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Abstract. This study employs an explainable machine learning (ML) framework to examine the regional de-
pendencies of surface ozone biases and their underlying drivers in global chemical reanalysis. Surface ozone
observations from the Tropospheric Ozone Assessment Report (TOAR) network and chemical reanalysis out-
puts from the multi-model multi-constituent chemical (MOMO-Chem) data assimilation (DA) system for the
period 2005–2020 were utilized for ML training. A regression-tree-based randomized ensemble ML approach
successfully reproduced the spatiotemporal patterns of ozone bias in the chemical reanalysis relative to TOAR
observations across North America, Europe, and East Asia. The global distributions of ozone bias predicted by
ML revealed systematic patterns influenced by meteorological conditions, geographic features, anthropogenic
activities, and biogenic emissions. The primary drivers identified include temperature, surface pressure, carbon
monoxide (CO), formaldehyde (CH2O), and nitrogen oxide (NOx) reservoirs such as nitric acid (HNO3) and per-
oxyacetyl nitrate (PAN). The ML framework provided a detailed quantification of the magnitude and variability
of these drivers, delivering bias-corrected ozone estimates suitable for human health and environmental impact
assessments. The findings provide valuable insights that can inform advancements in chemical transport model-
ing, DA, and observational system design, thereby improving surface ozone reanalysis. However, the complex
interplay among numerous parameters highlights the need for rigorous validation of identified drivers against
established scientific knowledge to attain a comprehensive understanding at the process level. Further advance-
ments in ML interpretability are essential to achieve reliable, actionable outcomes and to lead to an improved
reanalysis framework for more effectively mitigating air pollution and its impacts.
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1 Introduction

Air pollutants such as particulate matter (PM) and ground-
level ozone pose a significant risk to human health, ecosys-
tems, and climate. These pollutants are associated with a
wide range of adverse health effects, contributing to approx-
imately 8.1 ×106 premature deaths annually in 2021 (Insti-
tute, 2024; Fleming et al., 2018). Additionally, ground-level
ozone damages vegetation and reduces crop yields (Mills
et al., 2018). Accurate assessment and prediction of air pol-
lutant concentrations are essential for evaluating their envi-

ronmental impacts and for facilitating the development of ef-
fective mitigation strategies (Archibald et al., 2020).

Ground-based monitoring networks, such as the United
States Environmental Protection Agency (EPA) Air Qual-
ity System (AQS) and the European Monitoring and Evalua-
tion Programme (EMEP), have provided continuous records
of air pollutant concentration. However, these networks are
limited in geographic coverage and pollutant types. The
data from these ground observation networks, which were
compiled under the Tropospheric Ozone Assessment Report
(TOAR) activity (Schultz et al., 2017), have been used to
study long-term changes in surface ozone. These studies have
revealed increases since 2000 in certain remote and heav-
ily polluted regions of East Asia (Gaudel et al., 2018). Fur-
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thermore, the ground observations have been utilized ex-
tensively to assess the performance of global atmospheric
chemistry models (Young et al., 2018). The second phase
of TOAR (TOAR-II) aims to expand the observational net-
work by including additional ground-based stations, espe-
cially from new networks in China and India. Despite these
advancements, substantial geographic regions, particularly in
developing countries where pollution levels are often severe,
remain without adequate monitoring. This results in signif-
icant gaps in our understanding of ground-level ozone vari-
ability over time and space, limiting our ability to accurately
assess and mitigate its impacts.

Satellite observations, including those from the Ozone
Monitoring Instrument (OMI) (Levelt et al., 2018), the In-
frared Atmospheric Sounding Interferometer (IASI) (Cler-
baux et al., 2009), the Measurements of Pollution in the Tro-
posphere (MOPITT) (Deeter et al., 2017), and the Tropo-
spheric Monitoring Instrument (TROPOMI) (Veefkind et al.,
2012), have provided unprecedented global pictures of air
pollutants, including tropospheric ozone (Clerbaux et al.,
2009; Bowman, 2013; Miyazaki et al., 2021) and its precur-
sors (Krotkov et al., 2016; Miyazaki et al., 2017; Bauwens
et al., 2020; Elshorbany et al., 2024), over the past few
decades. However, these satellite measurements exhibit re-
duced sensitivity toward the surface, which limits their abil-
ity to evaluate global spatial maps of near-surface ozone. Re-
cent advancements in satellite products, such as Tropospheric
Emissions Spectrometer (TES)-OMI, Atmospheric Infrared
Sounder (AIRS)-OMI, and IASI-Global Ozone Monitoring
Experiment-2 (GOME-2) multi-spectral retrievals (Fu et al.,
2018; Colombi et al., 2021; Okamoto et al., 2023; Pen-
nington et al., 2024), have enhanced the representation of
lower-tropospheric ozone, particularly in regions with lim-
ited ground-based monitoring. Nevertheless, these products
still face challenges in accuracy, largely due to the inherent
retrieval uncertainties. Their measurements are influenced by
various factors such as cloud cover, which can result in spa-
tial gaps and enhanced uncertainties in the data. Furthermore,
linking satellite-derived lower-tropospheric ozone with sur-
face ozone requires the consideration of intricate chemical
and physical processes (Colombi et al., 2021). While satel-
lite measurements of precursor species, such as NO2, VOCs,
and CO, provide valuable insights into the chemical regimes
and production of ozone (Souri et al., 2025; Elshorbany
et al., 2024), they are not directly applicable to the estima-
tion of surface ozone concentrations. Other ground-based
measurements, such as ozonesondes, lidar, and aircraft, pro-
vide accurate data on free tropospheric and vertical column
ozone. These have been used to validate satellite observa-
tions. However, they lack the capability to continuously mon-
itor ground-level ozone.

Chemical transport models (CTMs) have been employed
to generate global or regional maps of atmospheric composi-
tion and aerosols, as well as to analyze their evolution. How-
ever, CTMs often exhibit substantial biases, such as overes-

timating boundary layer ozone by up to 12 ppb in the south-
eastern US (Travis et al., 2016; Skipper et al., 2024) and sur-
face ozone by up to 20 ppb in the southeastern US and west-
ern Europe (Liu et al., 2022). These biases emerge from the
difficulty of simulating complex physical and chemical pro-
cesses and the inaccuracy of emissions inventories, which are
affected by uncertainties in activity data, emission factors,
and spatial–temporal allocations (Janssens-Maenhout et al.,
2015). Identifying the sources of air quality model errors and
their underlying mechanisms is vital for improving air qual-
ity forecasting and assessment. However, spatial error pat-
terns often remain unclear due to the limited observational
coverage.

Over the past decade, data assimilation (DA) techniques
have markedly enhanced our capacity to integrate observa-
tional data, address observational gaps, and provide compre-
hensive spatiotemporal representations of air pollutant vari-
ability at regional to global scales (Lahoz and Schneider,
2014). Previous studies have highlighted the value of simul-
taneously assimilating ozone and its precursors to improve
surface ozone estimates (Miyazaki et al., 2012, 2019; Sekiya
et al., 2025). DA systems have enabled the long-term integra-
tion of multiple satellite observations to generate decadal-
scale atmospheric composition reanalysis products (Inness
et al., 2019; Miyazaki et al., 2020a). The global and regional
chemical reanalysis products generated using the state-of-
the-art DA systems have been applied in numerous applica-
tions, including air quality monitoring and attribution stud-
ies (Lacima et al., 2023; He et al., 2022a; Miyazaki et al.,
2014, 2019, 2021; Sekiya et al., 2023) and human health im-
pact assessment (Wang et al., 2025). Nevertheless, the qual-
ity of chemical DA and reanalysis remains largely limited by
the performance of the underlying model (Inness et al., 2019;
Miyazaki et al., 2020b; Sekiya et al., 2025). The potential
and limitations of current chemical reanalysis products have
been extensively discussed and summarized by the TOAR-
II Chemical Reanalysis Focus Working Group (Sekiya et al.,
2025; Jones et al., 2025; Wang et al., 2025).

In parallel, machine learning (ML) techniques have
emerged as powerful tools in the field of Earth sciences
(Sun et al., 2022). ML has been employed to emulate Earth
system models, accelerate computational processes, correct
physical model biases, and extend observational datasets.
There is growing interest in utilizing ML techniques for air
quality assessment and improving the accuracy of air pol-
lutant predictions (Hickman et al., 2025). For example, ML
has been employed to emulate the GEOS-Chem gas-phase
chemistry (Keller and Evans, 2019), predict ozone levels
during wildfire events (Watson et al., 2019), and generate
a high-resolution global distribution of tropospheric ozone
from sparse ground-based observations combined with high-
resolution geospatial data (Betancourt et al., 2022). Further-
more, the application of ML techniques has been extended
to the evaluation of nitrogen oxide (NOx) emission invento-
ries (He et al., 2022b), as well as the simulation of tropo-
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spheric oxidant chemistry (Kelp et al., 2022). Additionally,
ML techniques have identified complex relationships among
variables, such as NOx reductions during the period of the
global COVID-19 lockdowns (Keller et al., 2021) and the
spatial patterns of meteorological and chemical influences on
air quality (Kleinert et al., 2022). Furthermore, ML has been
used to correct physical model biases. For example, gradient-
boosted decision trees (e.g., XGBoost) have been utilized to
identify and address potential systematic errors in ozone pre-
diction models (Ivatt and Evans, 2020).

Explainable ML provides an opportunity to uncover the
relationships between input variables and model outputs,
thereby offering insights into the drivers of air pollutant and
model biases (McGovern et al., 2019). This capability is of
particular value in the context of air quality assessments (Liu
et al., 2022), where a comprehensive understanding of the
factors contributing to air pollution and model biases is es-
sential for informed policy-making and the improvement of
CTMs. Similarly, ML is expected to enhance our understand-
ing of bias patterns and the drivers of chemical reanalysis bi-
ases, which are often linked to the lack of observational con-
straints and inherent forecast model errors. The comprehen-
sive information obtained from chemical DA systems pro-
vides critical inputs for ML training, thereby enabling im-
provements in pollution predictions. Furthermore, ML and
DA can be effectively combined within a Bayesian frame-
work to enhance physical models and estimate parameters
directly from observations (Geer, 2021).

In this study, we develop and apply a novel, explain-
able ML framework to identify the drivers of ozone bias
in decadal chemical reanalysis. By integrating information
from chemical reanalysis and ground-based observations,
our objective is to provide bias-corrected ozone estimates
and valuable insights into the factors controlling bias in the
reanalysis product. Section 2 outlines the methodology, in-
cluding the ML framework. Section 3 presents the results,
focusing on predicted ozone biases and identified drivers.
Section 4 discusses the implications, limitations, and future
directions of our approach. Section 5 concludes the study.

2 Methodology

2.1 Data

2.1.1 MOMO-Chem reanalysis

This study employs the comprehensive dataset on the evo-
lution of atmospheric composition and associated parame-
ters obtained from the MOMO-Chem framework (Miyazaki
et al., 2020b). MOMO-Chem assimilated multi-species satel-
lite observations to reproduce three-dimensional atmospheric
composition and surface emission distributions. The local en-
semble transform Kalman filter (LETKF) (Hunt et al., 2007)
was employed, which accounts for errors in the model trans-
port and chemistry at each grid point and time step in the

background error covariance. This approach allows for flow-
dependent DA analysis and simultaneous optimization of
emissions and concentrations, thereby providing comprehen-
sive constraints on the tropospheric chemistry system. Parts
of the MOMO-Chem system were utilized in the production
of the Tropospheric Chemistry Reanalysis version 1 (TCR-
1) (Miyazaki et al., 2015) and version 2 (TCR-2) products
(Miyazaki et al., 2020a).

This study utilizes the TCR-2 dataset for the period 2005–
2020 (Miyazaki et al., 2020a) as ML inputs. The TCR-2 data
are publicly available and have been used in numerous stud-
ies on atmospheric composition and emissions (Kanaya et al.,
2019; Miyazaki et al., 2017, 2019, 2021; Miyazaki and Bow-
man, 2023). TCR-2 uses the Model for Interdisciplinary Re-
search on Climate–chemical atmospheric general circulation
(MIROC-CHASER) model for the study of atmospheric en-
vironment and radiative forcing (Watanabe et al., 2011) as
a forecast model. This model includes tracer transport, wet
and dry depositions, and emissions, as well as detailed pho-
tochemistry in the troposphere and stratosphere. The model
calculates the concentrations of 92 chemical species and 262
chemical reactions (58 photolytic, 183 kinetic, and 21 hetero-
geneous reactions). TCR-2 has a T106 horizontal resolution
(1.125° × 1.125°) with 32 vertical levels from the surface to
4.4 hPa. Meteorological fields used by TCR-2 are nudged to-
wards the 6-hourly ERA-Interim (Dee et al., 2011).

The assimilated data include tropospheric NO2 column re-
trievals from the QA4ECV version 1.1 level 2 (L2) prod-
uct for the Ozone Monitoring Instrument (OMI), GOME-
2, and the Scanning Imaging Absorption Spectrometer for
Atmospheric Cartography (SCIAMACHY) (Boersma et al.,
2017, 2018). Ozone retrievals are taken from version 6 level
2 nadir data obtained from the Tropospheric Emission Spec-
trometer (TES) (Bowman et al., 2006) and version 4.2 data
from the Microwave Limb Sounder (MLS) for pressures
lower than 215 hPa (Livesey et al., 2018). Total column CO
data are derived from the version 7 L2 TIR/NIR product
for the Measurements of Pollution in the Troposphere (MO-
PITT) instrument (Deeter et al., 2017). It should be noted
that the ozone retrievals assimilated do not contain informa-
tion on surface ozone. However, the assimilation of precur-
sors and free tropospheric and stratospheric ozone provides
indirect constraints on surface ozone (Miyazaki et al., 2019).
The performance of TCR-2 has been validated against inde-
pendent surface and aircraft measurements (Miyazaki et al.,
2020a).

TCR-2 has been evaluated in comparison with other chem-
ical reanalysis products, including the Copernicus Atmo-
sphere Monitoring Service (CAMS) (Inness et al., 2019) and
GEOS-Chem reanalysis. TCR-2 and CAMS showed reason-
able agreement with each other and with independent ob-
servations in the free troposphere and tropospheric column
(Huijnen et al., 2020). The comparison results demonstrate
the value of chemical reanalyses for elucidating historical
and present-day tropospheric ozone distributions. However,
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larger discrepancies have been identified near the surface. A
comparison with surface ozone observations revealed that all
reanalyses tend to overestimate surface ozone, with annual
mean biases exceeding 15 ppbv in GEOS-Chem. A seasonal
bias analysis indicates that the largest global mean surface
ozone bias in GEOS-Chem occurs in September–November
(18.3 ppbv), while the smallest bias is in December–February
(14.2 ppbv). The largest mean biases for TCR-2 and CAM-
SRA occurred in June–August, at 11.1 and 6.6 ppbv, respec-
tively, while the smallest mean biases occurred in December–
February, at 5.6 and 2.7 ppbv, respectively (Jones et al.,
2025).

In this study, comprehensive information from MOMO-
Chem reanalysis outputs, including various meteorological
and chemical variables, was utilized for ML analysis. To
enable feasible scientific interpretation, restricting the num-
ber of input parameters used for ML training was a critical
step. The selection of input parameters was guided by their
relevance to ozone chemistry and transport, while avoid-
ing redundancy through correlation analysis (see Sect. 5.2).
Following an evaluation of the sensitivity calculations with
varying input parameters, a total of 28 key variables were
selected for use in the ML calculations, as listed in Ta-
ble 1. As described above, the meteorological variables used
are obtained by nudging the model’s meteorological fields
toward ERA-Interim reanalysis data. Subsets of chemical
species and emissions (e.g., NO2, CO, SO2) are directly con-
strained by satellite observations. Observational information
also propagates through model chemical processes (e.g., via
OH perturbations), which enables indirect optimization of
other species, leading to reanalysis fields that can differ sig-
nificantly from those of model simulations without data as-
similation.

Previous studies on the ML application to air pollution
(Liu et al., 2022) have emphasized the importance of ba-
sic geographical parameters, such as latitude and day of the
year, for enhancing the predictive performance of ML mod-
els. However, given that the primary objective of this study
is to gain insights into model processes and observational
constraints, rather than to optimize prediction accuracy, these
basic geographical parameters were excluded from our ML
predictions.

2.1.2 TOAR-II ground-based observations

The TOAR-II surface ozone database (Schultz et al., 2017)
provides ozone metrics from approximately 23 000 surface
sites globally. The data version used in this study does not
encompass the majority of recent datasets from China and
India, thereby constraining the capacity to train the ML
model under highly polluted conditions. The ML calcula-
tions employed daily maximum 8 h average (MDA8) ozone
concentrations from both urban and non-urban surface sites.
However, the reanalysis product, with a spatial resolution
of 1.125° × 1.125°, is unable to resolve local emissions and

chemical processes that drive ozone variations, particularly
in urban areas, as similarly discussed in Young et al. (2018).
While the selection of urban sites is of great importance for
the evaluation of reanalysis biases, this was not addressed in
the current study. Consequently, this limitation may result in
biased estimations of reanalysis performance, particularly in
regions where local-scale processes are important.

2.2 ML approach

2.2.1 Random forest model

To predict the reanalysis ozone bias, which is defined as the
difference between the reanalysis and TOAR observations,
using a given set of input variables, we employed a vari-
ant of the widely used ensemble tree method, random forest
(RF) (Breiman, 2001). RF is well-suited for a broad range of
modeling and prediction applications due to its robust per-
formance, ease of implementation, and ability to provide ex-
plainability metrics for input variables. Specifically, we im-
plemented quantile random forest (QRF) (Meinshausen and
Ridgeway, 2006), which modifies the loss function to predict
both the mean and the quantile values of the conditional dis-
tribution. The quantile outputs provided by QRF can be used
to estimate prediction uncertainties. Furthermore, QRF ad-
dresses challenges posed by high-dimensional datasets, mit-
igating issues related to unstable computations.

2.2.2 Explainability metrics

We employed three methods to evaluate explainability: fea-
ture importance (FI), conditional feature contribution (CFC)
(Saabas, 2015; Kuz’min et al., 2011), and permutation im-
portance (PI) (Altmann et al., 2010). As outlined below, the
three measures of explainability are complementary and as-
sess distinct aspects of variable importance, including the im-
pact on predicted values, variability, and prediction accuracy.
The FI and PI metrics compute the importance of each input
variable on a global scale, with respect to each input variable.
CFC calculates the importance of each variable at each grid
point locally.

FI represents an intrinsic functionality of RF/QRF that
quantifies the predictor reduction in variance at each decision
tree split based on a specific input variable. These reductions
are averaged across all trees in the forest to measures how
much variability the true values gain or lose around their
mean in a particular leaf/node based on an input variable.
The unitless FI values are normalized between 0 and 1, with
values closer to 1 indicating greater importance. This metric
provides a comprehensive assessment of the global impor-
tance of each input variable.

CFC calculates the incremental changes in predicted val-
ues at each parent and child tree node of a decision tree for
each variable. Subsequently, the values are aggregated over
all nodes in a path of a data point and averaged across all
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Table 1. List of ML input parameters derived from MOMO-Chem reanalysis outputs, including key meteorological variables, chemical
species, and emissions.

Variable name Description Variable name Description

BrOX Bromine oxides coflux Carbon monoxide emissions
C10H16 Adamantane NO Nitric oxide
C2H6 Ethane NO2 Nitrogen dioxide
C3H2 Propene noxflux Nitrogen oxide emissions
C5H8 Isoprene olr Outgoing longwave radiation
CH2O Formaldehyde prcp Precipitation
H2O2 Hydrogen peroxide PS Surface pressure
HNO3 Nitric acid q Humidity
HO2 Hydroperoxyl radical rfluxld Radiative downward flux longwave
N2O5 Dinitrogen pentoxide rfluxsd Radiative downward flux shortwave
NH3 Ammonia t Temperature
OH Hydroxide u Zonal wind
PAN Peroxyacetyl nitrate v Meridional wind
CO Carbon monoxide ccover Cloud cover

trees in the forest. In contrast to FI, CFC offers a local as-
sessment of importance for each variable at each grid point.
This metric can be explored both spatially and temporally,
and its units correspond to those of the target variable (e.g.,
parts per billion for ozone bias). CFC allows for spatiotem-
poral exploration of variable importance.

PI is a model-agnostic metric that evaluates the contribu-
tion of individual input variables by randomly permuting one
variable at a time. The trained model then makes predictions
on the permuted data, and the resulting change in predictive
accuracy, typically assessed using metrics such as root mean
squared error (RMSE), is computed. This method does not
require any re-training of the model, making it both com-
putationally efficient and suitable for interpreting complex
models. A larger drop in accuracy indicates greater impor-
tance of the permuted variable, independent of the effects of
other inputs. While PI does not account for cross-correlations
between input variables, it can identify independent relation-
ships and highlight inter-variable dependencies.

2.2.3 SHapley Additive exPlanations (SHAP)

Additionally, SHapley Additive exPlanations (SHAP) (Lund-
berg et al., 2020) were employed to attribute the contribu-
tions of individual variables to model predictions, which is
a state-of-the-art framework for interpreting and explaining
ML model outputs. SHAP is rooted in cooperative game the-
ory and distributes the “credit” or influence of each input
variable in shaping a model’s prediction in an equitable man-
ner. This is achieved by considering all possible permutations
of variable combinations and their contributions. SHAP val-
ues generalize the concept of CFC, offering a model-agnostic
perspective on variable importance. Similar to CFC, SHAP
enhances the transparency of model predictions by enabling
local attribution of factors influencing each prediction. This

facilitates a deeper understanding of the relationships cap-
tured by the model and fosters trust in the intricacies of com-
plex ML systems.

2.3 Experimental settings

The ML inputs included surface ozone data, MDA8, from
the TOAR datasets, which served as the ground truth, along
with outputs from the MOMO-Chem reanalysis. TOAR ob-
servations were aggregated to the MOMO-Chem reanalysis
grid of 1.125° × 1.125° by computing the median value of
surface ozone for all stations within each grid box. This ap-
proach ensures a consistent spatial resolution between ob-
servations and reanalysis outputs. The reanalysis bias for
each grid cell was then derived by comparing the MOMO-
Chem reanalysis value with the corresponding median sur-
face ozone value obtained from TOAR observations. Obser-
vations below 0 ppb or above 150 ppb were excluded to en-
sure data quality. For other reanalysis variables, daytime av-
erages (08:00–15:00 LT) were derived from the 2-hourly re-
analysis outputs and used in the ML calculations.

The median values of surface ozone were then subtracted
from the corresponding MOMO-Chem reanalysis value to
obtain the reanalysis bias for the grid cell. The reanalysis bias
is then treated as the output or response of the ML model.
Then, the corresponding input ML variables used to infer the
reanalysis bias are listed in Table 1.

To enhance computational tractability and avoid the influ-
ence of seasonality, particularly with regard to explainability
metrics, we trained separate QRF models for each month.
For training and evaluation, we employed a leave-1-year-out
cross-validation strategy, where 1 year was withheld from the
full dataset (2005–2020) across all grid cells, and the remain-
ing 15 years were used for model training. This strategy en-
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sured both temporal and spatial diversity was maintained in
the training data.

After training, the ML model was applied globally, in-
cluding to grid boxes without TOAR observations, allow-
ing us to estimate surface ozone biases and their drivers over
the globe. This approach enabled global extrapolation of the
learned bias patterns while maintaining a clear separation be-
tween training and evaluation domains.

Two primary metrics were used to evaluate the ML perfor-
mance: RMSE and percent variance explained (PVE). RMSE
quantifies the average deviation between the actual and pre-
dicted values. PVE computes how much overall variance in
the data is explained by the ML model, with values ranging
from 0 to 1. PVE values closer to 1 indicate that the model
effectively captures the underlying structures and patterns in
the data.

While the temporal cross-validation approach, imple-
mented through a leave-1-year-out strategy, does not fully
address the challenge of spatial extrapolation, it provides a
robust framework for evaluating the model’s generalization
across years with diverse chemical and meteorological con-
ditions. We acknowledge that spatial cross-validation would
offer a more direct assessment of the model’s extrapolation
capability. However, this was not feasible in our case due to
the sparse and uneven distribution of TOAR monitoring sites,
particularly outside of North America, Europe, and East
Asia, which results in limited spatial coverage and strong re-
gional clustering. In many under-sampled regions, such as
the tropics, boreal zones, and the Southern Hemisphere, the
lack of contiguous observational clusters prevents the con-
struction of spatially independent and statistically meaning-
ful training and validation sets. Consequently, we relied on
temporal cross-validation to preserve both data representa-
tiveness and model stability, while recognizing that spatial
extrapolation remains an important area for future investiga-
tion. To complement this limitation, the ML model’s predic-
tive performance in observationally sparse regions is further
evaluated through dedicated emulator experiments described
in the following section.

2.3.1 Emulator runs

The ML framework was first evaluated in emulation mode
to reproduce the reanalysis MDA8 fields. By leveraging the
true global MDA8 fields provided by the reanalysis for eval-
uation, this framework allowed for an assessment and op-
timization of the baseline ML performance. Two emulator
runs were conducted.

The first experiment (Emugl) trained the ML model using
global reanalysis fields (excluding MDA8 itself from the in-
put features) to emulate ozone distributions under full data
coverage. This configuration demonstrates the ideal predic-
tive performance of the ML framework when comprehensive
information is available.

The second experiment (Emutoar) restricted the training
data to North America, Europe, and East Asia, where TOAR
observational coverage is dense. This configuration enables
an assessment of the impact of limited observational cover-
age on the model’s ability to represent global ozone distribu-
tions. The TOAR-sampled area encompassed North America
(20–55°N, 125–70°W), Europe (35–65°N, 10° W–25° E),
and East Asia (20–50°N, 100–145°E).

In both experiments, the evaluation was conducted glob-
ally against the true reanalysis MDA8 fields, allowing for a
consistent assessment of the model’s generalization capabil-
ity under both dense and sparse observational coverage sce-
narios.

2.3.2 Bias predictions

Subsequently, the ML framework is used to predict the re-
analysis ozone bias at each grid point on a daily basis. The
predicted bias is validated against the actual bias (reanalysis
minus observations) over the TOAR observation locations.
Meanwhile, the prediction provides information on the ex-
tended global patterns and the drivers of the ozone bias, in-
cluding areas with no observations.

3 ML performance

3.1 Ozone emulator runs

In order to evaluate the overall predictive skill of the ML
framework, we first conducted emulator runs using global
input data (Emugl). As shown in Fig. 2, the emulator suc-
cessfully reproduced regional ozone patterns at mid-latitudes
of the Northern Hemisphere (NH), with the regional RM-
SEs ranging from 4.02 to 4.69 in January and from 5.87
to 9.08 ppb in July. The PVE values ranged from 0.65 to
0.83, indicating that the ML model effectively captures the
underlying structures and patterns. The global distribution
of ozone was also well-predicted, with RMSE values below
8 ppb over most land areas and below 5 ppb over oceans at
the grid scale (Fig. 3). This confirms the ability of the ML
framework to capture the overall spatial variability of ozone.
However, notable discrepancies were found in the central Pa-
cific, where relative errors exceeded 30 % and absolute er-
rors were greater than 12 ppb. These discrepancies over the
limited regions indicate the presence of local ozone-driving
mechanisms that are insufficiently captured by global statis-
tics.

To examine the influence of limited observational data, an
additional emulator run was performed using reanalysis data
only from regions with dense TOAR observations (North
America, Europe, and East Asia) for ML training (Emutoar).
In comparison to Emugl, Emutoar demonstrated increased er-
rors in regions such as central Africa, India, South Asia,
Siberia, and the northwestern Pacific (Fig. 3). This suggests
that observational constraints from the TOAR regions, i.e.,
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Figure 1. Schematic diagram of the machine learning (ML) framework used to predict surface ozone MDA8 bias in the MOMO-Chem
reanalysis. The framework integrates global reanalysis outputs with surface ozone observations from the TOAR network (top left). TOAR
observations are spatially aggregated to the reanalysis grid to construct training data, and the reanalysis bias is calculated as the difference
between the MOMO-Chem output and the aggregated TOAR observations. Separate random forest (RF) models are trained for each calendar
month using a leave-1-year-out cross-validation approach over the 2005–2020 period (top right). The trained models are then applied globally
to estimate surface ozone bias across all grid cells, including those without observational coverage (bottom right). Explainable ML techniques,
including SHAP values, permutation importance, and spatiotemporal feature attribution, are then used to quantify prediction uncertainty and
identify key drivers of the bias (bottom left).

primarily industrialized areas in the NH mid-latitudes, are
inadequate for capturing ozone variability in the tropics and
polar regions. This likely reflects discrepancies in the under-
lying ozone-driving mechanisms. In other regions, the per-
formance of Emutoar was comparable to that of Emugl, in-
dicating that dense observational coverage in the TOAR re-
gions can inform broader ozone distributions. The compar-
ison between Emutoar and Emugl provides insights into the
robustness of and potential uncertainties in ML-predicted bi-
ases trained on limited TOAR locations, as discussed further
in Sect. 5.1.

3.2 Ozone bias prediction

As depicted in Fig. 4, the actual ozone bias, defined as
the reanalysis minus TOAR observations, exhibits a broad
Gaussian distribution with mean regional values of 4.93–
10.67 ppb in January and 11.3–30.29 ppb in July across the
three regions. The bias variability is also greater in July, with
standard deviations ranging from 9.19 to 11.54 ppb in Jan-
uary and from 10.31 to 16.46 ppb in July. This reflects the in-
fluence of seasonal differences in ozone dynamics. The ML
prediction accurately represents the overall actual bias pat-
tern, with RMSE values of 7.8–8.4 ppb in January and 9.6–
14.7 ppb in July. Among the regions, East Asia exhibited the
largest RMSE values in both seasons. The ML predictions
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Figure 2. Probability distributions of surface ozone for January and July in North America, Europe, and East Asia. The red lines represent
observed ozone concentrations, while the blue lines represent ML-predicted values. The figure also includes the mean and standard deviation
of the observed ozone, as well as the RMSE and PVE of the ML predictions, to evaluate model performance across regions.

Figure 3. Spatial maps of surface ozone in July, derived from (a, d) the MOMO-Chem reanalysis used for training, with RMSE from the
emulator run presented in (b, e) parts per billion and (c, f) percent. Panels (a–c) depict the results of the ML emulator trained with global
MOMO-Chem inputs (Emugl), while the lower panels depict the results of the emulator trained with data limited to TOAR coverage regions
(Emutoar).
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systematically underestimate the variability in surface ozone
bias across all regions, indicating an underestimation of the
occurrence of extreme (both positive and negative) bias val-
ues. This behavior is a well-known limitation of RF, which
tends to underpredict distributional tails due to their ensem-
ble averaging structure (Betancourt et al., 2022; Chen et al.,
2021). Such underestimation is particularly relevant when
aiming to detect exceedances of air quality standards, where
accurate representation of high-ozone events is critical.

Meanwhile, the larger prediction errors for bias predic-
tion, in comparison to the emulator runs (cf. Sect. 3.1), un-
derscore the inherent challenges associated with bias predic-
tion. These challenges are likely attributable to both errors
in the observational data and limitations in the representa-
tiveness of the data used for bias estimation. In particular,
spatial smoothing – resulting from the relatively coarse res-
olution of the reanalysis – can limit the ML model’s abil-
ity to capture fine-scale chemical and dynamical processes,
especially in urban environments. The aggregation of urban
and non-urban chemical regimes within individual grid cells
can introduce representativeness errors that add uncertainty
to ML predictions. Depending on the magnitude and spatial
variability of sub-grid processes, this may lead to systematic
underestimation or overestimation of the reanalysis bias.

As shown in Fig. 5, the reanalysis ozone bias relative to
the TOAR observations (i.e., the true bias) exhibits a dis-
tinct seasonal pattern, with regional monthly mean positive
bias maxima occurring in summer by about 30 ppb for North
America in July, 13 ppb over Europe in June, and 24 ppb over
East Asia in July. The mean ozone bias is the smallest during
the winter months across all three regions, with values rang-
ing from approximately 4 to 10 ppb. The smallest bias oc-
curred in January over North America and East Asia and in
February over Europe. The ML predictions effectively cap-
ture the temporal patterns of the actual bias at the regional
scale, with temporal correlations of 0.98 for North America,
0.89 for Europe, and 0.85 for East Asia. Meanwhile, regional
ozone bias also exhibits distinct interannual variability. For
example, East Asia experienced larger positive biases dur-
ing 2005–2008, North America exhibited a slight decreas-
ing trend in biases from 2005 to 2012, and Europe showed
greater biases during 2016–2020 compared to earlier years.
These variations are likely influenced by a number of fac-
tors, including changes in the coverage of ground observa-
tions, shifts in the chemical regimes, and discontinuities in
the assimilated satellite measurements that were used in the
chemical reanalysis (Miyazaki et al., 2020a).

Despite the overall agreement, the ML predictions failed
to capture certain anomalies. For example, the ML model
overestimates the small bias during the winter of 2010 and
the large bias during the summer of 2016 in Europe, while it
underestimates the large biases during the summers of 2005,
2006, and 2008 in East Asia. These discrepancies may be in-
dicative of an insufficient representation of specific regional
processes or limitations in the input data used for ML train-

ing. Nevertheless, it is unlikely that these limitations will
have a significant impact on the interpretation of the drivers
behind the mean bias patterns, as the ML framework has
demonstrated the capacity to effectively capture the domi-
nant temporal and spatial structures of ozone bias.

3.3 The extended global bias patterns

The lack of sufficient global surface observations has lim-
ited current knowledge and estimates of surface ozone bias
patterns in chemical reanalyses and CTM simulations to spe-
cific regions, predominantly in parts of Europe, the US, and
East Asia, as shown in the upper panels of Fig. 6. A compar-
ison with the TOAR observations revealed significant biases
in the chemical reanalysis ozone, exceeding 20 ppb in south-
eastern Australia and Mexico in January and 25 ppb in South
Korea and the southeastern US in July.

The application of the ML model presents a valuable op-
portunity to extend the global understanding of ozone bias
patterns. In January, the ML model indicates the presence of
widespread positive biases over land at low and middle lati-
tudes, with values reaching up to 10 ppb over eastern China,
20 ppb over India, and 8 ppb over western Europe, as illus-
trated in the lower panels of Fig. 6. Similarly, substantial
positive biases are predicted to be approximately 20 ppb over
central Africa and 15 ppb over South America. Conversely,
ML predicts negative biases of up to 15 ppb at high latitudes
north of 60° N.

In July, the predicted positive biases over land are typi-
cally larger than those predicted in January. These include
biases of up to 30 ppb over the Eurasian continent, the east-
ern and northern parts of North America, central and west-
ern Africa, and Southeast Asia. The positive biases are espe-
cially pronounced in regions over land, such as the southeast-
ern US, central Africa, eastern China, Malaysia, and Indone-
sia. Conversely, negative biases of approximately 10 ppb are
predicted for the high latitudes of the Southern Hemisphere
(SH), similar to the negative biases observed in the NH high
latitudes in January.

The spatial distribution of the predicted biases appears to
correlate with multiple factors, including topography, urban-
ization, forested areas, and precursor emissions. These fac-
tors are discussed in Sect. 4. Meanwhile, significant uncer-
tainties are expected in regions where the chemical and phys-
ical processes driving ozone biases are not well-represented
by ML. This is discussed in Sect. 5.1.

4 Ozone bias drivers

4.1 Regional bias

The explainable ML framework is employed to identify the
primary drivers of surface ozone bias. The analysis reveals
distinct regional patterns among the top 20 identified drivers
on the annual scale (Fig. 7). In most cases, the three ap-
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Figure 4. Probability distributions of surface ozone bias for January and July in North America, Europe, and East Asia. The red lines
represent actual bias (reanalysis minus TOAR observations), while the blue lines represent ML-predicted bias values. The figure also includes
the mean and standard deviation of the actual bias, as well as the RMSE and PVE of the ML predictions.

Figure 5. (a–c) Climatological seasonal variations and (d–f) full time series of actual (black) and ML-predicted (blue) surface ozone bias in
parts per billion over North America, Europe, and East Asia for the period 2005–2020. The shaded areas represent the 1σ standard deviation
for each month, highlighting the variability in the bias.

proaches yield comparable results with regard to the rel-
ative importance assigned to the input variables. We also
compared the feature attribution results with SHAP values
(not shown). In particular, SHAP and CFC yielded closely
aligned rankings of the dominant contributors to surface
ozone bias across regions. This agreement is expected for
tree-based models, as both SHAP’s game-theoretic averaging
and CFC’s path-based decomposition provide additive ex-
planations. The consistency between these two approaches,

especially under conditions of moderate input collinearity
(Lundberg et al., 2020), supports the robustness of our fea-
ture importance analysis.

Surface pressure emerges as one of the most significant
contributors across all three regions, underscoring its capac-
ity to modulate ozone bias through a range of factors, in-
cluding topographical influences and synoptic-scale weather
patterns. Temperature is another critical driver, affecting
ozone by influencing chemical reaction rates, local wind pat-
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Figure 6. Spatial distributions of reanalysis surface ozone bias (in ppb): actual bias at TOAR observation sites (a, b) and ML-predicted bias
across the globe (c, d) for January (a, c) and July (b, d), averaged over the period 2005–2020.

Figure 7. Top 20 contributors to regional ozone bias over North America, Europe, and East Asia, identified using three explainability
approaches: FI, CFC, and PI.

terns, and atmospheric stability. These findings emphasize
the fundamental role of meteorological parameters in shap-
ing surface ozone distributions, aligning with previous stud-
ies (Weng et al., 2022).

Other significant contributors include HNO3, NOx emis-
sions, CO emissions, N2O5, CH2O, and PAN, though their
relative importance varies significantly among regions. For
instance, East Asia demonstrates more pronounced influ-
ences from HNO3, NOx emissions, and CO emissions, which
may be attributed to the elevated levels of industrial activ-
ity. In contrast, CH2O exerts the most significant influence
in North America, likely reflecting strong biogenic emis-
sions. PAN, as a reservoir species, also plays a notable role
across all regions due to its involvement in ozone formation.

These contributors are linked to both anthropogenic and nat-
ural processes, including industrial activities, biomass burn-
ing, agricultural practices, and wildfires.

As illustrated in Fig. 8, the seasonal variation in ozone bias
drivers exhibits pronounced regional characteristics across
three regions. As detailed below, these findings highlight the
significant regional dependence of seasonal bias drivers, re-
flecting the complex interplay of meteorological-, chemical-,
and emission-related factors specific to each region. More-
over, common seasonal patterns are evident across regions,
such as the influence of temperature during winter and HNO3
during summer, emphasizing the existence of universal pro-
cesses that govern ozone bias dynamics.
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Figure 8. Monthly changes in the top contributors to regional ozone bias for North America, Europe, and East Asia, estimated from the
combination of the FI and CFC approaches. The bubble size and color represent the magnitude of the impact of each contributor.

In Asia, HNO3 emerges as a dominant contributor from
March to November. The ozone bias is largely influenced
by temperature and NOx emissions from October to March,
while contributions from N2O5 peak in summer, C10H16 in
winter, and H2O2 in January. Additionally, CO emissions
and concentrations exhibit broadly enhanced contributions
during the spring and summer months. In Europe, surface
pressure and temperature are the primary contributors from
October to January. CO emissions show a robust influence
throughout the year, with the exception of February and
March. Enhanced contributions from C2H6 and CH2O are
found during early summer months, with HNO3 exerting its
largest influence during the summer season. The contribu-
tions of NH3, NOx emissions, and CO are moderate through-
out the year. In North America, temperature plays a promi-
nent role from November through April, while CH2O be-
comes the dominant contributor from May through October.
Other notable contributors include HNO3 from late spring
through autumn, surface pressure in early summer and win-
ter, and PAN in early summer.

4.2 Spatial pattern

This section examines the spatial patterns of ozone bias
drivers, classified into primary categories such as meteoro-
logical parameters, combustion processes, biogenic and agri-
cultural sources, and reservoir species. By analyzing these
spatial distributions, our objective is to identify the predomi-
nant contributors to bias in different regions and their associ-
ated processes. Spatial maps of selected key contributors are
presented in Fig. 9.

4.2.1 Meteorological parameters

During the boreal winter months, the contribution of surface
pressure is particularly pronounced in northwestern China
(Fig. 9a), indicating that the winter Siberian High and the
East Asian monsoon circulation exert a significant influence
on ozone transport in the region. During the boreal summer

months (Fig. S1a in the Supplement), the area of strong sur-
face pressure contribution shifts southward and is largely di-
minished over eastern and southern China. This pattern is
likely driven by the summer Asian monsoon system, which
has been identified as a key factor in surface ozone variability
(Li et al., 2018). The sign of the surface pressure contribu-
tion reverses between winter and summer in China, with an
increasing positive bias in winter and a decreasing positive
bias in summer, which partially offsets the positive biases in-
duced by other factors in summer. In contrast, in eastern and
southern China, where air pollution is severe, the contribu-
tion of surface pressure is much smaller throughout the year.

In Europe, surface pressure plays a significant role in the
formation of ozone bias in limited areas during winter, in-
cluding Spain, northern Italy, and Norway (Fig. 9a). In these
areas, it tends to increase the positive ozone bias. This in-
dicates that surface pressure is associated with local biases,
which are influenced by wintertime synoptic weather pat-
terns. During summer (Fig. S1a), the impact of surface pres-
sure in these regions is reversed, leading to a reduction in the
positive bias. However, when compared to other variables,
the overall contribution of surface pressure is minimal across
Europe on the regional scale. This is reflective of the domi-
nant role of chemical parameters in ozone bias in major pol-
luted areas, similar to the results obtained for southeastern
China.

Over the western US, the contribution of surface pressure
displays a complex pattern that follows topographic features.
During winter, the surface pressure’s contribution tends to in-
crease the positive bias, particularly over the western coastal
mountainous regions and the northwestern US (Fig. 9a). Dur-
ing the boreal summer months, this contribution undergoes a
shift, resulting in a reduction in the positive bias across the
western half of North America. Additionally, there is a no-
table influence of surface pressure over the coastal regions
of Mexico, the northwestern US, and the west coast of South
America (Fig. S1a). Among the various parameters, surface
pressure has the greatest impact on increasing the positive
bias on a regional scale in North America during summer
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Figure 9. Spatial maps of the contributions of key parameters to monthly ozone bias, showcasing prominent drivers during specific months.
The maps illustrate the influences from meteorological processes, combustion sources, biogenic and agricultural emissions, and NOx reser-
voir species. Negative contributions indicate that the variable tends to reduce overpredicted ozone bias (when the bias is positive) or amplify
underpredicted ozone bias (when the bias is negative). Conversely, positive contributions suggest that the variable is associated with an
increase in the positive bias or a reduction in the magnitude of the negative bias.

(Fig. 10). This highlights its significant role in shaping ozone
bias patterns in specific regions, particularly under the influ-
ence of complex topography.

The influence of temperature on ozone bias is driven by a
variety of mechanisms, including its impact on gas-phase re-
action rates, atmospheric stability, and vertical mixing. The
impact of temperature on ozone bias varies by season and
latitude. In most cases, positive ozone bias increases at low
and middle latitudes, while at high latitudes, it is reduced
(Fig. 9b). The increased positive bias is particularly pro-
nounced in regions such as the western US, the Middle East,
eastern Africa, the Sahara, and western Australia. The SHAP
analysis indicates that temperature is a primary factor con-
tributing to positive bias over North America (Fig. 10). Fur-
thermore, temperature is identified as the predominant driver
of ozone bias at low latitudes in regions such as North Africa,
South Africa, the Middle East, eastern South America, west-
ern North America, and parts of Siberia during boreal sum-
mer (Fig. 11). At high latitudes, temperature plays a domi-
nant role during boreal winter.

Our analysis further demonstrated that radiation exerts a
substantial influence on ozone bias through its impact on

photochemical reactions, thermal balance, and subsequently
atmospheric circulation (Fig. S1b and c). For instance, photo-
chemical reactivity at the surface is influenced by incoming
solar radiation, which is modulated by humidity, water va-
por, and ozone above the surface. Furthermore, ozone levels
above the surface impact ozone bias not only through down-
ward transport but also through incoming radiation. The spa-
tial analysis demonstrates that downward shortwave radiative
flux at the surface exerts a widespread influence, contributing
to increased positive ozone bias at low and middle latitudes.
This effect is especially pronounced over northern and cen-
tral Africa, the southwestern US, and South Asia, particu-
larly during the spring and summer seasons. This highlights
the interconnected dynamics of radiative and photochemical
processes.

4.2.2 Combustion sources

Combustion processes, including industrial activities and
wildfires, release CO along with a multitude of other chemi-
cal compounds. CO is a primary precursor to ozone and plays
a substantial role in chemical ozone production. For example,
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Figure 10. SHAP waterfall plots depicting individual parameter contributions to predicted ozone bias in July during 2005–2020. Positive
contributions (red) and negative contributions (blue) represent the extent to which each parameter increases or decreases the predicted ozone
bias, offering insights into the key drivers of ozone bias variability.

it has been estimated that ozone produced by wildfires con-
tributes approximately 3.5 % of the global total tropospheric
ozone production (Jaffe and Wigder, 2012). According to the
ML analysis, the impact of CO emissions on ozone bias is
widespread across extensive emission regions, including East
Asia and South Asia, central Africa, North America, and Eu-
rope (Fig. 9d). This indicates that CO emissions exert a con-
siderable influence on ozone bias over and downwind of re-
gions where combustion occurs. Conversely, CO concentra-
tions tend to reduce the positive ozone bias over South Amer-
ica, central Africa, and Southeast Asia, particularly in areas
and periods of active biomass burning (Fig. 9c). This indi-
cates that the effects of extremely high CO concentrations
from wildfires and anthropogenic activities on ozone bias
differ from those associated with moderate CO levels. The
differing roles of CO emissions and concentrations in ozone
bias are not fully understood. Nevertheless, it is likely that
the non-linear relationships inherent in chemical processes
play a significant role. For example, elevated CO levels may
saturate specific chemical pathways or disrupt the balance
between ozone production and loss. This can result in di-

vergent impacts depending on atmospheric conditions. These
findings highlight the complexity of CO’s role in ozone bias.

The production of ozone in urban areas is primarily reg-
ulated by chemical regimes that are determined by the con-
centrations of NOx and volatile organic compounds (VOCs)
(Sillman, 1999). However, our ML assessment indicated that
the direct impact of NOx emissions on ozone bias was lim-
ited (Fig. S1d). In contrast, NOx reservoir species, such as
peroxyacetyl nitrate (PAN) and nitric acid (HNO3), were
shown to have significant impacts on ozone bias, as discussed
in Sect. 4.2.5.

Ethane (C2H6), a hydrocarbon that contributes to ozone
formation, has a substantial impact on ozone bias across a
range of geographical regions, including industrial zones,
biomass burning areas, and oil basins. Significant impacts
were observed over central Africa, northern India, northeast-
ern China, Indonesia, and the northern parts of North Amer-
ica (Fig. 9e). The impact of C2H6 on ozone bias is especially
pronounced over the mid-latitudes of the NH during the sum-
mer months. In eastern China, C2H6 notably increases the
positive ozone bias, contributing a notable portion of the to-
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Figure 11. Spatial maps of the top contributors to the predicted ozone bias across all ML input variables for each location in January, April,
July, and October.

tal bias. According to emission inventories, the global C2H6
source is estimated to be 13 Tgyr−1, with contributions of
8.0 Tgyr−1 from fossil fuel production, 2.6 Tgyr−1 from
biofuel combustion, and 2.4 Tgyr−1 from biomass burning
(Xiao et al., 2008). However, C2H6 emissions remain highly
uncertain, which could potentially lead to biased ozone esti-
mates. The incorporation of new satellite retrievals of C2H6
from CrIS (Brewer et al., 2024) into reanalysis frameworks
has the potential to reduce uncertainties in C2H6 emissions
and, consequently, improve ozone estimates.

Wildfires emit substantial amounts of chemical com-
pounds, including black carbon, CO, PAN, NOx , and VOCs
(Permar et al., 2021). These emissions impact regional ozone
distributions (Cooper et al., 2024; Jin et al., 2023). The ele-
vated contributions of these species in regions with biomass
burning are evident in the ML calculations. For example,
PAN exerts significant impacts in central Africa and South
America (Fig. 9i). Formaldehyde (CH2O) also exhibits pro-
nounced seasonal variations driven by biomass burning emis-
sions in tropical regions (De Smedt et al., 2008), exerting
a considerable influence on ozone bias over tropical South
America, central Africa, and Southeast Asia (Fig. 9f). Fur-
thermore, the presence of VOCs in wildfire plumes, when
combined with the NOx content of urban air, results in a de-

terioration of urban air quality (Xu et al., 2021). Optimizing
wildfire emissions within the reanalysis framework by assim-
ilating supplementary datasets, such as TROPOMI and CrIS
CH2O and CrIS PAN data, could facilitate more comprehen-
sive corrections to ozone production associated with wildfire
events. While this study focuses on the climatological pat-
terns of ozone bias drivers, future research should assess the
impact of individual wildfire events on ozone and its model
bias using explainable ML. Such investigations will be es-
sential for enhancing the accuracy and utility of chemical re-
analysis products in capturing event-specific ozone dynamics
and their contributions to long-term atmospheric changes.

4.2.3 Biogenic sources

Various chemical species are emitted by vegetation, but the
relative importance of each biogenic species for ozone re-
mains largely uncertain. This is due to the fact that their con-
tributions are influenced by a range of factors, including me-
teorological and chemical conditions, as well as vegetation
types. Among these species, isoprene (C5H8) is recognized
as one of the most significant VOCs at regional scales due
to its strong impact on ozone formation. The contributions
of C5H8 exhibit distinct spatial and temporal patterns, which
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mirror the spatial distribution of its sources and the ozone
chemical regimes (Fig. 9h). C5H8 tends to reduce positive
ozone biases. However, whether it reduces ozone bias de-
pends on the background bias conditions, which are influ-
enced by many other contributors (Fig. 10). As anticipated,
ML highlights the broad impact of C5H8 over land, notably
in forested zones such as central Africa, South Asia, South
America, and Australia, where biogenic emissions are pro-
nounced (Guenther et al., 2012). ML uniquely assesses both
the sign (positive or negative) and the quantitative contribu-
tion of C5H8 to ozone bias, therefore offering deeper insights
into its role.

The strong seasonal variations in CH2O are largely at-
tributed to the oxidation of biogenic VOCs. Its impact on
ozone bias is particularly pronounced in the eastern US and
southern China during the summer season and in Southeast
Asia during the dry season (Fig. 9f). Consequently, CH2O
emerges as a significant contributor to ozone bias in these
regions, making it one of the most important bias drivers at
regional scales (Fig. 10). In Europe, where biogenic VOC
emissions are lower, the contribution of CH2O is less pro-
nounced.

4.2.4 Agricultural sources

Ammonia (NH3) is predominantly emitted from agricultural
sources, accounting for over 80 % of the global total NH3
emissions. This is largely attributed to the pervasive utiliza-
tion of nitrogen fertilizers in numerous countries. NH3 reacts
with other chemical compounds to form aerosol particles, in-
cluding PM2.5.. Elevated amounts of these particles can have
severe environmental and health impacts. The impact of NH3
on ozone is more indirect, occurring primarily through alter-
ations in NOx levels and the oxidative capacity of the atmo-
sphere (Pai et al., 2021). The results of the ML analysis in-
dicate a distinct spatial pattern of NH3 influence on ozone
bias, with notable contributions observed in regions with el-
evated agricultural emissions (Fig. 9g). These areas include
western Europe, eastern and northern India, East China, and
the southern and eastern US. These results highlight the ne-
cessity of incorporating complex chemical interactions into
the assessment of ozone bias. Moreover, they indicate that
incorporating NH3 emission estimates (Cao et al., 2022) into
the reanalysis framework could enhance the efficacy of ozone
reanalysis.

4.2.5 NOx reservoirs

While NOx emissions and concentrations have a limited im-
pact on ozone bias broadly, the reservoirs, HNO3 and PAN,
exert significant effects. HNO3, primarily produced from an-
thropogenic NO emissions, emerges as an important driver
of ozone bias. HNO3 can modulate ozone production effi-
ciency. The enhanced contributions, particularly over eastern
Asia, eastern and northern India, eastern Saudi Arabia, and

South Africa (Fig. 9j), highlight the critical role of chemical
conversion processes between NOx and HNO3 in accurately
predicting surface ozone levels.

Similarly, PAN, another reservoir species derived from
NOx , is identified as a significant contributor to ozone bias.
In colder conditions, the lifetime of PAN is considerably
longer, enabling it to be transported over long distances in
the free troposphere, where it plays a critical role in the long-
range transport of ozone precursors (Shogrin et al., 2023).
At the surface level over polluted regions, the contribution
of PAN to ozone bias is more localized to its source regions,
particularly industrialized areas and regions affected by wild-
fires. For instance, increased ozone biases are observed over
eastern China and the eastern US due to the influence of
PAN (Fig. 9i). Additionally, PAN contributes considerably
to ozone bias in remote regions, such as the tropical oceans
situated downwind of regions with high emissions of pollu-
tants, where it tends to reduce positive ozone biases. These
findings underscore the significant role of PAN in influenc-
ing surface ozone bias both locally and remotely. Further-
more, they highlight the importance of accurately represent-
ing NOx–PAN conversion processes in chemical models to
improve ozone analysis.

4.2.6 Dominant contributing parameters

The ML analysis demonstrates that the principal parameters
responsible for surface ozone bias exhibit unique spatial pat-
terns that vary significantly by season (Fig. 11). These sys-
tematic patterns reflect the spatial variability of factors such
as meteorological conditions, chemical regimes, and natural
and industrial activities. The intricate nature of these distribu-
tions highlights the challenges in identifying and addressing
ozone biases in a comprehensive manner.

In numerous regions and seasons, CH2O emerges as the
predominant contributor, indicating the prevalence of VOC-
limited ozone regimes. This finding highlights the need to
evaluate emissions inventories and refine the representation
of chemical processes involving CH2O and other VOCs, with
the aim of improving the accuracy of reanalysis ozone. Tem-
perature is also a critical factor, particularly in high-latitude
regions in both hemispheres during January and October,
as well as in regions such as northern and southern Africa
and the Middle East during July. In these areas, tempera-
ture influences various factors, including chemical reactivity
and land and atmospheric conditions. In regions with distinc-
tive topography, such as the NH mid-latitudes and the Andes
Mountains in the SH, surface pressure emerges as a domi-
nant factor. This reflects the complex interplay between to-
pography and atmospheric conditions in shaping ozone bias
patterns.

In low-latitude land regions, particularly the Middle East,
Africa, and central America, downward shortwave radia-
tion is identified as the most influential parameter in April.
In tropical oceanic regions, PAN dominates ozone bias in
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July, reflecting the influence of transported precursors and
photochemical processes. In areas with exceptionally high
CO emissions, such as eastern China in October and cen-
tral Africa in July, CO emerges as the dominant contributor,
emphasizing the importance of accurately characterizing CO
emissions and CO-related chemical processes in these areas.
Similarly, C2H6 is identified as the dominant contributor over
central Africa in July, which corresponds to intense biomass
burning activities.

While these findings on influential parameters provide
valuable insights into the variability of ozone bias, their in-
teractions with other factors through complex chemical and
physical processes present significant challenges for inter-
pretation. Focusing solely on the most influential parame-
ters may result in an oversimplification of the analysis, as
these interactions often obscure essential underlying mecha-
nisms. Furthermore, while ML-based attribution approaches
provide detailed insights, they may exhibit abrupt tempo-
ral changes that are difficult to understand given our cur-
rent scientific knowledge. The significance of these estimates
is therefore questionable. These limitations underscore the
need for further refinement of the ML methodology to im-
prove the reliability and interpretability of results.

5 Discussion

5.1 Uncertainty distributions

Uncertainty quantification (UQ) is essential for interpret-
ing ML results. Incorporating comprehensive UQ into the
ML framework provides direct insights into the confidence
of the bias predicted. As illustrated in Fig. 12, the spatial
and temporal patterns of estimated uncertainties are obvious,
with larger uncertainties estimated over polluted regions. It
is noteworthy that the spatial pattern of uncertainty exhibits
some discrepancies from that of the predicted bias. For exam-
ple, the relative uncertainty value in comparison to the pre-
dicted bias is lower over oceans but higher over land, par-
ticularly in the tropics and SH. These patterns align with
potential error distributions identified in the emulator runs
(Sect. 3.1). The uncertainty maps are of value in assessing
the utility of bias-corrected ozone fields in informing ozone
variations.

To further investigate uncertainty distributions, a local
clustering analysis embedded within the ML framework
was conducted using the mini-batch k-means clustering al-
gorithm (Sculley, 2011), which is a variant of the stan-
dard k-means clustering algorithm (Lloyd, 1982) and uses
mini-batches of data samples to improve computational ef-
ficiency while maintaining the same optimization objective.
The mini-batch k-means clustering is an iterative algorithm
consisting of three major steps: (1) the random selection of
data samples to form a mini-batch, (2) the assignment of
each data sample to the nearest cluster centroid with the least
squared Euclidean distance, and (3) the updating of the clus-

ter centroids for data samples assigned to each cluster. These
steps are repeated until the assignments remain unchanged
and the cluster centroids become stable, indicating conver-
gence.

The local clustering analysis categorized regions with sim-
ilar ozone variability and driving factors. In the context of
ML predictions, observational data are expected to impose
similar constraints within each local area or among similar
clusters, leading to a common uncertainty distribution across
grid points within the same cluster. The number of observa-
tions within a cluster is considered to be a critical determi-
nant of ML prediction uncertainty. Regions with sparse or
no observational data are likely to have less constrained ML
predictions, resulting in higher associated uncertainties.

As illustrated in Fig. 13, the cluster analysis revealed the
existence of distinct regional ozone patterns, which appear to
be influenced by a number of regional factors, including me-
teorological conditions, land use, population density, and in-
dustrial activities. For example, the US, western Europe, and
parts of East Asia were grouped into the same cluster, indi-
cating that the ozone-driving mechanisms are similar. The
similarity between the regions also suggests that observa-
tional information from these regions can be shared in or-
der to reduce the uncertainty of ML predictions within that
cluster. The agreement between the spatial patterns of un-
certainty distributions (Fig. 12) and the clustering analysis
(Fig. 13) highlights the value of clustering in understanding
the drivers of ML uncertainty. Furthermore, the clustering
analysis can improve ML predictive performance by identi-
fying region-specific patterns and dominant factors, facilitat-
ing the development of localized models that better capture
the unique dynamics of each region.

We also note that the spatial distribution of training data is
highly imbalanced. This imbalance may lead to an overrep-
resentation of region-specific patterns in the learned relation-
ships, potentially limiting model generalizability. Although
we did not implement weighting or rebalancing strategies
such as region-based sampling weights or stratified training
in this study, such techniques may offer an effective means
of mitigating spatial biases in future applications. In addi-
tion, surface ozone observations from emerging monitoring
networks, including those in China and India, were not yet
fully incorporated into the TOAR database at the time of
this study. Their inclusion in future work is expected to im-
prove spatial representativeness, reduce extrapolation bias,
and strengthen the reliability of ML-based inference in cur-
rently under-sampled regions.

In addition to the data imbalance, RF itself has inher-
ent limitations in extrapolation. As an ensemble tree-based
method, RF primarily interpolates within the convex hull of
the training data and lacks the ability to generalize to regions
with little or no observational coverage. Consequently, pre-
dictions over sparsely observed areas, such as the tropics and
oceans, are subject to greater uncertainty and should be in-
terpreted with caution. These algorithmic- and data-related
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Figure 12. Spatial maps of ML-predicted ozone bias (a, c) and its associated uncertainty (b, d) for 1 January 2005 (a, b) and 1 July 2005
(c, d). The maps illustrate the regional variations in predicted bias and the corresponding confidence levels of the ML estimates.

Figure 13. Local model clustering map of surface ozone on 1 July 2005, estimated using MOMO-Chem reanalysis outputs. The map
illustrates spatially distinct regions grouped by similar ozone variability patterns and dominant contributing factors, with each color denoting
a unique cluster. Publisher’s remark: please note that the above figure contains disputed territories.

constraints underscore the need to expand global monitoring
networks and explore hybrid approaches that integrate phys-
ical knowledge with ML.

5.2 Challenges to scientific interpretation

The application of explainable ML at the process level is
frequently constrained by the selection of input parameters,
particularly when the input variable set is extensive. Silva

and Keller (2024) emphasized the necessity for circumspec-
tion when applying explainable AI methods to datasets with
highly correlated or dependent features. Such applications
may yield spurious process-level explanations. They recom-
mended that the current generation of explainable AI tech-
niques be used primarily for understanding system-level be-
havior and that caution be exercised when applying them for
process-level scientific discovery in physical sciences.
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We encountered similar challenges. Some bias drivers
identified by the explainable ML framework lacked scien-
tific plausibility, particularly when a considerable number of
input variables were included. This is likely attributable to
the elevated probability of selecting spurious importance fea-
tures among highly correlated variables. There are substan-
tial correlations among chemically related species in the re-
analysis outputs, with covariance patterns that vary substan-
tially over time and space (Fig. S2). Such correlations can
introduce spurious signals into driver analyses, thereby com-
plicating the interpretation of ML results. To address this is-
sue, we conducted sensitivity analyses using ML to evaluate
whether the input datasets avoided spurious signals while re-
taining the essential scientific information about bias drivers.
Despite these efforts, ensuring robustness remains a signifi-
cant challenge.

It is essential to validate the results of ML through the
use of independent methodologies. For instance, CTM sen-
sitivity experiments may be employed to introduce pertur-
bations to the parameters identified as significant drivers by
ML and then to evaluate their influence on ozone. For exam-
ple, ML with a large number of input parameters identified
NH3 and methanol as significant contributors to ozone bias
across diverse regions during specific months. Nevertheless,
CTM simulations with a perturbation (e.g., by 10 %) in NH3
or methanol showed only marginal impacts on ozone. Such
discrepancies in their implications highlight the necessity for
comprehensive validation prior to deriving to process-level
insights from ML results.

Reducing the number of input variables, as conducted in
this study through correlation analysis, and also with a fo-
cus on specific scientific objectives, can assist in minimizing
these challenges. However, this approach may also restrict
the potential to uncover unexpected scientific findings. Fur-
ther advancements in explainable AI techniques are essential
to fully leverage the comprehensive outputs from chemical
reanalysis and CTMs, thereby enabling a more accurate and
detailed understanding of bias drivers.

5.3 Different drivers of ozone and its model bias

Comprehensive analysis of factors influencing ozone vari-
ability can be conducted using CTM sensitivity experiments
and source–receptor relationship analyses. These approaches
provide detailed insights into the physical and chemical pro-
cesses that drive ozone dynamics. However, these methods
are computationally expensive and have limited capacity to
assess the full range of potential drivers across different
regions and timescales. In contrast, explainable ML offers
a complementary perspective, providing instantaneous and
comprehensive insights into the drivers of ozone variability
across large datasets. Regarding model bias drivers, the infor-
mation is limited due to the sparse distribution of validation
data. ML can address this limitation by providing detailed
spatial and temporal information on both ozone concentra-

tions and biases. Such insights are of great value in the im-
provement of physical models.

The primary drivers identified through ML demonstrate
notable discrepancies in their impact on ozone concentra-
tions and model bias. For example, BrOx was identified as a
significant driver of surface ozone concentrations. However,
its impact on ozone bias was found to be negligible (figure
not shown). Similar inconsistencies were observed for other
parameters, making it challenging to fully comprehend the
underlying reasons for these discrepancies. It is possible that
poorly characterized model parameters, such as precursor
emissions from biogenic or anthropogenic sources, may have
a more pronounced impact on model biases than on variabil-
ity. This indicates the necessity for further effort to provide
their scientific interpretation of both drivers. It may also in-
dicate the presence of spurious signals in the ML driver anal-
ysis, which also requires closer consideration and validation.

5.4 Implication for improving model, observation, and
reanalysis

The current chemical reanalysis is constrained by limitations
due to the reduced sensitivity of assimilated measurements
toward the surface, which results in insufficient direct ob-
servational constraints on surface ozone. The assimilation of
precursor species such as NOx and CO provides comprehen-
sive constraints on the spatial and temporal patterns of sur-
face ozone. However, certain reanalysis bias patterns were
commonly found in CTM simulations that did not incor-
porate any DA. This indicates that the bias driver informa-
tion derived from chemical reanalysis can inform improve-
ments in CTMs. Furthermore, these insights could be ap-
plied to correct biases in future ozone predictions (Liu et al.,
2022). Nevertheless, ML does not provide guidance on how
to modify model processes. Modifications to CTMs could
entail the introduction of new chemical reactions, improve-
ment or removal of outdated parameterization, or adjustment
of parameters such as chemical reaction and photolysis rates.
To ensure these updates are scientifically robust, proposed
changes must align with existing knowledge derived from
laboratory experiments and observations not yet integrated
into the model. Such ML-driven suggestions can direct tar-
geted research efforts aimed at an improved understanding
of individual model processes, including new observational
campaigns and detailed analyses of individual model com-
ponents.

The bias driver analyses also point to additional observa-
tional constraints necessary for improving chemical reanal-
ysis. Our previous studies have demonstrated that optimiza-
tion of precursor emissions and assimilation of ozone and
other species in the upper troposphere and lower stratosphere
have facilitated improvements in ozone analysis for the entire
troposphere, including near-surface levels (Miyazaki et al.,
2019). Nevertheless, the remaining bias highlights the need
to add observational constraints. Drivers such as CH2O, iden-
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tified as critical in various regions by ML, investigate the
potential benefits of assimilating CH2O column measure-
ments from instruments like OMI and TROPOMI to re-
duce reanalysis ozone bias. Similarly, the application of ad-
vanced tropospheric ozone retrievals with enhanced sensitiv-
ity to the lower troposphere (Fu et al., 2018; Okamoto et al.,
2023) could facilitate the improvement of the analysis of
lower-tropospheric ozone. Additionally, comprehensive out-
puts from DA, such as analysis ensemble spread, a measure
of DA uncertainty, and analysis increment, a measure of ad-
justments by DA, can provide unique insights into the neces-
sity for additional observational constraints. Integrating these
DA statistics as inputs into ML frameworks could offer a po-
tential avenue for more effectively identifying and addressing
further improvements.

Sub-grid-scale processes, such as urban-scale chemistry
and planetary boundary layer (PBL) mixing (Ko et al., 2022),
are likely significant contributors to model biases due to
the coarse spatial resolution of the current reanalysis. In-
corporating parameters related to sub-grid processes, such
as vertical mixing rates, into the ML inputs could provide
insight into their role as drivers of ozone bias. Moreover,
preliminary ML tests confirmed that adding high-resolution
satellite data, such as MODIS fire-burned areas and land
use information, has the potential to improve the prediction
of ozone bias, particularly during periods of extreme pol-
lution (figure not shown). Further investigation is required
to comprehend how the incorporation of high-resolution in-
puts enhance the ML performance and provide actionable in-
sights for model improvement. Furthermore, the use of high-
resolution models is crucial for reducing ozone biases (Skip-
per et al., 2024; Sekiya et al., 2021). ML-based downscaling
approaches could also be used to generate high-resolution
fields from the coarse reanalysis outputs, offering a practical
solution for applications such as health impact assessments.

6 Conclusions

Providing accurate global estimates of air pollution is crucial
for evaluating the public health burden of diseases associated
with air pollution exposure. This, in turn, informs effective
environmental policy-making. However, current knowledge
of air pollution is hindered by substantial biases in model
predictions and limitations in the observational coverage of
existing monitoring networks. While chemical reanalysis has
significantly advanced our ability to reproduce regional and
global ozone patterns, it remains fundamentally constrained
by the model performance and the sparse spatial coverage of
observations.

We utilized an explainable ML framework, based on a re-
gression tree randomized ensemble approach and TOAR ob-
servations, to analyze regional dependencies of ozone bias in
the MOMO-Chem reanalysis products. The results demon-
strate that the developed ML framework effectively pre-

dicts ozone bias magnitude and spatial–temporal variations
across diverse geographical regions, such as North Amer-
ica, Europe, and East Asia. Furthermore, it extends bias pre-
dictions to regions lacking surface observational networks,
thereby providing a comprehensive global perspective on
chemical reanalysis bias. By extracting and synthesizing lo-
cal and global measures of how input parameters affect pre-
dicted bias, the ML framework facilitated model explanation
and quantification of driver impacts. This approach yielded
unique insights into the factors controlling biases in air qual-
ity assessments.

The analysis of ozone bias drivers revealed distinct spatial
and temporal patterns, which highlighted the intricate inter-
play of meteorological conditions, chemical processes, and
emissions. Surface pressure, temperature, and key chemical
species such as CH2O, PAN, HNO3, and CO were identified
as significant contributors, with their impacts varying across
regions and seasons. CH2O was identified as a dominant fac-
tor in North America and East Asia, particularly during the
summer months. This reflects its role in VOC-limited ozone
regimes, which are driven by both anthropogenic and bio-
genic sources. In regions with complex topography, such as
the Andes and the western US, surface pressure played a crit-
ical role, with its contribution varying seasonally. This indi-
cates interactions with synoptic weather patterns and local
dynamics. Notably, combustion-related emissions showed
substantial contributions, particularly from CO and C2H6.
The strong influence of CO emissions on ozone bias was par-
ticularly evident in regions characterized by high industrial
activity, such as eastern China, as well as in biomass burn-
ing hotspots, including central Africa and Southeast Asia.
Wildfires amplified ozone bias through CO, CH2O, PAN, and
VOCs, with notable impacts occurring over central Africa,
South America, and Southeast Asia. Biogenic emissions,
such as C5H8, also contributed significantly, particularly over
forested regions like the Amazon, central Africa, and South-
east Asia. Additionally, radiation emerged as an important
driver at low latitudes, reflecting its influence on photochem-
ical reactions and atmospheric dynamics.

These findings highlight the diverse and region-specific
contributions of meteorological conditions, combustion,
wildfire, and biogenic sources to ozone bias. By pinpoint-
ing key contributors and their variability, this study provides
a roadmap for targeted improvements in chemical transport
models, DA systems, and emissions inventories, thereby fa-
cilitating a more precise representation of ozone patterns in
chemical reanalysis. Such advancements are of critical im-
portance for enhancing global air quality predictions and sup-
porting informed pollution management policies. Conven-
tional methods, such as sensitivity analyses using CTMs, re-
quire considerable computational resources to evaluate the
contributions of each factor. In contrast, explainable ML
offers a consistent and comprehensive alternative, capable
of assessing the relative importance of diverse parameters
across spatial and temporal dimensions. This adaptability al-
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lows the ML framework to be applied to other Earth sys-
tem reanalyses and modeling, which can impact various ar-
eas of Earth science. However, the complexity of interac-
tions among various meteorological, chemical, and anthro-
pogenic factors presents challenges in their interpretation
and requires rigorous validation of identified drivers against
established scientific knowledge. By addressing these chal-
lenges, explainable ML will not only enhance our under-
standing of ozone bias, but also pave the way for actionable
insights, leading to an improved framework for more effec-
tively mitigating air pollution and its impacts.
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