eliminating measurement and model errors. Inverse mod-
elling using synthetic wet-deposition measurements yields
similar results to using the synthetic dry-deposition measure-
ments. This is despite the fundamental difference in the tem-
poral and vertical resolution of these quantities. Comparing
the synthetic-deposition and air concentration datasets shows
that one can expect more precise results using air concen-

https://doi.org/10.5194/acp-25-9199-2025 Atmos. Chem. Phys., 25, 9199–9218, 2025



9216 S. Van Leuven et al.: Source localization via deposition

tration data due to the relatively lower detection limits as
the source localization results exclude a larger fraction of
the domain. From this, we conclude that lowering the de-
tection limits of deposition measurement could aid source
localization with these measurements. Nonetheless, deposi-
tion measurements are generally cheaper and more versatile
in practice compared to air concentration measurements. De-
position collectors can be placed in locations likely to be hit
by an airborne plume, or ground samples can be taken after
the passage of the plume.

The datasets with the real measurements provide results
comparable to those of the synthetic datasets. The recon-
structed release timings and magnitudes fall within the range
found in the existing literature. Using rainwater measure-
ments, the source localization approaches that of the twin
experiments. The fallout measurements, however, provide a
somewhat worse result. This could be due to the lower num-
ber of measurements for the fallout dataset, a difference in
collection method between both datasets, or model errors.
Combining the rainwater and fallout datasets in the inversion
algorithms provides results closer to those of the rainwater
dataset. From these results, we conclude that source localiza-
tion and reconstruction with deposition measurements, be it
wet, dry, or total deposition, are feasible and can yield useful
results in the context of radiological emergency preparedness
and response and in events relevant to the Nuclear Test Ban
Treaty.
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