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Abstract. As the evolution of marine low clouds is sensitive to the current state of the atmosphere and varying
meteorological forcing, it is crucial to ascertain how cloud responses differ across a spectrum of those conditions.
In this study, we introduce an innovative approach to encompass a wide array of conditions prevalent in low ma-
rine cloud regions by creating a comprehensive library of observed environmental conditions. Using reanalysis
and satellite data, over 2200 Lagrangian trajectories are generated within the stratocumulus deck region of the
Northeast Pacific during summer 2018–2021. By using eight important cloud-controlling factors (CCFs), we em-
ploy principal component analysis (PCA) to reduce the dimensionality of data. This technique demonstrates that
two principal components capture 43 % of the variability among CCFs. Notably, PCA facilitates the selection of
a reduced number of trajectories (e.g., 54) that represent a diverse array of the observed CCF, aerosol, and cloud
variability and co-variability. These trajectories can then be used for process model studies, e.g., with large-eddy
simulations (LES), to evaluate the efficacy of marine cloud brightening. Two distinct cases are selected to initiate
2 d long, high-resolution, large-domain LES experiments. The results highlight the ability of our LES to simulate
observed conditions. Although perturbed aerosols delay cloud breakup and enhance the cloud radiative effect,
the strength of such effects is sensitive to “precipitation-aerosol feedback”. The first case is precipitating and
shows the potential for “precipitation-driven” cloud breakup due to positive precipitation-aerosol feedback. The
second case is non-precipitating with classic cloud breakup of the “deepening-warming” type, highlighting the
impact of entrainment.

1 Introduction

Marine stratocumulus (Sc) clouds are an important controller
of climate because they cover more than 20 % of the ocean’s
surface, their albedo is much higher than that of the sea sur-
face, and their effect on outgoing longwave radiation is small
(Wood, 2012). Changes in the coverage or albedo of these
clouds can therefore have significant impacts on Earth’s ra-
diation budget, and biases in their representation in mod-
els can produce biases in simulated climate. In addition, a
large portion of the global climate forcing through aerosol–

cloud interactions (ACIs) occurs in regions of extensive ma-
rine low clouds (e.g., Carslaw et al., 2013; Kooperman et al.,
2012); accordingly, uncertainty in present-day anthropogenic
aerosol radiative forcing is largely attributed to uncertainty in
aerosol indirect effects related to low clouds (Forster et al.,
2021; Sherwood et al., 2020).

Sc clouds have also been proposed as the potential target
for the climate intervention approach known as marine cloud
brightening (MCB), one of several methods of solar radiation
modification (SRM) that have been suggested as a possible
option for deliberately reducing climate warming in the fu-
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ture. MCB would involve injecting sea salt particles from sea
water into the atmosphere in regions of marine low clouds.
The idea is that these aerosols would mix into the boundary
layer air and up to the cloud base, where they would act as
cloud condensation nuclei (CCN), resulting in marine low
clouds with a larger number of small cloud droplets; this
change would enhance cloud albedo (Twomey, 1977), in-
creasing sunlight reflection and cooling climate (Latham et
al., 2012). Currently, it is thought that MCB would be most
effective when applied to regions of marine Sc clouds (Hill
and Ming, 2012). Early research on MCB shows it has the
potential to cool the planet, yet significant uncertainties still
exist in predicting the efficacy of MCB within global climate
models (GCMs), as they do not resolve many of the complex
physical processes associated with both unperturbed marine
low clouds and their interactions with aerosols (Wood et al.,
2017).

Both the present-day effect of aerosols on climate through
ACIs and the MCB approach operate by changing the CCN
population that is ingested into clouds. The initial response
to increasing CCN, either with pollution aerosols or sea salt
under MCB, is the Twomey effect (Twomey, 1977), which
involves an enhancement of cloud droplet number concentra-
tion (Nd) and a resulting increase in cloud albedo if both the
cloud liquid water path (LWP) and cloud fraction (CF) are
unchanged. The cloud “albedo susceptibility” to the Twomey
effect is particularly sensitive to aerosol concentration, such
that cloud albedo increases more significantly with lower
aerosol concentration (i.e., in a clean environment than in an
environment with already-elevated aerosol concentrations)
(Platnick and Twomey, 1994).

Importantly, in natural environments, neither LWP nor CF
remains constant in clouds with altered Nd. Early research
indicated that smaller cloud droplets formed by enhanced
aerosols diminish the efficiency of the collision–coalescence
process, thereby suppressing precipitation and consequently
increasing both cloud cover and cloud lifetime (Albrecht,
1989). More recent studies have demonstrated that ACIs can
include additional complex responses, such as increasing the
entrainment of air at the cloud top and altering circulation in
and adjacent to the cloud. Depending on the background en-
vironmental conditions (e.g., the strength of precipitation and
entrainment), the cloud responses or “adjustments” in LWP
and CF can act to either counteract or amplify the albedo
increase produced by the Twomey effect (Glassmeier et al.,
2021; Stevens and Feingold, 2009; Wood, 2021). However,
the relative importance of different cloud adjustments on a
global scale is still not fully understood (Christensen et al.,
2022).

Despite the critical role marine low clouds play in climate,
both through ACIs in the present climate and for potential
MCB, their accurate representation in global climate models
continues to be a challenge (Lee et al., 2022; Stjern et al.,
2018). The coarse resolution of these models is insufficient
for directly simulating the cloud and aerosol processes that

drive these clouds’ evolution and their responses to aerosol
perturbations, which necessitates parameterizations of these
processes (Doherty et al., 2022; Erfani and Burls, 2019; Han-
nay et al., 2009; Zelinka et al., 2017). Large-eddy simulation
(LES), on the other hand, proves more effective because it
is able to resolve turbulence convection, clouds, and precip-
itation within the marine boundary layer, or MBL (Berner
et al., 2013; Blossey et al., 2021; Erfani et al., 2022; Sandu
and Stevens, 2011; Wyant et al., 1997). An objective of this
study is to establish an approach whereby the LES model’s
ability to represent the evolution of marine Sc clouds across
a realistic range of background aerosol and meteorological
conditions can be systematically tested. The goals of doing
so are to advance our understanding of the factors controlling
marine low clouds’ contribution to Earth’s radiative balance,
their role in climate forcing by ACIs, and the potential for
MCB to cool climate and affect climate risks and, ultimately,
to be able to use LES experiments to test and improve the
representation of these clouds and both inadvertent (pollu-
tion) and intentional (MCB) impacts of aerosols on clouds in
global-scale models.

The focus of this study is on regions dominated by Sc
clouds and, importantly, includes broad variability in the fac-
tors that drive the evolution of these clouds with time. A
distinctive characteristic of marine low clouds over eastern
oceans is the stratocumulus-to-cumulus transition (SCT), a
change in cloud regime that occurs as lower tropospheric
air masses in Sc-dominated regions move equatorward, car-
ried by the trade winds. The first theory of what drives the
SCT, termed “deepening-warming” (Bretherton and Wyant,
1997; Wyant et al., 1997), describes that the increased sea-
surface temperatures (SSTs) experienced during the equa-
torward movement of a well-mixed Sc-topped MBL cause a
deepening and decoupling of the MBL that results in the for-
mation of cumulus (Cu) clouds beneath Sc clouds. Simulta-
neously, the entrainment of dry air from the free troposphere
(FT) intensifies at the top of the Sc layer and therefore leads
to the dissipation of these clouds (Bretherton and Wyant,
1997; Sandu and Stevens, 2011; Wyant et al., 1997; Zhou
et al., 2015). A more recent theory, a “precipitation-driven”
SCT (Yamaguchi et al., 2017), highlights the significant role
of aerosols and a positive “precipitation-aerosol feedback”,
wherein enhanced precipitation results in a more efficient
collision–coalescence process that effectively removes cloud
droplets and aerosols from the Sc layer. This clean layer fa-
vors the formation of fewer, larger cloud droplets, which in
turn intensifies precipitation (Yamaguchi et al., 2017; Wood
et al., 2018; Diamond et al., 2022; Erfani et al., 2022).

Previous studies used data from an observational field
campaign to both initialize and then test the fidelity of one
LES model (System for Atmospheric Modeling, or SAM;
see Sect. 2.4) in simulating the SCT in the Northeast Pacific
(NEP) region (Blossey et al., 2021; Mohrmann et al., 2019).
The Cloud System Evolution in the Trades (CSET) field cam-
paign took place over the NEP in July and August 2015 (Al-
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brecht et al., 2019). To study the movement of air masses,
flights first sampled the MBL and lower FT off the Cali-
fornia shoreline, and then the air mass was re-sampled 2 d
later near Hawaii. Therefore, there are two aircraft intersects
for each trajectory providing in situ observations of cloud,
aerosol, and meteorological properties. Erfani et al. (2022)
selected two Lagrangian trajectories from the CSET cam-
paign and conducted a combination of low- and medium-
domain-size LES model runs initialized using baseline and
perturbed aerosol concentrations in the MBL and FT in or-
der to explore the sensitivity of cloud evolution, including
the SCT, to variations in aerosol concentrations and model
domain size. The LES used in that study prognoses aerosol
and cloud mass and number concentration; this adds more
degrees of freedom, making it more challenging to produce
realistic simulations. Nonetheless, the LES did a better job
of reproducing the evolution of the aerosol and cloud fields
across the 3.5 d simulations in the first case (e.g., L06-Tr2.3)
than in the second case (e.g., L10-Tr6.0). The background
environmental conditions differed between the two cases: the
first case is clean and precipitating, with an initially well-
mixed Sc-topped MBL, and the second case is polluted and
non-precipitating, with an initially decoupled MBL. As a re-
sult, the response of marine low clouds to aerosols and the
strength and sign of cloud adjustments differ between the two
cases.

The case studies presented by Erfani et al. (2022) inform
the analysis presented here, which aims to provide a frame-
work for a more systematic exploration of how aerosols af-
fect low marine cloud evolution. Quantifying these effects
requires a comprehensive understanding of cloud responses
under the full range of aerosol and meteorological conditions
present in the eastern subtropical oceans. Here, we present an
approach for creating a comprehensive library of Lagrangian
observations and meteorological forcings in order to repre-
sent a full spectrum of environmental conditions common in
low marine cloud regions. We then apply principal compo-
nent analysis (PCA) to a range of cloud-controlling factors
(CCFs) in order to minimize the data dimensionality and to
create a representative phase space of cloud properties. This
allows us to identify a subset of cases that are representa-
tive of the range of conditions that drive cloud evolution in a
given region. In addition, we develop a methodology for rou-
tinely initializing and forcing detailed LES experiments with
satellite and reanalysis data, rather than relying on aircraft
measurements, which are only intermittently available.

Building on Erfani et al. (2022), we perform LES runs with
both baseline and perturbed aerosol concentrations for two
cases identified from the subset of cases selected using the
PCA method described above. These serve as examples to
test the performance of our LES and to simulate low ma-
rine cloud evolution and ACIs. A later study will use this
same approach to more comprehensively analyze LES model
performance across an ensemble of simulations based on the
subset of cases. The rest of this paper is organized as follows:

Sect. 2 describes the observational data and model utilized in
the study, along with the innovative statistical approach and
design of the LES experiments. In Sect. 3, we explain the
outcomes of the statistical analysis. The results of the LES
experiments are examined in Sect. 4, a discussion is provided
in Sect. 5, and a summary is given in Sect. 6.

2 Data and methods

2.1 Data

We utilize a variety of reanalysis and satellite data for the
Lagrangian study of Sc clouds. Cloud and radiation proper-
ties such as CF, LWP, ice water path (IWP), cloud-top height
(CTH), and the radiative fluxes were derived from the Na-
tional Aeronautics and Space Administration (NASA) level 3
Clouds and the Earth’s Radiant Energy System (CERES) –
synoptic top of the atmosphere (TOA) and surface fluxes
and clouds (SYN) (Doelling et al., 2016). Additional sources
of satellite-retrieved LWP include the Advanced Microwave
Scanning Radiometer (AMSR; Kawanishi et al., 2003) and
the Special Sensor Microwave Imagers (SSMI; Wentz et al.,
2012). Furthermore, we use CTH estimated from the NASA
Moderate Resolution Imaging Spectroradiometer (MODIS)
cloud-top temperatures, tuned with cloud-top heights from
the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO; Vaughan et al., 2004) using the
algorithm described in Eastman et al. (2017). Estimated
warm rain rates are derived from AMSR 89 GHz bright-
ness temperatures tuned using concurrent CloudSat rain pro-
file rain rates (Lebsock and L’Ecuyer, 2011) for marine
low clouds, which are available twice daily (Eastman et al.,
2019). The European Center for Medium-Range Weather
Forecasts (ECMWF) reanalysis version 5 (ERA5) data are
used for obtaining meteorological conditions and cloud prop-
erties, such as temperature (T ), water vapor mixing ratio (q),
horizontal wind speed (WS), vertical velocity in pressure co-
ordinates (ω), CF, and LWP (Hersbach et al., 2020). The es-
timated inversion strength (EIS) is then calculated follow-
ing the Wood and Bretherton (2006) derivation, as an in-
dex to measure MBL static stability. The mass mixing ra-
tio of aerosol species is extracted from the NASA Modern-
Era Retrospective analysis for Research and Applications,
Version 2 (MERRA2; Gelaro et al., 2017) reanalysis. The
MERRA2 reanalysis dataset is generated using the God-
dard Chemistry Aerosol Radiation and Transport (GOCART)
model, run with assimilated satellite retrievals and meteoro-
logical data. Accumulation-mode aerosol number concentra-
tion (Na) is calculated from the MERRA2 mass mixing ratio
of aerosol species, with assumed particle size distributions
following a methodology described in Appendix A of Erfani
et al. (2022). A summary of the datasets used in this study is
provided in Table 1.
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Table 1. A summary of the datasets used in this study.

Dataset ERA5 (surface
& pressure
levels)

MERRA2
M2I3NVAER
(aerosol
variables)

CERES SYN
L3 (radiation/
cloud variables)

SSMI V08
L3

AMSR-2
V08 L3

AMSR-2
V08 L3

MODIS

Important
variables

WS, P , T , q,
ω, EIS, SST,
Zinv,we, CF,
LWP

Na CF, LWP, CTH,
Nd, re, τc, OLR,
SW CRE

LWP LWP Rain rate CTH

Reference Hersbach et al.
(2020)

Gelaro et al.
(2017)

Doelling et al.
(2016)

Wentz et al.
(2012)

Kawanishi
et al. (2003)

Eastman et
al. (2019)

Eastman et
al. (2017)

Temporal
resolution

Hourly 3-hourly Hourly Two times
per day

Two times
per day

Two times
per day

01:30 LT,
13:30 LT

Spatial
resolution

0.25× 0.25° 0.5× 0.625° 1× 1° 0.25× 0.25° 0.25× 0.25° 0.25× 0.25° 1× 1°

Vertical
levels

37 72 – – – – –

2.2 Air mass trajectories

The target region for this study encompasses the Sc cloud
deck in the NEP. Six initial locations in this region (see
Fig. 1a) are selected as the starting points of forward air mass
trajectories that are then used to derive representative cloud
properties in this region. All initial locations, except “North”,
are based on their use in previous studies. The Sandu 2010
location is selected following Sandu et al. (2010), who an-
alyzed numerous trajectories from this location. The GPCI
S9-S12 locations are part of an enhanced observational
field campaign, called Global Energy and Water Cycle EX-
periment (GEWEX) Cloud Systems Study (GCSS) Pacific
Cross-section Intercomparison (GPCI) (Lewis et al., 2012).

We employ a trajectory generation code developed at the
University of Washington (UW) that has been previously
applied successfully in several studies of cloud evolution
(Bretherton et al., 2010; Eastman and Wood, 2016). This
code is used to generate a total of 2208 Lagrangian iso-
baric (950 hPa) forward trajectories. The resulting trajecto-
ries cover a time span of 86 h (3.5 d) and are all from the
summer months (June, July, and August, or JJA) in the years
2018–2021. This method uses ERA5 u and v components
of horizontal wind to advect air parcels isobarically and as-
sumes minimal vertical motion compared to horizontal mo-
tion within the MBL section of stratocumulus deck regions.
Bretherton et al. (2010) and Eastman et al. (2017) demon-
strated that ECMWF ERA wind fields are appropriate for
generating Lagrangian trajectories in the Eastern Pacific.
Some widely used trajectory models do not natively utilize
ERA5 data in its raw format and require additional prepro-
cessing. In contrast, our trajectory generation code directly
uses ERA5 data, which ensures consistency with the “uw-

trajectory” Python package utilized later in this study for data
extraction.

We acknowledge the inherent uncertainties associated
with trajectory methods. Larson et al. (2022) noted that
trajectory models, which rely on wind fields, may not al-
ways align perfectly with observed cloud motion, possi-
bly due to vertical wind shear. Such wind shear might re-
sult in non-negligible horizontal advective tendencies in our
quasi-Lagrangian framework because the trajectory is not
Lagrangian at all levels (e.g., Blossey et al., 2021). Despite
these limitations, isobaric trajectories have been shown to
effectively capture the dominant motions in the Sc-topped
MBL (e.g., Sandu et al., 2010), and tracers such as CO and
O3 exhibited high coherence along such trajectories over a
2 d period during the CSET field campaign (Mohrmann et al.,
2019). Our choice of the UW trajectory generation code is
motivated by its demonstrated effectiveness in prior research
and its compatibility with the ERA5 dataset used throughout
this study.

To compile meteorological, cloud, radiation, and aerosol
properties along the trajectories, we utilize the uw-trajectory
Python package, which was originally developed for the
CSET field campaign (Mohrmann et al., 2019) but has since
been modified for use with any initial time and location, pro-
vided the necessary datasets are available. The uw-trajectory
package provides data averaged over a 2°× 2° box centered
on each trajectory point at each time. This sample size is con-
sistent with previous studies (e.g., Eastman and Wood, 2016;
Eastman et al., 2017; Mohrmann et al., 2019) and ensures
that sufficient data around each trajectory point are selected
based on the spatial scales of the satellite cloud and reanal-
ysis meteorological properties, as shown in Table 1. Previ-
ous work has shown that the results are largely insensitive to
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Figure 1. (a) Lagrangian isobaric (950 hPa) 48 h forward trajecto-
ries initialized over six select locations in the stratocumulus deck
region of the Northeast Pacific for every day during June–August
for the years 2018–2021. Excluded are the 4 % of the trajectories
that pass close to the coast or over land. See Sect. 2.2 for a de-
scription of the initial locations. (b, c) Two Lagrangian trajectories
(dark-blue solid lines) used here as case studies for LES modeling.
The shaded contours, black contours, and vectors show the ERA5
sea surface temperature, mean-sea-level pressure, and 10 m wind
vectors, respectively, averaged for a 48 h period starting from the
initial time of the trajectory.

the exact spatial scale of averaging within a range of 100–
400 km (Eastman and Wood, 2016). Note that the trajectory
generation code determines the parcel pathways based on
ERA5 wind data, while the uw-trajectory Python package in-
tegrates this information to extract cloud and meteorological
data along the trajectories.

The trajectory accuracy is approximately 100 km per day
based on ERA5 low-level wind uncertainties (∼ 1 m s−1), but

a more conservative worst-case estimate suggests positional
errors up to 170 km per day or 340 km per 2 d (assuming a
10 % error in 20 m s−1 wind speeds). However, Eastman et
al. (2016) showed that the e-folding length scale of cloud
fraction correlations (i.e., the distance at which correlations
between cloud fraction vectors decline by a factor of 1/e)
in stratocumulus decks is around 450 km. This suggests that
cloud properties remain correlated within this range, mean-
ing that even if our method does not track the same features
precisely, it still samples a similar cloud scene. As clouds in
these regions are organized on scales larger than the finest
reanalysis resolution and typical LES domain sizes, averag-
ing over only those finer scales would cause derived forc-
ings to disproportionately reflect localized cloud variations
rather than capturing their broader organization. This would
risk simulations being biased toward thicker or thinner parts
of the cloud system rather than being representative of the
overall cloud field and its internal variability. The 2°× 2° av-
eraging helps mitigate this issue by ensuring that simulations
are more representative of the full range of cloud structures
in the region.

Trajectories are generated for a total of 86 h to capture the
full evolution of air masses as they move through the SCT
region, which may be relevant for future studies. However,
only the first 48 h of each trajectory are used for the purpose
of LES modeling in this study. This is because the aerosol
life cycle within the MBL typically lasts 1–2 d (Lewis and
Schwartz, 2004), and the accuracy of calculated trajectories
diminishes significantly beyond 2 d due to the accumulation
of errors in atmospheric analyses (Stohl and Seibert, 1998).
Also, reproducing the evolution of Sc clouds over relatively
short time frames is a significant challenge (e.g., Stevens et
al., 2005) and worthy of study in its own right, independent
of the SCT. Given the importance of precipitation to bound-
ary layer dynamics and cloud cover (Stevens et al., 1998; Ya-
maguchi et al., 2017) and the uncertainty of aerosol concen-
trations in the boundary layer (e.g., Erfani et al., 2022, Ap-
pendix A), a careful study of the evolution of the Sc-topped
MBL ahead of its transition to a trade Cu boundary layer is
warranted.

The spread for each variable is defined as the standard de-
viation within that box. As we are interested in studying in-
fluences on the SCT, we exclude trajectories that pass close
to the coastlines or over land (4 % of the total). Trajectories
with significant ice content, i.e., those with an IWP exceed-
ing 50 g m−2 lasting more than 3 h during a 48 h trajectory,
are also excluded. This threshold is selected arbitrarily but
ensures the exclusion of trajectories with high ice content,
which could complicate the analysis and for which our LES
model does not currently prognose ACIs, while still retaining
a sufficient number of trajectories (1663) for robust statistical
analysis.
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2.3 Principal component analysis (PCA)

The goal of using PCA in this study is to be able to identify
a set of air mass trajectories (cases) for which detailed LES
experiments can be run, both to test the fidelity of the LES in
simulating cloud evolution and then to study how cloud evo-
lution is affected by aerosol perturbations. To make the most
effective use of available computing resources, we would
like to simulate a small subset of the > 1000 trajectories de-
scribed above. However, that subset should encompass the
phase space of observed CCFs and cloud properties so that,
collectively, they represent the range of variability in cloud
evolution in the selected region. This is done by identifying
a reduced set of principal components (PCs) that can explain
a large fraction of the variability in our selected CCFs.

PCA is a statistical technique used to identify patterns
in data and reduce their dimensionality by transforming a
dataset with n physical variables to n variables in the vari-
ance space, called principal components (PCs). PCA is an
optimal technique to explain variations because it starts by
projecting data onto the direction of the largest variance and
then repeats this for an axis with the second-largest variance.
This process is continued to the nth axis of variance. For this
reason, PC1 represents the largest variance, PC2 the second
largest variance, and so on. An important benefit of PCA is
that many variables can be represented by the first few PCs
because they often explain the majority of total variance, and
therefore PCA reduces the dimensionality. Another benefit of
PCA is that it removes co-variability by producing PCs that
are orthogonal and uncorrelated (Hartmann, 2008).

Mathematically, PCA is expressed for each PC by decom-
posing a symmetric matrix as: 0α = λα, where α is an eigen-
vector, λ is an eigenvalue, and 0 is the covariance matrix
with each of its elements showing the covariance between
two variables. For each PC, the eigenvalue describes the per-
centage of variance explained by that PC, and each eigen-
vector element shows the importance of an input variable for
that PC (Wei, 2018).

Before applying PCA, we standardize each variable (V )
by calculating Vstandardized from V , the mean value (V ), and
the variable’s standard deviation (σV ) as:

Vstandardized =
(V −V )
σV

. (1)

This standardization is necessary to ensure that a variable
with a wide range does not dominate the PCA. PCA is sensi-
tive to outliers and cannot be performed if there are missing
values in the datasets; however, these issues do not exist in
the datasets used in this study.

A single PC analysis is conducted for all 1663 trajecto-
ries in the study region based on eight variables, i.e., the
along-trajectory means and the differences between the be-
ginning and end of each trajectory for the four CCFs: EIS,
700 hPa q,700 hPa ω, and 10 m WS, where the 700 hPa ver-
tical level is used to represent the lower FT. The inclusion

of both the mean and the difference in each CCF along the
trajectory is intended to capture the dynamic processes that
influence cloud evolution. In particular, the differences quan-
tify how changes in CCFs over time affect the MBL and
cloud properties along the trajectory. These CCFs, along with
SST and mean-sea-level pressure (PMSL), have been shown
to be the most important CCFs for the development of ma-
rine low clouds (Klein et al., 2017, and references therein).
Here, we excluded SST and PMSL from the PCA because
they have high co-variability with other CCFs, as charac-
terized by the correlation coefficient (R-value). For exam-
ple, the R between SST and EIS is −0.6, and 1SST and
1PMSL are highly correlated with WS10m (0.6 and −0.5,
respectively; see Fig. S1 in the Supplement). When one or
two variables co-vary strongly with others, excluding them
as PCA inputs helps eliminate redundancy, reduce complex-
ity, enhance explainability, and improve PCA performance
in identifying independent modes of variability. While PCA
is a dimensionality-reduction technique, it is still important
to focus on a set of input variables with low co-variability
among themselves. To gain insight into what factors most
strongly affect cloud evolution along the SCT, we focus on
the percentage of variance explained by each PC and which
variables within the leading PCs (as given by the R between
each PC and a given physical variable) contribute the most to
the variability within these PCs.

To indicate the robustness of correlations, the probability,
or p-value, is determined using the t-test (or t-distribution,
td) for the statistical significance of the correlation, following
Lowry (2014):

td =
R√
1−R2

df

, (2)

where df=N∗− 2 is the degrees of freedom. Here, N∗ is
the independent number of data points, which is smaller than
the total number of data points (N , which is equal to 1663 in
this study) because synoptic variability exists on a multi-day
scale. Following Hartmann (2008), N∗ is calculated as:

N∗ =
N1t

2te
, (3)

where 1t is the time interval between two data points (equal
to 1 d in this study) and te is the time interval during which
the autocorrelation becomes smaller than e−1. By calculating
autocorrelation for each of the six locations and each of the
4 years (figure not shown), it is seen that te generally does not
exceed 4 d. This results in a value of 208 for N∗, which then
gives a td value of 2.03 and a p-value of 0.05, when the R-
value is equal to 0.14. This means that an R-value of 0.14 or
higher is statistically significant at a confidence level of 95 %
(or when the p-value is lower than 0.05 for non-directional
conditions) for our specific dataset.
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2.4 Model

We perform LES modeling using SAM (Khairoutdinov and
Randall, 2003), version 6.10.9, with the goal of producing
detailed, high-resolution, large-domain simulations of cloud
evolution. In previous work at the University of Washington,
SAM was coupled to a single-mode, bulk, log-normal, two-
moment aerosol scheme (Berner et al., 2013). This scheme
prognoses the mass and number concentration of accumu-
lation mode aerosols in the boundary layer by computing
budget tendencies due to accretion or coalescence scaveng-
ing, interstitial scavenging, autoconversion, activation, sedi-
mentation, surface processes, and entrainment from the FT
for aerosol in three forms: dry (unactivated), within cloud
droplets, and within raindrops. A detailed calculation of each
tendency term is described by Berner et al. (2013). Warm-
cloud microphysics in SAM uses the Morrison parameteriza-
tion (Morrison et al., 2005), which is a bulk double-moment
scheme that predicts cloud droplet and raindrop number con-
centrations with gamma distributions and parameterizes acti-
vation of cloud droplets from two modes of aerosols based on
Abdul-Razzak and Ghan (2000). The ice phase is turned off
in the microphysics parameterization of our LES. Addition-
ally, we use the Rapid Radiative Transfer Model for Global
Climate Models (RRTMG) (Mlawer et al., 1997) and cloud
optical parameterizations from the Community Atmosphere
Model version 5 (CAM5) as described in Neale et al. (2010).

The simulations in this study are similar to those in Er-
fani et al. (2022) but with three main differences. First, the
LES is initialized and forced using satellite and reanalysis
meteorological and aerosol data in order to test the fidelity of
LES in the absence of aircraft measurements, which are not
widely available over remote oceans. Second, the simulations
are initialized using sharpened profiles of temperature and
moisture. This is done to overcome the fact that the ERA5
thermodynamic profiles do not well represent the structure of
the inversion layer when compared to aircraft measurements
(i.e., see Figs. 4 and 8 in Erfani et al., 2022).

The profile sharpening procedure is explained in Appendix
A in detail but is summarized here: the procedure uses the
ERA5 T and total water mixing ratio (qt) profiles and the
microwave LWP as inputs. The MBL inversion height (Zinv)
is calculated from the ERA5 profiles, and the FT profiles are
extrapolated from 500 m above Zinv down to Zinv. The MBL
profiles are then adjusted based on minimizing an error func-
tion that optimizes LWP in the adjusted profile against the
microwave LWP while preserving the vertical integrals of the
ERA5 density temperature (Tρ) (defined in Appendix A) and
qt. This sharpened profile is then used to initialize the LES
runs.

The third difference between this study and that of Erfani
et al. (2022) is that we conduct two stages for each simula-
tion: startup and active. The 8 h startup stage serves as the
spinup period and is forced with meteorological conditions
and aerosol properties that are constant in time, using instan-

taneous profiles from the initial time of each trajectory (e.g.,
09:00Z). The startup stage is run for nighttime-only condi-
tions and facilitates the development of mesoscale cells and
the geostrophically forced wind field. The sharpened tem-
perature and moisture profiles are used in this stage. Other
forcing fields are ERA5 ω, geostrophic winds, SST (Fig. 1b
and c), and large-scale horizontal advection of temperature
and moisture. To enable the formation of an Sc-topped, well-
mixed MBL in the LES, a nudging timescale of 1 h is se-
lected for profiles of T and qt within the MBL during this
startup stage. Without this stage, transients in the winds can
occur and cause wind and surface flux errors during the early
part of the simulation, as evident in previous LES studies of
the CSET campaign (e.g., Blossey et al., 2021; Erfani et al.,
2022). A 48 h active stage is then branched from the startup
stage and serves as the main run with realistic forcings that
change over time. In this stage, the nudging of aerosols, tem-
perature, and moisture within the MBL is turned off to allow
for the natural development of aerosols and clouds within the
MBL. During both the startup and active stages, the FT pro-
files of aerosols, temperature, and moisture are nudged to the
ERA5 reanalysis values with a timescale of 1 h. When nudg-
ing winds, a longer timescale of 12 h is selected.

The PCA method selects 54 trajectories. From them, two
cases are chosen, each from a different location and with dis-
tinct cloud and meteorological characteristics, as described
later in Sect. 4. Table 2 summarizes the experiments in this
study. The number of vertical levels in the model is 260, with
the smallest vertical grid spacing being 7 m in the MBL top
and Sc layer (from 450 to 1200 m). Above and below this
vertical range, the vertical grid spacing gradually expands,
such that it is 167 m just below the model top (which is at
4800 m) and is 20 m immediately above the ocean surface.
The horizontal resolution is 100 m× 100 m, and the horizon-
tal domain size is 51.2 km× 51.2 km.

Three runs are conducted for each trajectory: ctrl, Na× 3,
andNa× 9. All three runs are initialized and forced in the FT
with MERRA2 time-varying aerosol profiles. The ctrl run is
initialized in the MBL with MERRA2 aerosol profiles. As in
Erfani et al. (2022), to test for the sensitivity of cloud evo-
lution to aerosols, the Na× 3 and Na× 9 runs are initial-
ized with the MERRA2 MBL aerosol concentration multi-
plied by 3 and 9, respectively. Although the simulated FT
Na is nudged to the MERRA2 Na throughout the simulation,
the MBL Na is prognosed freely for a natural simulation of
aerosols, clouds, and precipitation. The time-varying vertical
profiles of MERRA2Na are shown in Fig. 2 for two example
trajectories and are derived from the mass mixing ratios of
aerosol species following Appendix A in Erfani et al. (2022).
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Table 2. A summary of large-eddy simulation runs conducted in this study. Note that two separate Lagrangian trajectories are selected, and
for each of them, three runs are conducted.

Trajectory Run Initial MBL Description Initial FT Na Run Horizontal Domain Vertical
name Na time time resolution size level #

(Z) (h) (m) (km)

GPCI S10
(31 July 2018)

ctrl MERRA Baseline run: initialized with
MERRA MBL Na

09:00 MERRA 48 100× 100 51.2× 51.2 260

Na× 3 MERRA× 3 Run initialized with MERRA
MBL Na multiplied by 3

Na× 9 MERRA× 9 Run initialized with MERRA
MBL Na multiplied by 9

Sandu 2010
(4 July 2018)

ctrl MERRA Baseline run: initialized with
MERRA MBL Na

09:00 MERRA 48 100× 100 51.2× 51.2 260

Na× 3 MERRA× 3 Run initialized with MERRA
MBL Na multiplied by 3

Na× 9 MERRA× 9 Run initialized with MERRA
MBL Na multiplied by 9

Figure 2. The time-height plot of MERRA2 Na for the two trajec-
tories used in this study for the LES case studies.

3 Statistical analysis

3.1 PCA results

One objective of using PCA in our study is to determine how
the main modes of variation in key cloud properties are re-
lated to a select set of CCFs. This approach helps simplify
the complex interactions between clouds and their environ-
ment by focusing on the most significant modes of variability
and identifying the combinations of factors driving this vari-
ability. We first explore the R-values between various cloud
properties and CCFs, as shown in Fig. S1. For instance, the
R between CF and EIS is 0.31, which indicates a moderate
positive relationship. In addition, the R between Nd and EIS
is 0.36, which suggests that an increase in EIS is associated

with an increase in Nd. Stronger stability near the inversion
layer leads to weaker mixing, inhibiting the MBL from deep-
ening, which ultimately enhances humidity and clouds near
the top of the MBL (Klein et al., 2017; Wood and Brether-
ton, 2006). FT subsidence, represented by 700 hPa ω, is cor-
related with cloud properties (e.g., R between ω and CERES
CTH is equal to −0.22, and R between ω and CF is equal to
−0.13), showing that weaker FT subsidence leads to MBL
deepening and increased cloudiness. Although it is intuitive
to consider subsidence as promoting cloudiness, some stud-
ies (e.g., Klein et al., 2017; Myers and Norris, 2013) showed
that, when controlling for EIS as well as subsidence, stronger
subsidence results in decreased cloudiness. Surface WS is
correlated with CTH, LWP, and precipitation, with the high-
est R-values corresponding to the changes in these proper-
ties along the trajectory: CERES 1CTH (0.38), 1log(SSMI
LWP) (0.28), and 1log(precip) (0.25). This is due to en-
hanced latent heat fluxes from the ocean surface that intensify
latent heat release and facilitate cloud formation (Bretherton
et al., 2013; Brueck et al., 2015). As explained in Sect. 2.3,
absolute values of R greater than 0.14 are considered statis-
tically significant, which provides confidence in the relation-
ships seen between these variables.

Figure 3a illustrates the contribution of each PC to the to-
tal variance by showing the percentage of variance explained
by each PC when PCA is conducted with eight variables as
inputs. This visualization helps us to both understand the
distribution of variance across the PCs and determine the
number of PCs necessary to capture sufficient variability in
our dataset. Because the PCs collectively encompass the en-
tire variance in the dataset, the summation of the percent-
age of variance for all eight PCs amounts to 100 %. Notably,
the first PC explains 24 % of the total variance, while the
second PC explains an additional 19 %. Together, these two
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Figure 3. (a) The result of principal component analysis (PCA) showing the percentage of variance explained by each principal component
(PC). (b) The relationship between the two PCs and key meteorological conditions and cloud properties are quantified through their correla-
tion coefficient (R-value). The inputs to the PCA are presented as the first eight variables on the left; these are the differences between the
beginning and end of the trajectory and the along-trajectory means for the cloud controlling factors (CCFs): WS, q, ω, and EIS.

PCs account for a significant portion of the variability in the
data. Thus, 43 % of the information regarding the variation in
CCF properties is captured within PC1 and PC2, highlighting
their importance in understanding cloud formation and evo-
lution. Note that the contributions to the total variance differ
among all the PCs, which shows different levels of impor-
tance among PCs.

In order to provide insight into which variables are most
strongly associated with the modes of variation captured by
PC1 and PC2, the R-values between each of the first two PCs
and important CCFs, meteorological conditions, and cloud
properties are shown in Fig. 3b. A more comprehensive set
of R-values is provided in Fig. S1. For each PC, the R-values
for the input variables (i.e., the first eight variables in each
row) are associated with the eigenvector for that PC and de-
termine the contribution of the input variable to that PC. This
helps identify which CCFs are the most influential in the
modes of variation represented by PC1 and PC2. The highest
R with PC1 is for 1EIS (0.78) and FT q (−0.72); i.e., the
change in EIS along the trajectory and FT q are the most sig-
nificant properties driving variability in PC1. For PC2, EIS
and 1WS are the most important variables, with R-values

of −0.74 and 0.6, respectively, highlighting their roles in the
mode of variation represented by PC2. Although SST is not
an input to the PCA, it is correlated with both PC1 (−0.47)
and PC2 (0.38), as SST is an input when computing EIS
(Fig. S1). Additionally, PC1 and PC2 explain variations in
some key cloud properties, as indicated by the fact that PC2
has R-values of −0.34 and −0.37 with CF and Nd, respec-
tively, and PC1 has R-values of −0.28, −0.28, and −0.22
with CERES 1CTH, 1log(precip), and SSMI 1log(LWP),
respectively. This means that associations of the CCFs with
cloud properties and their evolution along these Lagrangian
trajectories are detected by PCA.

Focusing on PC1 and PC2 allows us to simplify the anal-
ysis while still capturing the most significant modes of vari-
ability. While PC3 explains an additional 14 % of the vari-
ability and is strongly correlated with 1ω (R=−0.69) and
ω (R= 0.53), variability in ω and 1ω is partially captured
by PC1 and PC2, respectively. We perform a linear regres-
sion of ω on PC1 and PC2 to find the best linear combination
of a×PC1+ b×PC2. The correlation between ω and this
combination is 0.48. Similarly, the correlation between 1ω
and c×PC1+d×PC2 is 0.23. These values give the variance
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explained by the combination of the first two PCs for ω and
1ω. In addition, including PC3 in further analysis would lead
to a much larger number of representative trajectories, which
is beyond our resources for conducting high-resolution, de-
tailed LES in future work.

3.2 Phase space

To determine the full phase space of cloud variability in this
region and identify a reduced number of trajectories that rep-
resent this range of variability, PC1 vs. PC2 is plotted for all
qualifying trajectories (Fig. 4a). Additionally, and for each of
the six select locations identified in Fig. 1a, nine trajectories
are selected that represent the values of (−1.5σ , 0, 1.5σ ) in
the 2D PC1–PC2 plane (where σ is the standard deviation
of each individual PC). This approach allows us to capture
a representative sample of trajectories that encompass the
range of variability in the PC phase space. As a result, the
variability across 1663 trajectories can be sampled by just
the 54 trajectories, shown with colored markers in Fig. 4a.

The selection of nine points for each initial location is
intended to represent reasonable variations associated with
each initial location, as 87 % of data points in a normal dis-
tribution fall within 1.5 standard deviations. It is noteworthy
that the nine points for each initial location correspond to dif-
ferent parts of the PC plane, which hints at the distinct char-
acteristics of each initial location. For instance, data points
for the “North” initial location (see Fig. 1a) tend to be more
frequent at larger values of PC1 and PC2, whereas the fre-
quency of data points for “GPCI S12”, the closest initial lo-
cation to the coast, is greater for lower values of PC1 and
PC2. This shows that the PCA is sensitive to the geographi-
cal location of the trajectory origin, likely because the vari-
ability and co-variability of CCFs recognized by PCA occur
in both space and time.

To assess the impact of reducing the number of trajecto-
ries from the full set on coverage of the range in the physical
variables of interest, the data points in the PC1–PC2 plane
are mapped to the corresponding CCFs and cloud proper-
ties, and, as in Fig. 4b, both the values for all trajectories
(grayscale symbols) and for just the 54 select trajectories
(colored symbols) are shown. Also as in Fig. 4b, for each pair
of variables, the frequency of the along-trajectory averages in
PC space is conveyed by the grayscale. Figure S2a shows the
same but for the differences (change) in the CCFs and cloud
properties between the beginning and end of the trajectories.
This analysis summarizes the changes in variables over the
course of the trajectories and their potential implications for
cloud development.

While the distribution of data points varies significantly
across the different phase planes in Fig. 4b, the 54 selected
data points successfully represent much of the full spectrum
of CCFs and cloud variables in each panel, indicating that
this reduced set of trajectories effectively captures the key
patterns and variations in the datasets. One limitation of our

downsampling method is that it cannot represent the full vari-
ability of the dataset. We conduct a sensitivity analysis by
randomly sampling trajectories for each location (Fig. S2b).
This analysis reveals that while random sampling demon-
strates some ability to capture variability, it provides a less
representative subset of trajectories, especially within the ex-
treme ranges of the datasets, compared to the PCA-based
selection method. This highlights the capability of PCA in
identifying trajectories that represent the variability in the
dataset.

4 Numerical modeling

Here, we take two of the 54 selected trajectories identified
as covering the range in cloud variability at our six repre-
sentative sites in the NEP region and use them to demon-
strate our approach to testing the LES-simulated cloud evo-
lution against observed cloud evolution starting in the Sc re-
gion and moving toward the more Cu-dominated region. The
two trajectories used for LES modeling were selected to il-
lustrate distinct regimes among important cloud and atmo-
spheric properties. In particular, as seen in Fig. 4b, the first
case exhibits stronger surface pressure, higher LWP, higher
CTH, lower FT q, stronger stability, and higher cloud cov-
erage compared to the second case. In this way, and as ex-
plained throughout this section, these cases test the LES
model under different combinations of CCFs and cloud prop-
erties. In a later study, this approach will be used to statis-
tically analyze model performance across all 54 cases and,
informed by this baseline of model performance, to system-
atically study the response of clouds to aerosol perturbations
across all 54 cases.

4.1 First case: trajectory GPCI S10 (31 July 2018)

4.1.1 Observed characteristics

During the 2 d period of this trajectory, a permanent subtrop-
ical high-pressure system was located over the NEP, produc-
ing northeasterly surface winds in its southeastern flank and
along the trajectory (Fig. 1b). Based on phase space anal-
ysis for satellite and reanalysis data (Fig. 4a), this case is
characterized by an average PC2 value and a negative PC1
value. Among the 54 cases selected by PCA, and consid-
ering along-trajectory averages, it exhibits very strong 10 m
WS, very weak ω, nearly overcast conditions (∼ 90 %), and
strong LWP (Fig. 4b).

Figures 5 and 6 show time series of various meteorologi-
cal and aerosol properties along the trajectory from different
observationally based datasets as well as from the LES runs.
According to the CERES low cloud cover (LCC) retrievals
(Fig. 5a), cloud breakup, defined as the reduction of domain-
averaged LCC to 50 %, does not occur throughout the 48 h
period, and overcast conditions prevail for the majority of
the time. The ERA5 reanalysis LCC is lower than CERES
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Figure 4. Phase space of variables. (a) Frequency plot of the first two principal components (PCs) for all qualifying trajectories used in the
PCA. Here, each trajectory is represented as one data point. The gray shades show the frequency, i.e., the number of trajectories in each pixel.
PCs associated with the six select locations shown in Fig. 1a are indicated by colored markers. For each location, different marker shapes are
used to show nine trajectories that correspond to the standard deviation (−1.5σ , 0, 1.5σ ) in this 2D space. (b) Each panel shows a frequency
plot for pairs of cloud-controlling factors and cloud variables averaged along the trajectories, with their correlation coefficient shown in the
box. The markers in each panel show the 54 points selected from the PC1–PC2 space mapped to the space for that pair of variables. In each
panel, the two markers with a black edge show the two cases used for LES modeling in Sect. 4.
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Figure 5. Time series of various observed and simulated domain-averaged meteorological variables for the GPCI S10 (31 July 2018)
trajectory. (a) Low cloud cover (LCC), (b) accumulated surface precipitation, (c) inversion height (Zinv), (d) liquid water path (LWP),
(e) entrainment rate (we), and (f) outgoing longwave radiation (OLR). The nighttime periods are indicated with light-gray background
shading.

LCC, as it gradually starts decreasing on the evening of the
first day. A comprehensive comparison of MODIS and ERA5
cloud cover on a global scale and for the NEP region shows
that ERA5 cloud cover is biased low (Wu et al., 2023). Con-
sidering that the CERES data are based on MODIS retrievals,
it is justified to consider CERES, and not ERA5, as ground
truth in this study. This case features moderate precipitation
(Fig. 5b), with a slight enhancement of precipitation in the
second half of the trajectory, consistent with a gradual in-
crease in cloud droplet effective radius (re) from approx-
imately 13 to 16 µm (Fig. S3b). The observed LWP con-
sistently remains above 50 g m−2, with the AMSR-retrieved
LWP reaching 170 g m−2 toward the end of the second night
(Fig. 5d). The observed microwave products (AMSR and
SSMI) agree quite well, but CERES LWP is larger than the
microwave-retrieved LWP at almost all times. (Note that we
discard CERES LWP, Nd, re, and cloud optical depth, or τc,
when the zenith angle is greater than 70° to avoid erroneous
values.) The ERA5 reanalysis LWP underestimates the ob-
served LWP in the second half of the trajectory, associated
with a consistent reduction in ERA5 LCC during this period.

The observed CERES and MODIS CTH and ERA5 Zinv
all show a gradual increase of approximately 500 m over the
48 h period (Fig. 5c); however, there are differences between
datasets, with MODIS CTH being the lowest and CERES

CTH being the highest. This discrepancy is present in some
other trajectories and is worth further investigation in future
studies. In this case, the CALIPSO Zinv aligns more closely
with ERA5 Zinv (figure not shown).

The MBL-averaged total aerosol number concentration,
〈Na〉, of about 30 mg−1 from MERRA2 (Fig. 6a) indicates
that the MBL is clean on the first day, but then 〈Na〉 more
than doubles during the night likely due to entrainment from
an FT with high Na (Fig. 2a). On the other hand, CERES Nd
is around 100 mg−1 on the first day and decreases to around
30 mg−1 by the afternoon of the second day (Fig. 6b). This
implies that MERRA2 〈Na〉 is biased low (by approximately
a factor of 1/3) on the first day and is slightly biased high
on the second day. Indeed, Erfani et al. (2022) showed that
MERRA2 Na is biased low for higher Na values when com-
pared to in situ measurements for 53 Lagrangian trajectories
during the CSET campaign, and this highlights a limitation
of MERRA2 reanalysis data in computing aerosol concen-
trations. Based on this, for future studies, we plan to ini-
tialize Na within the MBL based on CERES Nd under the
assumption that this Na estimate will be less biased than
the MERRA2 reanalysis in regions of overcast cloud. For
this trajectory, the changes in cloud radiative properties from
the decrease in Nd and the increase in LWP from the first
day to the second day seem to cancel each other out, as the
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Figure 6. Time series of various observed and simulated domain-averaged variables for the GPCI S10 (31 July 2018) trajectory. (a) Total
aerosol number concentration averaged within MBL (〈Na〉), (b) cloud droplet number concentration averaged within MBL (〈Nd〉), (c) short-
wave cloud radiative effect (SW CRE) at the top of atmosphere (TOA), (d) aerosol entrainment from the FT, (e) aerosol scavenging averaged
within MBL, and (f) aerosol surface fluxes. The nighttime periods are indicated with light-gray background shading. CERES Nd values for
zenith angles greater than 50° are excluded to avoid unrealistically low values at the start and end of each day.

CERES-retrieved τc and the TOA shortwave cloud radiative
effect (SW CRE) do not show significant day-to-day varia-
tions (Figs. S3a and 6c).

4.1.2 Reference run (Na×3)

Because the run initialized with MERRA2 Na within the
MBL simulates early cloud breakup in contradiction to the
observations, the Na× 3 run is chosen as the reference simu-
lation for this case study. Important cloud properties, particu-
larly LCC, LWP,Nd, precipitation, SW CRE, and OLR, com-
pare best to observed properties in the Na× 3 run (Figs. 5
and 6). This highlights the ability of our LES to accurately
simulate a range of cloud properties when it is initialized
with Na values that result in more accurate Nd, as the sim-
ulated 〈Nd〉 along theNa× 3 run trajectory is quite similar to
the CERES-retrieved Nd (Fig. 6b). Previous studies showed
that Nd scales with Na (Pringle et al., 2009; Svensmark et
al., 2024). Both modeled and CERES-retrieved LCC broadly
agree, though the Na× 3 run is unable to simulate the tim-
ing and strength of two brief episodes of LCC reduction seen
in the CERES retrievals on the first day and the following
night (Fig. 5a). In the Na× 3 run, any LCC reductions from

the overcast conditions are associated with a remarkable de-
crease in LWP.

The Na× 3 accumulated precipitation is always less than
mean AMSR precipitation, except on the last night, but it
generally stays within 1 standard deviation of observations
(Fig. 5b). Precipitation onset occurs in the middle of the sec-
ond night (much later than observations), enhances 12 h later,
and continues until the end of the simulation. This likely
causes the brief cloud reduction in the third night (Fig. 5a),
along with the inhibition of Zinv growth (Fig. 5c).
Zinv in the Na× 3 run and in ERA5 are initially equal due

to the nudging in the startup stage, but Zinv in the Na× 3 run
grows faster in the first half of the simulation and slower in
the second half than in the ERA5 dataset, ultimately remain-
ing very close to ERA5 Zinv near the end of the run. This
also explains the stronger entrainment rate (we) in theNa× 3
run than in ERA5 in the first half of the simulation and vice
versa in the second half (Fig. 5e) (note thatwe is estimated as
the tendency of Zinv relative to the W at the inversion level;
Blossey et al., 2021; Erfani et al., 2022).

The gradual reduction in Na and Nd is due to a general
strengthening of the aerosol scavenging sink term (which
is the sum of the accretion, autoconversion, and interstitial
scavenging terms). The combined sink is stronger than the
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sum of the aerosol surface flux source term and entrainment
from the FT (where the latter is a sink or source term de-
pending on the total aerosol gradient between the FT and
MBL) (Fig. 6d–f). In particular, the aerosol scavenging term
is stronger in the second half of the simulation, leading to the
onset of surface precipitation in the middle of the simulation.
Although precipitation continues until the end of the run, the
aerosol reduction and precipitation are not strong enough to
cause SCT or cloud breakup, and Zinv grows consistently un-
til 6 h before the end of the simulation.

4.1.3 Impact of perturbed aerosols

The very low initial 〈Na〉 (e.g., less than 30 mg−1) in the ctrl
run leads to early precipitation onset, which drives a rapid
drop in Na and Nd (Fig. 6a–b) and the occurrence of SCT
(Fig. 5a) within the first 12 h of simulation. As defined by
Erfani et al. (2022), an SCT occurs when LCC first falls be-
low 50 % and remains below this threshold for at least 24 h
or until the end of the simulation, whichever is shorter. This
definition is designed to exclude LCC changes attributable
solely to the diurnal cycle. This “precipitation-driven” type
of SCT occurs quickly (e.g., less than 12 h) in LES experi-
ments with a prognostic aerosol scheme due to the positive
precipitation-aerosol feedback (Yamaguchi et al., 2017; Er-
fani et al., 2022). Consistent with the persistent precipita-
tion, re remains greater than 15 µm (Fig. S3b). The aerosol
scavenging sink term initially strengthens, leading to an ex-
tremely low Nd (less than 10 mg−1), characteristic of verti-
cally thin, horizontally extensive layers below theZinv, called
ultra-clean layers (UCLs) (Wood et al., 2018). Note that this
feature is not seen in the CERES observations. The time-
height plots of Nd (figures not shown) indicate the simula-
tion of UCLs near the inversion for the majority of the ctrl
run time, but only for the last 8 h of the Na× 3 run, because
the ctrl run is initialized with a value of MERRA2 Na that is
3 times smaller than CERES Nd.

As the simulation progresses further, the scavenging term
gradually weakens. Combined with surface fluxes of aerosols
and an entrainment source term for Na (Fig. 6d–f), Na and
Nd are enhanced after the second night. Following the SCT,
both LCC and LWP remain lower than 50 % and 50 g m−2,
respectively, causing low τc and a weak SW CRE (Figs. S3a
and 6c). In addition, OLR is stronger in this run due to the
greater longwave emission from warmer and shallower cloud
tops (as seen in Zinv) and from a warmer surface, as LCC is
below 40 % most of the time. MBL deepening is suppressed
in this clean and precipitating environment. Two mechanisms
have been proposed to explain this: (1) low aerosol concen-
trations correspond to weak turbulence, a decoupled MBL,
and reduced entrainment (Sandu et al., 2008); and (2) pre-
cipitation depletes LWP from the inversion layer, resulting in
decreased entrainment (Blossey et al., 2013).

Although the ctrl and Na× 3 runs are very distinct, the
Na× 3 and Na× 9 runs have quite similar cloud properties

in the first half of simulations. TheNa× 9 entrainment rate is
stronger than that ofNa× 3 during the first and second nights
likely due to enhanced entrainment associated with Nd in-
creases in non-precipitating clouds (e.g., Igel, 2024) (see
Figs. 5e, 6b). While this leads to somewhat smaller LWP dur-
ing the first day of the simulation than in Na× 3, the larger
Nd in theNa× 9 run leads to the delayed initiation of aerosol
scavenging and precipitation (Fig. 6b, e). The Twomey ef-
fect (Platnick and Twomey, 1994) is visible in comparisons
of SW CRE (Fig. 6c), where the increased Nd in the Na× 9
run leads to a stronger SW CRE (Fig. 6c) than Na× 3 dur-
ing the first daytime despite the Na× 9 run having similar
LCC (Fig. 5a) and smaller LWP (Fig. 5d). Later, precipitation
plays a more important role in modulating aerosol impacts:
compared to the Na× 3 run, the delayed onset of precipita-
tion in the Na× 9 run is followed by more MBL deepening
(Fig. 5c) and larger LWP, τc, and SW CRE differences be-
tween the two runs in the second half of the simulation. LCC
also never drops below 90 % in this high-Na run.

Unlike the two other runs, entrainment from the FT drives
the decreases in Na on average in the Na× 9 run (Fig. 6d), as
the MBL Na is so high that it reverses the MBL-FT aerosol
gradient. Additionally, the scavenging term is a stronger sink
toward the end of this run (Fig. 6e), driving a decrease in Na
that leads to a sudden enhancement of precipitation.

The cloud morphology, shown in 2D maps of LWP for the
Na× 3 run (Fig. 7m–p), demonstrates the development of the
mesoscale organization in the form of closed cells within the
Sc clouds early on, with the mesoscale cell size and cloud
LWP increasing with time. The probability distribution func-
tions (PDFs) of LWP and Nd (Fig. 7a–h) show that precipi-
tation is more frequent in regions of high LWP and low-to-
moderate Nd.

The morphology and PDF plots in Fig. 7 also demon-
strate the impact of the initial aerosol concentration on cloud
field development. Due to the clean environment and early
SCT in the ctrl run, scattered Cu clouds form 12 h after the
initial time and are maintained throughout the simulation
(Fig. 7i–l), with not much change in the cloud LWP and Nd
frequency distributions and the precipitation within the Cu
cores (Fig. 7a–h). The cloud morphology for the Na× 9 run
is similar to that for the Na× 3 run 12 h after the initial time,
but the Na× 9 mesoscale cell size and LWP increase more
rapidly. The increase in mesoscale cell size for the Na× 9
run is likely due to enhanced aerosol entrainment and sup-
pressed precipitation. For more details, the reader is referred
to Sect. 4.2.3. The PDFs illustrate a broader LWP spectrum
with a higher probability of larger LWP in the Na× 9 run
compared with the Na× 3 run 24 h after the initial time un-
til the end of the run (Fig. 7b–d). This spectrum broadening
is associated with the precipitation onset in larger LWP bins
and faster aerosol removal from the MBL (Fig. 7e–h), which
ultimately leads to more intense precipitation toward the end
of theNa× 9 run compared to theNa× 3 run (Fig. 5b). Also,
the re value during the precipitation onset for the Na× 9 run
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Figure 7. Probability distribution functions of LWP (a–d) and 〈Nd〉 (e–h) at four instantaneous times for three LES experiments (ctrl,Na× 3,
and Na× 9) along the GPCI S10 (31 July 2018) trajectory. The markers present precipitation in bins of the variable on the x axis, and the
numbers within the box in each panel show the mean value of the variable given on the x axis for that specific time (from top to bottom for
ctrl, Na× 3, and Na× 9, respectively). (i–t) Cloud morphology showing LWP at four times for three LES runs.

is approximately 9 µm, which is smaller than for the Na× 3
run (∼ 12 µm) and the ctrl run (∼ 15 µm) (Fig. S3b). As ex-
plained by Wood et al. (2009), precipitation can initiate with
a smaller re for larger Nd and LWP.

4.2 Second case: trajectory Sandu 2010 (4 July 2018)

4.2.1 Observed characteristics

For our second case, in addition to the permanent subtrop-
ical high over the NEP, a tropical cyclone developed to the
east, visible in the surface wind pattern (Fig. 1c) and con-
firmed by satellite imagery and a humid FT. This is seen in
the time-height plot of qt along the trajectory (figures not
shown), which is located between the southeast edge of the
high and the northwest edge of the cyclone. The phase space
analysis (Fig. 4a) shows that this case has the highest PC2
values and one of the lowest PC1 values among the 54 se-
lected cases. Based on along-trajectory averages of physi-

cal variables (Fig. 4b), this case is characterized by very low
PMSL, very weak stability (lowest EIS), and high 700 hPa q.

CERES LCC (Fig. 8a) shows a brief cloud breakup at the
end of the first day and a major breakup starting in the early
morning of the second day that lasts until the third night, with
cloud cover restoring a few hours before the end of the run.
According to the previously mentioned SCT definition, this
does not qualify as SCT; however, others (e.g., Sandu and
Stevens, 2011; Baró Pérez et al., 2024) simply define SCT as
the first time LCC falls below 50 %. In addition, this cloud
breakup initiates during the dark hours, suggesting it might
not be due to the diurnal cycle. Nevertheless, we use the term
“cloud breakup” for this case throughout this study. ERA5
LCC appears out of phase with that from CERES, showing
cloud breakup at the end of the first day and cloud restoration
on the morning of the second day.

AMSR observations indicate that precipitation is ex-
tremely weak in this case, with accumulated precipitation
of approximately 0.1 mm after 2 d. Precipitation onset oc-
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Figure 8. Same as in Fig. 5 but for the Sandu 2010 (4 July 2018) trajectory.

curs on the second night before the major cloud breakup;
however, CERES re (Fig. S4b) does not show a significant
day-to-day change and remains below 15 µm, fluctuating be-
tween 10 and 13 µm in the middle of the days. The mi-
crowave (SSMI and AMSR) LWP increases during the first
6 h of the simulation and then decreases until the second
day (Fig. 8d). The LWP from all three observational prod-
ucts falls below 50 g m−2 during the cloud breakup. Sim-
ilar to the first case, the CERES LWP is generally greater
than the microwave LWP, but the two microwave retrievals,
from AMSR and SSMI, remain similar. CERES CTH and,
to some extent, MODIS CTH show an unusual deepening
from the middle of the first day until the end of the fol-
lowing night (Fig. 8c). This seems to be due to the pres-
ence of upper-level ice clouds, also evident in the low values
of OLR during this period. Otherwise, CERES and MODIS
CTH and ERA5 Zinv generally agree, showing an enhance-
ment of 200–500 m from the start to the end of the trajectory.
Based on ERA5Zinv, this increase begins on the second night
before the cloud breakup but slows down on the second day.
This is associated with the decoupling of the MBL, evident
from the time-height plot of ERA5 qt, where the qt differ-
ence between the lower and upper MBL increases along the
trajectory (figure not shown).

The initial value of the MERRA2 〈Na〉 for this trajectory
is 70 mg−1; then, 〈Na〉 gradually decreases starting on the
second night to around 30 mg−1 by the end of the trajectory
(Fig. 9a). Consistent with this, CERESNd decreases from the

first day to the second day (Fig. 9b). However, as in our other
trajectory, the MERRA2 〈Na〉 around solar noon is signifi-
cantly smaller (here, by a factor of 2) than the CERES Nd,
which is clearly not physically consistent. Again, this sug-
gests that simulations initialized with MERRA2 〈Na〉 may
struggle to match CERES Nd, so other options for aerosol
initialization in the MBL should be considered. Note that for
this trajectory, both 〈Na〉 and 〈Nd〉 values are significantly
higher than the 10 mg−1 threshold used by Wood et al. (2018)
to identify a UCL.

CERES τc decreases significantly over the trajectory, from
an average of 15 on the first day to an average of 3 on the sec-
ond day (Fig. S4a), consistent with the reduction in both Nd
and LWP. Additionally, the SW CRE from CERES demon-
strates an approximately 5-fold decrease from the first to the
second day (Fig. 9c) due to cloud breakup and τc reduction.

4.2.2 Reference run (ctrl)

For this case, the ctrl run serves as our reference simulation
because it performs better at simulating most variables, such
as LCC, Na, Nd, and SW CRE, compared to the perturbed
runs (Figs. 8 and 9). This improved performance relative to
the first case study likely results from the thinner clouds with
smaller LWP in this case study, which do not precipitate sig-
nificantly, even when initialized with the MERRA Na that
are biased low relative to CERES Nd (Fig. 9a–b), but not
by as much as for our first case. The noisy patterns seen
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Figure 9. Same as in Fig. 6 but for the Sandu 2010 (4 July 2018) trajectory.

in most observed variables are absent in the ctrl run, likely
due to slow FT nudging. While the ctrl run does not cap-
ture the first, brief observed cloud breakup, it accurately sim-
ulates the timing and rate of the second cloud breakup on
day two and the cloud restoration on the last night (Fig. 8a).
The ctrl run successfully simulates the microwave LWP pat-
tern, showing enhancement during the first 6 h followed by a
reduction. However, the timing of LWP reduction is earlier
than microwave observations by a few hours (Fig. 8d). De-
spite this, the ctrl run LWP remains within the lowest bound
of the microwave LWP or very close to it during this period
and is mostly close to the mean microwave LWP at other
times. Unlike the AMSR-retrieved precipitation, the ctrl run
simulates no precipitation, indicating that the cloud breakup
in the model is not precipitation-driven. Instead, it appears to
be affected by the MBL deepening (Fig. 8c), which enhances
we during the second night (Fig. 8e). This is indicative of
the deepening-warming cloud breakup mechanism, driven by
the deepening and decoupling of the MBL (Bretherton and
Wyant, 1997; Wyant et al., 1997) and enhancement of en-
trainment near the inversion (Ackerman et al., 2004). This
type of cloud breakup occurs at a much slower rate com-
pared to precipitation-driven cloud breakup, as shown by the
ctrl run for the first case (Fig. 5) and by precipitating runs in
Erfani et al. (2022).

A precipitation-driven SCT is very unlikely for this case,
as an environment with Nd higher than 30 mg−1 and LWP
lower than 30 g m−2 is associated with precipitation of less

than 0.03 mm d−1 (Fig. A3 in Wood et al., 2009). The in-
crease in we in the ctrl run before the cloud breakup during
the second night is consistent with that seen in the ERA5
we, though ERA5 shows a stronger increase in we (Fig. 8e).
This period is followed by a reduction in we that lasts until
the middle of the second day. The MBL deepening on the
second night is not seen in the CERES retrievals due to the
presence of ice clouds during the first day. When ice clouds
are absent, the ctrl run Zinv and OLR agree well with that
from the CERES retrievals (Fig. 8c and f).

The ctrl run underestimates the magnitude of the observed
SW CRE on the first day (Fig. 9c), despite having overcast
conditions in both the ctrl run and the CERES retrievals. This
appears to be due to an underestimation of τc during this time
(Fig. S4a), which is the result of low LWP and Nd in the ctrl
run (Fig. 9a), which are lower than the CERES values during
the first day. The ctrl run agrees well with CERES values of
τc and SW CRE during the second day.

Although the ctrl run simulates the general trend in
MERRA2 Na and CERES Nd (e.g., an overall reduction in
〈Na〉 and 〈Nd〉 from the start to the end of the run, particularly
in the second half of the simulation), the rate of 〈Na〉 reduc-
tion is slower than that in MERRA2 (Fig. 9a, b). Specifically,
the ctrl run 〈Na〉 decreases from 80 to 60 mg−1 (Fig. 9a), and
the ctrl run 〈Nd〉 decreases from 70 to 50 mg−1 (Fig. 9b).
Based on the time-height plots of Na and Nd (not shown),
their values tend to be lower near the inversion but do not
drop below 20 mg−1; therefore, these reductions are insuffi-
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cient to develop UCLs. It seems that 〈Na〉 is relaxing toward
the FT values, which are below 50 mg−1 near the inversion.
During the first half of the simulation, both the aerosol scav-
enging sink term and the aerosol surface flux source term
are stronger, while the aerosol entrainment term remains a
sink term throughout the run (Fig. 9d–f). The balance among
these three terms results in negligible changes in 〈Na〉 and
〈Nd〉 during the first half of the simulation, followed by a
gradual reduction in the second half. Overall, the moderate
initial aerosol concentrations and their slow reduction pre-
vent the formation of large cloud droplets (as indicated by
re, which remains within 8–12 µm throughout the run and is
slightly smaller than CERES values; Fig. S4b) and the initi-
ation of precipitation (Fig. 8b).

4.2.3 Impact of perturbed aerosols

Compared to the ctrl run, the Na× 3 run’s higher 〈Na〉 and
〈Nd〉 during the initial hours (Fig. 9a–b) lead to a stronger
FT-MBL aerosol gradient. This results in a stronger aerosol
entrainment sink term (Fig. 9d), causing a more pronounced
decrease in both 〈Na〉 and 〈Nd〉 over the trajectory duration.
Despite this, 〈Na〉 and 〈Nd〉 in the Na× 3 run remain at least
twice those in the ctrl run. Cloud breakup in the Na× 3 run
occurs a few hours later than in the ctrl run, with LCC in
the Na× 3 run remaining 15 %–20 % higher than in the ctrl
run during the second day. This delayed cloud breakup corre-
sponds to a slightly stronger deepening of the MBL (approx-
imately 100 m; Fig. 8c) and, consequently, a slightly stronger
we (Fig. 8e) and lower OLR (Fig. 8f) compared to the ctrl.
These results align with Sandu et al. (2008), which demon-
strated that enhanced entrainment in cases with highNa leads
to stronger turbulence and MBL deepening; however, this
impact is modest for this second case study.

During the first 12 h of simulation, the higher τc in the
Na× 3 run, compared to the ctrl run (Fig. S4a), can be at-
tributed to the elevated initial 〈Nd〉, as the initial LWP is very
similar between the two runs. This corresponds with a reduc-
tion in re by 2–3 µm in the Na× 3 run, compared to the ctrl
run, primarily due to the Twomey effect during the first day,
given that LCC and LWP remain relatively unchanged be-
tween the runs. Also, the change in τc explains the stronger
SW CRE in the Na× 3 run during the first day. On the sec-
ond day, however, the stronger SW CRE in the Na× 3 run is
more influenced by the higher LCC in this run (Fig. 8a) and
less by τc. In other words, the role of CF adjustment in SW
CRE differences between the runs becomes important on the
second day, as evidenced by the differences in LCC.

The run with very high Na, Na× 9, simulates strong
aerosol entrainment and scavenging sink terms (Fig. 9d–e),
leading to a faster reduction in Na and Nd compared to the
Na× 3 run (Fig. 9a–b). The cloud breakup in the Na× 9 run
is delayed by a few hours (Fig. 8a), associated with slightly
greater MBL deepening, enhanced entrainment, and reduced
OLR, compared to the Na× 3 run (Fig. 8c, e, f). The higher

aerosol concentration in the Na× 9 run leads to smaller re
(Fig. S4b), higher τc (Fig. S4a), and an increased magnitude
of SW CRE (Fig. 9c). The change in SW CRE from the ctrl to
the Na× 3 run is stronger than from the Na× 3 to the Na× 9
run during the first day. Considering the similar overcast con-
ditions and LWP values across all three runs, this highlights
the dominance of the Twomey effect and albedo susceptibil-
ity. This impact diminishes on the second day as CF adjust-
ment becomes more significant.

Maps of LWP for the ctrl run (Fig. S5i–l) show the forma-
tion of overcast Sc clouds and mesoscale organization 12 h
after the initial time, which then develop into closed cells
later on. The dissipation of Sc clouds and cloud breakup
are demonstrated by scattered Cu clouds 36 h after the ini-
tial time, but their frequency and size increase toward the
end of the simulation due to cloud restoration. The PDFs of
LWP (Fig. S5a–d) indicate that although the mean and me-
dian LWP values show a general decrease over time until near
the end of the runs, the LWP spectrum broadens with a higher
probability of larger LWP, suggesting enhanced LWP in the
cores of mesoscale cells over time. The evolution of cloud
morphology and LWP PDF for theNa× 3 andNa× 9 runs is
similar to that for the ctrl run, but higher MBL aerosols lead
to larger mesoscale cell sizes (Fig. S5o, p, s, t) with more wa-
ter in their cores, as evident from the broadening of the LWP
spectrum toward the larger values (Fig. S5c–d).

For each run and at each time, the average length scale
of mesoscale cells is quantified in Fig. S6 as the wavelength
below which 2/3 of the LWP variance is contained follow-
ing the methodology of de Roode et al. (2004) (see their
Fig. 2). During the overcast Sc regime on day 0.5, the LWP
PDF (Fig. S5a) shifts toward smaller values with increased
Na, as expected from the sedimentation-entrainment feed-
back (Ackerman et al., 2004), and domain-averaged LWP
decreases with increasing Na, while the length scale of
mesoscale cells is larger in the Na× 3 and Na× 9 runs than
in the ctrl run (Fig. S6a). Later on (days 1.5 and 2.0), when
cloud breakup occurs and Cu clouds emerge, both mean LWP
and cell size values are larger in the Na× 3 and Na× 9 runs
than in the ctrl run. Therefore, the reduced LWP due to
aerosol perturbations in the non-precipitating boundary layer
at the beginning of the runs appears to be a short-lived ef-
fect in our study, as the opposite occurs when Cu under Sc
becomes dominant. The influence of Na on mesoscale cell
size is not well understood. Zhou and Feingold (2023) high-
lighted the relationship between cell size and Nd, but their
study focused on how cell size regulates Nd and LWP rather
than aerosol impact on the cell size. Further research is re-
quired to investigate the mechanisms behind the dependence
of cell size on Na.

Turbulence is slightly stronger in the Na× 9 run than that
in the other two runs before the cloud breakup and at the very
end of the run (figure not shown). Stronger turbulence might
help bring more moisture to the cloud layer, hence higher
LWP in the Cu cores in the Na× 9 run. Note that this case
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has extremely weak precipitation, with precipitation in all
three runs (Fig. S5a–h) being 2 or more orders of magni-
tude smaller than for the first case. Therefore, the impact of
precipitation on turbulence is negligible.

5 Discussion

The PCA approach demonstrated in this study has been par-
ticularly effective in identifying a subset of Lagrangian tra-
jectories that not only represent the variability within the PC
space but also span the full range of key cloud properties.
This highlights the potential of PCA for refining complex
datasets while preserving critical physical characteristics rel-
evant to ACI and MCB studies.

An important challenge is defining a ground truth against
which models could be validated, due to the considerable
variability observed in cloud property datasets from reanal-
ysis and satellite retrieval products. This variability under-
scores the complexities and uncertainties inherent in both
products, which might affect confidence in the results. In ad-
dition, the relatively coarse spatial resolution of these prod-
ucts, compared to the LES resolution, could undermine the
representation of diverse aerosol and cloud properties.

In general, satellite retrievals are more reliable than re-
analysis products for Sc clouds. Based on climatological av-
erages for the NEP region, ERA5 LCC is biased low when
compared to MODIS (Wu et al., 2023), and because CERES
LCC is based on MODIS retrievals, CERES is more robust
than ERA5 when studying LCC. Microwave (AMSR and
SSMI) retrievals of LWP are reliable for Sc clouds because
they compare well with in situ measurements (Painemal et
al., 2016). The Zinv values calculated in our study based on
vertical profiles of ERA5 T and qt appear to be more robust
than other products. The CTH from MODIS retrievals is cre-
ated based on data stratified within bins of T each having a
range of 5 °C; as such, it might not be accurate for individual
cases, but it performs well on average (Eastman et al., 2017).

Over the NEP and at higher values of Na, MERRA2 Na
is biased low when compared to in situ measurements (Er-
fani et al., 2022). In the future, a critical step in forcing
and initializing our LES with MBL aerosols will be to base
aerosol concentrations on a combination of multiple observa-
tional (e.g., CERESNd) and reanalysis (e.g., MERRA2 Na)
datasets, rather than using MERRA2 alone, to ensure more
reliable simulations of ACIs. Given that MERRA2Na is sim-
ulated by assimilating MODIS aerosol optical depth (which
represents the optical property of aerosols throughout the col-
umn of troposphere), it can be inaccurate at certain levels and
locations and is often subject to sudden changes associated
with the aerosol optical depth data assimilation. Further re-
search is required to achieve a more accurate Na dataset on
a global scale and for a long period of time. Assimilating
satellite products with higher temporal resolution (e.g., Geo-
stationary Operational Environmental Satellite, or GOES) or

incorporating satellites with vertical profile information (e.g.,
CALIPSO) could improve the accuracy of such datasets in
the future. For now, CERES provides satellite estimates of
Nd in the cloud layer, so it likely reflects Na more accurately
in these Sc clouds. These estimates also result in Na values
that are more consistent with other CERES products, such as
TOA radiative fluxes, which are considered the most accurate
measurements (Su et al., 2015).

Given the absence of Na observations away from aircraft
campaigns, significant uncertainty exists in our initialNa and
will lead to uncertainty in the response of these cases to per-
turbed aerosols. When the initial Na is erroneous, we ex-
pect biased responses to aerosol perturbations, with stronger
biases for precipitating clouds and weaker biases for non-
precipitating clouds, as suggested by previous studies (e.g.,
Chun et al., 2023). However, because the LWP, LCC, and
SW CRE of our unperturbed simulations depend both di-
rectly and indirectly on the initial Na, the agreement of these
quantities with observations suggests that our initial Na is
consistent with observations, within the limitations of our
model. The GPCI S10 case exemplifies this, as comparisons
indicate that MERRA Na is inconsistent with both observa-
tions and our model framework. While such an internal con-
sistency check between unperturbed simulations and obser-
vations does not guarantee that the initial Na is correct, it
strengthens confidence in our predicted responses to aerosol
perturbations relative to a case without such a check.

6 Summary

The objective of this study is to develop an approach for se-
lecting and analyzing a representative set of cases for study-
ing LES model performance and how ACIs and MCB affect
key cloud properties in the absence of in situ observations.
Utilizing ECMWF ERA5 wind data, we generate 2208 La-
grangian isobaric (950 hPa) MBL forward trajectories initial-
ized at six locations within the subtropical NEP during JJA
2018–2021. Eliminating trajectories that pass near or over
land or that include ice clouds reduces this to 1663 trajecto-
ries. Note that we retain cases with limited amounts of ice
cloud to avoid selection bias for the low cloud cases. Meteo-
rological, cloud, aerosol, and radiation variables from reanal-
ysis and satellite data are compiled along these trajectories
to create a library of Lagrangian observations. We then use
a selected number of CCFs (e.g., along-trajectory means and
differences between the beginning and end of each trajectory
for WS, q, ω, and EIS) and conduct PCA to reduce the data
dimensionality. Based on the PCA results, we find that two
PCs capture 43 % of the variability in the CCFs. To span the
meteorological diversity of the dataset, nine trajectories are
selected for each of the six initial locations in our study re-
gion, where the nine trajectories correspond to the values of
(−1.5σ , 0, 1.5σ ) in the PC1–PC2 plane. This reduces the to-
tal of 1663 trajectories to a subset of 54 trajectories that span
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most of the variation in the CCFs, aerosol concentrations, and
cloud properties relevant to their evolving radiative effect.

Some previous studies have employed aircraft measure-
ments from intensive observational field campaigns to ini-
tialize and force Lagrangian LES runs (Blossey et al., 2021;
Erfani et al., 2022). Because in situ measurements are rare
over the remote oceans, here we develop a methodology for
doing routine LES modeling that is initialized with and tested
against satellite retrievals and reanalysis data. In addition to
meteorological data, the LES is forced with an accumulation-
mode aerosol Na calculated from the MERRA2 masses of
aerosol species and their assumed particle size distributions,
applying the technique described in Erfani et al. (2022) to
convert aerosol mass to number concentrations. In addition,
a thermodynamic “profile sharpening” method is developed
to modify the initial T and qt vertical profiles from ERA5 in
an approach that results in cloud LWP matching that from the
microwave-instrument satellite retrievals. This method leads
to the instantaneous formation of a well-mixed stratiform-
topped MBL in the LES.

The LES used in this study is SAM (Khairoutdinov and
Randall, 2003) coupled with a prognostic aerosol scheme
(Berner et al., 2013) that accounts for aerosol budget ten-
dencies such as coalescence and interstitial scavenging, sur-
face sources, and entrainment from the FT. From 54 La-
grangian cases, two cases are selected as examples to con-
duct 2 d high-resolution, large-domain Lagrangian LES ex-
periments in order to simulate cloud evolution under ob-
served as well as perturbed aerosol conditions. The results
of a few runs for the two cases reveal that our LES is capable
of simulating observed conditions when initialized with re-
alistic aerosol and meteorological conditions. The first case
is precipitating, which implies a potential for a precipitation-
driven cloud breakup if the environment is clean. Enhanc-
ing the initial aerosol concentration among different runs in-
creases Nd, reduces re, enhances cloud albedo, suppresses
precipitation, and increases TOA SW CRE, in agreement
with previous studies (Sandu and Stevens, 2011; Yamaguchi
et al., 2017; Christensen et al., 2020; Blossey et al., 2021).
d(SW CRE)/d(Nd) is nonlinear, with a larger magnitude in-
crease (more cooling) from the ctrl run to theNa× 3 run than
from the Na× 3 run to the Na× 9 run. This seems to be due
to the positive precipitation-aerosol feedback for the ctrl run,
which quickly dissipates the clouds.

The second case is non-precipitating, and the classic
deepening-warming cloud breakup happens in both the con-
trol and increased-aerosol runs. More MBL aerosol leads
to stronger entrainment, more delayed cloud breakup, and
a stronger SW CRE. This type of SCT was simulated in
previous studies (Baró Pérez et al., 2024; Diamond et al.,
2022) and seems to be more common in a polluted environ-
ment. Compared to the first case, cloud breakup occurs at
a slower rate, and perturbed aerosols among different runs
have a smaller impact on SW CRE and cloud breakup due to
the absence of a precipitation-aerosol feedback.

The simulations in this study demonstrate that reanalysis
meteorological and aerosol data can be used for initializing
and bounding LES runs to produce realistic baseline simula-
tions of low marine cloud fields in the absence of aircraft field
campaigns. In the future, we will conduct LES experiments
for a large number of Lagrangian cases from PCA results.
This will enable us to synthesize valuable statistics to assess
how well LES can simulate the cloud life cycle under the
“best estimate” environmental conditions and how sensitive
the simulated clouds are to variations in these driving fields.
This procedure will contribute to advancing our understand-
ing of intentional MCB efficacy under a range of representa-
tive conditions.

Appendix A: Sharpening procedure of
thermodynamic profiles

This procedure utilizes satellite microwave retrievals of LWP
to sharpen reanalysis (particularly ERA5) temperature and
moisture vertical profiles through an optimization technique
at a specific time near the inversion level.

A1 Preparing variables

We use a number of reanalysis and satellite variables to
sharpen the ERA5 temperature and moisture profiles near the
inversion level. At each time (generally the time correspond-
ing to when we initialize an LES run), the vertical profiles of
ERA5 normalized liquid water static energy (Tl) and the total
water mixing ratio (qt) are calculated as:

Tl = T + g
z

Cp
− ql

Lv

Cp
, (A1)

qt = qv+ ql, (A2)

where T is temperature, qv is the water vapor mixing ratio,
ql is the cloud liquid water mixing ratio, z is height, g is
Earth’s gravitational acceleration, Cp is the specific heat of
dry air at constant pressure, andLv is the latent heat of vapor-
ization. We conduct separate calculations for the MBL and
lower FT, but first we need to calculate the inversion height
(Zinv), which is defined as the height where

(
dθl
dz

)(
dRH
dz

)
is

minimized over the atmospheric column at each time and lo-
cation (Blossey et al., 2021; Erfani et al., 2022). RH is rela-
tive humidity, and θl is liquid water potential temperature.

First, the lower FT profile sharpening method is explained.
We assume that LFT is a height above the inversion where
the ERA base profiles feel no impact from the MBL. This is
selected to be 500 m. Therefore, for z>Zinv+LFT:

Tlshrp = Tlbase , (A3)
qtshrp = qtbase , (A4)

where the subscript “shrp” refers to sharpened profiles
and the subscript “base” to the baseline profiles. For
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Zinv<z<Zinv+LFT, a line is fitted to the Tlbase and qtbase pro-
files away from the inversion (e.g., Zinv+LFT<z<Zinv+

3LFT) and is extrapolated down to the inversion.
Now, the MBL profile sharpening method is described. At

the top of the MBL (z= Zinv), the values are calculated as:

Tlshrp = Tlbase +1Tlinv , (A5)
qtshrp = qtbase −1qtinv , (A6)

where 1qtinv and 1Tlinv are the differences in qt and Tl be-
tween the lower FT and upper MBL. The initial values are
provided to the code, and the optimization function finds the
adjusted values. The profiles within the MBL (z<Zinv) are
calculated as:

Tlshrp =min
(
Tlinv ,Tlbase

)
, (A7)

qtshrp =max
(
qtinv ,qtbase

)
. (A8)

Finally, we utilize the density temperature as:

Tρ = T (1+ 0.61qv− ql). (A9)

A2 Optimization

An optimization algorithm is created that takes reanalysis
Tlbase , qtbase , 1Tlinv , 1qtinv , Zinv, and microwave LWP as
inputs and computes Tlshrp and qtshrp as described in Ap-
pendix A1. It then calculates the LWP of the baseline and
sharpened profiles by vertical integration of ql. Note that
“saturation adjustment” must be employed to calculate ql at
each height. Saturation adjustment is a common practice in
weather and climate modeling of clouds, and it means that
any vapor in excess of saturation is converted to condensate
(McDonald, 1963). Thereafter, a cost function, A, is calcu-
lated in order to quantify how well the resulting sharpened
profile matches the microwave LWP while preserving the
vertical integrals of the ERA5 Tρ and qt profiles:

A= f1
(
LWPmicrowave−LWPshrp

)2
+ f2

 h∫
0

Tρbaseρdz−

h∫
0

Tρshrpρdz

2

+ f3
(
TWPbase−TWPshrp

)2
, (A10)

where TWP is the total water path, calculated by integrating
qt from the surface to an arbitrary height, h. Here, a value
of 3000 m is sufficient for the profile sharpening of marine
Sc clouds. Parameters f1, f2, and f3 are selected in a way to
keep the values of three terms on the right-hand side at the
same order of magnitude:

f1 =
1(

0.01kgm−2
)2 , f2 = f3

(
Cp

Lv

)2

, f3 =
1
F 2 ,

where F is an input to the optimization function and its op-
timized values are in the range of F = 10–30 kg m−2 for our

Figure A1. Vertical profiles of qt and Tl from ERA5, and the sharp-
ened versions of these profiles used to initialize the Sandu 2010
(4 July 2018) trajectory.

cases. The optimization function is then prepared to mini-
mize the variable A by varying the initial values of 1Tlinv ,
1qtinv , and F but keeping the microwave LWP, Zinv, Tlbase ,
and qtbase constant. The optimization function provides the
optimum values of 1Tlinv , 1qtinv , and F , which then will
be used to calculate the ultimate Tlshrp and qtshrp profiles
(Fig. A1).

Code and data availability. The required observational/re-
analysis data, input forcing files, LES model setup scripts, LES
outputs, and Python codes to reproduce the results of this study
are provided on Zenodo: https://doi.org/10.5281/zenodo.13917317
(Erfani et al., 2024). The “uw-trajectory” Python package for
compiling reanalysis data and satellite retrievals along the La-
grangian trajectories is available on GitHub (https://github.com/
e-erfani/uw-trajectory/, last access: 8 August 2025) and on Zenodo
(https://doi.org/10.5281/zenodo.13917362; Erfani, 2024). CERES
SYN1deg data are available at https://ceres.larc.nasa.gov/data/
(NASA, 2016). AMSR and SSMI data are obtained from
https://www.remss.com/missions/ssmi/ (Wentz et al., 2012) and
http://www.remss.com/missions/amsr (Wentz et al., 2014). ERA5
data are accessible from https://doi.org/10.24381/cds.adbb2d47
(Hersbach et al., 2023, 2020). MERRA2 data are available from
https://doi.org/10.5067/LTVB4GPCOTK2 (GMAO, 2015). The
SAM code is publicly accessible at https://you.stonybrook.edu/
somas/people/faculty/marat-khairoutdinov/sam/ (Khairoutdinov,
2022).

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/acp-25-8743-2025-supplement.
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