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Abstract. Satellite observations are instrumental in observing spatiotemporal variability in carbon dioxide
(CO2) concentrations, which can be used to derive fluxes of this greenhouse gas. This study leverages NASA’s
Orbiting Carbon Observatory-2 and -3 (OCO-2 and OCO-3, respectively) CO2 observations with a Gaussian
process (GP) machine learning inverse model, a Bayesian nonparametric approach well suited for integrating the
unique spatiotemporal characteristics of these satellite observations, to estimate subregional CO2 fluxes. Utiliz-
ing the GEOS-Chem chemical transport model (CTM) to simulate column-average CO2 concentrations (XCO2)
for 2020 in California – a period marked by the coronavirus disease (COVID-19) pandemic, drought conditions,
and significant wildfire activity – we estimated the state-wide CO2 emission rates constrained by OCO-2/3.
This study developed prior fossil fuel emissions to reflect reduced activities during the COVID-19 pandemic,
while net ecosystem exchange (NEE) and fire emissions were derived based on satellite data. GEOS-Chem
source-specific XCO2 concentrations for fossil fuels, NEE, fire, and oceanic sources were simulated coinci-
dent to OCO-2/3 XCO2 retrievals to estimate state-wide sector-specific and total CO2 emissions. GP inverse
model results suggest that annual posterior median fossil fuel emissions were consistent with prior estimates
(317.8 and 338.4 Tg CO2 yr−1, respectively; 95 % confidence level) and that posterior NEE fluxes had less car-
bon uptake compared to prior fluxes (−36.8 vs. −99.2 Tg CO2 yr−1, respectively; 95 % confidence level). Pos-
terior fire CO2 emissions were estimated to be 68.0 Tg CO2 yr−1, which was much lower than a priori estimates
(103.3 Tg CO2 yr−1). The total median annual CO2 emissions for the state of California in 2020 were estimated
to be 349.6 Tg CO2 yr−1 (range of 272.8–428.6 Tg CO2 yr−1; 95 % confidence level), aligning closely with the
prior total estimate of 342.5 Tg CO2 yr−1. This study, for the first time, demonstrates that OCO-2/3XCO2 obser-
vations can be assimilated into inverse models to estimate state-wide source-specific CO2 fluxes on a seasonal
and annual scale.
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1 Introduction

Carbon dioxide (CO2) is the most abundant greenhouse gas
in Earth’s atmosphere and contributes predominantly to the
present-day increase in global radiative forcing (Dunn et al.,
2022). Due primarily to anthropogenic emissions from fos-
sil fuel production and usage, global concentrations of CO2
have nearly doubled since the beginning of the preindustrial
era (Gulev et al., 2021; Lan et al., 2023). A recent compre-
hensive budget analysis of global CO2 fluxes suggests that,
as of 2022, anthropogenic emissions are∼ 10 Gt C yr−1 (pri-
marily from combustion of coal, oil, and natural gas) with
an oceanic and terrestrial uptake offset of ∼ 3 Gt C yr−1 and
∼ 4 Gt C yr−1, respectively (Friedlingstein et al., 2023). Ac-
cording to this report, the United States (US) contributes
14 % (∼ 1.4 Gt C yr−1) of global CO2 anthropogenic emis-
sions. The sectors contributing the most to US anthropogenic
emissions are transportation, electricity generation, and in-
dustry (United States Environmental Protection Agency,
2023). One of the larger emitters of greenhouse gases in the
US is the state of California which, as of 2021, contributes
∼ 0.1 Gt C yr−1 of CO2 (CARB, 2023). In 2006, the state of
California passed Assembly Bill 32 (AB 32) which required
that the state’s greenhouse gas emissions must be reduced to
1990 levels by the year 2020. California was able to achieve
this goal, but in order to demonstrate this, as well as the suc-
cess of other future emission reduction goals, it is vital to
have accurate estimates of past and present-day greenhouse
gas emissions.

Bottom-up inventories of CO2 are commonly used to de-
rive country-level to state-wide fossil fuel anthropogenic
emissions in the US (e.g., Andres et al., 2012; CARB, 2023).
Calculations of natural sources and sinks (e.g., terrestrial
and marine biosphere and wildfires) contributing to total
CO2 emissions are frequently estimated using model pre-
dictions (Friedlingstein et al., 2023). The California Air Re-
sources Board (CARB) has quantified state-wide greenhouse
gas emissions for California between 2000–2021 (CARB,
2023). Anthropogenic and natural bottom-up CO2 flux es-
timates are typically implemented in atmospheric transport
models and compared to atmospheric observations in order
to assess their accuracy. In situ observations of CO2 from
ground-based, tower, and aircraft platforms, due to their high
accuracy and precision, are most frequently used to evalu-
ate the quality of these emission estimates (Graven et al.,
2018; Cui et al., 2022). While highly accurate, these types of
in situ observations are limited in their spatiotemporal cov-
erage and ability to constrain large regions and annual cy-
cles of emissions. The assimilation of the satellite-retrieved
column-averaged dry-air mole fraction of CO2 (XCO2) (e.g.,
Orbiting Carbon Observatory-2, OCO-2; Orbiting Carbon
Observatory-3, OCO-3; Greenhouse Gases Observing Satel-
lite, GOSAT; GOSAT-2; Carbon Dioxide Monitoring con-
stellation, CO2M; TanSat) into atmospheric transport models
has been demonstrated to be able to constrain emissions on

a global- to country-level scale more effectively in regions
which lack dense in situ measurement networks (Pandey et
al., 2016; Yang et al., 2021; Peiro et al., 2022; Philip et al.,
2022; Imasu et al., 2023; Byrne et al., 2023; Noël et al.,
2024). This study focuses on CO2 fluxes in the state of Cal-
ifornia, where OCO-2 and OCO-3 have been used to con-
strain urban-scale emissions in the megacity of Los Angeles
(Hedelius et al., 2018; Ye et al., 2020; Kiel et al., 2021; Wu et
al., 2022; Roten et al., 2023; Hamilton et al., 2024). However,
to date, no studies have demonstrated the capability to eval-
uate and constrain CO2 fluxes using satellite-retrieved infor-
mation on a state-wide spatial domain such as California. For
California and other states, this is important, as some state
agencies only release state-wide inventories (not specifically
for urban areas), and many climate programs are generated
based on the state-wide inventories.

While satellite-based atmospheric inverse modeling pro-
vides a significantly enhanced method for quantifying CO2
emissions, using satellite observations in atmospheric inver-
sions introduces two principal challenges: (1) incorporating
the spatiotemporal covariance inherent in satellite data and
(2) accurately estimating the hyperparameters (such as the
length scale) of this covariance. Satellite observations con-
tain both spatial and temporal properties, meaning that the
data have inherent spatial and temporal characteristics that
inform us about surface emissions. However, numerous in-
verse modeling studies have not consistently incorporated
both covariance structures (Johnson et al., 2016; Fischer et
al., 2017; Cui et al., 2019; Graven et al., 2018; Nathan et al.,
2018; Ye et al., 2020; Wu et al., 2022; Roten et al., 2023).
While some studies have accounted for both spatial and tem-
poral covariances, they have not determined the optimal hy-
perparameters that align with the satellite observations (e.g.,
Turner et al., 2020). For example, the length scale param-
eter is crucial for influencing the covariance, which in turn
affects the estimation of the unknown functions; in many
cases, however, this parameter is not estimated explicitly for
its optimal value but instead prescribed. In this study, we ap-
plied an atmospheric inversion system which fully utilizes
the spatiotemporal properties embedded in satellite data (i.e.,
OCO-2 and OCO-3). This system is built based on the Gaus-
sian process (GP) machine learning (ML) approach enabled
by modern probabilistic programming languages (PPLs). GP
is an ML technique that treats predictions as distributions,
rather than single points, providing a measure of prediction
uncertainty; this is ideal for atmospheric inverse modeling
(see Sect. 2.4), as posterior uncertainties are vital for provid-
ing quantitative information on the confidence level of the
emission constraint. Inversion CO2 models, other than an-
alytical systems, cannot always provide posterior emission
uncertainties, and these estimates can be unreliable and com-
putationally expensive to calculate (e.g., Liu et al., 2014;
Bousserez et al., 2015). The kernels (i.e., covariance func-
tions) of GP models are employed to capture the intricate
spatiotemporal correlation structures of OCO-2/3 data. PPLs
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have been used in previous studies (e.g., Jeong et al., 2017,
2018), but modern PPLs provide significantly improved ca-
pabilities to implement GP models. Specifically, the built-in
functions for GP kernels in modern PPLs enhance our ability
to model the covariance structure of OCO-2/3 data.

This study applies inverse modeling techniques following
the GP/ML methods described in further detail in Sect. 2.4 to
estimate CO2 fluxes in California for the full year of 2020 us-
ing XCO2 observations from OCO-2 and OCO-3. The year
2020 had numerous anomalous features likely impacting to-
tal CO2 fluxes in California, such as reduced anthropogenic
emissions caused by coronavirus disease pandemic (COVID-
19) lockdown procedures (Yañez et al., 2022), extreme wild-
fire activity (Jerret et al., 2022; Safford et al., 2022), and
drought conditions (Steel et al., 2022). The impact that these
types of events have on CO2 fluxes are challenging to predict
and difficult to replicate in bottom-up emission inventories.
This study is structured as follows: Sect. 2 presents the for-
ward and inverse models, satellite observations, and bottom-
up emission inventories; Sect. 3 discusses the results of the
study; and Sect. 4 contains the discussion and conclusions.

2 Methods

2.1 GEOS-Chem forward model

The forward model used to calculate atmospheric concen-
trations of CO2 corresponding to OCO-2 and OCO-3 ob-
servations was the GEOS-Chem (version 14.0.1) chemical
transport model (CTM) (Bey et al., 2001; Nassar et al.,
2010). GEOS-Chem was used to simulate XCO2 concen-
trations corresponding to each OCO-2 and OCO-3 retrieval
for a nested North American domain (10–70° N, 40–140° W)
driven by Modern-Era Retrospective Analysis for Research
and Applications, Version 2 (MERRA-2) meteorology at
a 0.5°× 0.625° spatial resolution using 47 vertical levels
from the surface to 0.01 mbar. Chemical boundary condi-
tions (BCs) of CO2 used in the nested simulations were pro-
vided by a global GEOS-Chem-based 4D-Var data assimila-
tion system that was run at a 4.0°× 5.0° horizontal spatial
resolution using 47 vertical levels. These global simulations
of CO2 for the year 2020 were constrained using inverse
model methods through the assimilation of OCO-2 XCO2
land nadir+ land glint (LN+LG) retrievals and global in
situ observations (Philip et al., 2019, 2022). The bottom-up
emission inventories for CO2 fluxes from fossil fuel (FF),
net ecosystem exchange (NEE), wildfires, and oceans are de-
scribed in Sect. 2.2. GEOS-Chem was initialized with chem-
ical BCs and run for the entire year of 2020 with 2 months of
spin-up time.

Total atmospheric CO2 and source-apportioned (i.e., FF,
NEE, fire, ocean, and boundary conditions) concentrations
were calculated over California for all OCO-2 and OCO-
3 observations. These source-attributed concentrations were
calculated with sensitivity simulations by turning off indi-

vidual source fluxes or boundary conditions and comparing
these results to the total atmospheric CO2 concentration pre-
dictions from simulations with all sources included. Model-
simulated XCO2 corresponding to each OCO-2 and OCO-3
retrieval (H ) were derived through the convolution of model
CO2 profiles with the column averaging kernel vector (a)
from OCO-2 and OCO-3 following Eq. (1):

H =XCO2a + a
T (f (σ (x))− ca), (1)

where prior profiles of CO2 (ca) and prior column
CO2(XCO2a ) represent prior information used in the OCO-
2 and OCO-3 XCO2 retrieval (O’Dell et al., 2012) and
f (σ (x)) represents the GEOS-Chem-predicted vertical pro-
files of CO2 interpolated to the retrieval levels of OCO-2 and
OCO-3.

2.2 Bottom-up emission inventories

Bottom-up emission inventories used to drive GEOS-Chem
simulations are described in Table 1, and seasonally averaged
emission maps are displayed in Fig. S1 in the Supplement.
The Vulcan version 3.0 FF emission inventory covers all an-
thropogenic source sectors of CO2 in California (i.e., res-
idential, commercial, industrial, electricity production, on-
road, non-road, commercial marine vessel, airport, rail, and
cement) between 2010–2015 (Gurney et al., 2020a). To cre-
ate a spatially and temporally resolved Vulcan inventory in
California for the year 2020 (V 2020M), the hourly 2015
Vulcan emissions (V 2015M) are scaled by an annual and a
monthly scaling factor using Eq. (2). The sector-specific an-
nual scaling factor (RCARB

2020/2015) was calculated as the ratio
of annual emissions from that sector in the CARB inventory
for 2020 (which accounts for COVID-19 lockdown emission
reductions; CARB, 2022) to the 2015 emissions. The sector-
specific monthly scaling factor (RM) was calculated from ac-
tivity data from each sector, as the ratio of monthly activity to
annual average activity, and used to appropriately distribute
reductions due to the COVID-19 lockdown throughout the
year.

V 2020M = V 2015M×R
CARB
2020/2015×RM (2)

The Vulcan inventory for 2015 was then multiplied by these
scaling factors to produce V 2020M. Both Vulcan and CARB
provide the same sector-level emission estimates, so the scal-
ing was done for each emission sector separately. The scaled
2020 Vulcan inventory was then aggregated to 0.1°× 0.1°
(latitude× longitude).

Natural CO2 emission source (NEE, wildfire, and ocean)
estimates were available for the year 2020, and no scaling
was necessary. Biospheric fluxes of CO2 were derived us-
ing monthly 5 km× 5 km NEE calculations from the Solar-
Induced Fluorescence for Modeling Urban biogenic Fluxes
version 1 (SMUrF v1; Wu et al., 2021) model. SMUrF calcu-
lates gross primary production (GPP), respiration (Reco), and
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Table 1. Bottom-up prior CO2 emission inventories and the 2020 terrestrial carbon budget (Tg CO2 yr−1) for California.

Source Inventory Spatial Annual flux: Reference
name resolution California

FF Vulcan 1 km× 1 km 338.4 Gurney et al. (2020a)
NEE SMUrF 5 km× 5 km −99.2 Wu et al. (2021)
Fire GFED (modified) 500 m× 500 m 103.3 van Wees et al. (2022)
Ocean CarbonTracker (CT2022) 100 km× 100 km – Jacobson et al. (2023)
Net 342.5

NEE (=Reco – GPP) fluxes using (1) land cover type 500 m
MODerate resolution Imaging Spectroradiometer (MODIS)
data, (2) solar-induced fluorescence (SIF) from the OCO-
2 sensor, (3) aboveground biomass at a 100 m resolution
from GlobBiomass, (4) observed flux measurements from
eddy-covariance towers, and (5) gridded soil and air tem-
perature data products. Wildfire CO2 emissions were imple-
mented using a modified Global Fire Emissions Database
version 4 (GFED4) dataset (van Wees et al., 2022). This
modified version of GFED4 was produced using MODIS
burned area and fire detection data with a spatial resolution
of 500 m. Finally, oceanic CO2 fluxes were derived from Car-
bonTracker (CT2022; Jacobson et al., 2023) 1°× 1° output.
These CT2022 coarse-spatial-scale fluxes were interpolated
to match the GEOS-Chem model spatial resolution.

2.3 OCO-2 and OCO-3 observations

NASA has two operational satellites with the spatial res-
olution and precision necessary to constrain point-source
to regional- and global-scale CO2 emissions (i.e., OCO-2
and OCO-3). OCO-2 was launched in 2014 and is a Sun-
synchronous polar-orbiting satellite which is in the After-
noon Constellation (A-train) of Earth observing satellites
with a local overpass time of ∼ 13:30 LT (local time) retriev-
ing XCO2 at a 1.3 km× 2.3 km spatial resolution (Crisp et
al., 2017). OCO-3 has been aboard the International Space
Station (ISS) since 2019 and has an orbital inclination of
51.6°, providing observations at varying times of the day (El-
dering et al., 2019). OCO-3 makes orbital observations; how-
ever, it differs from OCO-2, as it has the capability to make
snapshot area maps (SAMs) which cover 80 km× 80 km at
the native spatial resolution of 1.6 km× 2.2 km. The XCO2
retrievals from OCO-2 and OCO-3 both use the Atmospheric
Carbon Observations from Space (ACOS) algorithm (O’Dell
et al., 2018), and this study applied version 11r and ver-
sion 10.4r of OCO-2 and OCO-3, respectively. Retrievals
of XCO2 from the LN+LG retrieval modes were used for
comparison to GEOS-Chem and to estimate posterior state-
wide CO2 emissions. As individual high-spatiotemporal-
resolution OCO-2 and OCO-3 retrievals do not provide in-
dependent pieces of information, they are averaged to the
0.5°× 0.625° spatial resolution of GEOS-Chem in this study.

In total, 1614 co-located model–satellite data points were
available during 2020 to evaluate prior XCO2 predictions
and constrain posterior CO2 emissions. The seasonal dis-
tribution (meteorological seasons: winter – December, Jan-
uary, and February – DJF; spring – March, April, and May
– MAM; summer – June, July, and August – JJA; fall –
September, October, and November – SON) of these co-
locations was as follows: 386, 299, 551, and 378 for the win-
ter, spring, summer, and fall months, respectively. The spatial
distribution of the observational coverage provided by OCO-
2+OCO-3 during 2020 is displayed in Fig. S2.

2.4 Inverse model technique

The inverse model developed for this study used a GP/ML
framework. GP is a flexible, nonparametric approach, distin-
guished by its use of hyperparameters, that defines a prior
probability distribution over functions (Williams and Ras-
mussen, 2006; Biship, 2007; Murphy, 2022). A GP is fully
characterized by its mean function m (x) and kernel k

(
x,x′

)
:

f (x)∼ GP(m(x),k(x,x′)), (3)
y = f (x)+ ε, (4)

where y is the OCO-2 and OCO-3 satellite observation
vector, including additive noise ε (i.e., noisy version of
f (x)). The noise term (ε) is modeled as ε ∼N (0, σ 2

noiseI),
where I is the identity matrix and σ 2

noise is the noise vari-
ance hyperparameter. As described in Sect. S3, σnoise is as-
signed a half-Cauchy prior distribution, and its posterior
is inferred using the No-U-Turn Sampler (NUTS; Hoff-
man and Gelman, 2014). Although sampling every pos-
sible value of the function f (x) across a continuous do-
main is supported, we sample a finite set of points (i.e.,
OCO-2/3 observation time and locations), leading to a vec-
tor of function values, f = [f (x1) , f (x2) , . . ., f (xN )],
which follows a joint Gaussian distribution with mean vec-
tor µ=m (x1) , m(x2), . . ., m(xN ) and covariance matrix
[Cov]i,j = k

(
xi, xj

)
. In this work, the terms “kernel” and

“covariance function” are used synonymously.
For our flux inference application, we define the mean

function m (x) as follows:

m (x)= Kλ+D, (5)
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where K is the input data, a n×kmatrix, derived from GEOS-
Chem model predictions; λ is a vector (k× 1) of scaling fac-
tors, which quantify the adjustment required for our prior
emission estimates to be consistent with observations; andD
is the systematic bias. In this work, we estimate a single value
of D for each month in 2020. Thus, each element of vector
D is populated with the same value for each month of 2020.
We assume that this bias term captures systematic bias due to
instrument error, model transport error, and GEOS-Chem BC
errors (Jeong et al., 2017). We show the probability density
function of the estimated bias hyperparameter by month in
Fig. S3. The median values range from −0.99 to 0.71 ppm,
depending on the month. As noted, this value reflects the
combined bias arising from atmospheric transport, bound-
ary conditions, or other potential sources of error. This ap-
proach to addressing model bias has been applied in previous
studies (e.g., Jeong et al., 2017). In this work, we included
the bias term in the mean function, Eq. (5). As in Jeong et
al. (2017), we model the bias term (D) as a single compo-
nent in the GP mean function due to the lack of prior infor-
mation needed to separate it into identifiable sources (e.g.,
transport or boundary condition errors). Introducing multi-
ple terms without such constraints would risk overfitting and
model instability. Here, D and λ are considered a GP hyper-
parameter because they directly scalem (x). This mean func-
tion has been widely adopted in atmospheric inverse anal-
ysis for estimating greenhouse gas emissions (Jeong et al.,
2017; Ye et al., 2020; Ohyama et al., 2023). In GP model-
ing, it is important to note that the function Kλ+D is used
as the mean of the latent (i.e., unknown) GP function, f (x).
In traditional Bayesian inversion methods (e.g., Jeong et al.,
2017), the mean function is directly related to y in the form
y=Kλ+D+ ε. The prior distributions for λ and other hy-
perparameters are described in Sect. S3.

The second component of a GP is the covariance function
(i.e., GP kernel), which dictates how function values at differ-
ent points relate. For the spatial part of the kernel, we employ
the Matérn 5/2 kernel, a widely used covariance function for
modeling spatial data (Bevilacqua et al., 2022). The Matérn
5/2 kernel between two spatial points can be expressed as
follows:

k
(
x,x′

)
=

(
1+

√
5rls
+

5r2

3l2s

)
exp

(
−

√
5r

ls

)
, (6)

r =

√(
x1− x

′

1
)2
+
(
x2− x

′

2
)2
, (7)

where r is the Euclidean distance between the points x and
x′, x1 and x2 represent longitude and latitude, and ls is the
spatial length scale. The length scale is typically prescribed,
estimated, or computed based on independent data (Baker et
al., 2022). In this work, we estimate it simultaneously with
other hyperparameters (e.g., the scaling factors). We used the
squared exponential kernel for the temporal covariance to ex-
press the relationship between two temporal points:

kt
(
x,x′

)
= exp

(
−

(
x3− x3

′
)2

2l2t

)
, (8)

where x3 denotes the time and lt is the temporal length scale.
The spatiotemporal kernel matrix is then constructed by mul-
tiplying the spatial and temporal kernels:

kst
(
x,x′

)
= σ 2ks

(
x,x′

)
·kt
(
x,x′

)
, (9)

where σ 2 denotes the variance of the kernel, which scales the
amplitude of the function values predicted by the GP. The
spatiotemporal kernel, kst, is realized by element-wise mul-
tiplication of the spatial, ks, and temporal, kt, kernels. The
resulting spatiotemporal kernel maintains the dimensionality
of its constituent kernels.

We perform inversions using three distinct mean functions,
as depicted in Eq. (5). Model 1 incorporates a systematic bias
termD, assuming a normal distribution with a mean of 0 and
a standard deviation (SD) of 0.5 ppm. Model 2 resembles
Model 1 but adopts a standard deviation of 1.0 ppm for the
bias term. In contrast, Model 3 excludes the systematic bias
term D and instead corrects the OCO-2 or OCO-3 a priori
and background concentrations by applying scaling factors,
thus addressing any biases in the OCO-2 or OCO-3 a priori
and background concentrations multiplicatively. We evalu-
ate the three GP models using their expected log pointwise
predictive density (ELPD), a metric for model predictive per-
formance. Further details on the model comparison through
ELPD are provided in Sect. S1 and Fig. S4.

We employed the Markov chain Monte Carlo (MCMC)
method to estimate the hyperparameters of the GP model
framework. MCMC has been utilized in several atmospheric
inverse modeling studies (Ganesan et al., 2014, 2015; Jeong
et al., 2016, 2017, 2018). However, we adopt NUTS, a mod-
ern and advanced MCMC algorithm (Hoffman and Gelman,
2014). We utilized the PyMC PPL (Abril-Pla et al., 2023) to
implement the NUTS algorithm for MCMC sampling, gen-
erating 4000 samples each month following a tuning phase
of 3000 steps. More details on the GP model structure and
the prior distribution for the hyperparameters are given in
Sect. S2. Using the prior distributions specified in Sect. S3,
we inferred the posterior distributions of the GP hyperparam-
eters using the NUTS algorithm, implemented via the PyMC
framework. In our approach, all hyperparameters are esti-
mated jointly; that is, the scaling factors are estimated simul-
taneously with other parameters, such as the kernel length
scales (Jeong et al., 2025). This method enables full poste-
rior inference of the hyperparameters, offering a more robust
characterization of uncertainty than point estimation meth-
ods. More details on hyperparameter optimization for the GP
model are provided in Jeong et al. (2025).
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2.5 Evaluation techniques

Prior and posterior emissions can be indirectly evaluated us-
ing atmospheric observations for accuracy and uncertainty
applying normalized mean bias (NMB) and root-mean-
square error (RMSE), respectively (Vermote and Kotchen-
ova, 2008). GEOS-Chem forward and inverse model sim-
ulations were evaluated using daily OCO-2 and OCO-3
LN+LG XCO2 retrievals during 2020. These model pre-
dictions were evaluated for each season to determine the ac-
curacy of prior and posterior emissions and BCs which have
large variability throughout the year (see seasonal a priori
emissions in Fig. S1). General statistical parameters were
used to evaluate model simulations: NMB, RMSE, correla-
tion coefficient (R), and simple ordinary least-squares linear
regression (slope, y intercept, etc.). Calculations of the NMB
are normalized by OCO-2 and OCO-3 observation values, as
shown in Eq. (10):

NMB=
∑N
i=1(Mi − yi)∑N

i=1yi
, (10)

where N is the total number of model (Mi) and OCO-2 and
OCO-3 (yi) co-locations. Equation (11) is used to calculate
RMSE values:

RMSE=

√∑N
i=1(Mi − yi)2

N
. (11)

3 Results

3.1 California prior emissions

According to prior emission inventories used in this study,
the majority of CO2 emitted in California is from anthro-
pogenic FF sources (see Table 1). The Vulcan FF emis-
sion inventory, scaled to 2020 emissions using the CARB
state-wide inventory, suggests that anthropogenic sources
contributed 338.4 Tg CO2 yr−1, and these sources are pri-
marily located in the Los Angeles Basin and San Fran-
cisco Bay areas, where there are highly populated cities (see
Fig. S1). It is estimated that CO2 emissions in 2020 were re-
duced by ∼ 10 % compared to 2019 due to COVID-19 re-
strictions (CARB, 2022). According to GFED4, a total of
103.3 Tg CO2 yr−1 was emitted from biomass burning during
2020, which was one of the most active Californian wildfire
years on record. Figure S1 shows that the majority of these
emissions came from the large wildfires which occurred in
northern and central California. These fire emissions were
nearly offset by the biospheric uptake of CO2 in California
of −99.2 Tg CO2 yr−1 estimated by the SMUrF model (i.e.,
our prior model). The largest NEE uptake was estimated to
have occurred in the forested regions of northern California
and the Sierra Nevada, while the largest respiration fluxes
were in the Sacramento Valley and San Joaquin Valley areas
and the Tulare Basin.

For emission sources other than FF, such as wildfire and
NEE, CO2 fluxes in the bottom-up data products had no-
ticeable seasonality (see Fig. S1). Wildfires in 2020 had
pronounced emissions during the summer and fall months
compared to minimal emissions in the winter and spring,
the latter of which comprise California’s rainy season. The
fire season of 2020 was exceptionally active, with multiple
large complexes occurring between August and September
(Keeley and Syphard, 2021). Prior emissions suggest that
fires emitted 95.4 Tg CO2 in California between August and
September, which accounted for 92 % of the annual total.
Biospheric fluxes also displayed large seasonality, with the
highest uptake in the warmer growing season during the
spring and summer and the highest respiration rates dur-
ing the colder months of the winter and fall. NEE uptake
peaked between May and June, with average monthly uptake
rates of around −27.0 Tg CO2, while respiration peaked be-
tween September and October, with average monthly rates of
∼ 11.0 Tg CO2. Less seasonality is apparent in Vulcan 2020
FF emissions for California, with monthly emission rates
ranging between 23.0 and 32.0 Tg CO2; however, our CARB-
adjusted prior FF model does capture the decrease in anthro-
pogenic CO2 emissions upon the initiation of the COVID-19
lockdown during spring 2020.

3.2 Evaluation of model-simulated XCO2 using prior
emissions

To indirectly evaluate a priori bottom-up emissions, GEOS-
Chem forward model simulations were evaluated with OCO-
2 and OCO-3 XCO2 retrievals. Figure 1 shows the com-
parison of modeled and satellite XCO2 values using prior
emissions and observations by season. A time series of daily
co-located prior and posterior model-predicted XCO2 com-
pared to OCO-2/3 observations during the year 2020 is also
displayed in Fig. S6 (histogram of annual prior and pos-
terior residuals displayed in Fig. S7). For spring months,
GEOS-Chem using prior emissions displayed a slight high
bias (NMB= 1.1 ppm) and low correlation (R = 0.38), as the
model did not capture the variability in XCO2 retrieved by
satellites. While the model captures the mean XCO2 val-
ues observed, high and low values observed in the spring
months were not replicated by the model (linear regres-
sion slope= 0.24). A similar evaluation was derived for
the winter months, as the model had a similar high bias
(NMB= 1.0 ppm), low correlation (R = 0.39), and relatively
low linear regression slope (0.24). A somewhat different
comparison was calculated between the model with prior
emissions and observations for the summer and fall months.
The GEOS-Chem simulations during the summer were able
to capture the variability in satellite-retrieved XCO2 val-
ues, with a high correlation (R = 0.73) and a linear re-
gression slope of 0.75. The model and prior emissions re-
sulted in a small negative bias during the summer months
(NMB=−0.4 ppm). The prior model runs had the least bias
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in the fall months (NMB=−0.3 ppm) and also displayed a
moderate correlation (R = 0.52) and linear regression slope
(0.34). The evaluation of the prior model displayed simi-
lar RMSE values throughout 2020, ranging between 1.4 and
1.8 ppm, with the largest random error in the fall months and
the lowest values in the summer. GEOS-Chem using prior
emission displayed biases and errors which varied by sea-
son, suggesting that observational constraint could improve
the estimates of CO2 emission in California. The following
sections present the inversion of CO2 emissions when assim-
ilating satellite-derived XCO2 values and the evaluation of
posterior emissions.

3.3 Inverse GP model evaluation

This section describes the evaluation of the GP inversion
model using posterior predictive checks (PPCs). PPCs en-
sure that the inversion results accurately represent the ob-
served data (Gelman et al., 1996). The method involves using
the posterior distribution of the model parameters to generate
new datasets, which are then compared to the actual observed
data. PPCs assess whether the model is capable of producing
data similar to the observed data, thereby providing insight
into the model’s ability to capture the data-generating pro-
cess accurately. Section S1 describes the comparison of the
different GP inversion model setups and how Model 1 per-
forms the most accurately. Due to the best performance by
Model 1, the rest of the results in this study are based on
these outputs. Figure 2 shows PPCs using probability den-
sity functions (PDFs) for the middle of each season (except
January) employing Model 1. Due to an insufficient num-
ber of OCO-2 and OCO-3 XCO2 observations (N < 10) in
January, the PPC for February is included instead to repre-
sent the winter season. We construct the PDFs by utilizing
local enhancements in XCO2 concentrations after subtract-
ing the OCO-2 or OCO-3 a priori XCO2 and modeled BCs
from the total satellite XCO2 concentrations. The results in
Fig. 2 demonstrate that the data generated from the Model 1
posterior parameters generally agree with observations.

The comparison between the posterior predictions from
the GP inversion and the observed satellite XCO2 data in-
dicates an improvement in the RMSE for all seasons (pos-
terior RMSE values on average ∼ 17 % lower compared to
prior model simulations), suggesting a more accurate model
fit than the initial prior predictions (see Fig. 1). The GP inver-
sion was also able to remove the majority of systematic bias
imposed by the prior emissions and BCs used in the nested
GEOS-Chem simulations and to improve the correlation with
satellite XCO2 observations. For spring months, posterior
model simulations displayed a small bias of ∼ 0.3 ppm and a
slightly improved correlation (R = 0.39) compared to prior
model results. Posterior model results for the summer sea-
son displayed nearly zero bias and high correlation values
of 0.79. The statistical evaluation of posterior model per-
formance in the fall months improved compared to prior

simulations with a bias of ∼−0.1 ppm and a correlation
of 0.57. Finally, for winter months, posterior results had a
bias of ∼ 0.1 ppm, a significant improvement on the value
of 1.0 ppm from the prior result, and a moderate correlation
of 0.41. Overall, posterior results from the GP inversion per-
formed in this study proved to be more accurate compared
to prior simulations, suggesting that the emission estimates
from these inverse model runs are robust, as expected from
the PPCs.

3.4 Posterior emissions by season and sector

We estimate state-wide posterior emissions by season and
sector based on Model 1, which was evaluated to perform the
best according to the ELPD metric results (see Sect. S1), and
the seasonally averaged posterior emissions are displayed in
Fig. 3. Figure 4 shows the seasonal state-wide total poste-
rior CO2 fluxes from all three GP inversion models and the
prior estimates for each source sector in California during
2020 (monthly averaged prior and posterior state-wide CO2
fluxes displayed in Fig. S8). In general, all three GP inversion
models are relatively consistent with respect to median pos-
terior emission estimates for all source sectors and seasons.
This consistency suggests that the GP models are robust with
respect to inferring posterior emissions, despite slight per-
formance variations by season and sector for each model.
The rest of the results discussed in this section are focused
on posterior estimates from Model 1. Figure 4 shows that
posterior FF emissions align closely with the prior estimates
on a seasonal scale, indicating consistency between the ini-
tial assumptions and the inversion-derived results. Posterior
FF emissions are most consistent with prior estimates during
the spring and summer months, when COVID-19 lockdown
restrictions were most strict, suggesting that corrections ap-
plied to the 2020 Vulcan data using CARB data were rea-
sonable compared to observations. For the fall and winter
seasons, posterior FF emission estimates were reduced by
10–15 Tg CO2 compared to a priori assumptions, although
the reduction is within the margin of error. Seasonal poste-
rior 2σ uncertainty (95 % confidence level) had a range of
20–30 Tg CO2, which is on average ∼ 30 % of the seasonal
posterior median FF emission values. Interestingly, from the
monthly averaged state-wide emissions shown in Fig. S8, it
can be seen that some months in the spring, summer, and
fall of 2020 had posterior FF fluxes that were further reduced
compared to the prior emissions, emphasizing the strong re-
duction in greenhouse gas (GHG) emissions due to COVID-
19 lockdown restrictions.

Posterior NEE fluxes from the GP inversion indicate that
prior estimates assumed carbon uptake that was too strong
during the drought year of 2020, suggesting an overestima-
tion of the ecosystem’s carbon sequestration capacity. Be-
sides the fall season, posterior NEE was much less nega-
tive compared to the a priori fluxes, and it even transitioned
from a small sink to a small source during the winter season
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Figure 1. Comparison of seasonal GEOS-Chem XCO2 predictions (ppm) using prior (blue) and posterior (purple) emissions and observed
OCO-2 and OCO-3 concentrations (ppm). This result is based on the GP inversion model with a systematic bias of 0.5 ppm (Model 1). RMSE
values for the prior and posterior model simulations are presented in the panel legends.

(see Figs. 3 and 4). Posterior NEE fluxes are 25–35 Tg CO2
less (lower NEE) compared to prior estimates in the grow-
ing seasons of the spring and summer. From Fig. S8, it can
be seen that posterior NEE fluxes were near neutral during
some of the summer months, compared to the large uptake
suggested by prior fluxes. This is likely due to the strong
drought and hot temperatures experienced in California dur-
ing 2020 greatly reducing the CO2 uptake during the grow-
ing season. The posterior adjustments during the fall were
smaller and tended to be consistent with prior estimates from
SMUrF. Posterior NEE emissions were consistent with the
prior estimates within a 2σ uncertainty range for the spring
and fall seasons; however, they were not statistically consis-
tent for winter and summer months. Seasonal posterior NEE
displayed the largest uncertainty values of all source sectors
in California, and these uncertainties were on average∼ 95 %
of the seasonal posterior median emission value.

The inversion results for fire emissions imply that the prior
estimates are consistent with the posterior results within the
2σ uncertainty range, although the posterior median values

for summer were lower than the prior. As expected, prior
and posterior CO2 emissions from fires were small during
the winter and spring months. Posterior median seasonal to-
tal CO2 emissions ranged between 20 and 50 Tg CO2 for
the summer and fall seasons, respectively. Constraints from
OCO-2 and OCO-3 observations reduced emission estimates
compared to the prior during both of these seasons with
the largest reduction occurring for summer months (−21 %).
Seasonal posterior fire emissions displayed moderate to high
uncertainty values, and these uncertainties were on average
∼ 80 % of the seasonal posterior median emission values.

3.5 State-wide posterior total CO2 emissions

This section describes the annual state-wide CO2 flux es-
timates constrained using OCO-2 and OCO-3 observations
for each source sector in 2020. Table 2 shows the re-
sults of the prior and posterior state-wide flux estimates
for each source sector and the overall net terrestrial flux.
The PDFs of these annual state-wide CO2 fluxes are dis-
played in Fig. 5 (seasonal sector CO2 flux PDFs shown in
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Figure 2. Evaluation of the GP inverse model (Model 1) performance using PPCs for months representative of each season in 2020 (April –
spring; July – summer; October – fall; February – winter). The observed satellite XCO2 data (y; in units of ppm) are represented by the bold
lines, while the fine lines (yrep) depict 4000 samples (in units of ppm) simulated with parameters drawn from the posterior distributions. Each
sample (i.e., each fine line) for each month is of equivalent size to the number of the model–observation co-locations (noted in parentheses).

Fig. S9). Both the table and figure show that the net state-
wide CO2 fluxes from both prior and posterior estimates
are nearly identical at between 340 and 350 Tg CO2 yr−1.
However, larger differences are evident when the state-wide
annual emissions are broken down by source sector. Large
constraints were imposed by OCO-2 and OCO-3 obser-
vations when focusing on NEE fluxes, where the poste-
rior median estimate (−36.8 Tg CO2 yr−1; range of −71.7
to −6.0 Tg CO2 yr−1; 95 % confidence level) was 63 %
lower (reduced carbon sink) compared to prior estimates
(−99.2 Tg CO2 yr−1). Prior emissions from wildland fires
were also reduced when constrained by satellite observa-
tions, as state-wide posterior estimates of 68.0 Tg CO2 yr−1

(range of 24.9–126.2 Tg CO2 yr−1; 95 % confidence level)
were ∼ 35 % lower compared to a priori estimates. Finally,
posterior FF emissions were 317.8 Tg CO2 yr−1 (range of
271.3–364.0 Tg CO2 yr−1; 95 % confidence level), which is
∼ 5 % lower compared to the prior estimates.

For total CO2 fluxes, including all source sectors, Califor-
nia state-wide emissions are constrained with relatively high
confidence using OCO-2 and OCO-3 XCO2 observations, as

Table 2. The median prior and posterior (2σ range; 95 % confidence
level) California CO2 budget for 2020.

Source Prior CO2 flux Posterior CO2 flux
(Tg CO2 yr−1) (Tg CO2 yr−1)

FF 338.4 317.8 (271.3 to 364.0)
NEE −99.2 −36.8 (71.7 to −6.0)
Fire 103.3 68.0 (24.9 to 126.2)
Total 342.5 349.6 (272.8 to 428.6)

the 2σ standard deviation on this total flux is ∼ 23 % of the
annual median posterior estimate. Annual posterior emission
estimates were most confident for FF sources, as the 2σ stan-
dard deviation from these sources was 47 Tg CO2, which is
∼ 15 % of the posterior median value. Natural fluxes of CO2
(i.e., NEE and wildland fire) in California displayed higher
uncertainties with respect to their posterior estimates, as indi-
cated by the wider PDFs in Fig. 5. The 2σ standard deviation
of annual posterior NEE fluxes was on average∼ 35 Tg CO2,
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Figure 3. Seasonally averaged 2020 posterior CO2 emissions (µmol m−2 s−1) for the state of California. Emissions from the terrestrial
portion of California are shown for FF (left column), NEE (middle column), and Fire (right column) for the spring (first row), summer
(second row), fall (third row), and winter (fourth row) months.

which is ∼ 95 % of the posterior median value, indicating
that this is the most uncertain carbon flux when using satel-
lites to constrain emissions. Posterior annual fire emissions
were also associated with larger uncertainty, as the 2σ un-
certainty range was 43 Tg CO2 (64 % of the median posterior
flux).

4 Discussion and conclusions

This study presents the first attempt to constrain state-wide
CO2 fluxes from California using spaceborne XCO2 obser-
vations employing both OCO-2 and OCO-3. We chose to fo-
cus on the year 2020, as this time period was characterized by
anomalous features likely impacting total CO2 fluxes in Cal-
ifornia, including reduced anthropogenic emissions caused
by the COVID-19 lockdown (Yañez et al., 2022), elevated
wildfire activity (Jerret et al., 2022; Safford et al., 2022),

Atmos. Chem. Phys., 25, 8475–8492, 2025 https://doi.org/10.5194/acp-25-8475-2025



M. S. Johnson et al.: State-wide California 2020 carbon dioxide budget 8485

Figure 4. Sectoral emission estimates (Tg CO2) by season from the scaled Vulcan a priori data and those using three distinct models: Model
1 (“SD= 0.5”), where a standard deviation (SD) of 0.5 ppm is applied to the prior probability distribution for the systematic bias; Model 2
(“SD= 1.0”), with a standard deviation of 1.0 ppm for the prior for the systematic bias; and Model 3 (“Scaling”), which optimizes the OCO-2
and OCO-3 a priori and model-predicted BC concentrations using scaling factors analogous to sector emission adjustments. The error bars in
this figure reflect the 2σ uncertainty (i.e., 95 % confidence) values for each source sector. All 2σ confidence intervals were calculated using
4000 MCMC samples.

and drought occurrence (Steel et al., 2022). In this study,
assimilating OCO-2 and OCO-3 LN+LG XCO2 observa-
tions into a GP inversion framework was demonstrated to
be effective for constraining state-wide CO2 fluxes with a
high degree of accuracy. The median posterior top-down an-
nual total CO2 flux of 349.6 Tg CO2 yr−1 (range of 272.8–
428.6 Tg CO2 yr−1; 95 % confidence level) was consistent
with the a priori estimate and constrained with low 2σ uncer-
tainty levels of ∼ 23 %. The posterior uncertainty estimates
of this work are similar to other recent studies that have used
OCO-2 and OCO-3 XCO2 data to constrain city-wide CO2
emissions in California (e.g., Roten et al., 2023), other city
flux estimates (e.g., Wu et al., 2020), and country-wide CO2
budgets (e.g., Byrne et al., 2023). Our study adds to the grow-
ing evidence on how satellite XCO2 data can be used to con-
fidently estimate city- to country-scale CO2 fluxes.

CARB inventories for the years 2019 and 2020 sug-
gest that anthropogenic FF CO2 emissions were reduced
by ∼ 10 % in 2020 compared to the year prior in Califor-
nia. In this study, the state-wide annual FF CO2 source was

estimated, using the GP inversion assimilating OCO-2 and
OCO-3XCO2 data for 2020, to be 317.8 Tg CO2 yr−1, which
is∼ 5 % lower than the prior flux assumed. This top-down es-
timate is ∼ 15 % higher compared to the CARB 2020 inven-
tory, which calculated state-wide anthropogenic CO2 emis-
sions for 2020 to be 277.7 Tg CO2 yr−1. The state-wide FF
CO2 emissions estimated using OCO-2 and OCO-3 data in
this study had posterior uncertainties of ∼ 15 % on an an-
nual scale and are, therefore, statistically consistent with the
CARB 2020 inventory. The difference between the bottom-
up and top-down median FF CO2 emission estimate may be
due to errors and uncertainties in the GP inversion and errors
in the bottom-up CARB inventory, such as missing sources.
It appears that the results in our study for FF emission es-
timates are robust, as they compare well to emission totals
in California for the year 2020 from CARB and posterior
top-down estimates are associated with low posterior uncer-
tainty. Our PPC results, which compare the simulated data
from posterior parameters with observations, provide addi-
tional confidence in our GP inversion models.
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Figure 5. Annual CO2 emission totals (Tg CO2) for California by source sector in 2020. The numerical labels at the base of each PDF denote
2.5-, 50- (indicated by the bold vertical line), and 97.5-percentile estimates of the posterior emissions, respectively. The vertical dotted line
indicates the prior emission estimate, with the corresponding value displayed. Note that the annual PDF presented here was derived by
aggregating seasonal MCMC samples.

The main natural sources/sinks of CO2 in California (i.e.,
NEE and wildland fire) were also estimated in this study us-
ing OCO-2 and OCO-3 XCO2 data. The year 2020 was a
year of drought in California and also resulted in extremely
high levels of wildfire activity. The GP inversion resulted in
posterior NEE fluxes that were greatly reduced compared to
the initial best-guess a priori data. On an annual scale, the
posterior estimate for NEE was −36.8 Tg CO2 yr−1, which
was 63 % lower (reduced carbon sink) than prior estimates
driven by satellite SIF retrievals. It is important to note
that 2020 was towards the end of a multiyear drought that
plagued California, and it would be expected that the terres-
trial biosphere would be less effective in its uptake of car-
bon (Fu et al., 2022). It should also be noted that the me-
dian annual posterior NEE estimates derived in this study
with satellite retrievals were associated with uncertainty lev-
els of ∼ 95 %. The larger uncertainty value associated with
our posterior NEE estimates, compared to FF sources, is ex-
pected, as satellite retrievals are less sensitive to small, dif-
fuse signals of CO2 enhancements associated with the terres-
trial biosphere compared to larger FF point sources. Wild-

fire activity was elevated in California during the time of
this study, and we estimated that these sources contributed
68.0 Tg CO2 yr−1 to the total state-wide annual carbon bud-
get. The posterior estimate derived in our GP inversion was
∼ 35 % lower compared to the prior estimate; however, this
estimate still represents highly elevated CO2 emissions from
this natural source. CARB estimated that∼ 100 Tg CO2 yr−1

was emitted from wildfires in 2020 (https://ww2.arb.ca.gov/
wildfire-emissions, last access: 22 December 2023), which is
in line with the prior estimate from GFED4 used in our study.
CARB uses an emissions model that is similar to GFED4, so
this is to be expected. The lower posterior wildfire estimate
using our GP inversion system was associated with uncer-
tainty levels (∼ 64 % of the median posterior flux) that were
lower compared to NEE and statistically consistent with the
CARB 2020 state-wide estimate. Prior emission estimates
from wildfires are generally uncertain, and satellite obser-
vations of the CO2 resulting from these episodic events are
challenging; thus, it is not surprising that posterior fire emis-
sions are one of the more uncertain components of the 2020
California CO2 budget.

Atmos. Chem. Phys., 25, 8475–8492, 2025 https://doi.org/10.5194/acp-25-8475-2025

https://ww2.arb.ca.gov/wildfire-emissions
https://ww2.arb.ca.gov/wildfire-emissions


M. S. Johnson et al.: State-wide California 2020 carbon dioxide budget 8487

Given that individual state- and country-wide CO2 flux
datasets generally have over a year of latency, satellite data
become vital, as these spaceborne data are well equipped to
provide more real-time estimates of these emissions. This is
an important aspect of satellite data, especially during times
of anomalous CO2 fluxes due to economic activity, wildfire,
or flood/drought. Both this study and the work by Roten et
al. (2023) clearly demonstrated the ability of OCO-2 and, in
particular, OCO-3 to help constrain FF emission estimates in
California during the COVID-19 lockdown. OCO-3 is par-
ticularly effective for estimating city-wide (or other point-
to area-source) fluxes using the data extracted from SAMs.
These area-wide observations (∼ 80 km× 80 km) greatly im-
prove the observational coverage compared to OCO-2 (nar-
row swath of only∼ 10 km). These SAMs allow for observa-
tions that reduce errors in assumptions about mixing between
the sources and observations and illustrate intra-city variabil-
ity inXCO2, which has been shown to allow for sector-based
emission constraints in California (Roten et al., 2023). The
recent launch of satellites and future plans for spaceborne in-
struments that retrieve greenhouse gas concentrations (e.g.,
GHGSat, CO2M, Carbon Mapper, etc.) at high spatial res-
olution and precision, some of which will apply SAM ob-
servational approaches, should greatly improve the ability to
accurately estimate CO2 emissions at city to global scales.
As demonstrated, our GP inverse model has the potential to
utilize these new satellite datasets to estimate surface emis-
sions in a near-real-time fashion, effectively incorporating
the unique spatiotemporal coverage of space-based informa-
tion.

In evaluating the GP inversion method used in this study
compared to linear inverse classical Bayesian inversion
(CBI) models (e.g., y=K λ+ ε, commonly used in atmo-
spheric inversions; Rodgers, 2000), advantages and disad-
vantages become apparent. The GP-based inversion method
employed in this work offers several advantages over classi-
cal methods, as highlighted by Jeong et al. (2025). Jeong et
al. (2025) presents the advantages of the GP method through
inversion results from different approaches, and we briefly
describe them here, focusing on the key points.

First, via simulations using multiple inverse modeling
methods for constraining CO2 fluxes in California when as-
similating OCO-2+OCO-3 XCO2 observations, Jeong et
al. (2025) demonstrated that the GP inversion yields supe-
rior results compared to the CBI method. Specifically, the
CBI method failed to capture the FF scaling factor accurately
at the 68 % confidence level. They repeated the inversion
multiple times, and this result was consistent. Their work
also showed that, without a proper prior distribution, a sim-
ple linear regression produced a physically implausible scal-
ing factor for fire emissions. In our full Bayesian approach,
we specify prior distributions for all parameters, including
the scaling factors and kernel hyperparameters. Overall, the
GP inversion offers substantial flexibility in modeling intri-

cate, nonlinear dependencies without needing a prespecified
model framework (Ebden, 2015).

Second, the CBI method typically relies on analytical so-
lutions and lacks robust techniques for estimating crucial pa-
rameters, such as hyperparameters (e.g., variance of the di-
agonal elements) for the covariance matrix (i.e., the kernel).
Consequently, many previous inversion studies have used
prescribed values for hyperparameters. For instance, these
studies often utilized known values from other work (e.g.,
Roten et al., 2023) or estimations derived from sensitivity
analyses to construct the model–data mismatch covariance
(Gerbig et al., 2003; Jeong et al., 2013; Johnson et al., 2016).
Such approaches do not guarantee that the estimates are con-
sistent with the observed data. In contrast, Jeong et al. (2025)
showed that the GP method can infer the noise variance,
with its median value closely aligning with the true value.
This represents a significant advancement over previous ap-
proaches, as it enables the direct estimation of true noise vari-
ance from the input data. Moreover, the GP inversion intrin-
sically provides quantification of uncertainty, which proves
advantageous in scenarios with limited data, such as in at-
mospheric inversions.

Third, the GP method includes the spatiotemporal kernel
as its essential component, as shown in this work. While
some previous work (e.g., Turner et al., 2020) used a covari-
ance with both spatial and temporal components, many pre-
vious inversion studies have not used a fully spatiotemporal
covariance. This is because it is not straightforward to esti-
mate the hyperparameters for the spatiotemporal covariance
in the CBI method based on analytical solutions (Jeong et
al., 2025). For example, the work by Turner et al. (2020) did
not estimate the covariance parameters in a way consistent
with the data. Incorporating the spatiotemporal covariance as
a core component of the inversion is a significant advantage
of the GP method over the CBI method.

While the GP-based inversion has many advantages over
CBI methods, the computational demands of the GP method
increase significantly with larger datasets, potentially re-
stricting its application in certain contexts (Williams and
Rasmussen, 2006; Murphy, 2022), although recent develop-
ment for high-performance computing (e.g., GPU-enabled
tools) can alleviate this issue. Conversely, the linear inverse
model, while less computationally demanding, assumes lin-
earity and typically requires explicit assumptions about the
underlying distribution, which may not always be valid and
can lead to underestimation of model uncertainty (Wang,
2023). Overall, this study demonstrates the clear advantages
of using GP-based inversion techniques, and this modeling
framework should be considered for application in future
studies for constraining GHG fluxes when assimilating satel-
lite retrievals.
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Code and data availability. The NASA OCO-3 Level
2 bias-corrected version 10.4r and OCO-2 Level 2
bias-corrected version 11r data are available from
https://doi.org/10.5067/8E4VLCK16O6Q (OCO Science Team
et al., 2022) and https://doi.org/10.5067/D9S8ZOCHCADE
(OCO Science Team et al., 2021). The Vulcan ver-
sion 3.0 high-resolution hourly dataset is available at
https://doi.org/10.3334/ORNLDAAC/1810 (Gurney et al.,
2020b). The CARB California GHG Emission Inventory is
available at https://ww2.arb.ca.gov/ghg-inventory-data (Cal-
ifornia Air Resources Board, 2022). Carbon dioxide fluxes
from CarbonTracker are available from https://gml.noaa.gov/
aftp/products/carbontracker/co2/CT-NRT.v2022-1/fluxes/daily/
(NOAA, 2024). Biogenic fluxes from the SMUrF model are
available from https://doi.org/10.3334/ORNLDAAC/1899
(Wu and Lin, 2021). Fire emissions data are available from
https://doi.org/10.5281/zenodo.12670427 (van Wees et al., 2024).
The GEOS-Chem model is openly available to the public and can
be downloaded from https://doi.org/10.5281/zenodo.12584192
(The International GEOS-Chem User Community, 2024).
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