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Abstract. Aerosol–cloud interaction (ACI) significantly influences global and regional weather and is a crit-
ical focus in numerical weather prediction (NWP), but subgrid-scale ACI effects are often overlooked. Here,
a subgrid-scale ACI mechanism is implemented by explicitly treating cloud microphysics in the KFeta con-
vective scheme with real-time size-resolved hygroscopic aerosol activation and introducing subgrid-scale cloud
radiation feedback in an atmospheric chemistry model, CMA_Meso5.1/CUACE. With a focus on summer over
central and eastern China, the performance evaluation shows that this developed model with subgrid-scale cloud
microphysics and radiation feedback refines cloud representation, even in some grid-scale unsaturated areas,
and subsequently leads to attenuated surface downward shortwave radiation (∼ 18.5 W m−2) that is more realis-
tic. The increased cloud radiative forcing results in lower temperature (∼ 0.35 °C) and higher relative humidity
(∼ 2.5 %) at 2 m, with regional mean bias (MB) decreasing by∼ 40 % and∼ 18.1 %. Temperature vertical struc-
ture and relative humidity below ∼ 900 hPa are improved accordingly due to cooling and humidifying. The
underestimated precipitation is enhanced, especially at the grid scale, thus reducing regional MB by ∼ 34.4 %
(∼ 1.1 mm). The performance differences between various subregions are related to convective conditions and
model local errors. Additionally, compared to simulations with anthropogenic emissions turned off, subgrid-
scale actual aerosol inhibits cumulative precipitation during a typical heavy rainfall event by ∼ 4.6 mm, aligning
it with observations, associated with lower autoconversion at the subgrid scale and less available water vapor for
grid-scale condensation, suggesting competition between subgrid- and grid-scale cloud. This study contributes
to the understanding of the impact of subgrid-scale ACI on NWP.

1 Introduction

Cloud plays an essential role in climate and weather by main-
taining the atmospheric radiation balance, regulating global
precipitation, facilitating chemical reactions, etc. (Prup-
pacher and Klett, 1980; Seinfeld and Pandis, 2006; Fan et
al., 2016). In the actual atmosphere, water vapor is hardly
able to form cloud droplets spontaneously due to the free-
energy barrier until the heterogeneous nucleation process is
completed with the help of suspended aerosol particles (Se-

infeld and Pandis, 2006; Sun and Ariya, 2006). The pertur-
bation of aerosol particles inevitably affects cloud properties,
also known as aerosol–cloud interaction (ACI), including the
Twomey effect (Twomey, 1977) and the Albrecht effect (Al-
brecht, 1989). Due to the complexity of cloud and aerosol
processes and their entangled nature, ACI is still subject to
significant uncertainties in current climate projections and
weather forecasts (IPCC, 2021, 2013; Miltenberger et al.,
2018; Baklanov et al., 2017). In the latest Intergovernmental
Panel on Climate Change (IPCC) report, ACI has the low-
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est confidence in effective radiative forcing estimates (IPCC,
2021).

Compared to the extensive research in the climate mod-
eling community, ACI is less considered among various nu-
merical weather prediction (NWP) models (Rosenfeld et al.,
2014; Wang et al., 2014; Seinfeld et al., 2016). The NWP
model runs daily in major regional operational centers world-
wide and is primarily responsible for weather forecasts. For
a long time, operational NWP models have been based on
seven fundamental equations of atmospheric motion to pre-
dict future atmospheric states, with few considerations of
the aerosol effect, especially of ACI, on meteorology due
to the cognitive and computing power required (Grell and
Baklanov, 2011; Sandu et al., 2013; Pleim et al., 2014; Bak-
lanov et al., 2017). An aerosol climatology used in the NWP
model may mitigate the forecast bias but cannot represent ac-
tual aerosol levels (Thompson and Eidhammer, 2014; Song
and Zhang, 2011). The NWP models with “two-way” feed-
back between chemistry and meteorology (e.g., the Weather
Research and Forecasting model coupled with Chemistry
(WRF-Chem) and the Weather Research and Forecasting and
Community Multiscale Air Quality (WRF-CMAQ)) can fill
this gap and have been widely applied to multiscale stud-
ies to investigate the role of ACI in reducing radiation, cool-
ing temperature, inhibiting or enhancing precipitation, etc.
(Zhang et al., 2010; Grell and Baklanov, 2011; Wong et al.,
2012; Makar et al., 2015; Zhang et al., 2015; Han et al.,
2023). These studies have explicitly addressed the fact that
ACI has an essential influence on weather systems but have
rarely focused on its feedback on NWP. With the rapid de-
velopment of supercomputing technology and the keen con-
cerns about the impacts of anthropogenic activity on weather,
the role of ACI in NWP is only beginning to be scrutinized
in detail (Zhang et al., 2022; Zhang et al., 2024; Wang et
al., 2021). For example, Zhang et al. (2024) show that the
coupling of real-time hygroscopic aerosol activation in the
Thompson cloud microphysics scheme in an atmospheric
chemistry model, CMA_Meso5.1/CUACE, improves the ac-
curacy of predicted surface and vertical meteorological fac-
tors during the low-cloud period in winter in China.

To the best of our knowledge, almost all of the studies in
this area focus on ACI at the grid scale. An important reason
for this is that cloud microphysics schemes in NWP mod-
els include explicit cloud microphysics processes and aerosol
activation, whereas cumulus convection schemes do not. Cu-
mulus convection schemes in mesoscale NWP models are
designed to better characterize subgrid-scale cloud processes
that are not directly resolved (Arakawa, 2004; Plant, 2010);
typical examples of these are the Kain–Fritsch (KF) scheme
(Kain and Fritsch, 1993) and the follow-up KFeta scheme
(Kain, 2004), the KFcup scheme (Berg et al., 2013), and
the MSKF scheme (Zheng et al., 2016). These schemes are
mass-flux parameterizations that use grid-scale information
to determine the conditions under which convection occurs,
include cloud models for both updrafts and downdrafts, and

allow cumulus feedback for grid-scale cloud. Notably, dur-
ing the periods of strong small-scale convections, only con-
sidering grid-scale ACI potentially overlooks the effect of
aerosol on convective clouds that are not resolvable at the
grid scale, further affecting the assessment of the role of
ACI in NWP. Cumulus convection schemes that include de-
tailed cloud microphysical processes must be incorporated
into the NWP model. Lohmann (2008) extended the double-
moment cloud microphysics scheme developed for stratiform
cloud in the ECHAM5 global climate model (GCM) to con-
vective cloud (mainly for cloud droplets and ice crystals)
and found a significant increase in simulated convective pre-
cipitation. Grell and Freitas (2014) developed a scale- and
aerosol-aware stochastic convective parameterization based
on a cumulus scheme only including liquid-phase processes
and demonstrated the importance of a changed autoconver-
sion mechanism for precipitation through preliminary exper-
iments with cloud condensation nuclei (CCN) concentration
perturbations. To address aerosol–convective cloud simula-
tions in global climate models (GCMs), Song and Zhang
(2011) proposed a double-moment convective cloud micro-
physics scheme (SZ2011) containing a detailed treatment of
four hydrometeor species. Lim et al. (2014) found that im-
plementing the SZ2011 scheme in the new Zhang and Mc-
Farlane (ZM) cumulus scheme improves simulated precip-
itation and radiation. Recently, Glotfelty et al. (2019) im-
plemented the SZ2011 scheme with climatological aerosol
concentrations into the MSKF scheme and further consid-
ered the radiative feedback of subgrid-scale cloud in the
WRF model, which improves the simulation of cloud prop-
erties and precipitation. It is worth noting that climatolog-
ical aerosol that differs spatially and temporally from real-
time predicted aerosol exacerbates uncertainty in ACI, espe-
cially at the subgrid scale, where the ACI appears to be more
strongly represented at the subgrid scale compared to at the
grid scale (Glotfelty et al., 2019, 2020).

To investigate the impact of subgrid-scale ACI, a double-
moment convective cloud microphysical scheme including
real-time hygroscopic aerosol activation is coupled into the
KFeta cumulus convection scheme in an atmospheric chem-
istry model, CMA_Meso5.1/CUACE; the impact of the treat-
ment of subgrid-scale cloud microphysics and radiation feed-
back on multiple predicted meteorological factors is system-
atically evaluated; and the role of anthropogenic aerosol ac-
tivation at the subgrid scale in deep-convective precipita-
tion is further discussed. The innovativeness of this study
lies in establishing a complete process chain from emis-
sions to aerosol; to subgrid-scale cloud; and, ultimately, to
radiation and/or precipitation in an atmospheric chemistry
model, which allows for the impact of subgrid-scale ACI
on meteorology prediction (e.g., cloud, radiation, tempera-
ture, and precipitation) to be investigated at a more realis-
tic aerosol level. The overall goal of this study is to achieve
quantifiable subgrid-scale ACI in the atmospheric chemistry
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model CMA_Meso5.1/CUACE and to understand the impact
of subgrid-scale ACI on meteorology prediction.

2 Data

The data used in this paper are as follows: (1) aerosol pol-
lution observation data, with hourly PM2.5 mass concentra-
tions (µg m−3) coming from more than 1300 air pollution
stations of the Ministry of Ecology and Environment of the
People’s Republic of China; (2) near-surface meteorologi-
cal observation data, with hourly temperature at 2 m (T2m,
°C), relative humidity (RH) at 2 m (RH2m, %), wind speed
at 10 m (WS10m, m s−1), and 24 h cumulative precipitation
(PRE24h, mm) being provided by more than 5000 automated
weather stations of the China Meteorological Administra-
tion (CMA) (Fig. 1); (3) vertical meteorological observation
data, for which, twice a day (00:00 and 12:00 UTC) tem-
perature, RH, and WS are monitored by L-band radar from
about 85 sounding stations of the CMA (Fig. 1); (4) radia-
tion observation data, with hourly surface downward short-
wave radiation (SDSR, 0.01 MJ m−2) in the daytime being
obtained from more than 70 radiation stations of the CMA
(Fig. 1); (5) satellite data, with daily cloud fraction (CF, %),
cloud liquid-water path (CLWP, g m−2), and cloud optical
thickness (COT) coming from the Suomi National Polar-
orbiting Partnership (SNPP) Visible Infrared Imaging Ra-
diometer Suite (VIIRS) (the daily cloud property data from
VIIRS used in this study consist solely of visible-band prod-
ucts, which are available only during the local daytime;
the daily SDSR (W m−2) and surface downward longwave
radiation (SDLR, W m−2) come from the Clouds and the
Earth’s Radiant Energy System (CERES), with the horizon-
tal resolution of these data being 1°× 1°, and the daily ra-
diation properties from CERES are computed with hourly
data derived from Moderate Resolution Imaging Spectro-
radiometer (MODIS) and geostationary satellites (GEO),
while Daily PRE24h (mm) data are from the Global Pre-
cipitation Measurement (GPM) program’s Integrated Multi-
satellitE Retrievals (IMERG), with a horizontal resolution
of 10 km× 10 km); (6) hourly aerosol optical depth (AOD)
data come from the Modern-Era Retrospective analysis for
Research and Applications version 2 (MERRA-2) dataset,
with a horizontal resolution of 0.5°× 0.625°; (7) re-analysis
data, with the final (FNL) operational global analysis and
forecast data, with a horizontal resolution of 0.25°× 0.25°
and a time interval of 6 h, coming from the National Cen-
ters for Environmental Prediction (NECP)/National Center
for Atmospheric Research (NCAR) (these data are primarily
produced by the Global Data Assimilation System (GDAS),
which continuously collects observations from the Global
Telecommunications System (GTS) and other sources); and
(8) emission data, with the Multi-Resolution Emission In-
ventory for China (MEIC) anthropogenic emission data be-
ing provided by Tsinghua University, including six sectors

(power, industry, civil, transportation, and agriculture) and
nine species (SO2, NOx , CO, non-methane volatile organic
compounds (NMVOCs), NH3, PM10, PM2.5, black carbon
(BC), and organic carbon (OC)).

3 Model description and development

3.1 CMA_Meso5.1/CUACE model

The CMA_Meso/CUACE model, independently developed
by the CMA, is online, coupled with a mesoscale NWP
model (China Meteorological Administration Mesoscale
model version 5.1 (CMA_Meso5.1)) and with an atmo-
spheric chemistry module (Chinese Unified Atmospheric
Chemistry Environment (CUACE)), which has been widely
used for studying the ARI effects on aerosol pollution, the
transboundary transport of air pollutants (Jiang et al., 2015),
the impacts of anthropogenic emissions on PM2.5 changes
(Wang et al., 2018; Zhang et al., 2020), visibility forecasts
(Peng et al., 2020; Han et al., 2024), fog–haze forecasts
(Zhou et al., 2012; Wang et al., 2015b; Wang et al., 2015a;
Li et al., 2023), etc. In this study, the latest quasi-operational
version, CMA_Meso5.1/CUACE, is used, and its specific up-
dates can be found in a previous study (Wang et al., 2022).

The CMA_Meso5.1 is a continuous development of the
GRAPES_Meso, mainly including pre-processing and qual-
ity control, standard initialization, assimilation and forecast-
ing, and post-processing, and it is used to meet the opera-
tional needs of the short-term weather forecasting in China
(Chen and Shen, 2006; Chen et al., 2008; Zhang and Shen,
2008). In this model, the temporal, horizontal, and verti-
cal discretizations adopt the semi-implicit semi-Lagrangian
scheme, Arakawa C-grid staggering, and Charney–Phillips
staggering, respectively. This model also contains a series of
physical parameterization schemes, such as radiation, bound-
ary layer, near-surface layer, cumulus convection, and cloud
microphysical schemes.

The CUACE is an atmospheric chemistry module that in-
cludes the emission treatment system, the gas and aerosol
calculation processes, and the thermodynamic equilibrium
module (Zhou et al., 2012; Wang et al., 2015b). There are
seven types of aerosol: sulfates (SF), road dust (RD), black
carbon (BC), organic carbon (OC), sea salts (SS), nitrates
(NI), and ammonium (AM). All types of aerosol radii ex-
cept AM are categorized into 12 bins ranging from 0.005 to
20.48 µm. Aerosol calculation processes include hygroscopic
growth, wet and dry deposition, chemical transformations,
and coagulation. The 63 species of gases in the CUACE are
calculated and updated by 21 photochemical and 136 gas-
phase chemical reactions.

https://doi.org/10.5194/acp-25-9005-2025 Atmos. Chem. Phys., 25, 9005–9030, 2025



9008 W. Zhang et al.: Subgrid-scale aerosol–cloud interaction

Figure 1. The map and topographic height of the simulated domain. The purple triangles are the automatic weather stations; the cyan
hexagons are the sounding stations; the yellow boxes are the radiation sounding stations; and the black rectangles represent the locations of
northeastern China (NEC), Jing-Jin-Ji (JJJ), the Sichuan Basin (SB), central China (CC), the Yangtze River Delta (YRD), and the Pearl River
Delta (PRD).

3.2 Grid-scale ACI

Before dealing with subgrid-scale ACI, it is necessary to de-
scribe the grid-scale ACI implemented based on the double-
moment Thompson cloud microphysics scheme in the cur-
rent model. The original assumed cloud droplet number con-
centration (100 cm−3) in the Thompson cloud microphysics
scheme is replaced by the predicted value, which is deter-
mined based on the activation fraction of real-time calculated
hygroscopic aerosol (OC, SS, SF, NT, and AM) in CUACE
by using the look-up table; the fixed cloud water (10 µm) and
cloud ice (80 µm) radii in the Goddard shortwave radiation
scheme are replaced by diagnosed values in the Thompson
cloud microphysics scheme. More detailed descriptions can
be found in a previous study (Zhang et al., 2022). In this
study, we do not conduct an extra consistent treatment of
the grid-scale ACI because of the ability to understand the
impact of subgrid-scale ACI and the convenience of compar-
ison with the previous study.

3.3 Implementation of subgrid-scale ACI

3.3.1 Coupling of the double-moment microphysics
parameterization scheme for convective cloud in
the KFeta cumulus convection scheme

Optional cumulus convection parameterization schemes in
the current model include the BMJ (Betts, 1986; Betts and
Miller, 1986; Janjić, 1994), KFeta (Kain, 2004), NSAS (Han
and Pan, 2011), and Tiedtke (Tiedtke, 1989) schemes. To im-

plement subgrid-scale ACI, an efficient double-moment mi-
crophysics parameterization scheme for convective cloud is
coupled with the commonly used KFeta cumulus convection
scheme.

The KFeta scheme is a typical cumulus convection scheme
used in the mesoscale NWP model, whose fundamental
framework is derived initially from the Fritsch–Chappell
convective parameterization scheme (Fritsch and Chappell,
1980). The classic KF scheme (Kain and Fritsch, 1993) has
evolved through a series of modifications into the KFeta
scheme, including imposed minimum entrainment rate, vari-
able cloud radius, variable minimum cloud depth thresh-
old, and allowed shallow convection (Kain, 2004). However,
its treatment of convective cloud microphysical processes is
rather crude, especially for the transformations between the
various hydrometeors within the convective cloud. At the
same time, it is a mass-flux parameterization scheme, which
can correspond well with the double-moment microphysics
parameterization scheme for convective cloud.

This double-moment microphysics parameterization
scheme for convective cloud is proposed by Song and
Zhang (2011) to improve the performance of convective
cloud interacting with stratiform cloud and aerosol in
GCMs. The mixing ratio and number concentration of cloud
water, cloud ice, rain, and snow can be simultaneously
predicted. Figure 2 shows the microphysical processes of
these four hydrometeors in the double-moment microphysics
parameterization scheme, mainly including autoconversion,
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freezing, accretion, self-collection, detrainment, fallout,
aerosol activation, and ice nucleation. The detailed control
equations and microphysical process calculations for each
hydrometeor can be found in a previous study (Song and
Zhang, 2011). The real-time activation of aerosol as CCN
to cloud droplets is carried out by means of the ARG2000
scheme (Abdul-Razzak and Ghan, 2000; Abdul-Razzak et
al., 1998), as detailed in Sect. 3.3.2. The current scheme
does not include real-time ice nucleation because the dust is
not available in the CUACE model. The ice crystal number
concentration can be derived using Eq. (1) as proposed by
Cooper (1986):

sub_Ni= 0.005e0.304(273.15−T ), (1)

where sub_Ni is the ice crystal number concentration (L),
and T is the simulated ambient temperature (K) at the sub-
grid scale. It should be noted that ice crystals can only form
when the supersaturation with respect to ice exceeds 5 % or
when the supersaturation with respect to water exceeds 0 and
when the ambient temperature is <−5°C, consistently with
that in the Thompson cloud microphysics scheme (Thomp-
son and Eidhammer, 2014). Considering a reduction in the
complexity of the code and additional errors, we directly cou-
ple the SZ2011 scheme with the KFeta scheme via a one-to-
one correspondence of specific values, such as cloud water
mixing ratio, cloud ice mixing ratio, rate of production of
precipitation, and rate of production of snow. It should be
noted that the grid-scale hydrometeors are calculated sepa-
rately, and the subgrid-scale hydrometeors are only fed back
to influence the grid-scale hydrometeors through the detrain-
ment and entrainment processes.

3.3.2 The real-time aerosol activation process

To implement real-time aerosol activation as CCN at the
subgrid scale, the subgrid-scale cloud droplet number con-
centration from the ARG2000 scheme (Abdul-Razzak and
Ghan, 2000), driven by predicted hygroscopic aerosol in the
CUACE model, is integrated into the KFeta scheme with the
SZ2011 parameterization (Fig. 3). The ARG2000 scheme is
an activation scheme of aerosol with divided components
and a divided size, and it is widely used in mesoscale NWP
models. This parameterization is suitable for seven types of
aerosol with 12 bins as predicted by the CUACE module and
described using the following equations:

sub_Nc=
∑49

num=1
Nanum

1
2

[
1− erf(

2ln(Smnum/Smax)

3
√

2lnσnum
)
]
, (2)

Smax =

1{∑49
num=1

1
S2

mnum

[
(0.5e2.5ln2σnum )

(
ζ

ηnum

)1.5
+ (1+ 0.25lnσnum)

(
S2

mnum
ηnum+3ζ

)0.75
]}0.5 , (3)

Smnum =
2

√
bnum

(
3.2910−7

3rnumT

)1.5

, (4)

where, in Eq. (2), sub_Nc is the subgrid-scale cloud droplet
number concentration (kg−1) generated by activation, Nanum
is the aerosol number concentration (kg−1), Smax is the max-
imum supersaturation, Smnum is the critical supersaturation
for aerosol activation, σnum is the aerosol geometric stan-
dard deviation, erf is the Gaussian error function, and num
is the aerosol type ranging from 1 to 49 (Table 1). Smax can
be solved by means of Eq. (3), where ζ and η are two di-
mensionless parameters given by Abdul-Razzak and Ghan
(2000). Smnum can be solved by means of Eq. (4), where bnum
is the aerosol hygroscopicity parameter, rnum is the aerosol
mean radius (µm), and T is the ambient temperature (K).

In general, the solution of the activation fraction requires
inputs of meteorological factors and aerosol parameters. Me-
teorological factors include subgrid-scale vertical velocity
(wsub) and temperature, which can be provided in real time
by the CMA_Meso5.1 model. The wsub is determined by the
updraft kinetic energy (Ksub), described using the following
equations:

wsub =
√

2Ksub, (5)
∂Ksub

∂z
=−

vw

Mw
(1+βCd)Ksub+

1
f (1+ λ)

g
Twu− Twe

Twu
, (6)

Twu = Tu(1+ 0.608Qu−Qr−Qi−Qc−Qs) (7)
Twe = Te(1+ 0.608Qe), (8)

where vw is the larger of the entrainment or detrainment mass
flux, andMw is the convective updraft mass flux in the KFeta
scheme. β, Cd, λ, and f are constants, which are set to 1.875,
0.506, 0.5, and 2, and g is the gravitational acceleration. Twu
and Twe are the density temperature of the updraft and the
environment, which can be solved by Eqs. (7) and (8). In
Eq. (7), Tu is the temperature of the updraft, Qu is the spe-
cific humidity of the updraft, and Qr (Qi, Qc, or Qs) is the
rain (ice, cloud, or snow) water mixing ratio. In Eq. (8), Te
is the temperature of the environment, and Qe is the specific
humidity of the environment. The calculation of the subgrid-
scale vertical velocity can be conducted using the method in
Sect. 2.2 of the study by Song and Zhang (2011). The min-
imum value of the subgrid-scale vertical velocity is set to
0.5 m s−1 at the cloud base, and the maximum value is less
than 20 m s−1.

Aerosol parameters include aerosol number concentration,
mass concentration, geometric standard deviation, density,
and size. The CUACE module only outputs the aerosol mass
mixing ratio and not the number concentration. Under the
assumption that aerosol particles are spherical, each type
of aerosol number concentration is obtained by means of
Eq. (9):

Nanum = tracernum/

(
4
3
·π · r3

num · ρnum

)
, (9)

where tracernum is the aerosol mass mixing ratio (kg kg−1)
generated by the CUACE model, and ρnum is the aerosol den-
sity (g cm−3). All other aerosol parameters are preset: the
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Table 1. The specific values of the tracer number, aerosol types, mean radius (µm), density (g cm−3), geometrical standard deviation (GSD),
and hygroscopicity parameter.

Tracer number Aerosol type Radius Density GSD Hygroscopicity

1 OC1 0.0075 1.30 2.0 0.2
2 OC2 0.015 1.30 2.0 0.2
3 OC3 0.03 1.30 2.0 0.2
4 OC4 0.06 1.30 2.0 0.2
5 OC5 0.12 1.30 2.0 0.2
6 OC6 0.24 1.30 2.0 0.2
7 OC7 0.48 1.30 2.0 0.2
8 OC8 0.96 1.30 2.0 0.2
9 OC9 1.92 1.30 2.0 0.2
10 OC10 3.84 1.30 2.0 0.2
11 OC11 7.68 1.30 2.0 0.2
12 OC12 15.36 1.30 2.0 0.2
13 SS1 0.0075 2.17 2.0 1.28
14 SS2 0.015 2.17 2.0 1.28
15 SS3 0.03 2.17 2.0 1.28
16 SS4 0.06 2.17 2.0 1.28
17 SS5 0.12 2.17 2.0 1.28
18 SS6 0.24 2.17 2.0 1.28
19 SS7 0.48 2.17 2.0 1.28
20 SS8 0.96 2.17 2.0 1.28
21 SS9 1.92 2.17 2.0 1.28
22 SS10 3.84 2.17 2.0 1.28
23 SS11 7.68 2.17 2.0 1.28
24 SS12 15.36 2.17 2.0 1.28
25 SF1 0.0075 1.79 2.0 0.61
26 SF2 0.015 1.79 2.0 0.61
27 SF3 0.03 1.79 2.0 0.61
28 SF4 0.06 1.79 2.0 0.61
29 SF5 0.12 1.79 2.0 0.61
30 SF6 0.24 1.79 2.0 0.61
31 SF7 0.48 1.79 2.0 0.61
32 SF8 0.96 1.79 2.0 0.61
33 SF9 1.92 1.79 2.0 0.61
34 SF10 3.84 1.79 2.0 0.61
35 SF11 7.68 1.79 2.0 0.61
36 SF12 15.36 1.79 2.0 0.61
37 NT1 0.0075 1.77 2.0 0.67
38 NT2 0.015 1.77 2.0 0.67
39 NT3 0.03 1.77 2.0 0.67
40 NT4 0.06 1.77 2.0 0.67
41 NT5 0.12 1.77 2.0 0.67
42 NT6 0.24 1.77 2.0 0.67
43 NT7 0.48 1.77 2.0 0.67
44 NT8 0.96 1.77 2.0 0.67
45 NT9 1.92 1.77 2.0 0.67
46 NT10 3.84 1.77 2.0 0.67
47 NT11 7.68 1.77 2.0 0.67
48 NT12 15.36 1.77 2.0 0.67
49 AM 0.06 1.69 2.0 0.64
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Figure 2. Box diagram of microphysical processes for various hydrometeor mixing ratios (a) and number concentrations (b) in the SZ2011
double-moment microphysics parameterization scheme for convective cloud. The real-time ice nucleation is not available.

density and radius are shown in Table 1; the geometric stan-
dard deviation is set to 2.0 for all types of aerosol; and the
hygroscopicity parameters are set to 0.2, 1.28, 0.61, 0.67, and
0.64 for OC, SS, SF, NT, and AM, respectively. The hygro-
scopicity parameter for OC is slightly higher than the typical
value of 0.1, which was attributed to the fact that the region
of China is frequently hazed (Petters and Kreidenweis, 2007;
Che et al., 2017). The hygroscopicity parameters of SS, SF,
NT, and AM are similar to those of other studies (Kim et
al., 2021; Morales Betancourt and Nenes, 2014; Petters and
Kreidenweis, 2007). Identically to the grid-scale ACI mecha-
nism, BC and RD, two non-hygroscopic aerosol, are not used
as the subgrid-scale aerosol to be activated. It should be noted
that cloud droplets can only form when the supersaturation
with respect to water exceeds 0.

3.3.3 The feedback of subgrid-scale cloud to radiation

In order to represent the impact of subgrid-scale ACI on ra-
diation, this study completed the feedback of subgrid-scale
cloud properties on radiation by coupling subgrid-scale CF,
Qc, Qi, cloud water effective radius (Rc), and cloud ice effec-
tive radius (Ri) with the Goddard shortwave radiation scheme
(Fig. 3). It should be noted that the grid-scale CF, Qc, and Qi
are the default inputs into the Goddard shortwave radiation
scheme, and Rc and Ri at the grid scale are based on the di-
agnostics of the Thompson cloud microphysics scheme and
have also been coupled with the radiation scheme used in a
the previous study (Zhang et al., 2022). The subgrid-scale CF
is calculated with reference to CAM5 (Neale et al., 2012; Xu
and Krueger, 1991), where the CF values for deep convec-
tion and shallow convection have been estimated separately
using the KFeta scheme. These two types of CF values have
been added directly to the grid-scale CF, keeping the total
CF range between 0 and 1. The subgrid-scale Qc and Qi are
derived from the SZ2011 scheme and are combined with the
grid-scale Qc and Qi with reference to a previous study (Ala-
paty et al., 2012). The subgrid-scale Rc and Ri are also de-

Figure 3. The diagram of subgrid-scale aerosol–cloud–radiation in-
teraction in the CMA_Meso5.1/CUACE model.

rived from the SZ2011 scheme, which is combined with the
grid-scale Rc and Ri based on the studies of Thompson et
al. (2016) and Glotfelty et al. (2019). The adjusted CF, Qc,
Qi, Rc, and Ri in the Goddard shortwave radiation scheme
simultaneously incorporate cloud properties at both the grid
scale and the subgrid scale.

4 Model configurations and experimental design

In this study, two sets of experiments are conducted using
the CMA_Meso5.1/CUACE model to evaluate the perfor-
mance of the developed model with subgrid-scale cloud mi-
crophysics and radiation feedback. In the first set of experi-
ments, the CONTROL and CU-MP-RA experiments are in-
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cluded to focus on the summer of 2016 (June represents the
summer season), when convection occurs more frequently in
China and when the water vapor conditions are better, fo-
cusing on the NEC, JJJ, SC, CC, YRD, and PRD regions
(Fig. 1). The average of these six regions is used to repre-
sent the entirety of central and eastern China. For the CON-
TROL experiment, the model configurations are shown in
Table 2. These settings are the same as in a previous study
(Zhang et al., 2022). The CU-MP-RA experiment contains
all of the treatments of the relevant subgrid-scale ACI mech-
anisms in Sect. 3.3, except the other settings are the same as
in the CONTROL experiment (Table 3). The difference be-
tween the CU-MP-RA and CONTROL experiments shows
the changed performance in terms of the predicted meteo-
rological factors in the current model due to subgrid-scale
cloud microphysics and radiation feedback. The simulated
periods of both experiments are from 29 May to 30 June
2016, with a forecast time of 24 h, a time step of 100 s, and
an output interval of 1 h. The 72 h pre-simulations are used
to keep a balance between the chemical initial field and the
meteorological field and are treated as the spin-up time. In
the second set of experiments, the ACIsub-DC and CACIsub-
DC experiments are included to study the impact of anthro-
pogenic aerosol on cloud and precipitation via the subgrid-
scale ACI mechanism, mainly for a typical deep-convective
heavy-precipitation process (from 26 to 29 June 2016). The
settings of the ACIsub-DC experiment are the same as those
of the CU-MP-RA experiments, except for the fixed cloud
droplet number concentration (300 cm−3) in the Thompson
cloud microphysics scheme, which can prevent the addi-
tional uncertainties from anthropogenic aerosol affecting the
grid-scale ACI. In the CACIsub-DC experiment, the MEIC
anthropogenic emissions are turned off in the model, and
other settings are the same as those of the ACIsub-DC ex-
periment (Table 3). The difference between ACIsub-DC and
CACIsub-DC indicates the impact of anthropogenic aerosol
via the subgrid-scale ACI. The simulated periods of both ex-
periments are from 23 to 30 June 2016, with a forecast time
of 48 h. The first 72 h of simulations are also treated as the
spin-up time. The initial field and boundary conditions for
meteorology are provided by the FNL data, which are the
same as those of the time period simulated for each set of
experiments. The anthropogenic emission data in June 2016
entered into the model are from the MEIC.

5 Results and discussion

5.1 Evaluations of PM2.5 mass concentration and
aerosol optical depth

To assess the performance of the CMA_Meso5.1/CUACE
model in terms of aerosol prediction, Fig. 4 shows the com-
parisons of the spatial distributions of the observed and sim-
ulated time average PM2.5 mass concentrations and aerosol
optical depth (AOD) in June 2016. As shown, the observed

Table 2. Model configurations.

Parameters and schemes Setting

Simulated domain 20–50° N, 100–135° E
Horizontal resolution 10 km
Vertical stratification 49 levels (from ground to 31 km)
Cumulus convective scheme KFeta (Kain, 2004)
Land surface scheme Noah (Ek et al., 2003)
Shortwave radiation scheme Goddard (Chou et al., 1998)
Longwave radiation scheme RRTM (Mlawer et al., 1997)
Cloud microphysics scheme Thompson (Thompson et al., 2008)
Gas-phase chemistry scheme RADM2 (Stockwell et al., 1990)
Boundary layer scheme MRF (Hong and Pan, 1996)
Near-surface scheme SFCLAY (Pleim, 2007)
Aerosol scheme CUACE (Gong and Zhang, 2008)

PM2.5 mass concentration over widespread areas of the do-
main is almost below 75 µg m−3, with the regional aver-
age PM2.5 mass concentration being 26.4, 47.9, 33.6, 37.3,
35.8, and 19.4 µg m−3 in the NEC, JJJ, SB, CC, YRD, and
PRD regions. The model reproduces the spatial distribution
of the high-value and low-value areas of PM2.5 mass con-
centration and captures the magnitude of PM2.5 mass con-
centration at most air quality monitoring stations. The mean
bias (MB) of regional average PM2.5 mass concentration
is −12.2, −16.3, 3.2, 0.9, −2.9, and −2.9 µg m−3 in the
NEC, JJJ, SB, CC, YRD, and PRD regions, respectively.
Here, the AOD represents the column-integrated aerosol
properties. The MERRA-2 data show that the regional av-
erage AOD is 0.42, 0.62, 0.35, 0.50, 0.52, and 0.27 in the
NEC, JJJ, SB, CC, YRD, and PRD regions, respectively.
The CMA_Meso5.1/CUACE model seems to capture some
high-value and low-value areas of AOD well in the south of
the domain (e.g., the regional average AOD is 0.31, 0.41,
and 0.20 in the SB, YRD, and PRD, with MB values of
−0.04, −0.11, and −0.07) but significantly underestimates
AOD in the north of the domain (e.g., the regional average
AOD is 0.14, 0.28, and 0.32 in the NEC, JJJ, and CC regions,
with MB values of −0.28, −0.34, and −0.18). This substan-
tially underestimated AOD in the NEC and JJJ regions, ac-
companied by the underestimated PM2.5 mass concentration,
is possibly related to underestimated anthropogenic emis-
sions, inadequate representation of aerosol chemical reac-
tion processes, etc. Compared with other studies or models,
the CMA_Meso5.1/CUACE model shows a similar perfor-
mance in predicting AOD over China in summer (Werner et
al., 2019; Wang et al., 2021; He et al., 2022). This study’s
relatively reliable aerosol simulation performance can ensure
the scientificity of further subgrid-scale ACI studies.
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Table 3. Descriptions of multiple sensitivity experiments.

Experiment Description

CONTROL Model runs without subgrid-scale cloud microphysics and cloud radiation feedback

CU-MP-RA Same as CONTROL but with subgrid-scale cloud microphysics and cloud radiation feedback

ACIsub-DC Same as CU-MP-RA but for a deep-convective process and fixing the cloud droplet number concentration in
the Thompson cloud microphysics scheme at 300 cm−3

CACIsub-DC Same as ACIsub-DC but turning off MEIC anthropogenic emissions

Figure 4. Spatial distribution of time-averaged PM2.5 (a, b) and AOD (c, d) in June 2016 from the CONTROL experiment compared against
the observations and MERRA-2 data.

5.2 Performance evaluation of predicted meteorological
factors

5.2.1 Cloud properties

Figure 5 compares the time-averaged cloud properties in
June 2016 between simulations and the VIIRS data. For a
comparative evaluation, the model simulations are sampled
according to transit times of satellites over China. The tran-
sit time of VIIRS over China occurs between approximately
13:00 and 14:00 local time, and the corresponding simu-
lations for comparison are averaged hourly data at 13:00
and 14:00 local time. From the VIIRS data, CF, CLWP, and
COT all show a distribution of high values in the south and
low values in the north in June 2016 in central and eastern
China, mainly related to the higher RH in the south. Both

the CONTROL and CU-MP-RA experiments reproduce the
spatial distribution of cloud properties, but the simulated CF,
CLWP, and COT all have some bias in terms of magnitude,
and the specific statistics (MB, mean absolute error (MAE),
root-mean-square error (RMSE), and correlation coefficient
(R)) can be seen in Table 4. For total CF, the model per-
forms better in the north but shows a significant overestima-
tion in the south (e.g., the MB values of total CF in the PRD
for the CONTROL and CU-MP-RA experiments reach 0.17
and 0.16, respectively), which is mainly related to the over-
estimation of high CF in the south (figure omitted). Com-
pared to the CONTROL experiment, the middle and low
CF almost all increase throughout central and eastern China,
with a maximum value of more than 0.38 and 0.25, while
high CF decreases in most areas in the CU-MP-RA exper-
iment (Fig. S1 in the Supplement). The CONTROL exper-
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iment also significantly underestimated the CLWP (COT)
over the whole domain, where the MB values in the NEC, JJJ,
SC, CC, YRD, and PRD regions are −138.7 (−15), −131.2
(−18.2),−148.4 (−10.2),−159.2 (−12.3),−174.3 (−10.2),
and −105.3 (−6.6) g m−2. Compared to the CONTROL ex-
periment, CU-MP-RA shows significantly increased CLWP,
especially in the southern regions of China (e.g., the YRD),
where convection occurs more frequently and where water
vapor conditions are better. In addition, the coverage of cloud
water in the model, coupled with subgrid-scale cloud micro-
physics and radiation feedback, is larger and contains some
areas that are not saturated with respect to water at the grid
scale. Correspondingly, the MB values of CLWP (COT) in
the NEC, JJJ, SC, CC, YRD, and PRD regions for the CU-
MP-RA experiment are −58.8 (−3), −89.3 (−10.5), −50.2
(3.6), −82.7 (0.2), −56.3 (9.1), and 47.4 (14) g m−2, respec-
tively. It can be seen that the CU-MP-RA experiment gener-
ally improves the underestimated CLWP in these six regions
(especially in the YRD), resulting in a 55.1 % decrease (from
142.9 to 64.1 g m−2) in the overall MB averaged over the six
regions, which is closer to the VIIRS data. Slightly differ-
ently from CLWP, CU-MP-RA does not generally show a
decrease in the MB of COT in each region (e.g., the absolute
MB of COT in the PRD increases by 7.4), which suggests
that the impact of subgrid-scale cloud microphysics and ra-
diation feedback on the accuracy of NWP also depends on
the local errors of the model itself. Even if the subgrid-scale
cloud microphysics and radiation feedback are considered in
the model, the simulations of cloud properties still have some
bias. The problem of poorly simulated cloud properties is
relatively common in both global and regional NWP mod-
els (Lauer and Hamilton, 2013; Wang et al., 2021; Glotfelty
et al., 2019), which is one of the key issues that need to be
urgently solved in the current scientific community. Overall,
the CU-MP-RA experiment shows relatively better perfor-
mance compared to the CONTROL experiment in June 2016
in central and eastern China for cloud properties.

5.2.2 Radiation properties

Figure 6 compares the time average radiation properties in
June 2016 between the simulations and CERES data. The
corresponding simulations for comparison with CERES data
are 24 h averaged values. Influenced by cloud characteristics,
the SDSR in June 2016 shows a distribution of low values in
the south and high values in the north, respectively, while the
opposite is true for the SDLR. The CONTROL and CU-MP-
RA experiments can reproduce the spatial distribution of the
radiative properties. For SDLR, this model has a good pre-
diction performance. This is supported by relevant statisti-
cal indicators (Table 4). Compared to the CONTROL exper-
iment, the CU-MP-RA experiment improves the underesti-
mation of SDLR in the northern part of the domain (e.g., the
MB of SDLR decreases from −6 and −6.3 W m−2 to −0.9
and −2.4 W m−2 in the NEC and JJJ regions, respectively)

but further overestimates the SDLR in most of the south-
ern regions (e.g., the MB increases from 2 and 2.8 W m−2

to 3.9 and 6.3 W m−2 in the YRD and PRD, respectively).
For SDSR, there are significant overestimations for both the
CONTROL and CU-MP-RA experiments (e.g., the MB val-
ues reach up to 100.5 and 76.7 W m−2 in the YRD), which
may be related to the poor performance in terms of the
simulation of cloud properties by the commonly reported
mesoscale NWP models (Lauer and Hamilton, 2013; Wang
et al., 2021). Compared with the two experiments, the CU-
MP-RA experiment improved the overestimation of SDSR
in the CONTROL experiment to a certain extent, especially
in the regions where CLWP and COT increase significantly
(e.g., the YRD and PRD). Correspondingly, the MB of the
simulated SDSR averaged over the six regions decreases by
∼ 23.1 % (from 80.1 to 61.6 W m−2). Here, we further com-
pare the prediction performance of the CONTROL and CU-
MP-RA experiments for SDSR with hour-by-hour ground-
based observations (Fig. 7). Similarly to the results of the two
experiments compared with the CERES data, the daytime
SDSR simulated by the CU-MP-RA experiment is closer to
the observations than that of the CONTROL experiment in
general, with the MB in the NEC, JJJ, SC, CC, YRD, and
PRD regions decreasing by 30.5, 16.1, 29.6, 23.2, 40.5, and
41.2 W m−2. The decrease in the upper quartile of SDSR bias
is larger than that in the lower quartile in all six typical re-
gions. The larger SDSR bias tends to appear in the midday to
mid-afternoon period, which indicates that the improvement
in the SDSR bias induced by the subgrid-scale cloud micro-
physics and radiation feedback is mainly manifested in the
midday to mid-afternoon period.

5.2.3 Temperature

Figure 8 shows the comparisons of the observed and sim-
ulated temperatures. For T2m, this model has a better per-
formance overall, and the related statistical indicators (Table
5) also show that the model’s simulation performance is in
the middle compared with other studies or models (Bozzo
et al., 2020; Wang et al., 2021; Gao et al., 2022). Compared
with observations, both the CONTROL and CU-MP-RA ex-
periments significantly overestimate T2m in most plains and
underestimate T2m in some mountainous areas, thus overes-
timating terrestrial T2m in the domain as a whole. Unlike
other mesoscale NWP models that usually exhibit overall
negative regional MB values for T2m in summer, the over-
all positive MB in the CMA_Meso5.1/CUACE model may
be related to the underestimated aerosol concentration, the
selection of boundary layer schemes, etc. (Xie et al., 2012).
The T2m in the CU-MP-RA experiment is smaller than that
in the CONTROL experiment due to the increase in COT and
the decrease in SDSR caused by the subgrid-scale cloud mi-
crophysics and radiation feedback, which, correspondingly,
reduces the positive MB of T2m in the vast majority of re-
gions, with the MB of T2m averaged over the six regions
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Figure 5. The spatial distribution of time-averaged (a–c) CF, (d–f) CLWP, and (g–i) COT in June 2016. Panels (a, d, g), (b, e, h), and (c, f,
i) show the VIIRS, CONTROL, and CU-MP-RA experiments, respectively.

decreasing by ∼ 40 % (from 0.75 to 0.4 °C). Other statisti-
cal indicators also show the improved performance of T2m
simulations in the CU-MP-RA experiment (Table 5). How-
ever, for the SB region, with a large negative MB value for
T2m, the cooling effect of subgrid-scale cloud microphysics
and radiation feedback leads to a further increase in the neg-
ative MB (from −0.2 to −0.7 °C), but the T2m correlation
coefficients increase in this region. Also, this model repro-
duces the vertical profile of temperature better, but the six
typical regions generally have a significant positive MB be-
low about 900 hPa (Fig. 8f). Temperature over most of the air
layers as simulated by the CU-MP-RA experiment is closer
to observations than that of the CONTROL experiment, with
the ranges of the mean absolute error skill score (MAESS) of
temperatures from 2 m to 500 hPa in the NEC, JJJ, SC, CC,
YRD, and PRD regions being −2 % to 17 %, 5 % to 0.22 %,
3 % to 25 %, −8 % to 22 %, 1 % to 33 %, and 5 % to 32 %
(Fig. 11).

5.2.4 RH

Figure 9 shows the comparisons of observed and simulated
RH. The spatial distribution of the MB of RH2m is influ-
enced by the MB of T2m (the larger positive MB of T2m
corresponds to the larger negative MB of RH2m), mainly be-
cause the calculation of RH is temperature dependent. For
example, compared between these six regions, the MB of
T2m in the CC region (1.4 and 1.1 °C for the CONTROL and
CU-MP-RA experiments, respectively) is the largest, and,
thus, the MB of RH2m (−17.1 % and−14.8 % for the CON-
TROL and CU-MP-RA experiments, respectively) is also the
largest (Table 5). Compared between these two experiments,
the CU-MP-RA experiment generally has a smaller MB of
RH2m over this study area, with an overall∼ 18.1 % (relative
change) decrease in MB averaged over the six regions (from
−13.8 % to −11.3 %) and an improvement in all other sta-
tistical indicators (Table 5), suggesting a better performance
of the CU-MP-RA experiment in terms of RH2m predic-
tions. For the vertical profile of RH, both the CONTROL and
CU-MP-RA experiments have a negative MB of RH below
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Table 4. Statistics of simulated CF, CLWP (g m−2), COT, SDSR (W m−2), and SDLR (W m−2) for the CONTROL and CU-MP-RA
experiments.

Variable Area Satellites CONTROL CU-MP-RA

Mean Mean MB MAE RMSE R Mean MB MAE RMSE R

Obs Sim Sim

CF NEC 0.67 0.65 −0.02 0.09 0.12 0.83 0.68 0.01 0.08 0.11 0.85
JJJ 0.62 0.6 −0.02 0.13 0.16 0.59 0.64 0.02 0.12 0.15 0.66
SB 0.75 0.78 0.03 0.09 0.1 0.92 0.8 0.05 0.08 0.1 0.94
CC 0.69 0.67 −0.02 0.1 0.13 0.86 0.7 0.01 0.09 0.11 0.89
YRD 0.82 0.84 0.02 0.08 0.12 0.77 0.84 0.02 0.07 0.11 0.8
PRD 0.77 0.94 0.17 0.19 0.29 0.34 0.93 0.16 0.17 0.27 0.48

CLWP NEC 164.1 25.4 −138.7 115.8 126 0.76 105.3 −58.8 41.6 51.5 0.82
JJJ 144.1 12.9 −131.2 92.4 102.8 0.79 54.8 −89.3 50 61.5 0.8
SB 208.9 60.5 −148.4 114.8 127.3 0.71 158.7 −50.2 67.2 85.2 0.67
CC 205.3 46.1 −159.2 119.3 131.5 0.6 122.6 −82.7 83.6 102.6 0.58
YRD 241.9 67.6 −174.3 153.4 180 0.7 185.6 −56.3 86.2 115.6 0.71
PRD 126.9 21.6 −105.3 122.7 131 0.72 174.3 47.4 58.4 81.8 0.73

COT NEC 23.2 8.2 −15 13.1 14.5 0.67 20.2 −3 6.5 8.2 0.71
JJJ 22.8 4.6 −18.2 12 13.5 0.70 12.3 −10.5 7.2 8.6 0.72
SB 28.3 18.1 −10.2 12.5 14.8 0.69 31.9 3.6 16.4 20.9 0.67
CC 26.4 14.1 −12.3 12.4 14.4 0.79 26.2 0.2 14.7 19.8 0.80
YRD 30.6 20.4 −10.2 11.5 15.5 0.72 39.7 9.1 18.6 26.1 0.67
PRD 13.4 6.8 −6.6 8.8 9.5 0.78 27.4 14 14.3 21.1 0.75

SDSR NEC 221.7 293.1 71.4 66.9 74.6 0.85 272.7 51 46.9 53.2 0.89
JJJ 233.7 310.1 76.4 73.6 80.4 0.86 299.9 66.3 63.4 68.8 0.93
SB 200.5 287.1 86.6 85.6 93.4 0.86 269.6 69.1 68.3 75.2 0.89
CC 201.9 282.9 81 80.1 88.2 0.79 268 66.1 65.3 72.6 0.85
YRD 165.4 265.9 100.5 98.9 103.7 0.87 242.1 76.7 75.1 78.5 0.93
PRD 212.3 277 64.7 65.1 76.3 0.9 253 40.6 42.4 52.9 0.91

SDLR NEC 359.4 353.4 −6 7.3 8.8 0.96 358.5 −0.9 5.4 6.6 0.97
JJJ 375.4 369.1 −6.3 8.1 9.8 0.95 373 −2.4 6.1 7.3 0.96
SB 388.1 393.9 5.8 6.7 8.1 0.95 396.4 8.3 8.4 9.7 0.96
CC 399.4 398.5 −0.9 5.6 7.3 0.95 400.7 1.3 4.6 5.9 0.97
YRD 413.3 415.3 2 6.9 8.3 0.97 417.2 3.9 6.6 7.9 0.98
PRD 424.8 427.6 2.8 3.8 4.7 0.93 431.1 6.3 6.4 7.3 0.93

∼ 900 hPa and a positive MB above ∼ 900 hPa in most areas
(Fig. 9f). Due to the humidity-raising effects of the subgrid-
scale cloud microphysics and radiation feedback, the CU-
MP-RA experiment generally shows a better performance
than the CONTROL experiment for RH at 1000–900 hPa in
the study area, where the MAESS ranges of RH from 1000 to
900 hPa in the NEC, JJJ, CC, YRD, and PRD regions are 1 %
to 21 %, 5 % to 14 %, 0.1 % to 0.17 %, 2 % to 15 %, and 7 %
to 13 %, respectively (Fig. 11). A worsened performance of
the RH simulation occurs in all air layers in the SB and above
∼ 900 hPa in other regions due to an increase in the positive
MB of the RH to some extent, suggesting that the impact of
subgrid-scale cloud microphysics and radiation feedback on
RH predictions also relates to the local errors of the model
itself.

5.2.5 Wind speed

Figure 10 shows the comparisons of observed and simu-
lated wind speed. The performance of the WS10m simu-
lations compared to observations is comparable to that of
other studies and models (Table 5). Both the CONTROL
and CU-MP-RA experiments overestimate WS10m over the
study area, especially in the PRD, where the MB reaches 2.2
and 1.9 m s−1, respectively. This systematic overestimation
of WS10m is a common problem in mesoscale NWP mod-
els which is likely to be related to the treatment of the un-
derlying surface in the models (Jimenez and Dudhia, 2012;
Jia and Zhang, 2021). For example, the complex underlying
surface of the JJJ, YRD, and PRD regions cannot be fully re-
solved in this model, and the relatively smooth treatment of
the underlying surface leads to a significant overestimation
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Figure 6. The spatial distribution of time-averaged (a–c) SDSR and (d–f) SDLR in June 2016. Panels (a, d), (b, e), and (c, f) show the
CERES, CONTROL, and CU-MP-RA experiments, respectively.

Table 5. Statistics of simulated T2m (°C), RH2m (%), WS10m (m s−1), and 24 h cumulative precipitation (PRE24h, mm) for the CONTROL
and CU-MP-RA experiments.

Variable Area CONTROL CU-MP-RA

Mean Mean MB MAE RMSE R Mean MB MAE RMSE R

Obs Sim Sim

T2m NEC 19.5 20.5 1 1.7 2.3 0.84 20.2 0.7 1.4 2 0.87
JJJ 24.2 25.1 0.9 1.8 2.1 0.9 24.8 0.6 1.5 1.8 0.93
SB 25.4 25.2 −0.2 1.3 1.8 0.86 24.7 −0.7 1.4 1.8 0.88
CC 25.3 26.7 1.4 1.7 2.2 0.91 26.4 1.1 1.3 1.9 0.93
YRD 24.6 25.7 1.1 1.6 1.9 0.9 25.4 0.8 1.3 1.6 0.92
PRD 27.8 27.9 0.1 1.4 1.7 0.77 27.7 −0.1 1.3 1.6 0.81

RH2m NEC 68.5 52.1 −16.4 16.9 18 0.9 55.2 −13.3 13.6 15 0.91
JJJ 60 44.6 −15.4 17 17.1 0.92 47.1 −12.8 14.4 14.5 0.92
SB 73.6 58.8 −14.8 14.2 16.7 0.85 62.1 −11.5 10.8 13.5 0.86
CC 72.1 55 −17.1 16.6 18.5 0.86 57.3 −14.8 14.1 16.4 0.87
YRD 84.2 72 −12.2 12.2 13.8 0.81 74.2 −10 9.9 11.4 0.86
PRD 83.4 76.7 −6.7 7.6 9.5 0.79 78.1 −5.3 6.5 8 0.84

WS10m NEC 2.5 3.2 0.7 1 1.2 0.38 3.1 0.6 0.9 1.1 0.4
JJJ 2.2 4 1.8 1.8 2.1 0.5 3.9 1.7 1.7 2 0.51
SB 1.6 2.9 1.3 1.4 1.7 0.3 3 1.4 1.5 1.8 0.33
CC 2 3 1 1.1 1.4 0.47 3.1 1.1 1.2 1.5 0.5
YRD 1.9 3.5 1.6 1.7 2 0.2 3.5 1.6 1.6 1.9 0.22
PRD 1.9 4.1 2.2 2.2 2.6 0.26 3.9 2.0 2.0 2.4 0.28

PRE24h NEC 4.6 2.6 −2 2 2.9 0.93 2.9 −1.7 1.8 2.4 0.94
JJJ 3.5 1.7 −1.8 1.8 3.2 0.88 2.0 −1.5 1.6 2.5 0.92
SB 6.2 4.7 −1.5 3.2 4.5 0.73 7.6 1.4 3.1 4.8 0.78
CC 6.4 3.3 −3.1 3.3 5.2 0.87 4.9 −1.5 2.5 4 0.89
YRD 11 6.2 −4.8 5.5 7.4 0.84 7.7 −3.3 4.6 6.3 0.85
PRD 9.5 3.7 −5.8 5.9 8.7 0.87 3.5 −6 6.1 8.4 0.86
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Figure 7. Regional average bias of simulated daytime SDSR in the
NEC, JJJ, SB, CC, YRD, and PRD regions during the study period.
The interquartile range is shown by boxes and with whiskers for the
most extreme data points, excluding outliers. The central lines and
white dots present the median and mean values, respectively. The
blue and red boxes are the values from the CONTROL and CU-
MP-RA experiments, respectively.

of WS10m in these regions (Table 5). Compared with the
CONTROL experiment, the WS10m increases or decreases
in different regions in the CU-MP-RA experiment and con-
sequently increases or decreases the MB, which leads to an
overall less pronounced improvement in the MB of WS10m
averaged over the six regions. As can be seen from the other
statistical indicators, the correlation coefficients of WS10m
simulations for the different regions are somewhat improved
(Table 5). Further comparison reveals that the regions with
increased WS10m are consistent with the regions with sig-
nificantly increased CLWP. It is speculated that this may be
related to decreased atmospheric stability caused by the more
significant cooling in the upper atmosphere in these regions.
In contrast, the decrease in WS10m is likely to be associated
with the increased atmospheric stability caused by the de-
cline in the near-surface temperature. For the vertical profiles
of wind speed, overall, both the CONTROL and CU-MP-
RA experiments are in good agreement with observations.
However, wind speed is still overestimated in the lower air
layers over most regions (Fig. 10f). The comparison of the
two experiments shows that the subgrid-scale cloud micro-
physics and radiation feedback have more complex effects
on the vertical profile of wind speed than temperature or hu-
midity, resulting in an overall decrease in wind speed below
∼ 800 hPa and an increase in wind speed above ∼ 800 hPa.
The MAESS values of wind speed from 10 m to 500 hPa are
also greater than 0 in most regions, reflecting the improve-
ment in terms of subgrid-scale cloud microphysics and radia-
tion feedback on the vertical profile of wind speed. It is worth
noting that this improvement varies significantly among dif-
ferent regions. For example, the MAESS values over most
air layers in the YRD and PRD are considerably larger than
those in several other regions (Fig. 11), which may be related
to the cloud water content and local errors of the model itself.

5.2.6 Precipitation

Figure 12 shows the comparisons of observed and simulated
precipitation. Compared with observations, both the CON-
TROL and CU-MP-RA experiments reproduce the overall
spatial distribution of summer precipitation in central and
eastern China, with more precipitation in the south and less
precipitation in the north. The values of related statistical
indicators (Table 5) also show that the simulation perfor-
mance of precipitation is similar to that of other NWP models
(e.g., WRF-CMAQ, WRF) or compared to results reported
in previous studies (Glotfelty et al., 2019; Wang et al., 2021;
Wong et al., 2012). The precipitation in central and eastern
China is significantly underestimated in the CONTROL ex-
periment, in which the MB of 24 h cumulative precipitation
in the NEC, JJJ, SC, CC, YRD, and PRD regions is −2,
−1.8, −1.5, −3.1, −4.8, and −5.8 mm, respectively. Com-
pared with the CONTROL experiment, the 24 h cumulative
precipitation in the CU-MP-RA experiment increases due to
the significant enhancement of precipitation at the grid scale
(Fig. S2), which leads to an improvement in the underesti-
mation of precipitation in the majority of regions, where the
MB of 24 h cumulative precipitation in the NEC, JJJ, SC,
CC, YRD, and PRD regions is −1.7, −1.5, 1.4, −1.5, −3.3,
and −6 mm, respectively. Overall, the MB of 24 h cumu-
lative precipitation averaged over six regions decreased by
∼ 34.4 % (from −3.2 to −2.1 mm). The increases in precip-
itation is accompanied by increases in water vapor and grid-
scale cloud water or ice (Figs. S3 and S4), associated with
the redistribution of water vapor and convective detrainment
of cloud water or ice (Song and Zhang, 2011). Other rele-
vant statistical indicators also show the improvement in 24 h
cumulative precipitation in the NEC, JJJ, SC, CC, and YRD
regions (Table 5). It is worth noting that the MB of precipita-
tion in the PRD increases due to a slight decrease in precipi-
tation, which is speculated to be related to the competition for
water vapor among different regions (Glotfelty et al., 2020).

5.3 Impact of anthropogenic aerosol on typical
deep-convective precipitation prediction via
subgrid-scale ACI

The discussion in the previous sections has shown that con-
sidering ACI at the subgrid scale in this model improves
the performance of most predicted meteorological factors.
In this section, the model coupled with subgrid-scale ACI
is utilized to separately explore the effects of anthropogenic
aerosol perturbations at the subgrid scale by controlling an-
thropogenic aerosol emissions for a typical deep-convective
precipitation event.

The individual case chosen for the study is a continuous
heavy-precipitation event from 26 to 29 June 2016 in the
YRD. During this period, the YRD region was influenced by
a deep-convective cloud system (Fig. 13), with the region-
ally averaged cumulative precipitation approaching 90 mm
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Figure 8. The spatial distribution of time-averaged T2m and the vertical profiles of MB values of temperature in June 2016. (a) The
observations. (b) The MB of T2m in the CONTROL experiment. (c) The MB of T2m in the CU-MP-RA experiment. (c) The difference in
terms of T2m between the CU-MP-RA and CONTROL experiments. (f) The vertical profiles of the MB of temperature in the CONTROL
and CU-MP-RA experiments. In (f), the shading represents the spread of the MB of temperature in six regions, and the solid lines are their
average results.

Figure 9. The spatial distribution of time-averaged RH2m and the vertical profiles of the MB of RH in June 2016. (a) The observations.
(b) The MB of RH2m in the CONTROL experiment. (c) The MB of RH2m in the CU-MP-RA experiment. (c) The difference in terms of
RH2m between the CU-MP-RA and CONTROL experiments. (f) The vertical profiles of the MB of RH in the CONTROL and CU-MP-RA
experiments. In (f), the shading represents the spread of the MB of RH in six regions, and the solid lines are their average results.
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Figure 10. The spatial distribution of time-averaged WS10m and the vertical profiles of the MB of wind speed in June 2016. (a) The
observations. (b) The MB of WS10m in the CONTROL experiment. (c) The MB of WS10m in the CU-MP-RA experiment. (c) The difference
in terms of WS10m between the CU-MP-RA and CONTROL experiments. (f) The vertical profiles of the MB of wind speed in the CONTROL
and CU-MP-RA experiments. In (f), the shading is the spread of the MB of wind speed in six regions, and the solid lines are their average
results.

(Fig. 15a, b); the model can reproduce the precipitation event
(Fig. 15c). As shown in Fig. 13, on 26 June 2016, a convec-
tive cloud with high cloud top pressure and low cloud top
height was over the YRD. On 27 and 28 June 2016, the cloud
top pressure decreased, and cloud top height rose, conditions
which are conducive to water vapor condensation and precip-
itation production. As a result, the 24 h cumulative precipita-
tion exceeded 50 mm at most stations during this period. On
29 June 2016, the convective cloud over this region gradually
dissipated, accompanied by a decrease in precipitation. On
30 June 2016, the convective cloud completely dissipated. In
addition, as shown in Fig. 14, the overall aerosol levels in
the YRD were relatively low between 26 and 29 June 2016,
with the peak in PM2.5 mass concentrations being less than
40 µg m−3.

Figure 15d shows the observed and simulated temporal
variations in the regional average hourly precipitation in the
YRD. It can be seen that the simulations in both experi-
ments are in good agreement with the observations, captur-
ing both the rising and falling periods of precipitation, with
R exceeding 0.7 (Fig. 15e). The comparison of the ACIsub-
DC and CACIsub-DC experiments shows that anthropogenic
aerosol leads to a decrease in regional average precipita-
tion in the YRD via subgrid-scale ACI, with a ∼ 5.6 % de-
crease (from 82 to 77.6 mm) in cumulative precipitation for
the study period. Compared with the CACIsub-DC experi-
ment, the ACIsub-DC experiment shows a better performance
in simulating this heavy-precipitation event over the YRD,

with the centered root-mean-square discrepancy (CRMSD)
decreasing from 0.63 to 0.56 and the standard deviation (SD)
decreasing from 0.89 to 0.84 (Fig. 15e).

Further detailed analyses are carried out to investigate
the causes of precipitation changes. Compared with the
CACIsub-DC experiment, the anthropogenic aerosol emis-
sions in the ACIsub-DC experiment lead to an increase of
23.5 µg m−3 in the average PM2.5 mass concentration in
the YRD during the study period (Fig. 16a), which directly
causes the regional average cloud droplet number concen-
tration of convective cloud at the subgrid scale (averaged
over 1–6 km) to increase by about 3.2× 106 m−3 (Fig. 16b).
Notably, the decreased cloud droplet number concentration
within some YRD regions may be related to lower en-
vironmental supersaturation due to thermodynamic and/or
dynamic perturbations (e.g., weaker updrafts, evaporative
cooling) (Fan et al., 2016; Glotfelty et al., 2020). Anthro-
pogenic aerosol directly induces the changes in cloud droplet
number concentration at the subgrid scale, further influenc-
ing precipitation. The simulated precipitation is categorized
into subgrid-scale precipitation from the cumulus convection
scheme and grid-scale precipitation from the cloud micro-
physics scheme, and these two types of precipitation are stud-
ied separately. As can be seen in Fig. 17a and c, the anthro-
pogenic aerosol leads to a decrease in precipitation at both
the subgrid scale and grid scale via subgrid-scale ACI, with
the total cumulative precipitation during the study period de-
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Figure 11. Hourly MAESS (×MAESS=
(

1− MAEARI
MAENO-ARI

)
100%, where MAEARI and MAENO-ARI represent the mean absolute error

(MAE) (MAE= |meanbias|)) of predicted meteorological factors from the CU-MP-RA and CONTROL experiments in six regions (NEC,
JJJ, SB, CC, YRD, and PRD). The green-filled (red-filled) boxes represent the subgrid-scale ACI with positive (negative) effects.

creasing by 2.9 % (from 9.43 to 9.16 mm) and 5.9 % (from
72.8 to 68.5 mm), respectively.

The decrease in precipitation at the subgrid scale is mainly
related to the weaker autoconversion of cloud water to rain
at the subgrid scale. As shown in Fig. 17b, it can be seen
that there is a general increase in Qc (up to a maximum of
0.06 g kg−1) at the subgrid scale in the ACIsub-DC exper-
iment compared to in the CACIsub-DC experiment. At the
same time, the anthropogenic aerosol leads to the changes in
Qc and the radius of cloud droplets at the subgrid scale in the
vertical direction, showing a clear opposite trend (Fig. 18a).
Based on this, it is reasonable to conclude that anthropogenic
aerosol leads to more but smaller cloud droplets, which is un-
favorable for the growth of cloud droplets into raindrops and
inhibits the autoconversion process from cloud water to rain-
water, thus leading to the increase in cloud water content and
the decrease in precipitation at the subgrid scale. The combi-
nation of the location of the 0 °C isotherm (a higher propor-
tion of warm region in cloud) and the increase in Qi (which
usually leads to an increase in precipitation in the mixed-
phase cloud dominated by cold cloud processes) roughly ex-
cludes the fact that anthropogenic aerosol leads to a decrease
in precipitation at the subgrid scale by influencing cold cloud
processes (Ma et al., 2015; Luo et al., 2023; Fan et al., 2016),

which remains to be further analyzed in detail for precipita-
tion sources and sinks.

The decrease in precipitation at the grid scale is primar-
ily related to the competition of clouds at the subgrid scale
for water vapor, resulting in less available water vapor for
condensation at the grid scale. As shown in Fig. 17d, Qc at
the grid scale decreases (up to a maximum of −0.09 g kg−1)
over most air layers during the study period in the ACIsub-
DC experiment compared to in the CACIsub-DC experiment.
In contrast to the changes in the radius of cloud droplets at
the subgrid scale, the changed trends in terms of the radius of
cloud droplets and Qc at the grid scale in the vertical direc-
tion are the same (i.e., the radius of cloud droplets and cloud
water content decrease simultaneously) (Fig. 18b). In addi-
tion, Qi, Qr, graupel mixing ratio (Qg), and Qs decrease at
the grid scale (Fig. 19). These changes lead to a decrease in
precipitation at the grid scale. Based on the general reduction
in all hydrometeor mixing ratios in cloud and smaller cloud
droplets, it is reasonable to assume that this is mainly related
to the reduction in water vapor available for condensation at
the grid scale. The anthropogenic aerosol–cloud interaction
at the subgrid scale is an important reason for the reduction
in water vapor at the grid scale. Previous studies have also
shown a competing effect on water vapor between subgrid-
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Figure 12. The spatial distribution of time-averaged 24 h cumulative precipitation in June 2016 from the (a) observations, (b) CONTROL
experiment, and (c) CU-MP-RA experiment. (d) The comparison of time-averaged 24 h cumulative precipitation in different regions.

Figure 13. (a) Cloud types over the YRD from 26 to 30 June 2016 based on the International Satellite Cloud Climatology Project (ISCCP)
cloud classification algorithm (Hahn et al., 2001). (b) The spatial distribution of cloud types in central and eastern China on 28 June 2016.
The dashed red rectangle is the location of the YRD region.
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Figure 14. (a) The temporal variation in the regional average PM2.5 mass concentration in the YRD. The spatial distribution of the (b) ob-
servations and (c) simulations by the ACIsub-DC experiment of the time-averaged PM2.5 mass concentration from 26 to 29 June 2016.

Figure 15. The spatial distribution of time-averaged 24 h cumulative precipitation from 26 to 29 June 2016 in the (a) observations, (b) GPM,
and (c) ACIsub-DC experiment. The (d) time variation and (e) Taylor diagram of observed and simulated regional average hourly precipitation
in the YRD from 26 to 29 June. In the Taylor diagram, the REF is the observation, the vertical coordinate is the standard deviation (SD),
the distance between the simulations and REF is the centered root-mean-square deviation (CRMSD), and the position of the azimuth is the
correlation coefficient (R).

https://doi.org/10.5194/acp-25-9005-2025 Atmos. Chem. Phys., 25, 9005–9030, 2025



9024 W. Zhang et al.: Subgrid-scale aerosol–cloud interaction

Figure 16. The spatial distribution of the difference between the ACIsub-DC and CACIsub-DC experiments for the time-averaged (a) PM2.5
mass concentration and (b) subgrid-scale cloud droplet number concentration (mean values for 1–6 km) from 26 to 29 June 2016.

Figure 17. The (a, b) subgrid-scale and (c, d) grid-scale (a, c) cumulative precipitation from 26 to 29 June 2016 and vertical distributions of
(b, d) the difference between the ACIsub-DC and CACIsub-DC experiments for the regional average Qc and Qi. In (b) and (d), the shading
is Qc, the contour is Qi, and the red line is the 0 °C isotherm.

scale and grid-scale cloud parameterization schemes, which
is more pronounced at the subgrid scale (Glotfelty et al.,
2019, 2020).

6 Conclusions

In this paper, based on a mesoscale atmospheric chem-
istry model, CMA_Meso5.1/CUACE, the subgrid-scale ACI
mechanism is implemented for convective clouds with hor-

izontal scales smaller than model grid spacing: a double-
moment convective cloud microphysical scheme (SZ2011),
which explicitly deals with various hydrometeor (cloud wa-
ter, cloud ice, rain, and snow) microphysical processes of
convective clouds, is coupled with the KFeta cumulus con-
vective scheme; the real-time predicted hygroscopic aerosol
(OC, SS, SF, NT, and AM) of the CUACE is used to generate
cloud droplets at the subgrid scale via the ARG2000 size-
resolved activation scheme; the calculated CF, Qc, Qi, Rc,
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Figure 18. (a) The difference in terms of subgrid-scale Qc and Rc in the YRD between the ACIsub-DC and CACIsub-DC experiments.
(b) The difference in terms of grid-scale Qc and Rc in the YRD between the ACIsub-DC and CACIsub-DC experiments.

Figure 19. The vertical distribution of the difference between the ACIsub-DC and CACIsub-DC experiments for regional average grid-scale
(a) Qr, (b) Qs, and (c) Qg in the YRD from 26 to 29 June 2016.

and Ri in the KFeta cumulus convective scheme are trans-
ferred to the Goddard shortwave radiation scheme for ra-
diative feedback on the subgrid-scale cloud. Based on reli-
able PM2.5 mass and AOD simulations, two sets of experi-
ments are conducted using this updated model. The first set
of experiments investigates the performance of the developed
model with subgrid-scale cloud microphysics and radiation
feedback with regard to the prediction of meteorological fac-
tors in summer in different regions (the NEC, JJJ, SC, CC,
YRD, and PRD regions) of central and eastern China in terms
of whether or not to include the treatment of subgrid-scale
cloud microphysics and radiation feedback in the model; the
second set of experiments investigates the impact of anthro-

pogenic aerosol on deep-convective precipitation in the YRD
via subgrid-scale ACI.

The results show that the coupling of subgrid-scale
cloud microphysics with real-time size-resolved hygroscopic
aerosol activation and radiation feedback in the model refines
cloud representations, e.g., causing underestimated cloud
water content and cloud extinction to increase, even in some
areas that are not saturated with respect to water at the grid
scale. As a result, the attenuation of shortwave radiation is
better simulated, with the regional MB of SDSR decreas-
ing by ∼ 23.1 % (∼ 18.5 W m−2). The cloud and radiation
changes induced by subgrid-scale cloud microphysics and
radiation feedback lead to a decrease (∼ 0.35°C) in temper-
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ature at 2 m accompanied by an increase (∼ 2.5 %) in RH at
2 m, which helps to reduce the regional MB by ∼ 40 % and
∼ 18.1 %, respectively. This cooling and humidification oc-
cur from 1000 to 500 hPa, but the improvement is mainly
concentrated in temperature in whole layers and at RH be-
low 900 hPa. Unlike temperature and RH, wind speed in-
creases or decreases at different air layers or regions, pos-
sibly relating to changes in atmospheric stability. The treat-
ment of subgrid-scale cloud microphysics and radiation feed-
back in the model significantly enhances total precipitation
further (∼ 1.1 mm), mainly caused by increased precipitation
at the grid scale linked to convective detrainment, thus re-
ducing the regional MB of 24 h cumulative precipitation by
34.4 %. Compared with different subregions (the NEC, JJJ,
SCB, CC, YRD, and PRD regions) in central and eastern
China, the impact of subgrid-scale cloud microphysics and
radiation feedback on the prediction of meteorological fac-
tors is more significant in the YRD region, which is mainly
related to convective conditions and model local errors. In
addition, compared with simulations with the anthropogenic
emissions turned off, the subgrid-scale actual anthropogenic
aerosol emissions cause the grid-scale and subgrid-scale to-
tal cumulative precipitation during a typical deep-convective
heavy-precipitation event in the YRD to decrease by∼ 5.6 %
(∼ 4.6 mm), which is closer to the observations. It is further
found that the decrease in total precipitation is associated
with lower autoconversion of cloud water into rain at the
subgrid scale and with less water vapor being available for
condensation at the grid scale, suggesting a competing effect
on water vapor between subgrid-scale and grid-scale cloud.

There is still a need for some complementary work in the
future, e.g., systematically distinguishing the differences be-
tween subgrid-scale cloud microphysics and radiation feed-
back effects on meteorological prediction, a study of the dif-
ferences in terms of the impact of the ACI mechanism on
NWP at different grid resolutions (Glotfelty et al., 2020), and
the coupling of real-time ice crystal nucleation at the grid
scale and subgrid scale and its impacts on the prediction of
meteorological factors (Su and Fung, 2018a, b).

Data availability. The MERRA-2 AOD data are avail-
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