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Abstract. Nitro-aromatic compounds (NACs) are important atmospheric pollutants that impact air quality, at-
mospheric chemistry, and human health. Understanding the relationship between NAC formation and key en-
vironmental driving factors is crucial for mitigating their environmental and health impacts. In this work, we
combined an ensemble machine learning (EML) model with the SHapley Additive exPlanation (SHAP) and pos-
itive matrix factorization (PMF) model to identify the key driving factors for ambient particulate NACs, covering
primary emissions, secondary formation, and meteorological conditions based on field observations at urban, ru-
ral, and mountain sites in eastern China. The EML model effectively reproduced ambient NACs and recognized
that anthropogenic emissions (i.e., coal combustion, traffic emission, and biomass burning) were the most impor-
tant driving factors, with a total contribution of 49.3 %, while significant influences from meteorology (27.4 %)
and secondary formation (23.3 %) were also confirmed. Seasonal variation analysis showed that direct emissions
presented positive responses to NAC concentrations in spring, summer, and autumn, while lower temperatures
had the largest positive impact in winter. By evaluating NAC formation and loss under various locations in winter,
we found that anthropogenic sources played a dominant role in increasing NAC levels in urban and rural sites,
while reduced ambient temperature, along with secondary formation from gas-phase oxidation, was the main
reason for relatively high particulate NAC levels at the mountain site. This work provides a reliable modeling
method for understanding the dominant sources and influencing factors for atmospheric NACs and highlights
the necessity of strengthening emission source controls to mitigate organic aerosol pollution.
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1 Introduction

Nitro-aromatic compounds (NACs) exist as one of the key
components of atmospheric organic aerosols that consist of
one or more nitro (-NO2) and hydroxyl functional groups
(-OH) attached to a benzene ring. They can be classified
into four categories based on the chemical structures and
quantities of functional groups, including nitrophenol and its
derivatives (NPs), nitrocatechol and its derivatives (NCs), ni-
trosalicylic acids (NSAs), and dinitrophenol and its deriva-
tives (DNPs). As semi-volatile compounds, NACs are widely
distributed in the air, cloud, surface water, fog, rain, and snow
in the Earth environment (Leuenberger et al., 1988; Lüttke et
al., 1999, 1997; Vanni et al., 2001). They are recognized as
the major constituents of brown carbon (BrC) that affect ra-
diative forcing and regional climate through strong absorp-
tion of visible and near-ultraviolet light (Xie et al., 2017;
Mohr et al., 2013). In addition, the photolysis of NACs can
release OH radicals and produce HONO, increasing the at-
mospheric oxidative capacity and altering the nitrogen cycle
(Bejan et al., 2006, 2007; Cheng et al., 2009; Yang et al.,
2024). Recent toxicology studies have also shown that NACs
can react with hemoglobin and further affect cell metabolism,
which poses risks to human health (Fernandez et al., 1992;
Purohit and Basu, 2000). Therefore, elucidating the sources
and sinks of NACs is of particular importance for compre-
hensively assessing their environmental, climate, and health
effects.

The abundances of NACs in ambient air largely depend
on primary emissions of anthropogenic activities, including
coal combustion (Lu et al., 2019b), biomass burning (Chow
et al., 2016), traffic emissions (Delhomme et al., 2010), and
industrial productions (Lu et al., 2021), with emission rates
influenced by fuel types, combustion processes, and burning
conditions. They can also be produced through nitration of
anthropogenic aromatic volatile organic compounds (VOCs)
initiated by OH and NO3 radicals in either the gas or aque-
ous phases (Harrison et al., 2005; Atkinson et al., 1989, 1992;
Xie et al., 2017; Xia et al., 2023). In addition to phase parti-
tioning, heterogeneous reaction of gas-phase NACs has been
recently proposed as a formation pathway for the condensed-
phase NACs (Wang et al., 2019). The secondary formation,
phase partitioning, diffusion and transport, and wet and dry
deposition of NACs strongly rely on meteorological condi-
tions. Particularly, previous studies established a temperature
(T )-dependent equilibrium for NACs between the gas and
particle phases (Cai et al., 2022; Yuan et al., 2016). Higher
relative humidity (RH) significantly facilitated the uptake of
gas-phase NACs into aerosols (Vidović et al., 2018; Frka
et al., 2016), while surface solar radiation (SSR) exerted a
dual effect by enhancing both the photochemical production
and photolytic degradation of NACs (Peng et al., 2023b).
The complex and synergetic effects of primary emissions,
secondary formation, and meteorological conditions on the

abundances of NACs make the quantification of the individ-
ual contributions of each factor a challenge.

Traditionally, receptor models such as positive matrix fac-
torization (PMF) and principal component analysis (PCA)
are applied to apportion the major sources of NACs and their
contributions. For example, Ren et al. (2022) and Yuan et
al. (2021) have applied the PMF model to reveal that the
particulate NACs in China are closely associated with an-
thropogenic activities, particularly with the direct emissions
from combustion sources. Li et al. (2016) combined PMF
and PCA models and recognized that NACs from biomass
burning are mainly responsible for urban haze events. Fur-
thermore, statistical methods based on linear or multilinear
regressions were also used to quantify the contributions of
sources, meteorological conditions, and other factors to the
variations of particulate NACs (Cai et al., 2022; Wang et al.,
2019; Chow et al., 2016). However, these methods are typi-
cally based on linear algorithms that may overlook the multi-
variate nature and nonlinear relationships between NACs and
the potential sources, as well as the complex influences from
meteorological conditions, potentially resulting in biased in-
terpretations of NACs under complex atmospheric condi-
tions. Therefore, a complementary data-analysis approach is
warranted to uncover the hidden, complicated relationships
more efficiently. Currently, machine learning (ML) methods,
which are capable of simulating intricate and concealed non-
linear relationships and interactions among complex vari-
ables, have been widely used in predictions and evaluations
of air pollutants (Chen et al., 2024; Wang et al., 2022a).
Lundberg and Lee (2017) proposed a SHapley Additive ex-
Planation (SHAP) algorithm based on game theory to im-
prove the model’s interpretability, thereby providing a tool to
explain and quantify the impacts of input variable values on
model predictions. The interpretable ML methods, in com-
bination with the interpretable SHAP algorithm, have been
recently applied to investigate the formation mechanism and
influencing factors of atmospheric pollutants. For example,
Qin et al. (2022) quantified the drivers of gaseous elemental
mercury by using an ML model in combination with SHAP.
Peng et al. (2023a) utilized an ML model coupled with SHAP
to evaluate the effects of PM2.5 sources and RH on atmo-
spheric visibility. Given the complex nonlinear links between
primary emissions, secondary formation, and meteorological
conditions and the ambient particulate NACs, a clear under-
standing of the separate role of each factor is challenging.
Therefore, it is necessary to establish an effective and reli-
able evaluation method to comprehensively understand and
assess the importance and contribution of each factor to the
abundances of NACs under complicated atmospheric condi-
tions.

In this study, particulate NACs at various sampling sites in
eastern China in different seasons were compared and char-
acterized. By integrating observational datasets of NACs,
meteorological data, particle loading (i.e., aerosol surface
area data), and source apportionment results derived from the
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PMF model, an ensemble machine learning (EML) model
combined with the SHAP approach was applied to reveal the
key variables regulating the ambient NACs and the complex
interrelationships. This study makes a methodological con-
tribution by employing a novel approach to quantify the sea-
sonal shifts in drivers and spatial variations across urban, ru-
ral, and mountain regions in a nuanced manner.

The purpose of this study is to (1) interpret the concen-
trations, compositions, and sources of particulate NACs at
different sampling sites and seasons; (2) provide methods to
identify the key driving factors for ambient NACs and quan-
tify their relative contributions at various NACs concentra-
tion levels; and (3) elucidate the response of NACs to key
driving factors under different pollution environments based
on various sampling locations. This is the first attempt to
combine the PMF model results with the explainable EML
method to build nonlinear relationships and identify the key
driving factors of NACs. The findings highlight the critical
roles of emission sources as well as the large impacts of tem-
perature and secondary formation on ambient NACs and pro-
vide a scientific basis for atmospheric pollution mitigation
measures.

2 Materials and methods

2.1 Field observations

The field sampling and measurements were conducted at 11
sites in eastern China from 2014 to 2021 (Fig. 1), including
four urban sites in Jinan (36.67° N, 117.05° E), Guangzhou
(23.14° N, 113.36° E), Nanjing (32.20° N, 119.62° E), and
Beijing (40.03° N, 116.42° E); five rural sites in Dongy-
ing (37.75° N, 118.97° E), Wangdu (38.70° N, 116.57° E),
Yucheng (36.87° N, 116.57° E), and Qingdao (including
two sampling sites: Qingdao Campus of Shandong Univer-
sity (36.36° N, 120.69° E) and Entrepreneurship Center of
Blue Silicon Valley (36.35° N, 120.67° E); see Fig. 1b));
and two mountain sites: Mount Tai (36.27° N, 117.10° E,
1,534 m a.s.l.), a typical high-elevation background site, and
Mount Lao (36.15° N, 120.68° E, 166 m a.s.l.), a lower-
elevation site situated in a coastal mountainous region. More
detailed descriptions about the sampling sites are provided
in Sect. S1 in the Supplement. It should be noted that the
basic data in Jinan (except for autumn), Wangdu, Yucheng,
Qingdao, and Mount Tai (winter in 2019 and summer) have
been reported in our previous studies (Li et al., 2020a; Wang
et al., 2018; Jiang et al., 2024; Li et al., 2024), which mainly
demonstrate the pollution characteristics of particulate NACs
and determine the major origins with the traditional PMF
model. In contrast, the NAC data collected during the cam-
paigns in spring at Mount Tai and Mount Lao, the campaigns
in summer in Guangzhou and Dongying, the campaigns in
autumn in Jinan and Nanjing, and the campaigns in winter in
Beijing, Dongying, and Mount Tai (2017) are newly reported
in this study. More importantly, the novelty of this work lies

in the integration of a multi-season, multi-site dataset with
an ensemble machine learning algorithm to comprehensively
assess the key driving factors of particulate NACs across dif-
ferent sampling locations and seasons.

In urban and rural sites, PM2.5 samples were collected
with a medium-volume sampler (TH-150A, Wuhan Tian-
hong, China) at a flow rate of 100 L min−1, with daytime
samples (08:00–19:30 LT) and nighttime samples (20:00–
07:30) obtained daily. Two high-volume air samplers (TE-
6070, Tisch, USA; TE-5170, Tisch, USA) at flow rates of
994 and 1000 L min−1 were used to collect PM2.5 samples
at Mount Tai (only in 2019) and Mount Lao, separately, with
temporal resolutions of 3 h during the daytime (07:00–22:00)
and 9 h during the nighttime (22:00–07:00 the next day). Fine
particulate matter was collected on pre-baked quartz-fiber fil-
ters (Pallflex, USA), and 613 aerosol samples were obtained
in total. Blank samples were acquired before and after the
field campaigns without sucking air, and the filter samples
were immediately placed in clean plastic boxes or wrapped
with pre-baked aluminum foil and stored at −20 °C in dark-
ness for subsequent chemical analysis.

Several major tracer gases (SO2, NO, NO2, and O3) were
simultaneously monitored by online analyzers at most sam-
pling sites. For the Nanjing and Guangzhou sites, where on-
site gas measurements were not available, the correspond-
ing data were downloaded from the China National Environ-
mental Monitoring Centre (available at: https://air.cnemc.cn:
18007/, last access: 10 August 2024). NO concentrations
were unavailable at these two sites due to data limitations
and were therefore excluded from this study. Meteorologi-
cal parameters, such as temperature and relative humidity,
were recorded by automated meteorological stations or ob-
tained from Weather Underground (available at: https://www.
wunderground.com, last access: 15 August 2024). Detailed
information on the trace gas analyzers and meteorological
stations is provided in Sect. S1. Other hourly meteorological
data for all sampling sites, including SSR, boundary layer
height (BLH), horizontal wind speed (WS_H), and vertical
wind speed (WS_V) at a height of 10 m (a.g.l.), were taken
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF, ERA5 data). Particle number size distribu-
tions at Mount Tai in 2019 were measured by a scanning mo-
bility particle sizer (SMPS, Grimm, Germany), which was
used to derive the aerosol surface area (Sa) data. Addition-
ally, Sa data for the remaining sites were estimated by using
predictive-capability machine learning algorithms based on
the input variables of PM2.5 and meteorological parameters.
Detailed descriptions on the estimation method of Sa can be
found in Sect. S2 and Fig. S1, and the predicted Sa results
are shown in Fig. S2.

2.2 Chemical analysis

The analytical protocol of particulate NACs in PM2.5 sam-
ples used in this study was adapted from those devel-
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Figure 1. (a) Map showing the sampling locations and (b) the different sampling sites located in Qingdao. The NOx emission data in 2019
were downloaded from the Multi-resolution Emission Inventory for China (MEIC) website (available at: http://meicmodel.org.cn, last access:
19 September 2024) (Li et al., 2017; Zheng et al., 2018).

oped by Kitanovski et al. (2012) and Wang et al. (2018).
Briefly, the filter samples were extracted ultrasonically or
with a thermostatic orbital shaker with methanol (contain-
ing 30 µL saturated ethylenediaminetetraacetic acid, EDTA)
for 30 min and repeated three times. The extracts were fil-
tered through 0.20 µm polytetrafluoroethylene syringe filters
(PTFE, Millex-FG, Millipore) to remove insoluble matters.
They were then evaporated and concentrated using ultrahigh-
purity nitrogen to dryness, and the concentrates were re-
dissolved in 300 µL methanol containing the internal stan-
dard. All the sample solutions were analyzed by ultrahigh-
performance liquid chromatography coupled with a mass
spectrometer (UHPLC-MS, Thermo Scientific, USA) detec-
tor operating in negative mode under selected ion moni-
toring (SIM) mode. Finally, the following 12 target com-
pounds were identified based on retention time and spec-
tra of the standards, including NPs – 4-nitrophenol (4NP),
3-methyl-4-nitrophenol (3M4NP), 2-methyl-4-nitrophenol
(2M4NP), and 2,6-dimethyl-4-nitrophenol (2,6DM4NP);
NCs – 4-nitrocatechol (4NC), 4-methyl-5-nitrocatechol
(4M5NC), 3-methyl-6-nitrocatechol (3M6NC), and 3-
methyl-5-nitrocatechol (3M5NC); NSAs – 5-nitrosalicylic
acid (5NSA) and 3-nitrosalicylic acid (3NSA); and DNPs –
2,4-dinitrophenol (2,4DNP) and 4-methyl-2,6-dinitrophenol
(4M2,6DNP). Standard curves, derived from the gradient
concentrations of the authentic standard mixtures, were uti-
lized to quantify the contents of the above 12 NACs. More
detailed analytical methods are provided in Sect. S3 of the
Supplement. It should also be noted that due to methodolog-

ical differences, the species of measured NACs varied across
various locations and seasons, as specified in Table S1. Ad-
ditionally, the average recovery rates for the filter samples
were determined to be within the range of 81.5 % to 106.5 %,
and the field blank signals of most species accounted for less
than 3 % of NACs in the ambient NACs, while NSAs and
DNPs in the blanks contributed approximately 10 % to the
determined NACs, which were considered in the subsequent
calculations. Moreover, the instrumental precision was de-
termined by repeated analysis of standard solutions (n= 5)
under the same operating conditions, yielding relative stan-
dard deviations of ±3.8 % for the target NACs, which in-
dicates high analytical reproducibility. Taking into account
errors from extraction recovery rates, instrumental precision,
and blank subtraction, the total measurement uncertainty for
NACs was estimated to be approximately ± 19.1 %.

2.3 Positive matrix factorization model

The PMF model (EPA 5.0) is a useful tool for qualitatively
identifying the NAC sources and quantitatively assigning
their contributions to the total NACs, and it is employed in
our study. The fundamental principles of the PMF model can
be described as follows in Eq. (1) (Paatero and Tapper, 1994):

Xi×j =Gi×p ·Fp×j +Ei×j , (1)

where Xi×j represents the observed data matrix, with i sam-
ples and j chemical species. Gi×p and Fp×j are the source
contribution matrix and source profile matrix, respectively.
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p is the number of sources contributing to the NACs. Ei×j

represents the residual error matrix capturing the difference
between the measured and simulated data, which was calcu-
lated by minimizing the function Q based on Eq. (2):

Q=
∑n

i=1

∑m

j=1

[
Ei×j

ui×j

]2

, (2)

where ui×j is the uncertainty, which was determined through
the comparison with the detection limit. Detailed information
can be seen in the previous study by Zhang et al. (2018).

In this study, the PMF input matrix consisted of 613 daily
aerosol samples and 10 components (including 4NP, 3M4NP,
2M4NP, 4NC, 4M5NC, 3M6NC, 5NSA, 3NSA, NO2, and
O3). For the input data, the treatment and calculation of the
concentrations and associated uncertainties for each species
followed the methodology described in our previous study
(Li et al., 2020a). Here, by comparing the Q value results
with two to six factor numbers, the optimal number of source
factors was determined to be four. Specific details of the PMF
model configuration and evaluation can be found in Sect. S4
and Fig. S3. Based on the outputs from the PMF model, four
major sources of NACs – including coal combustion (CC),
traffic emission (TE), secondary formation associated with
gas-phase reaction (GR), and biomass burning (BB) – were
identified from samples collected at the 11 sampling sites
(Sect. S4), and the corresponding source profiles are pre-
sented in Fig. S4.

2.4 Ensemble machine learning model

Four widely employed ML algorithms, including random
forest (RF), extreme gradient boosting (XGBoost), light gra-
dient boosting machine (LightGBM), and multilayer percep-
tron (MLP), were selected in this study for model devel-
opment. RF is an ensemble learning method that constructs
multiple decision trees, with the strength in its interpretabil-
ity (Wang et al., 2022b; Petkovic et al., 2017). XGBoost, a
gradient boosting learner that optimizes performance and ef-
ficiency, has strengths in stability and precision (Si and Du,
2020; Gui et al., 2020). LightGBM is a gradient boosting
framework designed for high efficiency and scalability (Ju
et al., 2019; Ma et al., 2022). MLP, as a class of feedforward
artificial neural network, has advantages in flexibility and the
ability to handle nonlinear relationships (Reifman and Feld-
man, 2002). Detailed information about these four ML algo-
rithms is provided in Sect. S5.1.

The dataset (613 rows) used for the four ML algorithms
consisted of 11 parameters as inputs, including PMF-derived
source contributions, meteorological conditions (T , BLH,
RH, SSR, WS_H, and WS_V), and heterogeneous reaction
represented by the aerosol surface area (Sa), all of which
influence the sources and sinks of NACs. To avoid circular
reasoning, the ML model was constructed to predict the to-
tal concentration of NACs as the target variable. The four

PMF-derived source contribution factors, which serve as in-
dependent explanatory variables capturing source-type influ-
ences, were used as input features instead of individual NAC
species. This approach ensures a clear separation between
PMF inputs and the ML target, effectively preventing data
leakage or double counting. The whole dataset was randomly
divided, with 80 % allocated to the training set and the re-
maining 20 % to the testing set. Then, grid search and 10-
fold cross-validation were employed to prevent overfitting
and tune the optimal hyperparameters. The performances
of model outcomes were evaluated using the coefficient of
determination (R2), mean absolute error (MAE), and root
mean squared error (RMSE), and the optimal hyperparam-
eters are listed in Table S2. As shown in Fig. S5, XGBoost
and LightGBM models exhibited better performances, with
lower MAE (6.82 and 7.38 ng m−3, respectively) and RMSE
values (11.05 and 12.07 ng m−3, respectively) than the other
two ML models. Meanwhile, the modeled NACs by the XG-
Boost and LightGBM algorithms were highly consistent with
the observed data, with R2 values of 0.88 and 0.86, respec-
tively. The RF model also performed well, with an R2 value
of 0.85, while the MLP model demonstrated inadequate fore-
casting performance (R2

= 0.60).
Due to the unique strengths and limitations of differ-

ent ML algorithms, the integrated EML model enhanced
the predictive performance by leveraging the strengths of
each ML algorithm, while mitigating their weaknesses (Opitz
and Maclin, 1999). Therefore, the base learners (RF, XG-
Boost, and LightGBM) were selected and integrated into the
EML model framework based on a ridge regression model
(Carneiro et al., 2022), and 10-fold cross-validation was ap-
plied to prevent overfitting. The evaluation results showed
that the EML model exhibited higher accuracy and preci-
sion, with the R2 of 0.91 with MAE and RMSE of 6.11
and 9.94 ng m−3, respectively (Fig. S6), making it the pre-
ferred option for the subsequent analysis. To further evaluate
the generalizability of the EML model, a leave-one-site-out
cross-validation approach was implemented. The data from
each site were iteratively excluded from model training and
used exclusively for testing, ensuring complete independence
between training and testing sets. The results show that this
model exhibits robustness and transferability rather than be-
ing limited to specific scenarios (see Fig. S7). Additionally,
multi-target predictions were conducted by using the EML
model with different functional groups of compounds, in-
cluding NPs, NCs, and NSAs, simultaneously set as target
variables. Different types of NACs also exhibited very good
predictive performances with R2 of 0.90, 0.85, and 0.93 for
NPs, NCs, and NSAs, respectively, confirming the compu-
tational accuracy and the strong ability to solve nonlinear
relationships (shown in Table S3). Furthermore, to quantify
the contributions of input features to the target variable, the
SHAP algorithm was employed in this study, which evalu-
ated the specific impacts of different driving factors based
on the marginal contribution of individuals within the frame-
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work of cooperative game theory. This approach enables a
robust and interpretable explanation of the relationship be-
tween each predictor and the average model prediction. De-
tailed information about the EML assessment method and the
SHAP algorithm is introduced in Sect. S5.2 and S5.3 in the
Supplement, respectively.

The latest scikit-learn packages (https://scikit-learn.org/
stable/, last access: 25 April 2025) are used for running
the ensemble machine learning model, and the SHAP al-
gorithm (https://shap.readthedocs.io/en/latest/, last access:
27 April 2025) is applied for quantifying each feature’s con-
tribution to NAC concentrations, which are performed in a
Python (v 3.11) environment.

3 Results and discussion

3.1 Seasonal and spatial variations of NACs

The particulate NACs measured in this study exhibited
relatively high levels, with an average total concentration
of 28.5± 32.7 ng m−3 across four seasons at 11 sampling
sites. As shown in Fig. 2, the concentrations of fine par-
ticulate NACs exhibited distinct seasonal variations, with
the highest total concentrations appearing in winter (42.0±
38.3 ng m−3, mean± standard deviation), followed by au-
tumn (18.3±22.8 ng m−3), spring (13.5±11.2 ng m−3), and
summer (10.6± 9.2 ng m−3). The above seasonal variation
trend is consistent with other whole-year observations in ur-
ban Xi’an, Beijing, and Hong Kong, China (Yuan et al., 2021;
Chow et al., 2016; Wang et al., 2021; Yang et al., 2020); ru-
ral Flanders, Belgium (Kahnt et al., 2013); and Mount Wuyi,
China (Ren et al., 2023). Such a large seasonal difference in
NAC abundances can be attributed to discrepant emission in-
tensities, formation rates, and meteorological conditions. As
seen in Table 1, NO2, which acts as an important nitration
agent in NAC formation and a major tracer of traffic emis-
sions, also showed higher concentrations in winter, autumn,
and spring when compared to summer. Meanwhile, SO2 and
CO, which share common anthropogenic sources such as
coal combustion and biomass burning, also exhibited higher
levels in cold seasons than in the hot season at the same site.
In addition, the lower temperature in winter was favorable
for gas-to-particle partitioning of NACs and their precursors.
Additionally, the accumulation of NACs during the cold sea-
son was exacerbated by relatively weak radiation and the
presence of a lower mixed boundary layer. Conversely, dur-
ing summer, strong light intensity, favorable diffusion condi-
tions, and the abundant oxidants facilitate the photolysis and
dilution of NACs. Furthermore, the abundance of NACs also
varied greatly with locations. In general, elevated NAC con-
centrations were observed at urban and rural sites when com-
pared with mountain environments. It is because there were
higher emissions and/or formation rates at urban and rural
sites, especially under the conditions of high NOx and inten-
sive anthropogenic VOCs, while mountain sites were rarely

affected by anthropogenic emissions. Moreover, data from
2014 to 2021 revealed no significant trends in NAC concen-
trations across the same seasonal and site-type conditions;
therefore, temporal variation was not considered a primary
focus of this study.

Figure 3 compares the abundances of particulate NACs
across different sites in the same season by similar analyti-
cal methods. During springtime, the average NAC concentra-
tions in Jinan in this work were comparable to those reported
in urban Rome, Italy (Cecinato et al., 2005), and significantly
higher than those in other urban, rural, and mountain sites
over the world (Fig. 3a). Summertime NACs measured in ur-
ban Jinan and Guangzhou also showed elevated concentra-
tions when compared with those observed in other locations
(Ren et al., 2022; Ikemori et al., 2019), which are mainly
attributed to the large anthropogenic emissions in these two
cities (Fig. 3b). Moreover, particulate NAC concentrations
also showed higher levels in rural Dongying, where they
were significantly affected by biomass burning activities in
early summer, as confirmed by Zhang et al. (2021). Lower
summertime particulate NAC concentrations were detected
in rural sites (i.e., Wangdu and Yucheng), similar to the re-
sults in previous studies conducted in rural Xianghe, China
(Teich et al., 2017), and urban Los Angeles, USA (Zhang et
al., 2013) in summer. In addition, the average NAC levels in
Jinan in northern China in autumn (Fig. 3c) was generally
comparable to that measured in urban Beijing and Xi’an (Li
et al., 2020c; Yuan et al., 2021) but higher than those ob-
served in urban Hong Kong (Chow et al., 2016) and Nanjing
(this study) in southern China, where it was relatively rarely
affected by coal combustion and biomass burning and expe-
rienced frequent rainfall. Moreover, the wintertime observa-
tions in northern China in this study were as high as those in
most previous studies, further indicating the high emissions
and concentrations of NACs caused by intensified combus-
tion activities for heating (Fig. 3d).

The composition of particulate NACs also varied accord-
ing to the sampling locations and seasons. As shown in the
pie chart in Fig. 2, NPs and NCs were the most abundant
species among the four categories of NACs at most urban and
rural sites due to their higher emission factors, abundant pre-
cursors, and longer atmospheric lifetimes than other NACs.
The dominance of NPs and NCs in this study coincides with
the findings from previous studies in other locations (Cai
et al., 2022; Li et al., 2020b; Wang et al., 2019). However,
the fractional composition of NACs in spring and winter at
mountain sites, being dominated by NPs and DNPs, differed
from that at other types of sites. Previous studies have sug-
gested that DNPs could be formed from further oxidation of
NPs by acquiring a nitro group (Yuan et al., 2016); the ele-
vated DNP fraction at mountain sites are mainly attributable
to the secondary formation processes. Additionally, it should
be noted that the increased proportions of NSAs were ob-
served in rural and mountain sites in summer (Fig. 2b), which
is in good agreement with a recent study in urban Nanjing
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Table 1. Sampling information and average concentrations (± standard deviation) of NACs (unit: ng m−3), trace gases, and meteorological
parameters.

Sampling site Season 6NACs SO2 (ppbv) NO2 (ppbv) O3 (ppbv) CO (ppbv) T (°C) RH (%)

Jinan

spring 34.0± 24.0 13.7± 7.7 43.7± 23.2 79.3± 19.9 920.2± 307.1 20.1± 2.5 37.2± 13.5
summer 10.4± 4.5 14.7± 14.7 26.7± 13.7 42.6± 26.3 1049.2± 573.5 24.0± 4.3 66.9± 16.4
autumn 26.3± 27.9 4.4± 1.8 35.2± 15.8 21.7± 14.5 812.1± 354.5 11.7± 3.0 44.8± 12.2
winter 60.7± 31.9 21.4± 9.6 26.3± 12.1 30.2± 17.6 1053.0± 403.3 8.6± 3.8 36.3± 11.7

Guangzhou summer 19.8± 10.5 3.0± 0.5 20.0± 3.8 13.0± 13.2 566.2± 82.0 27.1± 3.0 79.3± 11.2

Nanjing autumn 8.2± 3.3 3.4± 0.8 30.2± 11.0 23.5± 15.8 529.4± 126.2 14.1± 3.3 69.6± 15.2

Beijing winter 42.1± 27.1 3.7± 3.0 21.1± 13.2 21.2± 9.9 691.0± 489.6 −3.3± 4.4 36.4± 13.5

Yucheng summer 5.8± 2.7 3.2± 3.0 20.9± 12.5 45.9± 18.9 665.8± 146.8 24.5± 3.5 69.3± 15.3

Wangdu summer 5.9± 3.7 7.0± 5.6 14.2± 7.6 56.9± 23.3 521.2± 203.9 27.0± 4.4 55.4± 18.1

Dongying
summer 20.9± 12.5 3.6± 1.5 5.1± 2.2 77.0± 28.5 478.2± 173.0 27.7± 3.6 60.2± 11.9
winter 41.7± 27.6 4.6± 3.6 11.6± 5.2 21.8± 7.1 1494.8± 553.9 −2.6± 1.9 76.9± 13.7

Qingdao winter 53.6± 53.2 3.7± 2.1 16.8± 9.3 22.2± 11.1 757.2± 382.5 4.0± 5.5 64.3± 18.0

Mount Tai
spring 10.8± 4.9 2.1± 1.4 2.1± 1.3 72.7± 8.9 445.1± 121.3 8.5± 4.0 67.4± 18.5
summer 2.5± 1.6 2.6± 2.0 2.7± 0.8 70.3± 18.6 331.6± 148.9 19.7± 2.6 86.9± 8.9
winter 30.3± 13.6 2.0± 1.3 4.2± 2.7 40.9± 7.6 308.2± 168.3 −3.8± 3.3 51.8± 20.5

Mount Lao spring 12.3± 8.3 1.0± 0.8 7.7± 3.7 50.3± 12.2 273.0± 99.2 16.7± 3.6 56.0± 22.6

Figure 2. Box plots of NAC concentrations and pie charts of their compositions at urban, rural, and mountain sites in different seasons.
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(Cao et al., 2023) and the rural Indo-Gangetic Plain (IGP)
(Rana and Sarkar, 2024). The dominance of NPs and NSAs
at these remote sites may arise from aged plumes or intensive
photochemical oxidation of aromatic precursors in the pres-
ence of NOx (Jang and Kamens, 2001). The above results
suggest that the difference in particulate NAC compositions
across various locations and seasons is probably associated
with anthropogenic emissions and secondary formation pro-
cesses.

3.2 Key driving factors of NACs variation identified by
the SHAP approach

With the data of source apportionment, meteorological pa-
rameters (i.e., T , RH, wind speed, surface solar radiation,
and boundary layer height), and particle loading (i.e., Sa),
we further quantified the impacts of different primary emis-
sions (PEs), meteorological factors, and secondary forma-
tion (SF). Including gas-phase reaction (GR) and heteroge-
neous reaction represented by aerosol surface area (Sa), we
quantified their impacts on the variations of total NACs via
the SHAP algorithm. The mean absolute SHAP values can
be used to rank the major driving factors in the production
(including emission and formation) and loss of fine particu-
late NACs across all samples, with a larger absolute SHAP
value representing a higher influence on NAC levels. As
shown in Fig. 4a, coal combustion ranked as the most im-
portant factor affecting NAC concentrations, exhibiting an
average contribution of 8.0± 4.9 ng m−3, followed by traf-
fic emission, temperature, biomass burning, aerosol surface
area, gas-phase reaction, boundary layer height, and surface
solar radiation, with the SHAP values of 7.4±6.6, 6.9±3.0,
6.3±6.3, 5.6±7.1, 4.6±4.3, 1.9±1.8, and 1.0±0.8 ng m−3,
respectively. The mean SHAP values of the remaining fac-
tors were less than 1.0 ng m−3, which had minor impacts
on ambient NACs in this work. Overall, the major primary
emissions, including coal combustion, traffic emission, and
biomass burning, together contributed 49.3 % to the variation
of NACs during the sampling periods, while meteorological
conditions and secondary formation explained 27.4 % and
23.3 %, respectively (Fig. 4b). This enhancement in anthro-
pogenic emissions is consistent with the findings reported in
previous NAC studies (Wang et al., 2018; Yuan et al., 2021).
However, the integration of the explainable EML framework
constitutes a methodological advancement by enabling quan-
titative evaluation of source contributions, thereby providing
a more nuanced and context-specific understanding of the
driving factor across diverse atmospheric conditions.

Figure 4c–g show the SHAP values for each feature and
each sample and display the relationships between the SHAP
value and the feature value to investigate its influence on
the variation of NACs. A positive SHAP value indicates that
the variable increases the predicted NAC concentration rela-
tive to the baseline, whereas a negative SHAP value suggests
that higher values of the variable are associated with a de-

crease in NAC concentrations. As shown in Fig. 4c, among
the different primary sources, coal combustion, traffic emis-
sion, and biomass burning all exhibited a strong positive
correlation with predicted NACs, in alignment with previ-
ous studies that suggest the important roles of anthropogenic
emissions in driving high NAC concentrations. For example,
our previous study determined that the emission factors of
particulate NACs for residential coal combustion were 0.2–
10.1 mg kg−1, with the total emission of 178 Mg in China
in 2016 (Lu et al., 2019b). Particulate NACs were also de-
tected from direct traffic emissions, with the emission fac-
tor reaching up to 89.6 µgkm−1 (Nojima et al., 1983; Lu et
al., 2019a). Furthermore, the emission factor of NACs from
biomass burning can exceed 10 mg kg−1, which makes them
regarded as key tracers of biomass burning organic aerosols
(Wang et al., 2017; Iinuma et al., 2010). Gas-phase reaction
also demonstrated a positive association with NAC forma-
tion, mainly attributed to the fact that oxidation and nitra-
tion of precursors acted as important formation pathways for
atmospheric NACs. Additionally, temperature, as the lead-
ing meteorological contributor, showed a negative response
to NAC formation (see Fig. 4d). This result confirms the
recent finding that the concentrations of particulate NACs
largely depend on the temperature-dependent partitioning be-
tween the gas and particle phase and are prone to formation
at low ambient temperatures via enhanced transfer from the
gas phase (Al-Naiema and Stone, 2017; Yuan et al., 2016).
With the increase in aerosol surface area, its SHAP values
increased accordingly (Fig. 4e), which is similar to the pre-
vious study in Beijing, where high Sa would facilitate gas–
particle partitioning of NACs and their precursors and subse-
quent heterogeneous reactions (Wang et al., 2019). Notably,
at low temperature (approximately < 10 °C), the contribution
on NACs exhibited an explosive enhancement, accompanied
by a pronounced synergistic effect with higher Sa (Fig. S8),
indicating enhanced gas-to-particle partitioning and hetero-
geneous formation. Conversely, at higher temperature, high
Sa appears to suppress NAC formation, possibly as a result
of intensified photochemical reactions facilitating gas-phase
products, high temperature promoting the partitioning to the
particle phase, or dilution effects caused by increased mixing
heights in hot seasons. The relationship between boundary
layer height and their SHAP values showed a nonlinear re-
sponse (Fig. 4f), with a decreasing trend in low-BLH regimes
(0–600 m), accompanied by a relatively constant SHAP value
in high-BLH regimes (> 600 m). In low-BLH conditions, in-
creasing BLH levels reduced the concentrations of NACs due
to the enhanced diffusion and dilution (Krautstrunk et al.,
2000). When BLH was above 600 m, the BLH ceased to af-
fect the surface concentrations of NAC. As to surface solar
radiation, its SHAP values did not present an obvious corre-
lation with its levels (Fig. 4g). Generally, high solar radiation
can promote the secondary formation of some NACs (Vione
et al., 2001), but it also acts as a sink for NACs via photolysis
during the daytime (Bejan et al., 2020).
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Figure 3. Comparison of particulate NACs measured in this study (marked with filled black lines) with previous studies conducted in China
and other countries in (a) spring, (b) summer, (c) autumn, and (d) winter.

3.3 Driving forces of NAC variation for different seasons
and functional types

To make clear the dominant driving factors for the variations
of fine particulate NACs in different seasons, the contribution
of each factor during the four seasons is compared in Fig. 5.
As shown in Fig. 5a–c, overall, primary emissions were still
the main drivers, accounting for 45.9 %–62.5 % of NACs
across the four seasons, with the lowest impacts appearing
in winter. Among the four identified sources, coal combus-
tion and traffic emissions had large impacts on the variation
of NACs, with a total contribution of 67.3 %–80.8 %. Par-
ticularly, enhanced contributions from primary emissions, in
particular traffic emissions, were noticed in autumn. As to

meteorological parameters, according to the absolute SHAP
values, temperature had the greatest impacts, with a contri-
bution of 52.9 %–68.3 %. Additionally, the impacts of sec-
ondary formation on ambient NACs exhibit minimal fluc-
tuation across different seasons, except in winter, when a
slightly higher contribution (27.8 %) was observed.

Then, we further compare the positive or negative fea-
ture importance of various driving factors for the variations
in particulate NACs. As shown in Fig. 5d–g, the impacts
in spring, summer, and autumn were significantly differ-
ent from those in winter. The most crucial driving factor in
spring was coal combustion, contributing 6.9 ng m−3 to am-
bient NACs, followed by surface solar radiation and hori-
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Figure 4. (a) The ranking of the importance for all input variables (CC: coal combustion; TE: traffic emission; T : temperature; BB: biomass
burning; Sa: aerosol surface area; GR: gas-phase reaction; BLH: boundary layer height; SSR: surface net solar radiation; RH: relative
humidity; WS_H: horizontal wind speed; WS_V: vertical wind speed) calculated via the SHAP algorithm (average absolute contribution),
(b) the impacts of driving factors on variations of NACs from SHAP analysis during the whole sampling periods (PE and SF represent
primary emissions and secondary formation, respectively), (c) SHAP summary plots for all samples with the shift in color of the scatter plot
from blue to red, indicating an increase in driving factor values, and the relationships between the SHAP values and parameter values for
(d) temperature (T ), (e) aerosol surface area (Sa), (f) boundary layer height (BLH), and (g) surface net solar radiation (SSR), with the right
y axis corresponding to the frequency distribution of the measured variables.

zontal wind speed. In summer, the main influencing factor
was traffic emissions, with the SHAP value of 2.6 ng m−3,
followed by heterogeneous reaction (0.87 ng m−3) (Fig. 5e).
Particularly, traffic emission stood out and exhibited a very
high positive contribution to NAC levels in autumn with
the SHAP value of 12.5 ng m−3 (Fig. 5f). However, dur-
ing wintertime, temperature ranked first among all driving
factors, with a contribution of 5.6 ng m−3 (Fig. 5g), fol-
lowed by biomass burning (2.9 ng m−3), gas-phase reaction
(2.1 ng m−3), and coal combustion (1.9 ng m−3). This dif-
ference implied that the low ambient temperature in winter
strongly affected the emissions intensity and gas-to-particle
partitioning, which enhanced the production of particulate
NACs. The dominance of the impact of temperature rather
than combustion sources in winter was also related to the rel-
atively higher fraction of atmospheric samples from Mount
Tai in this season. Moreover, the significant enhancements
of primary emissions (i.e., biomass burning and coal com-
bustion) and secondary formation in winter, when compared
with autumn and summer, indicate that the air masses in win-
ter were mainly associated with substantial emissions of an-
thropogenic pollutants and subsequent oxidation processes.

In addition, we further explore the differences in dominant
driving factors for NACs with different functional groups
(i.e., NPs, NCs, and NSAs) based on the model of multi-

objective variables. Generally, it is evident that primary emis-
sions played important roles in the variations of all three
types of NACs, including NPs, NCs, and NSAs, with the
highest contribution of 66.7 % for NCs, followed by NPs
(50.2 %) and NSAs (23.1 %) (Fig. 6a–c). Meteorological pa-
rameters also exhibited high contributions to the variations
of NPs with a mean value of 28.0 %, followed by NCs
(17.4 %) and NSAs (13.5 %). Additionally, secondary for-
mation contributed the most to particulate NSA levels, with
a proportion of 63.4 %, which was obviously higher than
NPs (21.8 %) and NCs (16.0 %). Specifically, as shown in
Figs. 6 and S9a, coal combustion had the largest impact on
NPs, followed by temperature and traffic emissions, with the
average absolute SHAP values of 5.7± 3.1, 4.3± 2.1, and
3.9± 2.7 ng m−3, respectively. This result aligns with previ-
ous studies that highlighted the intensive emissions of par-
ticulate NPs from coal combustion and traffic sources, with
emission factors of 0.01–0.9 mg kg−1 and 1.7–26.7 µgkm−1,
respectively (Lu et al., 2019a, b). Besides, the semi-volatile
characteristic and relatively high saturated vapor pressures of
NPs make them more susceptible to the change in tempera-
ture, as confirmed by a previous observational study (Li et
al., 2020a). For NCs, biomass burning showed a dominant
effect on their variation, with the average absolute SHAP
value of 4.6± 5.8 ng m−3, contributing approximately 1.3
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Figure 5. The absolute contributions of (a) meteorological conditions, (b) all factors, and (c) primary emissions for the variations of NACs in
four seasons from SHAP analysis and box plots with the order of SHAP values for each driving factor in (d) spring, (e) summer, (f) autumn,
and (g) winter. PE and SF refer to primary emissions and secondary formation, respectively.

and 2.1 times more than traffic emissions and coal com-
bustion, respectively (see Figs. 6 and S9b). The predomi-
nance of biomass burning as a source of NCs is in accor-
dance with previous studies. As reported by a previous study
of Wang et al. (2017), NCs were the most abundant com-
pounds detected in freshly emitted particulate NACs dur-
ing biomass burning periods. Apart from direct emissions,
early measurements also identified cresol and substituted
cresols from widespread wood burning activities, which were
mainly produced from the pyrolysis of lignin. The oxida-
tion of cresol, methylated cresol, and methyl-catechols emit-
ted from biomass-burning-related sources is also expected
as an important contributor to NCs (Iinuma et al., 2010).
As to NSAs, they exhibited a strong positive association
with gas-phase reaction (Fig. S9c), with the average absolute
value of 1.7± 1.3 ng m−3, suggesting that these compounds
were mainly produced through the oxidation and nitration
of precursors, which is consistent with other field observa-
tions (Yuan et al., 2021). Furthermore, aerosol surface area
also contributed significantly to the variation of NACs, espe-
cially for NPs (2.6±3.9 ng m−3) and NCs (2.0±2.4 ng m−3)
(Fig. 6f), indicating the important contribution from het-
erogeneous formation. Overall, the results demonstrate that
the multi-target EML model effectively captured the distinct
source contributions and formation pathways associated with

different NAC subclasses. Coal combustion was identified as
the most important driver for NPs, biomass burning domi-
nated the formation of NCs, and NSAs were primarily linked
to gas-phase formation. These findings highlight the strength
of this integrated EML approach in differentiating functional
group-specific drivers and emphasize the importance of tar-
geted mitigation strategies for various NAC species.

3.4 Response of NACs to driving factors in different
locations

To understand the combined impacts of three categories of
driving factors (i.e., primary emissions, secondary formation,
and meteorological conditions) on the variations of NACs,
more than 300 samples collected in wintertime that covered
multiple sites were selected for further analysis. Based on the
discrepancies in geographical locations and emission inten-
sity of air pollutants, these sampling sites were categorized
into three scenarios: urban (Jinan and Beijing), rural (Dongy-
ing and Qingdao), and mountain (Mount Tai) areas.

As shown in Figs. 7 and S10, there were large discrep-
ancies in the dominant driving factors for fine particulate
NACs across different locations. In urban areas, primary
emissions exhibited positive impacts on ambient NACs, with
the mean SHAP value of 17.2 ng m−3. Among the 11 vari-
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Figure 6. The impacts of primary emissions (PE), meteorological conditions, and secondary formation (SF) on the variations of (a) NPs,
(b) NCs, and (c) NSAs from SHAP analysis and relative importance of (d) primary emissions (including coal combustion (CC), traffic
emission (TE), and biomass burning (BB)), (e) meteorological conditions (including temperature (T ), boundary layer height (BLH), surface
net solar radiation (SSR), relative humidity (RH), horizontal wind speed (WS_H), and vertical wind speed (WS_V)), and (f) secondary
formation (including gas-phase reaction (GR) and heterogeneous reaction represented by aerosol surface area (Sa)).

ables, traffic emissions ranked first in urban areas, contribut-
ing 14.9 ng m−3 to the NAC variation, followed by coal
combustion (7.7 ng m−3). The direct emissions from traffic
sources have been reported as one of the significant contrib-
utors to the particulate NACs in urban areas (Delhomme et
al., 2010; Sjögren et al., 1995). The observed enhancement
of traffic emissions in this study is mostly responsible for
the heavily trafficked urban districts in Jinan and Beijing, es-
pecially at rush hours. In rural areas, the integrated impacts
of primary sources also contributed positively to particulate
NACs, with mean SHAP values of 15.2 ng m−3. Coal com-
bustion and biomass burning turned out to be the most im-
portant driving factors, with the mean SHAP values of 6.1
and 5.6 ng m−3, respectively, which can be attributed to emis-
sions from central- and residential-heating activities in cold
seasons. In contrast, at the mountain area, the mean contribu-

tion of primary sources reduced to −5.7 ng m−3. This nega-
tive value reflects the minimal contribution of local anthro-
pogenic emissions in this region, resulting in lower concen-
trations of NACs compared to other sites. Then, gas-phase
oxidation dominated; secondary formation significantly af-
fected NAC levels, with the mean contribution of 5.9 ng m−3.
This is ascribed to rare anthropogenic emission sources at
the top of the mountain, where multiple oxidation and nitra-
tion reactions became remarkable. The relatively high con-
centrations of particulate NACs at the mountain site were
also probably associated with the air mass transport from an-
thropogenic activities in urban regions (Jiang et al., 2022),
with the mean SHAP value of 2.1 ng m−3 for biomass burn-
ing. These results indicate that primary sources served as
the predominant contributors to particulate NACs in urban
and rural areas, suggesting the necessity of making control
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Figure 7. The combined contributions of sources (i.e., coal combustion (CC), traffic emission (TE), and biomass burning (BB)), meteo-
rological conditions (i.e., temperature (T ), boundary layer height (BLH), surface net solar radiation (SSR), vertical wind speed (WS_V),
horizontal wind speed (WS_H), and relative humidity (RH)), and secondary formation (i.e., gas-phase reaction (GR) and heterogeneous
reaction represented by the aerosol surface area (Sa)) to the variations of NACs in (a) urban, (b) rural, and (c) mountain areas.

policy on long-term reduction of anthropogenic emissions
for addressing the NAC pollution. Additionally, temperature
ranked high among all driving factors, with mean contribu-
tions of 3.3, 5.6, and 5.9 ng m−3 for urban, rural, and moun-
tain areas, respectively, suggesting the enhanced partitioning
of the gas-phase NACs into the particle phase under low tem-
perature during wintertime. Besides, heterogeneous reaction
represented by aerosol surface area also presented positive
contributions at urban and rural areas, with the mean values
of 5.3 and 4.5 ng m−3, respectively. Severely polluted sites in
urban and rural areas tended to have increased particle num-
ber and high aerosol surface area density, which facilitated
the partitioning of NACs and related precursors from the gas
phase to the particle phase and the heterogeneous reaction
processes. However, heterogeneous reaction showed nega-
tive impacts on NAC formation at the mountain site, which
may be affected by various factors, such as relatively low
atmospheric particulate matter levels, diffusion, and trans-
port processes. The above machine learning results reveal the
combined but differential contributions of primary sources,
secondary formation, and meteorological conditions to the

variations of ambient NACs in different locations. Particu-
larly, this study provides a foundation for developing more
precisely targeted control strategies on NACs, with implica-
tions for mitigate particulate matter pollution.

4 Conclusions and implications

In this study, we applied a multi-target-variable ensemble
machine learning framework coupled with the SHAP algo-
rithm to explore the impacts of primary emissions, secondary
formation, and meteorological conditions on fine particu-
late NACs in the atmosphere at urban, rural, and mountain
sites based on field-observation datasets. The EML model
showed satisfactory performance that could effectively cap-
ture and interpret the variations of ambient NACs during all
the sampling periods. Overall, primary emissions, including
coal combustion, traffic emission, and biomass burning, were
the most important variables for NAC variations, contribut-
ing 49.3 % in total, while meteorological conditions and sec-
ondary formation accounted for 27.4 % and 23.3 %, respec-
tively. Among the driving factors, primary emissions and sec-
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ondary formation contributed positively to the enhancement
of NACs, while temperature and BLH (< 600 m) displayed
negative impacts. Our results indicate that the main influenc-
ing factors of particulate NACs varied across the four sea-
sons and various locations due to differences in pollutant
emission intensities and meteorological conditions. Anthro-
pogenic emissions represented primary sources of NACs in
spring, summer, and autumn, whereas temperature turned out
to be the most critical factor in winter, which may be as-
sociated with the higher sample coverage from Mount Tai
among all the samples. In addition, the main drivers of NACs
differed significantly among functional groups. Coal com-
bustion and temperature served as the dominant driving fac-
tors for NPs, and biomass burning had the largest impact on
ambient NCs. Meanwhile, gas-phase oxidation emerged as
the most important contributor to the variation of NSAs. A
detailed analysis of NAC formation and loss for different
locations (including urban, rural, and mountain areas) dur-
ing wintertime revealed significant impacts of temperature,
secondary formation, and biomass burning on NACs at the
mountain site. In contrast, the major contributors in urban ar-
eas were traffic emissions and coal combustion, and in rural
areas, the major contributors were coal combustion and tem-
perature.

This study integrated multiple field measurements with in-
terpretable ensemble machine learning to investigate the im-
pact of primary emissions, secondary formation, and mete-
orological conditions on atmospheric particulate NACs. The
result elucidates the nonlinear atmospheric processes of par-
ticulate NACs and provides new insights into their sources
and influencing factors in various atmospheric environments.
Particularly, the integration of PMF-based source apportion-
ment with a data-driven ensemble machine learning model
and the SHAP analysis method proved to be a potent tool for
rapidly diagnosing the driving factors for organic aerosols,
which is helpful for the control strategies targeting aerosol
pollution. This hybrid approach not only enhances the inter-
pretability of ML results but also allows for a more robust
and quantitative assessment of the contributions of individ-
ual sources and environmental drivers. In future research,
utilizing larger-scale datasets and deep learning techniques
are required to achieve more comprehensive and precise pre-
dictions and understanding of atmospheric NACs and other
organic components.
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Appendix A: Abbreviations

NACs Nitro-aromatic compounds BrC Brown carbon
NPs Nitrophenol and its derivatives VOCs Volatile organic compounds
NCs Nitrocatechol and its derivatives T Temperature
NSAs Nitrosalicylic acids RH Relative humidity
DNPs Dinitrophenol and its derivatives SSR Surface net solar radiation
4NP 4-nitrophenol PMF Positive matrix factorization
3M4NP 3-methyl-4-nitrophenol PCA Principal component analysis
2M4NP 2-methyl-4-nitrophenol ML Machine learning
2,6DM4NP 2,6-dimethyl-4-nitrophenol SHAP SHapley Additive exPlanation
4NC 4-nitrocatechol EML Ensemble machine learning
4M5NC 4-methyl-5-nitrocatechol BLH Boundary layer height
3M6NC 3-methyl-6-nitrocatechol WS_H Horizontal wind speed
3M5NC 3-methyl-5-nitrocatechol WS_V Vertical wind speed
5NSA 5-nitrosalicylic acid Sa Aerosol surface area
3NSA 3-nitrosalicylic acid EDTA ethylenediaminetetraacetic acid
2,4DNP 2,4-dinitrophenol BB Biomass burning
4M2,6DNP 4-methyl-2,6-dinitrophenol RF Random forest
CC Coal combustion XGBoost Extreme gradient boosting
TE Traffic emission LightGBM Light gradient boosting machine
GR Gas-phase reaction MLP Multilayer perceptron
PE Primary emission R2 Coefficient of determination
SF Secondary formation MAE Mean absolute error

RMSE Root mean squared error
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